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Abstract

We incorporate strategic complementarities into a multi-agent sequential choice model with
observable actions and private information. In this framework agents are concerned with
learning from predecessors, signalling to successors, and coordinating their actions with
those of others. Coordination problems have hitherto been studied using static coordina-
tion games which do not allow for learning behavior. Social learning has been examined
using games of sequential action under uncertainty, but in the absence of strategic com-
plementarities (herding models). Our model captures the strategic behavior of static coor-
dination games, the social learning aspect of herding models, and the signalling behavior
missing from both of these classes of models in one unified framework. In sequential action
problems with incomplete information, agents exhibit herd behavior if later decision mak-
ers assign too little importance to their private information, choosing instead to imitate
their predecessors. In our setting we demonstrate that agents may exhibit either strong
herd behavior (complete imitation) or weak herd behavior (overoptimism) and characterize
the informational requirements for these distinct outcomes. We also characterize the infor-
mational requirements to ensure the possibility of coordination upon a risky but socially
optimal action in a game with finite but unboundedly large numbers of players.
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1 Introduction

Observers of financial market booms and busts, both casual and experienced, will often note that
behavior in the market is characterized by an excess of optimism or pessimism. There appears
to be a tendency for market participants to “jump on the bandwagon.” They get so carried
away by the decisions of others around them that they simply imitate their predecessors, paying
no attention to any information about fundamentals that they may receive, or making no effort
to gather such information. It is as though they were all moving in a herd. When the market
tanks, traders tend to exit the market quicker then they would have if they took into account
the fundamentals of the economy. When the market booms, traders get excessively optimistic
compared to levels that are justified by the underlying fundamentals. This, perhaps, is what
Alan Greenspan was referring to in his now famous “irrational exuberance” speech of December
5, 1996, at the heart of the stock market boom of the 1990s. Given the pertinence of such
market herd behavior in both good times and bad, there is clearly a need to analyze the probem
carefully. To begin, let us try to separate the central stylized characteristics of situations such
as stock market booms and panics, currency crises, or bank runs.

The salient features of such situations are as follows. A number of market participants are
called upon to make similar decisions (buy/sell, long/short, withdraw/remain etc.) at about the
same time. Since they are all in the same market, they can observe each other’s actions. Each
participant has non-trivial private information (ideas, intuition, acquired knowledge) about the
fundamentals of the situation. These are, after all, educated financial traders. In order to make
their decisions, partipants may use either their private information, or the public information
generated by observing their predecessors’ actions, or both. However, participants also have to
worry about their successors, because each person’s payoff depends upon the actions of every-
body else. Even if a few predecessors have chosen to go short on the market, a trader may worry
that his successors will not, thus preventing a market downturn and leaving him stranded. In
short, there are strategic complementarities1. The observation that agents seem to herd, then,
amounts to noting that later agents pay “too much” attention to the choices of their predecessors
and “too little” attention to their own private information.

In this paper, we propose a game theoretic model to study such situations. There are n risk
neutral agents in our model who act in an exogenous sequence and choose either to invest or
not. There are two states of the world, a state that is conducive to investment, and a state that
is not. Agents receive signals that are informative about the state of the world in a stochastic
sense: very roughly, higher signals increase the likelihood of the state being good. Conditional
on the state, the signal generating process is independent and identical across agents. At the
point when they have to choose their actions, agents are able to observe the choices of their
predecesors and their own private signals (but not the signals of their predecessors). Finally,
there are strong strategic complementarities. Investment leads to a positive net payoff only if
the state is good and all other agents also choose to invest. Otherwise, it generates negative net

1A term coined by Bulow, Geanakoplos, and Klemperer (1985), otherwise refered to as positive payoff exter-
nalities,network externalities, supermodularities etc. in various specific contexts.
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return. Not investing costs and pays nothing, independent of the state of the world.

