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Abstract

We study a situation where, as a consequence of private information, agents do not have the incentive
to invest in a public good if they are unable to have prior discussion with their partners. We show that in
a voluntary contribution mechanism with cheap talk, any finite message space does not provide efficiency
gain relative to a binary message space when agents truthfully report their type. Using laboratory
experiments, we observe that communication is a useful mechanism to enhance efficiency, mainly by
allowing players to coordinate on the zero contribution when the project is not desirable for at least
one of them. However, we find that such efficiency gain seems to be very limited, since the simplest
communication structure (“Yes” or “No” messages) provides the same incentives to the agents as larger
message spaces.
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1 Introduction

A recurrent issue in Economics is understanding when the collection of individual choices is able to generate
the socially desired outcome, such as the provision of a public good or the implementation of a joint project.
The literature shows that under asymmetric information or coordination failure, individual actions may lead
to allocations that yield suboptimal outcomes. However, it has been shown that communication, an inherent
aspect to human relations, can be helpful in aligning individual incentives to social ones, i.e., one can enhance
efficiency by allowing subjects to use costless and non-binding messages.

Looking at economic relations, it is unlikely that agents would commit resources to a joint relationship
without prior discussion with their partners. For example, no entrepreneur would invest in a project when
he does not have information about his partner’s intended contributions. Similarly, two parties would not
engage in building an alliance without any sign of commitment by the other party. In both these situations,
a unilateral decision would be too risky for agents and communication arises as a coordination device to
reduce the risk inherent in the relationship and, possibly, to increase efficiency.

This article studies a situation where, as a consequence of private information, agents do not have an
incentive to invest in a public good if they are unable to have prior discussions with their partners. It has
been shown (Agastya et al. 2007) that by adding a prior stage of communication (binary message space) there
exist situations where individuals have incentives to invest and the project is undertaken. This provides some
efficiency gain relative to the no communication game where, unless stated otherwise, efficiency is measured
by the probability of the project being undertaken. We show, however, that gains from communication are
very limited since any finite message space does not increase the probability of the project being implemented
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relative to the binary message space when agents report their types honestly. The intuition behind this result
is that, since agents use a threshold rule to contribute, in any situation with more than one contribution
threshold, they have incentives to understate their types and thereby free-ride on their partners’ investment.
Hence, there is no truthful strategy profile that supports a Pareto dominant equilibrium in a more refined
message space. Communication is then a coordination device that signals whether or not players should
invest. We use laboratory experiments to test all these results.

More technically, Agastya et al. (2007) show that in a threshold public good contribution game where
agents have concave priors, the unique equilibrium is zero contribution. The authors show that by adding a
pre play communication stage in which agents can send binary messages (e.g., “Yes, I intend to contribute”
or “No, I do not intend to contribute”), the public good is implemented with positive probability in some
equilibria. They also argue that a game with uniform priors and full disclosure has the same equilibrium
outcome as the binary communication game. We show that when agents have concave priors, there is no
finite message space that supports an equilibrium in which the public good is more likely to be implemented
than with a binary message space.

The model we follow belongs to both the public goods and the strategic communication literature devel-
oped from Crawford and Sobel’s (1982) seminal paper. That paper showed that even self-interested agents
may choose to reveal information through costless and non-binding communication, also known as cheap
talk. In a voluntary contribution mechanism environment, we model communication as being a one-period,
simultaneous-move game where both players choose their messages from a finite set of possibilities. Our
framework allows agents not only to reveal private information but also to declare their intentions. In this
sense, our model also is related to the literature that uses communication purely as a coordination device.

Using laboratory experiments, we observe that people do contribute to the joint project even in the
no communication game, and that communication does not increase the probability of a project being
implemented. However, we observe that communication provides efficiency gain through the reduction of an
important variable not directly modeled: the unproductive contribution. Also, we find evidence that players
strategically use the larger message space as a binary message space, as our theoretical result points out.
Consequently, this evidence suggests that larger message spaces do not provide efficiency gain relative to the
binary one.

The paper is organized as follows, after discussing the related literature below, we introduce the model and
present the theoretical results in Section 2. Section 3 presents the experimental design and the hypotheses
to be tested. In Section 4, we discuss the laboratory results and analyze subjects’ behavior. Concluding
remarks are made in Section 5. Proofs are presented in the Appendix.

Related literature

The incentive conflicts behind issues of public interest that are decided by a collection of individual choices
intrigue social scientists not only by their practical relevance, but also because of what they reveal about
human nature. Holmstrom (1982) showed that a social optimum may not be achieved by an equilibrium
in a non-cooperative game, suggesting that people following their individual interests try to free-ride on
their partners. Menezes et al. (2001) presented a similar result for discrete public goods in the presence of
incomplete information. In a common agency game with private information, Martimort and Moreira (2010)
also find that the social optimum is not achieved in equilibrium, not because of free riding but because of
the screening effect between informed principals.

Experiments corroborate these inefficiency results and show that people behave in ways that produce
results between the social optimum and the individual interest (Marwell and Ames, 1979), and that repetition
reduces the cooperation between individuals in terms of contributions to a public good (Isaac et al., 1985).
Looking at coordination games, van Huyck et al. (1990, 1991) and Cooper et al. (1990) showed that even
with perfect information, individuals fail to select the payoff-dominant equilibrium. Since these articles
were published, much work has led to the identification of factors, one of which is communication, that can
enhance the provision of public goods. Ledyard (1994) provides a good survey on this topic.

Next, we discuss the theoretical models of communication on public good provision and related games,
and then we present some empirical findings. After the publication of Crawford and Sobel (1982), a series
of extensions and applications of their model were published. Gilligan and Krehbiel (1987) used a similar
model to study information theory of legislative rules and Austen-Smith (1990) found that information can
be fully aggregated by communication when preferences are sufficiently close, a finding close to Crawford
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and Sobel’s results.
In contrast to the above models, Palfrey and Rosenthal (1991) used an environment where both players

have private information and decision power. In a binary setting, they showed that perfect coordination is
not Bayesian-incentive compatible and that agents have weak incentives to free-ride in this kind of game.
Doraszelski et al. (2003) used a similar model to analyze the substitutability between communication and
voting. The authors found that both are perfect substitutes, or intuitively, that communication works as a
pre-play version of the decision game where agents have zero payoff in the first round of the game.

