Productivity, Exporting and the Learning-by-Exporting hypothesis: direct evidence from UK firms

Gustavo Crespi Chiara Criscuolo Jonathan Haskel

Motivation

- Extensive theoretical and empirical literature on the relationship between exporting and productivity
 - Macro level: +ve relationship between trade and growth
 - Micro level: +ve relationship between exporting and productivity (growth)
 - Self-selection of better firm into exporting
 - Learning-by-exporting
 - Mixed evidence
- Policy issue: relevance of export-supporting policies

Our work

- What do we do? We focus on both the exporting-productivity link and the exporting-learning relationship using direct evidence on learning flows
- *How do we do it?* We use a panel of UK firms that contain information on learning, exporting and labour productivity
- What do we find? Suggestive evidence supportive of learning-by exporting especially for new exporters.

Theoretical framework

$$Y = A \bullet F(Z, m)$$

$$TFPG = \Delta Y - \Delta F(Z, m) = \Delta A$$

$$\Delta Z$$

$$\Delta A$$

$$= \begin{cases} g(L^{BUYERS}, L^*, m) \\ h(L^{BUYERS}, L^*, m) \end{cases}$$

$$L^{BUYERS}$$

$$L^* = \begin{cases} L^{BUYERS}(X, m) \\ L^*(m) \end{cases}$$

 $X = X(L^{BUYERS}, L^*, m)$

The empirical approach

$$\ln(Y/L)_{i,t} = \alpha_1 X_{i,t-2}$$

$$(L^{BUYERS} - L^*)_{i,t} = \beta_1 X_{i,t-1}$$

$$(L^{COMPET} - L^*)_{i,t} = \beta_{11}X_{i,t-1}$$

 $\ln(Y/L)_{i,t} - \ln(Y/L)_{i,t-1} = \gamma_1 (L^{BUYERS} - L^*)_{i,t-2} + \gamma_2 L^*_{i,t-2}$

Data

- Community Innovation Survey
 - CIS2 1994-96
 - CIS3 1998-2000
- Questionnaire asks about:
 - Innovation related questions
 - Exporting at the beginning and at the end of period
 - Turnover and employment at the beginning and at the end of period
 - information flows

Information flows

"Please indicate the sources of knowledge or information used in your technological innovation activities, and their importance (*please tick one box in each row*)

		Ν	L	Μ	H	
Internal						
	Within the enterprise					
	Other enterprises within the enterprise group					
Market						
	Suppliers of equipment, materials, components or software					
	Clients or customers					
	Competitors					

Institutional	Universities or other higher education institute;s Government research organisations; Other public sector e.g. business links, Government Offices; Consultants; Commercial laboratories/ R&D enterprises; Private research institutes					
Specialised	Technical standards; Environmental standards and regulations					
Other	Professional conferences, meetings; Trade associations; Technical/trade press, computer databases; Fairs, exhibitions; Health and safety standards and regulations					

The structure of information in CIS

Estimation and Results

LP and exporting

To compare our work with others we start by estimating:

$$\ln(Y/L)_{i,00} = \alpha_1 X_{i,96} + \sum_{j=2}^{k} \alpha_j D_{jit} + \lambda_I + \lambda_i + \varepsilon_{it}$$

We estimate this equation in levels and in difference (also using IV). In differences:

$$\begin{aligned} & Reference \; group: \quad X_t = 0, X_{t-1} = 0 & never \; exporting \\ & X_t - X_{t-1} = \begin{cases} X_t > 0, X_{t-1} = 0 & starters \\ X_t = 0, X_{t-1} > 0 & stoppers \\ X_t > 0, X_{t-1} > 0 & continuers \end{cases} \end{aligned}$$

LP and exporting

	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Labour Productivity	Contemp	Before	After	After	After	After
	Levels	Levels	Levels	FD	FD, status	FD,IV
	YL(i,t)	YL(i,t-2)	YL(i,t)	[YL(i,t)-YL(i,t-4)]	[YL(i,t)-YL(i,t-4)]	[YL(i,t)-YL(i,t-4)]
X(i,t)	0.2357	0.2415				
	[6.32]***	[4.14]***				
X(i,t-2)			0.2473			
			[5.75]***			
[X(i,t-2)-X(i,t-6)]				0.1177		0.225
				[1.67]*		[2.02]**
X(i,t-2)>0,X(i,t-6)=0					0.1586	
					[1.53]	
X(i,t-2)=0,X(i,t-6)>0					-0.0037	
					[0.04]	
X(i,t-2)>0,X(i,t-6)>0					-0.0718	
					[1.15]	
Constant	3.4575	3.5558	3.562	-0.7596	-0.7083	-0.7436
	[16.30]***	[13.31]***	[16.07]***	[1.49]	[1.34]	[1.45]
Observations	2147	1027	1408	738	656	738
R-squared	0.30	0.30	0.32	0.09	0.10	0.08

Learning and exporting

$$(L^{BUYER} - L^*)_{i,00/98} = \beta_1 X_{i,96} + \sum_{j=2}^k \beta_j D_{jit} + \lambda_I + \lambda_R + \varepsilon_{it}$$

Where the dependent variable is a (0/1) dummy.