In this set up, we show that it is inevitable that agents shall become progressively more opti-
mistic as more and more predecessors choose to invest (Proposition 5). This is natural and to be
expected. However, it turns out that such optimism can take excessive forms, depending on the
properties of the information system of the game. If the information system has the property that
likelihood ratios for individual agents are bounded (i.e. agents can exhibit only limited amounts
of personal skepticism based upon their available information), then agents may literally start to
imitate others and ignore their own payoff relevant information (strong herd behavior). Indeed,
under these circumstances, such “irrational exuberance” is the only outcome of rational behavior
(Proposition 6). We are able to tightly characterize the informational requirements that would
lead to such strong herd behavior for linear information systems (Propositions 7 and 8). However,
we also show that if the information system is rich enough to allow agents to exhibit unbounded
personal skepticism, i.e., possesses the unbounded likelihood ratio property, such extreme forms
of exuberance are ruled out. The exclusion of strong herd behavior does not mean that overop-
timism vanishes. In fact it is quite possible that agents do not ignore their private information
but are overoptimistic in comparison to the case where information is aggregated efficiently in
the market. We call such phenomena weak herd behavior and lay down informational conditions
necessary and sufficient for weak herding to occur. We show that for the important class of
Gaussian information systems weak herding occurs with positive probability.

It is apparent from the structure of the model that if players do not exhibit strong herd behav-
ior, it shall be harder and harder to persuade the first player to invest as the number of agents
gets progressively larger. In order to address these concerns, we characterize the informational
requirements that shall create the possibility of coordinated investment even in games with un-
bounded likelihood ratios when the number of players is arbitrarily large (Propositions 9 and 10).

The study of situations where people’s decisions are influenced by those of others around them
is not new. Stylized versions of situations similar to ours have been extensively studied in the
literature. The pioneering papers are by Banerjee and by Bikhchandani, Hershleifer, and Welch,
both in 1992. Variations, generalizations, and applications have also been studied. Lee (1993)
provides conditions on the action choices of agents in a generalized herding model that guaran-
tee herding. Gul and Lundholm (1995), Chamley and Gale (1994), and Chari and Kehoe (2000)
examine similar models but allow the order of action to be endogenous. Froot, Scharfstein, and
Stein (1992), Chari and Kehoe (1997), Avery and Zemsky (1998), and Lee (1998), among others,
apply herding models to study various financial situations. For a recent selective survey of this
literature see Bikhchandani, Hershleifer, and Welch (1998). However, all these models are char-
acterized by a common feature: individual payoffs are unaffected by the actions of others. The
only externality present in these models is an informational one. Agents are concerned about
each other’s choices only to the extent that prior actions generate information about the state of
the world. There are no strategic complementarities. Therefore, agents in these models exhibit
only backward-looking behavior. As a result, it becomes much harder to apply these models to
real financial situations.
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In many settings, in addition to the informational externality, it is essential to incorporate di-
rect payoff externalities. The situations discussed above are but a few of a plethora of possible
examples. When payoff complementarities exist, agents must be concerned not only with the
actions of their predecessors but also with those of their successors. Thus, in situations such
as these, agents would exhibit both backward-looking (learning) and forward-looking (strategic)
behavior. This strategic component complicates the arguments in the models of Banerjee, and
Bikhchandani, Hershliefer, and Welch. Games with payoff complementarities that capture strate-
gic behavior by agents have been studied in the literature with the goal of explaining situations
similar to the ones above. For example, Obstfeld (1986), Cole and Kehoe (1996), and Morris
and Shin (1998) model currency crises in various degrees as static coordination games under un-
certainty with payoff complementarities. However, the static nature of these games excludes the
learning behavior seen in sequential action models. Finally, the interaction of sequential action
with strategic complementarities creates signalling behavior in our model, an effect that is miss-
ing from both herding models and static coordination games. Agents are concerned about the
signals that their action choices send to their successors. We are, therefore, able to capture the
learning behavior of herding models, the strategic behavior of static coordination games, and the
signalling behavior absent from both of these previous classes of models in one unified framework.