Our basic model departs from a similar structure which uses two privately informed agents who can
contribute continuously, as in Agastya et al. (2007). That paper showed that without communication,
agents do not have an incentive to contribute to the public good and that binary communication gives them
incentive to provide the public good with positive probability. In a n-player setting, Kawamura (2011) shows
there always exists an equilibrium where binary messages are credible and that, when n goes to infinity, the
most efficient equilibrium is the one with binary communication.

These cheap talk results are not limited to the voluntary contribution mechanism (VCM) literature.
Farrell (1987) showed that cheap talk can achieve partial coordination in a game similar to the “battle of the
sexes”. Forges (1990) used a job market application to show that the set of payoffs found in an equilibrium
of the cheap talk game is larger than in the original game. Baliga and Sjostrom (2004) used an arms race
context to show that cheap talk helps players to coordinate their action in reaching the payoff dominant
equilibrium of a “stag hunt” game.

Given the difficulty of testing these models with field data, several authors had undertaken laboratory
experiments to help understand the role of cheap talk. Isaac and Walker (1988) added a communication
stage to a VCM model without threshold and observed that communication reduced the free-rider behavior.
Closer to our article, Menezes and Saraiva (2005) studied the effects of binary communication and a refund
scheme in a threshold VCM model similar to Menezes et al. (2001), and found that only the refund rule
increased contribution. Palfrey and Rosenthal (1991) tested their theoretical findings with an experiment
where both messages and actions are binary. In this sense, the public good threshold is not on the contributed
amount (as in our case) but on the number of contributing subjects. Their experiments supported the no
communication equilibrium and suggested that subjects use a cutoff decision rule when it is optimal to do
so. However, they observed that communication failed to provide efficiency gain and that players’ behavior
in the communication stage was very non systematic.

Cai and Wang (2006) tested the Crawford and Sobel (1982) model in a discrete setting (states, messages,
and action). Their results supported the finding that communication leads to efficiency gain and that the
closer the preferences of principal and agent, the more the agent transmits information. The authors observed
that subjects over-communicate as message senders, in the sense that messages are more informative than
the model predicts. Also, they found that messages are more informative to receivers, since they rely on
them more than expected. This “truth bias” on communication also was observed by Kawagoe and Takizawa
(2009) relative to a level-k model.1

Some papers went beyond the theoretical models and studied how face-to-face communication affects
public good provision, such as Cason and Khan (1999), and Belianin and Novarese (2005). As is usual in
experiments with this kind of treatment, both found that communication increases cooperation. Bochet et
al. (2006) addressed this issue by designing an experiment with three types of communication in a standard
VCM model: face-to-face communication, anonymous chat room, and numerical messages. They found that
verbal communication (i.e., face-to-face and chat room) strongly increased cooperation, while the numerical
messages affected neither efficiency nor contributions.

In the coordination literature, Cooper et al. (1989) did not observe coordination failure on a “battle of
the sexes” game with cheap talk. In a later work, Cooper et al. (1992) showed that one-way communication
or two-way communication can have different effects depending on whether the game has a Pareto-dominant
strategy. Other experiments have studied cheap talk in various contexts such as bargaining. Crawford (1998)
is a good survey of experiments on cheap talk.

1The level-k model is a non-equilibrium model of agents’ behavior, reflecting strategic thinking. Its main point is to impose
structure on the set of agents’ beliefs.

3



2 The model

We model the investment choice of two players participating in a joint project, similarly to Agastya et al.
(2007).2 Player I(= 1, 2) has an initial endowment wI and has to decide privately how much to contribute,
cI , to a joint project. This project is undertaken when the sum of the contributions is greater than or equal
to the project cost k, i.e., the joint project is undertaken if c1 + c2 ≥ k.

Each player I is given his own valuation for the joint project, which is private information. The project
value for each player is a random variable with a continuous distribution function FI independently dis-
tributed in the interval [vI , vI ], where 0 ≤ vI < vI .

An agent’s payoff is a function of his project value, the amount invested by him in the joint project, cI ,
and the total amount invested in the project:

U (vI , cI , c−I) =
{

vI + wI − cI

wI − cI

, if c1 + c2 ≥ k
, if c1 + c2 < k.

(1)

The benefit of not undertaking the project is normalized to zero. We assume that it may be advantageous
for players to undertake the project, i.e., v1 + v2 > k (otherwise the problem would not make sense). On
the other hand, if v1 + v2 ≥ k, it is always ex post efficient to implement the project, and we have a class of
equilibria such that the public good is always provided and the private information is irrelevant. So, in order
to make the private information critical, we assume that v1 + v2 < k. Since our interest is in studying the
interaction between agents, we want each player to be pivotal for the project, i.e., neither agent should have
the incentive to implement the project individually. To avoid equilibria in which a player with a sufficiently
high value individually provides the public good, we assume that vI < k for I = 1, 2.

2.1 The contribution game

First we analyze the game without communication between players. It is a one stage game where each player
observes his assigned project value and decides how much to invest in the joint project. Let E−I [v−I ] ≡∫
[vI ,vI ] xdF−I

dx (x)dx. A pair of functions CI : [vI , vI ]→ R+, I = 1, 2, where CI(vI) ∈ argmaxcI
E−I [UI(cI , vI ,

C−I(v−I)|vI ] is said to be an equilibrium of this game. We define the following special strategies:

Definition 1 (Threshold Strategy) A function CI : [vI , vI ]→ R+, I = 1, 2, is said to be a threshold strategy
if there exists xI > 0 and v̂I ∈ [vI , vI ] such that

CI (vI) =
{

xI

0
, if vI > v̂I

, otherwise.

We say that an equilibrium is a cost sharing equilibrium if both players use a threshold strategy. Agastya
et al. (2007) proved that a necessary and sufficient condition for the existence of a cost sharing equilibrium
is that a pair of players’ types exists such that the sum of expected benefits exceeds the project’s costs, i.e.,
there exists v̂I ∈ [vI , vI), I = 1, 2, such that

(1− F2 (v̂2)) v̂1 + (1− F1 (v̂1)) v̂2 ≥ k. (2)

We are interested in understanding how communication can increase the probability of a project being
undertaken. So, we look at the extreme case where the only equilibrium of the contribution game is totally
inefficient, i.e., the project is never undertaken. In order to do so, we assume that the priors are concave,
i.e., FI (·) is concave for I = 1, 2. Agastya et al. (2007) state the following:

Proposition 1 If FI (·) is concave for I = 1, 2, then in the unique equilibrium of the contribution game,
each player makes a zero contribution. The project is never undertaken.