The dummy is 1 if for the firm the score on information from Buyers is higher than the average of all the other sources of learning (calculated using the original Likert scale (0-3)).

We estimate using a linear probability model (LPM) estimated by OLS

Learning and exporting

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Learning	Contemp	Before	After	After	After	After	After	After	After	After
	Levels	Levels	Levels	FD	FD,Status	Levels	Levels	Levels	FD	FD
		Learn(i,t-4)		Learn(i,t)-	Learn(i,t)-				Learn(i,t)-	Learn(i,t)-
	Learn(i,t)	Learn(i,t-6)	Learn(i,t)	Learn(i,t-4)	Learn(i,t-4)	Learn(i,t)	Learn(i,t)	Learn(i,t)	Learn(i,t-4)	Learn(i,t-4)
From	Clients	Clients	Clients	Clients	Clients	Suppliers	Competitors	Trade Assoc	Suppliers	Competitors
X(it)	0.1171									
	[3.53]***									
[X(i,t)>0 X	X(i,t-2)>0]	-0.0226								
		[0.32]								
X(i,t-2)			0.0888			0.0545	0.0191	0.047		
			[2.65]***			[1.52]	[0.54]	[1.57]		
[X(i,t-2)-X(i,t-6)]			0.0981					-0.0081	0.0158
				[1.51]					[0.14]	[0.25]
X(i,t-2)>0,X	K(i,t-6)=0				0.1308					
					[1.40]					
X(i,t-2)=0,X	X(i,t-6)>0				-0.0961					
					[0.77]					
X(i,t-2)>0,X	X(i,t-6)>0				0.0726					
					[0.97]					
Constant	0.1633	-0.2492	0.1683	0.1984	0.2437	0.3202	0.1408	0.1927	-0.1174	0.1546
	[1.10]	[1.02]	[1.13]	[0.68]	[0.83]	[1.99]**	[0.90]	[1.44]	[0.46]	[0.55]
Observations	1418	403	1418	749	749	1418	1418	1418	749	749

Discussion of Learning results

- On the learning-by-exporting hypothesis:
 - Past exporting is associated with statistically significantly more learning from buyers relative to other sources.
 - Past exporting is *not* associated with statistically significantly more learning from other sources
 - past learning is not statistically significantly associated with more exporting, indicating no evidence for pre-exporting sorting by learning and non-learning firms.

Productivity and learning							
$(Y/L)_{i,00} - (Y/L)_{i,96} = \gamma_1 (L^{BUYERS} - L^*)_{i,96/94} + \gamma_2 L^*_{i,96/94} + \sum_{j=2}^k \gamma_j D_{jit} + \lambda_I + \lambda_R + \varepsilon_{it}$							
	Column 1	Column 2	Column 3				
	FD, OLS	FD, OLS	FD, IV				
	[YL(i,t)-YL(i,t-4)]	[YL(i,t)-YL(i,t-4)]	[YL(i,t)-YL(i,t-4)]				
(L(BUYER)-L*)(i,t-4)	0.0919	0.0701	0.0786				
	[2.50]**	[1.84]*	[1.78]*				
L*(i,t-4)		0.0575	0.0588				
		[1.84]*	[1.95]*				
Constant	-0.0465	-0.0367	-0.0447				
	[0.37]	[0.29]	[0.35]				
Observations	755	755	755				
R-squared	0.07	0.08	0.08				

Note: Pooled CIS2/CIS3. Control variables included are 2 digit sector dummies, regional dummies, structural changes (start-up and mergers), multiplant; ownership dummies and lag (log) size

Conclusions

- We examine directly the learning-by-exporting hypothesis using a panel with firm level information on productivity; exporting and the mechanisms through which firms learn
- Using the panel element to control for fixed effects and explore timing (and IV to control for endogeneity) we find that exporting firms have higher productivity; different learning intensities and patterns to non-exporting firms.
- Our results suggest some support for the learning-byexporting hypothesis, especially for new exporters.

Policy implications

- Do our results support subsidies to exporters? Not necessarily.
 - Yes, if exporting firms, who learn from the experience, transfer non-internalised externalities to other firms in the UK; I.e. if exporting of one firm might affect TFPG in others.
 - As learning mostly confined in new exporters; results suggest that subsidies should be directed at new exporters and not to all exporters.

Transition matrix for exporters

	YES					
NO	1994	1996	1998	2000		
1994		35	95	111		
1996	<10		75	89		
1998	50	62		31		
2000	42	52	<10			

Note: On average in each period 671 firms do not change exporting status relative to the previous year

Summary Statistics

Descriptive Statistics-Pooled Sample (1994,1996,1998,2000)

Variable	Obs	Ν	Mean	Std. Dev.
X (0/1)		3120	0.46	0.50
turn (£000)		3120	52533.89	537257.70
Employ		3120	271.31	824.45
LP (£000)		2962	112.17	240.58
US_MNE		3120	0.04	0.19
NOUS_MNE		3120	0.09	0.29
UK_MNEx		3120	0.10	0.29
Multiplant		3120	0.42	0.49
Information Sources				
Internal		3120	0.63	0.48
Clients		3120	0.64	0.48