Our analysis also helps to understand better the way in which information plays a role in cre-
ating strong herding in markets. We provide two versions of the model featuring qualitatively
different information systems, one in which the private information of agents is rich enough to
allow them to exercise unlimited personal skepticism (unbounded likelihood ratios) and one in
which this is not possible. We demonstrate that that latter is necessary (but not sufficient) for
strong herd behavior and characterize the precise conditions under which strong herding takes
place under additional assumptions. This provides a foundation upon which to build a theory of
optimal information structure in such games, paving the way for mechanism design in situations
where market participants must be prevented from herding or persuaded to herd upon risky but
socially productive alternatives.

In an important recent contribution, Smith and Sorensen (1999) provide similar characterizations
of the informational prerequisites for herd behavior. Their model generalizes the traditional herd-
ing literature by allowing for heterogeneous preferences and makes explicit the conditions under
which Bayesian learning may be incomplete as opposed to confounded. Our setting retains the
identical preferences of traditional herding models, but adds in payoff complementarities with
the goal of capturing the other relevant strategic aspects of a market boom or bust, thereby
unifying the literature on herding with static models of coordination.

Choi (1997) builds network externalities into a model of sequential action under uncertainty.
His model is one of strategic technology choice by firms. Firms choose between two competing
technologies with unknown values. It is beneficial for firms to choose the technology that shall
be adopted by most other firms because of network externalities. While this model is ostensibly
similar to ours, it is significantly different in spirit. First, once a technology is used by a firm,
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its true value becomes common knowledge amongst participants in the game. Thus, after the
first player has chosen a technology, the rest of the game is effectively one of complete informa-
tion. Second, since firms receive no private signals about the alternative technologies, there is
no private information in Choi’s model. Herding happens purely due to the network effect and
risk aversion. Herding, in the traditional sense, is simply the phenomenon by which followers
may pregressively (suddenly or gradually) disregard their private information in favour of already
available public signals. A proper analysis of herding requires a fully-specified model that explic-
itly distinguishes between private and public information. Our model provides such a framework.

Two other recent papers that contain elements of strategic complementarities and herding are
Jeitschko and Taylor (1999) and Corsetti, Dasgupta, Morris, and Shin (2000). In the former,
agents play pairwise coordination games due to random matching, but learning is not “social”
since agents observe only their own private histories. In the latter, a sequential coordination game
is set up to explore the influence of a large trader in a model of speculative currency attacks with
private information. When the large trader is arbitrarily better informed in comparison to the
rest of the market, smaller traders exhibit strong herd behavior in the sense of our model.

The rest of the paper is organized as follows. In section 2 we lay out the model. Section 3
demonstrates two important properties of the equilibria of this game. Section 4 defines strong
and weak herding in our setting and provides informational requirements for their occurence. In
section 5 we characterize the informational requirements to ensure the possibility of coordination
in numerous-player versions of our game. Section 6 discusses our results and section 7 provides a
simple illustrative application. Section 8 discusses caveats and potential extensions of the model.

2 The Model

2.1 The Structure of the Game

There are n agents who choose whether to invest (I) or not (N). We write ai ∈ Ai = {I,N}
for i = 1, 2, ..., n, and A = ×ni=1Ai. There are two states of the world: a state G which is good
for investment, and a state B which is bad for investment. Nature selects which state of the
world occurs. Investing is risky. For an agent to get positive net return (of 1) from investing,
it is necessary that the state is conducive to investment, i.e., G, and that all other agents also
choose to invest. If even one of these conditions are violated, then investment generates negative
net return of −c. Not investing is safe. It generates a constant return of 0 independent of the
actions of other agents and the state of the world. Agents’ payoffs can thus be represented by
the mappings (ui : {G,B} × A→ IR)ni=1 defined for each i by:

ui(G, ai, a−i) =


1 when ai = I and aj = I for all j 6= i,
−c when ai = I and aj = N for some j 6= i,
0 when ai = N
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ui(B, ai, a−i) =