2We will use the terms joint project or public good, and the terms investment or contribution interchangeably throughout
the text since the model fits both terms in both cases.
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The intuition3 of this result is that when FI (·) is concave, the left hand side of condition (2) is convex
and its maximum is achieved in one of the distribution’s support corners (v1, v2), (v1, v2), (v1, v2) or (v1, v2).
Evaluating (2) in these four cases one can see that this condition is never satisfied.4

2.2 The contribution game with cheap talk

One way to address the extreme result of Proposition 1 is by allowing players to have a prior discussion
about their intentions. We do this by introducing a prior communication stage to the game. This new stage
makes the equilibrium set larger, which allows us to look for the existence of more efficient equilibria. The
timing of the game is the following:

1. Nature plays and vI is realized, I = 1, 2;

2. Players observe their type vI and send messages mI , I = 1, 2;

3. Players observe their partner’s message m−I and contribute cI , I = 1, 2;

4. Players receive their payoffs.

The communication consists of each player sending a message mI to his partner. Differently from Agastya
et al. (2007) we do not restrict messages to be binary. We follow Crawford and Sobel (1982) and define
the message space as a finite partition of the interval [vI , vI ]. The idea is that each player can send a
signal indicating his type or his intention, by communicating an element of the message space. Technically,
mI ∈ ΛI , where ΛI ∈ ΛI . The collection of finite partitions ΛI , I = 1, 2, is defined by the elements:

ΛI ≡
{

[a0, a1), [a1, a2), ..., [an−2, an−1), [an−1, an]
}

where n ∈ N and vI ≡ a0 < a1 < ... < an ≡ vI .
So, we have changed the single-stage contribution game to a two-stage game with cheap talk communica-

tion in which players may send any message independent of their assigned project valuation. Since there is no
commitment in the first stage, players also can choose freely in the contribution stage despite any exchanged
messages. Let this two-stage game be denoted by { (Λ1, Λ2), where Λ1 and Λ2 are the two message sets. The
equilibrium concept of this game is the Perfect Bayesian Equilibrium. We say that an equilibrium is truthful
if the players reveal themselves truthfully in the communication stage, i.e., a player sends a message mI only
if his value belongs to this interval.

For example, if both value distributions have support [0, 100] , a possible message space is Λ = {[0, 50),
[50, 100]}. This means that players can communicate mI = [0, 50) or mI = [50, 100]. As communication is
cheap talk, the player can send either message, independent of their actual type vI .

As we will show, players will play a relatively simple strategy in all equilibria of interest. It will be helpful
to have this strategy in mind throughout our discussion, so we define it in advance:

Definition 2 (Communication Threshold Strategy)5 Let ΛI be a partition of nI elements, for I = 1, 2. A
strategy profile Γ = (CI , mI)I=1,2 of the game { (Λ1, Λ2) is said to be a communication threshold strategy if

1. At the communication stage, messages are given by functions mI : [vI , vI ] → ΛI , for I = 1, 2, such
that

mI(vI) = miI

I , ifvI ∈ miI

I ;

3See Proposition 6 in Agastya et al. (2007) for the complete proof.
4In a n-player subscription game, Barbieri and Malueg (2010) show that continuous contribution, as we have here, yields to

greater contributions than discrete contributions when FI are concave. The intuition of their result applies to our case, such
that this no contribution result emerges in a setting where players are using the most efficient contribution technology.

5The simple strategy of Agastya et al. (2007) is a special case of this definition when n1 = n2 = 2, a1 = x, and b1 = k − x.
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2. At the contribution stage, contributions are functions CI : [vI , vI ]× Λ1 × Λ2 → R+, for I = 1, 2, such
that there exists

(̂
i1, î2

)
with a

bi1−1
1 + a

bi2−1
2 = k and

CI(vI , m
i1
1 , mi2

2 ) =

{
a

biI−1
I , if vI ∈ miI

I , i1 ≥ î1 and i2 ≥ î2
0 , otherwise

,

where we denote miI

I ≡ [aiI−1
I , aiI

I ) if iI < nI , and mnI

I ≡ [anI−1
I , anI

I ].

In other words, in the communication threshold strategy players truthfully reveal their types at the
communication stage and, at the contribution stage, players contribute zero unless there exists (̂i1, î2) such
that a

bi1−1
1 + a

bi2−1
2 = k and both announced (mi1

1 , mi2
2 ) such that i1 ≥ î1 and i2 ≥ î2. Note that the strategy

at the contribution stage is exactly the threshold strategy of Definition 1 with v̂I = xI = aiI−1
I , I = 1, 2.

We say that an equilibrium is a threshold equilibrium if it is supported by communication threshold strategy
profiles. The following lemma supports our main result.

Lemma 1 Any truthful equilibrium of { (Λ1, Λ2), ΛI ∈ ΛI , for I = 1, 2, where players make non-zero
contributions is supported by a strategy profile Γ only if Γ is a communication threshold strategy profile.

For the sake of presentation, hereinafter we use a simpler notation to drop players subscript. We denote
i1 = i, î1 = î and i2 = j, î2 = ĵ, and the partition thresholds ai1

1 = ai and ai2
2 = bj .

Figure 1 helps us understand Lemma 1. By backward induction, we first look at the contribution stage
assuming that players truthfully revealed their types at the communication stage, and then we determine
whether truthful strategies are optimal in the first stage. A strategy profile of the communication game
must have a contribution rule that says how much to contribute after every message history. In equilibrium,
the sum of contributions must equal the project cost, otherwise players would be better off reducing their
contributions.

Figure 1: Sketch of the proof of Lemma 1

Looking at Figure 1, suppose this contribution rule says that player 1 after some message, for example(
m3

1, m
2
2

)
, must contribute a2 + ε, where ε > 0. Since in equilibrium the sum of contributions must be equal

k, player 2 must contribute k − (a2 + ε) = b1 − ε. Hence, all players with types in (b1 − ε, b1) have no
incentive to communicate their type truthfully.
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Now, suppose the contribution rule says that player 1 must contribute a1 − ε, where ε > 0, following
some message history

(
m2

1, m
3
2

)
. Hence, players with types in (a1 − ε, a1) have no incentive to truthfully

communicate their type. Consequently, for any contribution rule consistent with truthfulness and positive
contribution, we must have that ε = 0 for some message history (mi

1, m
j
2), i.e., the contribution must follow

the partition cutoffs.
Moreover, any truthful equilibrium can have at most one positive contribution level for each player. In

fact, suppose that players were to contribute (a1, b2) following history
(
m2

1, m
3
2

)
and (a2, b1) following history(

m3
1, m

2
2

)
. Then, a player with type a2 and b2, would have incentive to under-report their types, respectively.