{
−c when ai = I
0 when ai = N

Agents act sequentially, in the order 1, 2, ..., n. Each agent observes the actions of those who
have preceded her. In addition, each agent receives a private signal (her type), which summa-
rizes her private information about the state of the world. In particular, agent i receives signal
si ∈ S = [s, s̄] ⊂ IRor Si = IRfor all i.2 Conditional on the state, the signals are independent and
identically distributed. For each i, si is distributed according to some continuous, state-dependent
density, f(.). We require that in state G, private signals have full support.3 f(.) satisfies the

following (strict) monotone likelihood ratio property (MLRP): f(s|B)
f(s|G)

is strictly decreasing in s.
We shall sometimes refer to these stochastic processes as making up the information system for
the game, and write f = {f(.|G), f(.|B)} to denote it.

Agents share a common prior over the state of the world: Pr(G) = 1−Pr(B) = π ∈ [0, 1]. They
are expected utility maximizers.

For future reference, we shall denote the game we have just described by Γ(n), where the argument
refers to the number of players in the game. Unless otherwise stated, we shall assume that
n ∈ Z++, i.e. the number of players is finite. In what follows, we consider Weak Perfect Bayesian
Equilibria of Γ(n) which are defined below. We preface our analysis by some brief remarks about
the information system.

2.2 A Note on Likelihood Ratios

As we have noted above, the signals in Γ(n) can be generated either from some closed subinterval
of IR, or from IR itself. This distinction is made to explicitly distinguish between two versions of
the game: the case with bounded likelihood ratios and the case with unbounded likelihood ratios.4

We denote the likelihood ratio by r(s) = f(s|B)
f(s|G)

. The full support assumption on f(s|G) ensures

that r(s) is well defined on S. When S = [s, s̄] ⊂ IR, the MLRP property and the boundedness
of probability density functions implies that there exist bounds B ≥ 0 and T < ∞ such that
r(s) ∈ [B, T ] for s ∈ S. B = 0 when f(s|B) is not full support. When S = IR, the MLRP
property implies that r(s) is unbounded above and asymptotes to 0 below. Conversely, when
r(s) is unbounded above or below, the boundedness of probability density functions that S = IR.

Intuitively, the case with unbounded likelihood ratios can be thought to be the version of Γ(n)
when players exhibit unbounded personal skepticism, i.e. may observe some private information
that reverses any level of optimism they may have enjoyed ex ante. The case with bounded
likelihood ratios is the reverse: players are only boundedly skeptical. A certain level of ex ante

2For notational convenience, we shall use s and s̄ below to denote lower and upper bounds for S even when
S = IR, assuming implicitly that s̄ =∞ and s = −∞ when this is the case.

3This is done to eliminate the trivial case where an agent may discover for sure that the state is B. In such a
case, there is no strategic content left in the game.

4While the distinction is formal, i.e., represents alternative modelling strategies, it is useful in classifying the
results of the game.
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optimism cannot be reversed by any private information, however discouraging. The properties
of r(.) shall turn out to be crucial to our analysis of Γ(n), and we shall return to this point again
below.

2.3 Possible Strategy Profiles

How does an agent, say i, decide whether to invest or not? When agent i is called upon to act,
she knows only what her predecessors have done and the value of her own signal. Hence, her
strategies take the form of mappings from her predecessors’ actions and her own private signal
to her action set. Formally, for each i, σi : (×j<iAj)× S → {I,N}. Given this notation, we first
provide a useful definition:

Definition 1 Player i follows a trigger strategy in Γ(n) if she chooses her actions according to
the map

σi(si, (aj)j<i) =

{
I when si ≥ ti and aj = I ∀j < i
N otherwise

for some ti ∈ < where < = IR∪ {−∞} ∪ {∞}, the augmented real line.

We call ti player i’s trigger. An equilibrium in which each player follows a trigger strategy is
called a trigger equilibrium.