That is, by truthfully communicating m3
1, contributing a2 would give zero expected utility, while he would

have strict positive expected utility by communicating m2
1. The same argument would follow analogously

for player 2.
Therefore, there exists a contribution rule consistent with truthful revelation and positive contribution if

and only if the message space (Λ1, Λ2) is such that there exists a pair of thresholds such that ai−1 +bj−1 = k.
In this case for each such pairs (i, j), there is only one equilibrium with positive contribution in which
(ai−1, bj−1) are the contribution threshold. In the example above, players contribute (a1, b2) after histories(
m2

1, m
3
2

)
or
(
m3

1, m
3
2

)
, if cutoffs (a1, b2) are used as contribution thresholds; or they contribute (a2, b1) after

histories
(
m3

1, m
2
2

)
or
(
m3

1, m
3
2

)
, if cutoffs (a2, b1) are used as contribution thresholds. In all other equilibria,

contributions are always zero and the project is never undertaken. So, Lemma 1 allows us to state the
following:

Proposition 2 Given a pair of partitions (Λ1, Λ2), Λ1 ∈ Λ1 and Λ2 ∈ Λ2:

1. There exists a truthful equilibrium of { (Λ1, Λ2) where the project is undertaken if and only if there
exist î ≤ n1 and ĵ ≤ n2 such that abi−1 + bbj−1 = k.

2. For each such pair
(̂
i, ĵ
)

there exists a unique non-trivial truthful equilibrium. The positive contribu-
tions in this equilibrium is (abi−1, bbj−1).

3. There is always a trivial equilibrium of { (Λ1, Λ2) where players ignore the communication stage and
contribute zero as in the contribution game.

Proposition 2 makes a very strong statement by saying that a truthful equilibrium of the communication
game with a binary message space cannot be Pareto dominated by any truthful equilibrium with any finite
message space. The intuition is that communication provides efficiency gain only if it allows players to send
two clear messages: “Yes, I intend to contribute”, for messages mi

1 such that i is greater than a threshold î;
or “No, I do not intend to contribute”, for messages mi

1 such that i is less than a threshold î. The proposition
is even more restrictive, since it affirms that the “Yes” message is used only when the message sets are such
that there exists a pair (abi−1, bbj−1) where abi−1 + bbj−1 = k. Therefore, cheap talk improves efficiency relative
to the game without communication, however this improvement is restricted to the simplest communication
form, the binary one.

As stated in the third item of Proposition 2, it is important to highlight that the trivial equilibrium,
where players ignore the message stage and contribute zero afterwards, always exists. This implies that when
the message sets are such that in a threshold equilibrium the project may be implemented with positive
probability, the game has two Pareto ranked equilibria: the threshold and the trivial. This multiplicity of
equilibria will be very important when we discuss the laboratory data.

3 Experimental design

We ran a between-subject design experiment with a total of six sessions, two sessions for each of the following
treatments: no communication, cheap talk with a binary message space, and cheap talk with a refined
message space. The experiment was programmed and conducted with the software z-Tree, Fischbacher
(2007). We used the same two sets of values taken from a uniform distribution and the same group matching
in all the sessions.
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We had 16 subjects in each session, totaling 96 participants. Subject recruitment was made through
the Experimental Economic Center’s website. All participants were inexperienced undergraduate students
at Getulio Vargas Foundation majoring in courses such as Economics, Business, Law, Social Science, and
History. Each participant received US$4.90 to show up plus the session’s earnings.6 Sessions lasted approx-
imately 75 minutes each, including the payment time.

Each session consisted of 25 decision rounds with no practice periods. We used the strangers protocol
in which, in each period, new groups are formed randomly in a manner such that agents never know the
identity of their partners.

During the experiment, the decision to invest in the joint project was presented as an allocation decision.
Any reference to social contribution was avoided in order to not bias the agent’s decisions. The subject’s
task was to choose the amount of his initial endowment to allocate to a Group Account and how much of his
endowment to retain. A detailed payoff table was presented on the subjects’ computer screens in all decision
stages to help them estimate their potential earnings as a function of their private information and their
possible actions.7

At the beginning of each period, the subjects were randomly assigned to new pairs. Each subject received
a non-storable endowment of 100 tokens in each period, i.e., w = 100. The subject’s Group Account valuation,
vI , was displayed on his computer screen. This value was private information and the subject only knew
that the Group Account value of the other player was uniformly distributed between 0 and 100. A subject’s
payoff was defined earlier by equation (1). The Group Account threshold was k = 100.

At the end of each period, after all participants had made their decisions, it was presented in the results
screen: (i) if the total allocation to the Group Account was greater than or equal to the threshold8, (ii) the
amount allocated by the player to the Group Account, (iii) the two messages exchanged, and (iv) his profit
in that period. The history of these informations was always available on the computer screen.

3.1 The no communication treatment

This is the baseline treatment, relative to the contribution game presented in Section 2.1. In each pe-
riod, subjects played a one stage game where they observed their respective Group Account value, vI , and
simultaneously decided the amount, cI , they wanted to allocate to the Group Account.

The following hypothesis concerns Proposition 1.

Hypothesis 1 In equilibrium, each subject allocates zero to the Group Account, i.e., the project is never
undertaken.

3.2 The binary communication treatment

The participants now played a two-stage game. In the first stage, each subject observed his Group Account
value, vI , and sent one of two possible messages to his partner: “Yes, I intend to allocate tokens to the
Group Account” or “No, I do not intend to allocate tokens to the Group Account”. We used the same
terminology as Palfrey and Rosenthal (1991). This cheap talk stage allowed players to communicate their
type imperfectly, but also it let them mainly communicate their intentions. It is important to emphasize
that this message was cheap talk, i.e., it was not binding.

In the second stage, each subject observed the message his partner had sent him and then decided how
much to allocate to the Group Account, cI .

The next hypothesis concerns Proposition 2 when (Λ1, Λ2) partitions the type space in two intervals.

Hypothesis 2 The probability that the total amount allocated to the Group Account exceeds the project cost
is greater in the cheap talk game than in the no communication game.