It is important to note that while players’ signals are drawn from some subset of the real numbers
IR, triggers are drawn from the augmented real line, <, because players may follow strategies of
“always invest” (corresponding to a trigger of −∞ if S = IR) or of “never invest” (corresponding
to a trigger of ∞ if S = IR).

Given the payoff complementarities, it is clear that in any equilibrium if aj = N for some j < i,
σi((aj)j<i, si) = N for all si, since investing is a strictly dominated action. Thus, agent i’s deci-
sion problem is interesting only in the instance that aj = I for all j < i. In this instance, since
we know by definition (aj)j<i = (I, ..., I), an agent’s equilibrium strategy is formally just some
function of her private signal. Thus, for notational convenience, we can now drop the explicit
dependence of the strategies σi on the observed history of actions (aj)j<i. When the argument
is suppressed, it is tacitly assumed that aj = I for all j < i.

If she observes investment by all her predecessors, then agent i has some beliefs (posterior)
about the state of the world, say πi ∈ [0, 1]. Her expected utility from investing depends
upon this posterior belief, her private signal, and the strategies of her successors. Formally,
EUi(πi, si, (σj)j>i) = (1)Pi + (−c)(1− Pi), where

Pi = Pr(G, (σj(sj) = I)j>i|si)

=
Pr(G)Pr((σj(sj) = I)j>i, si|G)

Pr(G)Pr(si|G) + Pr(B)Pr(si|B)
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=
πiPr((σj(sj) = I)j>i|G)f(si|G)

πif(si|G) + (1− πi)f(si|B)

=
πiPr((σj(sj) = I)j>i|G)

πi + (1− πi)f(si|B)
f(si|G)

where the third equality follows from the conditional independence of the signals.5 Given this
notation, we define a Weak Perfect Bayesian Equilibrium for Γ(n).

Definition 2 A Weak Perfect Bayesian Equilibrium of Γ(n) is a tuple of strategies (σ1, ..., σn)
and a tuple of posterior beliefs (π1, ..., πn) where for each i, πi : (aj)j<i → [0, 1] which satisfy the
following conditions:

1. Given πi, σi is a best response to σ−i after every possible history.

2. If the observed history of play can happen with positive probability in the equilibrium path
prescribed by σ, then πi is derived from the original priors by Bayesian updating. If not,
then πi is any member of [0, 1].

In the specific setting of our model, these conditions translate into the following:

1. For each i, if aj = N for any j < i, then σi = N . If aj = I for all j < i, then σi = I if and
only if

πiPr((σj(sj) = I)j>i|G)

πi + (1− πi)f(si|B)
f(si|G)

(1 + c)− c ≥ 0

2. If Pr(σj(sj) = I ∀j < i) > 0, then πi is obtained by updating π1 = π using Bayes’ rule. If
not, then πi is any member of the interval [0, 1].

It turns out that in any Weak Pefect Bayesian Equilibrium, each player in Γ(n) will follow a
simple trigger strategy as we demonstrate below.

Proposition 1 Any Weak Perfect Bayesian Equilibrium of Γ(n) is a trigger equilibrium.

Proof: Let (σ1, ..., σn) be any WPBE of Γ(n). We shall show that each player follows a trigger
strategy. We already know that each player i, conditional on having observed a history of
investment, follows σi = I if and only if

EUi =
πiPr((σj(sj) = I)j>i|G)

πi + (1− πi)f(si|B)
f(si|G)

(1 + c)− c ≥ 0

Since EUi(si) is clearly increasing and continuous in si, player i will adopt then invest only if
si ≥ ti where ti is defined by EUi(ti) = 0. Upon not observing a history of investment, player i
will not invest for sure. Thus, player i follows:

σi(si, (aj)j<i) =

{
I when si ≥ ti and aj = I ∀j < i
N otherwise

5Note that we could divide by f(s|G) above because of our assumption of full support in state G.
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which is exactly a trigger strategy as defined above. But this immediately implies that any
WPBE of Γ(n) is a trigger equilibrium. �

Proposition 1 allows us to restrict our attention to trigger equilibria. Thus, the Weak Perfect
Bayesian Equilibria of Γ(n) are n-tuples, (t1, ..., tn) ∈ <n where player i follows a trigger strategy
with trigger ti. Henceforth, we shall refer to equilibria of Γ(n) simply as trigger equilibria. Before
proceeding further, it may be helpful to consider a simple example. We present one below.