6The total average payment was US$10.50, both values converted by US$1 =R$ 1.62, exchange rate on August 13, 2008.
7The use of the detailed payoff table, explained in the instructions, follows Saijo and Nakamura (1995). The instructions

are available on request.
8We opted not to inform subjects the exact total amount allocated to the Group Account so that they could not figure out

how much their partners contributed.
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3.3 The refined communication treatment

This treatment consisted of the same two stage game as the binary communication treatment, with the only
difference being that players could choose to send one of four messages in the first stage: ΛI ≡ {[0, 25), [25, 50),
[50, 75), [75, 100]}. In order to follow the binary treatment, the players had to be able to communicate their
intentions. When the subjects were asked “How much do you intend to invest?” they had to send one of the
four messages:

“I intend to allocate an amount between 0 and 25 to the Group Account.”
“I intend to allocate an amount between 25 and 50 to the Group Account.”
“I intend to allocate an amount between 50 and 75 to the Group Account.”
“I intend to allocate an amount between 75 and 100 to the Group Account.”

Figure 2: Partition of the refined communication treatment.

Any threshold equilibrium must have contribution partitions that create a rectangle above the negative
45-degree line in Figure 2. But there cannot be multiple such rectangles in a single equilibrium, since this
would create incentives for some types to miscommunicate their type, i.e., which rectangle their value is in.
Thus, there must be only one rectangle. The single rectangle that maximizes the measure of types on which
the project is built is [50, 100] × [50, 100]. But this is exactly the set of types that build the project in the
equilibrium of the binary communication game. Thus, the refined communication game cannot improve on
the probability of project implementation.

The next hypotheses concern Proposition 2 when ΛI ≡ {[0, 25), [25, 50), [50, 75), [75, 100]}.

Hypothesis 3 The probability that the total amount allocated to the Group Account exceeds the project cost
is greater in the cheap talk game with a refined message space than in the no communication game.

Hypothesis 4 The probability that the total amount allocated to the Group Account exceeds the project cost
in the cheap talk game with a refined message space is not greater than in the cheap talk game with a binary
message space.

4 Results

Figure 3 plots the average group contribution and the percentage of projects implemented along the periods
for each treatment. As can be seen, we observe a more accentuated negative time trend of group contribution
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in the no communication treatment than in the two communication treatments. This negative time trend
in the initial periods may be evidence of learning, something recurrent in laboratory experiments (note that
subjects did not have trial periods). In order to make the data consistent with the one-shot game being
tested, and to eliminate this learning effect, we perform all the analysis for three subsamples: all periods,
the last 20 periods and the last 15 periods. The analysis does not hinge on the sample choice, so we will
consider the sample dropping the five first periods in the discussion.
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Figure 3: Group contribution and percentage of projects implemented.

Excess contribution

Interestingly, we do not observe any clear time trend of the probability of the joint project being imple-
mented, the only dimension of efficiency discussed in our theoretical model, and in all class of VCM models.
No pure-strategy equilibrium will have efficiency loss due to coordination failure, since the sum of contribu-
tions must equal the cost of the project. However, inefficiency can also be measured by the unproductive
amount invested, or the excess contribution which is defined as:

EC =
{

c1 + c2

c1 + c2 − k
, if c1 + c2 < k
, if c1 + c2 ≥ k.

Hence, excess contribution can be interpreted as a measure of coordination failure of this class of models.
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In the following subsections we first test the model hypotheses using only the first measure of efficiency,
the probability of implementing the joint project. Then, we look at this other dimension of efficiency gain
studying the effects of communication on excess contribution. Finally, we look at subject’s strategic behavior.

4.1 Hypotheses test

We first look at efficiency gain as discussed in the model: the probability of the joint project being im-
plemented. The control treatment is the no communication game, where we observed only 51% of zero
contributions, the unique Nash Equilibrium strategy. The positive contribution by the other players resulted
in the project being implemented in slightly less than 20% of the cases, what leads us to reject Hypothesis
1 at 5% of significance.9 Table 1 presents the means and standard errors. This overcontribution pattern is
common in public goods experiments and was also observed by Isaac and Walker (1988) and Menezes and
Saraiva (2005).

Probability of project Excess contribution Payoffs

implementation

All Periods Periods All Periods Periods All Periods Periods

periods [6,25] [11,25] periods [6,25] [11,25] periods [6,25] [11,25]

No Communication (NC) .198 .194 .175 32.71 31.42 29.10 171.9 173.6 175.5

(.003) (.006) (.008) (.79) (1.52) (2.03) (.15) (.09) (.64)

Binary Communication (BC) .140 .141 .129 21.99 20.56 19.10 182.3 184.1 185.0

(.030) (.028) (.021) (4.83) (5.19) (5.40) (4.58) (5.88) (6.19)

Refined Communication (RC) .198 .200 .196 22.78 21.91 20.36 183.5 185.1 186.8

(.008) (.000) (.004) (7.33) (6.55) (5.53) (7.31) (5.57) (4.49)

N 400 320 240 400 320 240 400 320 240

Note: Standard errors clustered by sessions presented in parenthesis.

Table 1: Sample averages.

The introduction of the communication stage should allow players to coordinate their decisions, making
the project more likely to be implemented, as stated in Hypothesis 2. However, the laboratory outcome
showed us that both communication schemes failed to increase the probability of the project being undertaken
relative to the no communication treatment. In the binary treatment, the project was implemented in only
14% of the cases, while in the refined communication treatment it was implemented in 20% of the cases.
Using Wilcoxon rank-sum tests, presented in Table 2, we see that neither the binary message space nor the
refined message space increased the probability of project implementation relative to the no communication
treatment. In fact, we reject the hypothesis that the project was equally likely to be implemented in
the binary communication treatment and in the no communication treatment in favor of the alternative
hypothesis that the project was more likely to be undertaken in the no communication treatment. Hence,
we reject Hypotheses 2 and 3. As will be argued in the Subsection 4.3, this weak effect of the communication
stage may be due to the multiplicity of equilibria. That is, some subjects may be using the babbling strategy
and some may be using the communication threshold strategy, which thereby introduces uncertainty into the
game and reduces message credibility. Palfrey and Rosenthal (1991) and Bochet et al. (2006) also obtained
similar results.

9The z statistic of the Wilcoxon signed-rank test of the hypothesis that the probability of project implementation is zero for
the full sample is 11.1. All results discussed are significant at 5%.
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Probability of project Excess contribution Payoffs

implementation

All Periods Periods All Periods Periods All Periods Periods

periods [6,25] [11,25] periods [6,25] [11,25] periods [6,25] [11,25]

H0: NC=BC .015 .036 .082 .000 .000 .000 .000 .000 .000

H0: NC=RC .500 .579 .721 .000 .000 .000 .000 .000 .000

H0: BC=RC .030 .046 .048 .275 .192 .330 .606 .775 .535

N 800 640 480 800 640 480 800 640 480

Note: Equality test shows the p-value of a Wilcoxon runk-sum test. The null hypotheses NC=BC and NC=RC are evaluated

as a one sided test, while BC=RC is a two sided test, to match the hypotheses of Section 3.

Table 2: Equality test (p-value of a Wilcoxon rank-sum test).

Hypothesis 4 says that more refined message spaces do not support a truthful equilibrium in which the
project is more likely to be undertaken than in any equilibrium supported by a binary message space. This
hypothesis is not so intuitive, and the Wilcoxon rank-sum test does reject it. However, as we just argued this
result does not seem to come from an efficiency gain relative to the no communication game. It seems that
the larger message space reduced the noise of the binary communication and made the refined communication
treatment as efficient as the no communication case.

Therefore, we can conclude that the introduction of the cheap talk stage does not increase the probability
of the project being implemented.

One can be critical about the Wilcoxon rank-sum tests because multiple decision by the same individual
and decisions by individuals who have interacted, are generally not independent. In order to tackle this
issue, and being more conservative, we also used panel regressions with random effects that capture the
interaction within the matching group. These regressions corroborate the results just discussed (see Table
A1 in Appendix B). We opted to use these regression estimates as a robustness check because the small time
trends of the outcomes variable over periods suggests that the strangers protocol was effective and because
of the low statistical power of the panel estimates in our sample.

4.2 Efficiency

In this section we evaluate the efficiency of communication by taking into account its effect on the unpro-
ductive contribution. The model of Section 2 does not include excess contribution, however we use the four
hypotheses derived in Section 3 as a benchmark for the following analysis.

As already argued, people made blind contributions in the no communication treatment. These blind
contributions sustained a higher level of excess contribution, since subjects contributed with no signal about
their partner’s valuations or intentions. In the no communication treatment, each group wasted on average
31.4 tokens in excess contribution, while in the binary and refined communication treatments we observed
an average waste of less than 22 tokens.

As presented in Table 2, by comparing each communication treatment to the no communication treat-
ment, the Wilcoxon rank-sum test rejects the null hypothesis that communication does not affect excess
contribution. Thus, an analogous version of Hypotheses 2 and 3, that communication allows efficiency gain
relative to the contribution game, is supported by the data.

The same hypothesis test fails to reject the hypothesis that the two communication treatments have the
same mean excess contribution. This means that, making an analogy to Hypothesis 4, the refined message
space does not provide efficiency gain relative to the binary under this other efficiency measure, the excess
contribution.

Combining the two efficiency measures, and looking at the group payoffs, we can see that communication
indeed increased payoff relative to the contribution game and that the larger message space did not improved
efficiency relative to the binary communication.

Therefore, communication seems to increase efficiency in relation to the contribution game. However,
this efficiency gain is not obtained by a higher probability of the project being implemented as predicted by
the model. The main effect of communication is to reduce the unproductive contribution, or the failure of
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coordination. With this result in mind, we believe that our findings show that communication is a useful
mechanism to enhance efficiency. However, we observed that the efficiency gain due to communication is
very limited, since a more refined message space failed to do better than the “Yes” or “No” messages.10

4.3 Behavior patterns

We now look at the subjects’ behaviors, attempting to identify the strategies used by them. In the contri-
bution game, the only equilibrium strategy is the zero contribution. However, we observed that only 51%
of the decisions used this strategy, while the others contributed a positive amount. As we can see in Figure
4, the non-zero contributions do not seem to have a clear pattern, with a small spike around 50. As we will
show later, we find the same pattern in contributions following a communication history that contains a “No
intention to contribute” message.
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Figure 4: Positive contributions histogram.

The analysis of the communication game is not as straightforward because the two stage game has multiple
equilibria. In the binary treatment we have two classes of equilibria: the babbling equilibrium, where players
behave freely in the communication stage and contribute zero independently of the message history, and
the threshold equilibrium. In the refined communication treatment, we have the babbling equilibrium, three
threshold equilibria (one symmetric and two asymmetric) and at least a pair of non-truthful equilibria with
positive contribution.11 Note that the threshold equilibrium Pareto dominates the babbling for players with
values greater than the contribution thresholds. Players with value smaller than or equal to this threshold
are indifferent between playing babbling or threshold strategies, as both strategies give the same expected
payoff. In what follows, we restrict our attention to only two strategies: the babbling and the symmetrical
threshold.

The babbling strategy allows players to fool or truthfully reveal their types in the communication stage.
However, it states that players contribute zero in the second stage independently of the message they receive.
Individuals playing the communication threshold strategy truthfully reveal their types in the communication
stage and their choices in the contribution stage are contingent on the messages exchanged. These players
contribute 50 tokens each if the message history is such that both communicated “Yes”, which in the refined
treatment means that both said they intend to contribute more than 50 tokens.

We use the following three main different characteristics of these equilibria to identify them in the data:
(i) we expect to observe more truthful revelation on the communication threshold strategy than on the
babbling strategy; (ii) positive contribution is consistent only with the communication threshold strategy;

10Note that using panel regressions, Table A1 in Appendix B, we reject the equality of the two communication treatment
with a p-value of 0.128. However, as already argued, this test has low statistical power.

11For example, a strategy where players with values greater than 50 use the message [50, 75) or [75, 100] as “Yes” and
contribute 50 on the contribution stage when both players sent message “Yes”.

13



and (iii) the message received should affect contribution only for players with values high enough who are
playing the communication threshold strategy.

First, we look at the message sent in the communication stage. The histograms below show the com-
munication patterns for each value interval. We can observe a similar communication pattern in both
communication treatments. By looking at the values of players who sent each message, we observed a ten-
dency of under revealing their types in the refined communication treatment. Without losing information,
we bunch the messages [50, 75) and [75, 100] and read them hereinafter as a “Yes” message on the binary
treatment, and bunch [0, 25) and [25, 50) hereinafter as a “No” message. Using a Kolmogorov-Smirnov test
we cannot reject the hypothesis that the distribution of players’ values who send a “Yes” message is equal
on the two communication treatments.12 Thus, behavior in the communication stage seems to be consistent
with the equilibria strategies.