2.4 A Simple Example with Trigger Equilibria

Four players play Γ(4), where their signals are generated by a Gaussian (Normal) information
system. S = IR. The information system is as follows: In state B, signals are generated by
a Gaussian process with mean 0 and standard deviation 5. In state G signals are generated
by a Gaussian process with the same standard deviation but a mean of 5. It is easy to see
that this information system satisfies the strict MLRP property required above. Miscoordinated
investment has costs: c = 1. Priors are mildly optimistic: π = 0.6. Given this set up, we use
Gauss to numerically determine the (in this case unique) trigger equilibrium. Rounded to two
decimal places, the triggers are:

t1 = 1.71

t2 = -2.57

t3 = -4.37

t4 = -5.46

Each player invests if and only if her private signal is above their equilibrium trigger conditional
on a history of investment. It is interesting to compare this equilibrium to the hypothetical first
best that could be achieved via an informed social planner: i.e., when all players invest if and
only if the state is good. In this equilibrium, the probability of coordinated investment in state
G is 65% and in state B is 18%. Thus this equilibrium is clearly not pareto efficient, a feature
common to many equilibria of strategic games. We shall return to this example later to illustrate
other aspects of Γ(n).

This example shows that for a very specific realization of Γ(n) there is a trigger equilibrium. We
now address the question of existence for the general game.

2.5 The Existence of Trigger Equilibria

2.5.1 Case 1: Bounded Signal Support

To demonstrate the existence of pure strategy equilibria, we define the best response function:

Definition 3 Consider a set of triggers t ∈ [s, s̄]n. Denote the best response mapping by β :
[s, s̄]n → [s, s̄]n and the ith component of β(t) by βi(t). Then, βi(t) = r−1(Ei), where

Ei =
π

1− π

1 + c

c

∏
j>i

Pr(s ≥ tj|G)− 1

∏
j<i

Pr(s ≥ tj|G)

Pr(s ≥ tj|B)

9



if Ei ∈ [B, T ]. If Ei < B, βi(t) = s̄ and if Ei > T , βi(t) = s.

The strict MLRP property implies that β(.) is single valued, and the continuity of f(.|G) and
f(.|B) imply that β(.) is continuous. Thus, β(.) is a continuous function that maps [s, s̄]n, a
compact and convex set, into itself. Therefore, by Brouwer’s Fixed Point Theorem, there is a
t∗ ∈ [s, s̄]n such that β(t∗) = t∗. Thus a trigger equilibrium of Γ(n) exists.

However, since the argument above admits the possibility that t∗ lies on the boundary of S, this
leaves open the possibility that the only equilibrium of Γ(n) is the trivial equilibrium in which
tj = s̄ for all j, and thus nobody invests in equilibrium.

In fact, the extreme form of strategic complementarities embodied in Γ(n) ensures that there is
always a trivial trigger strategy equilibrium in which nobody ever invests. Let us construct such
an equilibrium. Consider the problem of a player, say i, with posterior belief πi upon observing
investment by her predecessors, who is sure that all her successors (if any) will invest. Let t(πi)
be the trigger selected by such a player. Clearly, t(πi) is decreasing in πi. Let π∗ be defined by
Pr(s ≥ t(π∗)|G) = c

1+c
. Note that for some ε ∈ (0, π∗], Pr(s ≥ t(π∗ − ε)|G) < c

1+c
.