Figure 5: Message histogram by value.

Second, we now turn to the second stage of the communication treatments, i.e., the contribution stage.
If a player is not playing naively, when he sends a message in the first stage he already knows whether there
is a positive probability of his contribution being positive in the second stage. That is, if the subject’s value
is small enough or if he is playing the babbling strategy, he knows that he will contribute zero in the second
stage for sure. On the other hand, someone with high value playing the communication threshold strategy
knows that he will contribute a positive amount only if he receives a positive message from his partner. Note
that initially, the partner does not know for sure whether he will make a positive contribution at the second
stage exactly because his contribution is contingent on the message he receives.

The contribution stage is a continuation game that follows a communication history, so the analysis of the
contribution must be truncated by these message histories. Figure 6 presents the contribution histograms
of each continuation game. The distribution of contributions on a communication treatment following a
“No” message is very similar to the distribution of contributions on the no communication treatment (see
Figure 4). The difference is that we observe a higher probability of zero contribution. On the other hand,
the distribution of contributions on the communication treatments following a (Yes,Yes) message history is
significantly different from the distribution of contributions on the no communication treatment. We can
see a smaller probability of zero contribution and a higher probability of contributing around 50. Also, we
fail to reject the hypothesis that the distribution of contributions following a (Yes,Yes) message history is
equal in both communication treatment. The results of these Kolmogorov-Smirnov tests are presented in
Table A2 in Appendix B, and Table A3 presents the mean of non-zero contribution and the percentage of
zero contributions.

Hence, these evidences suggest that the main effect of communication was to increase the share of zero
contributions following a pessimistic message history, i.e., any history different from (Yes,Yes); and to reduce
the share of zero contributions after an optimistic message history (Yes,Yes). Also, the evidence that some
players made no contributions following optimistic histories suggests that some of them were playing the
babbling strategy.

Remember that in the previous subsection, we saw that communication provides efficiency gain by re-
ducing the excess contribution, i.e., reducing the failure of coordination. What this last discussion suggests
is that this efficiency gain is mostly due to a coordination on the zero contribution when the project is not

12Precisely, the null hypothesis is cdfBinary(value|message sent = “Yes”) = cdfRefined(value|message sent = “Yes”). The
combined K-S p-value is 0.798, and the number of observations is 669. We present the Kernel densities in Appendix B.
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Figure 6: Contribution histograms given a communication history

desirable for at least one player. It is also interesting to note how the two communication treatments provide
similar incentives in both stages, which is consistent with Proposition 2.

The last remarkable difference between the babbling and the threshold strategies is that a player’s contri-
bution is not affected by the message received whether agents are playing the babbling or the communication
threshold strategy and have a value below a certain threshold. In this scenario, when an agent chooses to
send a “No” message in the first stage he is also choosing to contribute zero in the second stage. So, we
want to determine whether the message received by the player had different effects on his contribution by
looking at players with different values who sent different messages. To do so we regress contribution on
value and the received messages across different subsamples truncated by the sent messages and values, using
individual random effects. The communication threshold strategy would say that the received messages are
significant in explaining the contributions only for players with a value over a certain threshold who submit
a truthful message. We used a dummy variable that is equal to 1 if a “Yes” message was received and zero
otherwise. The coefficient of this variable captures the impact of the received message in the contribution
given the player’s type and his announcement in the first stage.
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Binary Communication Refined Communication

Values subsample [0,50) [50,100] [0,25) [25,50) [50,75) [75,100]

Message sent “No” -.04 -2.59 1.80 6.42* 14.66** -2.37

(3.19, 178) (2.39, 85) (2.25, 93) (3.17, 111) (.75, 91) (16.22, 53)

Message sent “Yes” 8.50 34.34** 2.90 15.01* 30.91** 15.22

(5.44, 119) (4.70, 258) (1.33, 45) (5.93, 48) (1.80, 75) (10.14, 124)

Note: Robust standard errors and number of observations in parentheses. Panel RE regressions with constant,

value, dummy message “Yes” received and 32 matching groups. Periods [6,25]. ** p<0.01, * p<0.05, + p<0.1.
Table 3: Coefficient of dummy message “Yes” received.

As can be seen in Table 3, in both communication treatments, the message received did not affect the
contribution decision of subjects with low values, independently of the message they sent in the first stage.
This is consistent both with the babbling and the threshold strategies of subjects with low value. In both
communication treatments, the message received is not significant to explain the contribution decision of
players with value sufficiently high who sent a “No” message. This suggests that subjects used the babbling
strategy even in situations where the communication threshold strategy was strictly dominant.

In both treatments, the message received significantly increases the contribution of players with higher
values who sent a “Yes” message in the first stage. This is consistent with the communication threshold
strategy. In fact, the message received is relevant in explaining the contribution behavior in those situations
where the communication threshold strategy was dominant. In the refined treatment, the received message
was significant for players with intermediary values who sent “No” message. This is consistent with players
using an asymmetric communication threshold strategy (remember that the “No” message bunches [0, 25)
and [25, 50)). However, we find no spikes in the contribution histograms around these values.

Thus, we found evidence that subjects played the two possible equilibria: the babbling and the threshold
equilibria. It is worth mentioning that the existence of multiple equilibria introduced uncertainty into the
game, mostly for the subjects with high value who intended to contribute. When a player with high value
who truthfully reported his type received a positive message in the second stage, he was not sure whether his
partner was playing the communication threshold strategy as well or the babbling strategy. His contribution
decision at this point is analogous to a “stag hunt” game in which there are two equilibria, one that is payoff-
dominant, where both contribute 50 tokens, and another which is risk-dominant, where both contribute zero.
This additional uncertainty may have precluded the project being implemented in more situations. At the
other extreme, following a pessimistic message history, players did not face any additional uncertainty, and
the dominant strategy was the zero contribution. So, the findings in the last two subsections are coherent
with the incentives faced by the players.

5 Conclusion

This paper models the behavior of two agents in situations where non costly communication could lead
to welfare gain. We argue that cheap talk can enhance efficiency relative to the no communication game.
However, even when players have several (finite) messages possibilities, they cannot do better than when
they can use only “Yes” or “No” messages.

Laboratory experiments were used to test these theoretical results. We find evidence that communication
indeed seemed to increase efficiency relative to the contribution game. However, this efficiency gain was not
obtained by a higher probability of the project being implemented, but by reducing failure of coordination,
measured as the amount of unproductive contribution. Communication seemed to work by allowing players
to coordinate on the zero contribution when the project was not desirable for at least one of them. We also
found that larger message space does not increase efficiency.

We found evidence that subjects did play the two possible equilibria: the babbling and the threshold
equilibria. The existence of multiple equilibria may have been an additional source of uncertainty in the
game when players were willing to contribute to the joint project. This may have inhibited the positive effect
of communication in the provision of the public good.

We believe that our findings add to the literature on the usefulness of communication to enhance efficiency.
Also, the paper shad light on the mechanism that leads to this efficiency gain. However, in this setting where
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both players have private information and decision power, differently from Crawford and Sobel (1982), the
communication gain is very limited because the simplest communication structure (“Yes” or “No” messages)
provides the same incentives to agents as any finite partition of the type space.

Appendix A (Proofs)

Definition 3 We say that a continuation game
(
mi

1, m
j
2

)
of { (Λ1, Λ2) is the contribution game after

both players truthfully communicated their type in
(
mi

1, m
j
2

)
. That is, it is the contribution game in which

players have prior FI (·) and vI ∈ mi
I , I = 1, 2.

Lemma A In a truthful equilibrium of { (Λ1, Λ2), in all continuation game
(
mi

1, m
j
2

)
such that ai−1+bj−1 <

k the equilibrium contribution is zero.

Proof. After truthful communication
(
mi

1, m
j
2

)
in the first stage, players update their priors on mi

1 ×mj
2.

If ai−1 + bj−1 < k, by the concavity of F1 (·) and F2 (·), Proposition 1 shows that the unique equilibrium
contribution is zero.

Lemma B Any contribution in a truthful equilibrium of { (Λ1, Λ2) satisfies
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)
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otherwise player 1 would have incentive to contribute less. So, every type v1 ∈ mi
1 and v2 ∈ mj

2 have identical
positive contribution in the continuation game
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. Analogous to player 2.

Clearly, no player has incentive to contribute C1
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)
+ bj′−1 ≤ k. Hence, some players with

type v′2 ∈ mj′

2 will have incentive to over report their type in the communication stage, violating truthful
revelation.

Lemma C Any truthful equilibrium of { (Λ1, Λ2) can have at most one positive contribution level for each
player.

Proof. Suppose a truthful equilibrium in which players have more than one positive contribution level. Take
the two smallest contribution levels
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where c < c′. By Lemma B we know that c ≤ ai−1 and c′ ≤ ai′−1. The player with type ai′−1 ∈ mi′

1 has
incentive to under report his type and communicate mi

1. Hence, truthful revelation is violated.

Proof of Lemma 1. By Lemma C, we have that in any truthful equilibrium with positive contribution
we may have at most one positive contribution level for each player. By Lemma B we know that this
contribution must satisfy C1

(
v1, m
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j
2

)
≤ ai−1 and C2
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j
2

)
≤ bj−1, for all i, j.

By Lemma A we know that we may have a positive contribution in the continuation game
(
mi

1, m
j
2

)
only if ai−1 + bj−1 ≥ k. Also, by the equilibrium condition of the continuation game (4), then it must be
that ai−1 + bj−1 = k for some i, j.

Let î, ĵ be such that abi−1 + bbj−1 = k. If C1
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not have incentive to truthfully report their types in the communication stage. Then, the unique positive
contribution of the continuation game
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such that i < î or j < ĵ. However, any player with type
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If there are i, j such that ai−1 + bj−1 = k, the unique contribution in a truthful equilibrium of { (Λ1, Λ2)
is zero.

Hence, in any truthful equilibrium with positive contribution, the contribution rule is such that there
exists

(̂
i, ĵ
)

with abi−1 + bbj−1 = k and

C1(v1, m
i
1, m

j
2) =

{
abi−1 , if v1 ∈ mi

1, i ≥ î and j ≥ ĵ
0 , otherwise

;

C2(v2, m
i
1, m

j
2) =

{
bbj−1 , if v2 ∈ mj

2, i ≥ î and j ≥ ĵ

0 , otherwise
.

Therefore, given any finite partition (Λ1, Λ2), the communication threshold strategy is the unique strategy
that supports a truthful equilibrium where players contribute non-zero values with positive probability.

Proof of Proposition 2. To prove necessity, let Γ be an equilibrium strategy profile where players
truthfully reveal their types in the communication stage and make non-zero contributions with positive
probability. Hence, by Lemma 1, (Λ1, Λ2) must be such that there exists a pair (i, j) with ai−1 + bi−1 = k.

To prove sufficiency, one just need to let players use a communication threshold strategy profile.
The uniqueness follows directly from Lemma 1 as well.

Appendix B (Graphs and Tables)
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Project Excess Payoffs

Implementation Contribution

All Periods All Periods All Periods

periods [6,25] periods [6,25] periods [6,25]

(1) (2) (3) (4) (5) (6)

BC Treatment -0.43* -0.40+ -10.73** -10.86** 10.37** 10.45*

(0.20) (0.23) (3.79) (4.20) (3.55) (4.56)

RC Treatment -0.00 0.04 -9.93+ -9.51+ 11.63* 11.46**

(0.19) (0.21) (5.71) (5.21) (5.66) (4.32)

Wald Test (p-value)

H0: BC = RC .966 .947 .094 .166 .149 .128

N 1,200 960 1,200 960 1,200 960

Note: Robust standard errors in parentheses. Panel RE regressions with constant and 720 matching groups.

** p<0.01, * p<0.05, + p<0.1

Table A1: Coefficients of panel regressions.
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Figure A1: Kernel density of value given sent a “Yes” message.

Null Hypothesis p-value No. observations

H0:NC = {BC | not (Yes,Yes)} 0.586 259

H0:NC = {RC | not (Yes,Yes)} 0.155 325

H0:NC = {BC | (Yes,Yes)} 0.000 321

H0:NC = {RC | (Yes,Yes)} 0.001 287

H0:{BC | (Yes,Yes)} = {RC | (Yes,Yes)} 0.461 174

Table A2: Positive contribution distribution, Kolmogorov-Smirnov tests (Periods [6,25]).
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