Now consider the problem of player i − 1 with posterior beliefs πi−1, who observes signal si−1.
She knows that upon observing investment by her, player i will have posterior beliefs π∗− ε. She
will certainly not invest if Pr(G, s ≥ t(π∗ − ε)|si−1) < c

1+c
, i.e., if she does not assign sufficient

probability to the event that the state is good and (at least) her immediate successor invests (if
her immediate successor doesn’t invest, it matters not to player i− 1 what later player do). But
notice that

Pr(G, s ≥ t(π∗ − ε)|s) =
πi−1Pr(s ≥ t(π∗ − ε)|G)

πi−1 + (1− πi−1)f(s|B)
f(s|G)

≤ Pr(s ≥ t(π∗ − ε)|G) <
c

1 + c

where the first inequality corresponds to the case where si−1 = s̄. This means that if player i− 1
knew that upon observing her invest player i would have beliefs π∗ − ε, then she would assign
probability strictly less than c

1+c
to the event that the state is good and that player i will invest,

regardless of her own prior belief. So, player i− 1 will not invest.

Now it is easy to see that the strategy set (s̄, s̄, ..., s̄) is a Perfect Bayesian Equilibrium if upon
seeing investment by a predecessor each player has probabilistic beliefs given by π∗ − ε for any
ε ∈ (0, π∗]. Given these beliefs off the equilibrium path, the first player will never find it profitable
to deviate from her equilibrium strategy to “never invest.” This is because even if she believed
that players 3, ..., n would invest for sure conditional upon investment by their predecessors, she
would still assign too low a probability to the event that the state is good and that player 2
(with beliefs given by π∗ − ε upon seeing player 1 invest) will invest. Thus, the first player will
not invest, and so all her successors will set their triggers optimally to infinity (i.e., never invest) 6.

6These out of equilibrium beliefs are sufficient but not necessary to support the (s̄, ..., s̄) strategy profile as an
equilibrium.
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However, this is not a very interesting equilibrium, and it is natural to wonder if there is a non-
trivial trigger equilibrium of Γ(n). In such an equilibrium players would choose interior triggers,
and therefore allow for the possibility of coordinated investment. Formally, we refer to these
equilibria as investment equilibria.

Definition 4 Trigger equilibrium (t1, ..., tn) ∈ <n of Γ(n) is a investment equilibrium if tj < s̄
for all j = 1, ..., n.

Investment equilibria allow for the possibility of coordinated investment.

In order to ensure the existence of investment equilibria, we must lay down some sufficient con-
ditions on the information system of the game. This requires a preamble.

Consider the following situation. Players 1 through n− 1 choose to invest blindly, i.e., t1 = ... =
tn−1 = s. Consider player n’s best response to such strategies (upon observing investment by all
her predecessors), tn. Given our definition of the best response function above, In other words,

tn = r−1
[

π

1− π
1

c

]
This uniquely defines tn in terms of the parameters (c), the prior (π), and the information system
(f). We write tn = Un(c, π, f), or Un for short. Further, we require, that

Pr(s ≥ Un(c, f)|G) >
c

1 + c

Call this Condition Ψn.

Now consider the situation where players 1 through n− 2 choose to invest blindly, i.e., t1 = ... =
tn−2 = s, while player n plays according to trigger Un. Now, player n− 1 will choose her trigger
according to:

tn−1 = r−1
[

π

1− π

(
1 + c

c
Pr(sn ≥ Un|G)− 1

)]
Note that Condition Ψn ensures that tn−1 is well defined in terms of the parameters, and we
write tn−1 = Un−1(c, π, f) or Un−1 for short. Now we require that

Pr(s ≥ Un−1|G)Pr(s ≥ Un|G) >
c

1 + c

Call this Condition Ψn−1.

We continue iteratively in this way, defining Un−2(c, π, f), ..., U1(c, π, f), and conditions Ψn−2, ...,Ψ1.
Now we are ready to define the useful properties of the information system promised above.

Definition 5 Let U1(c, π, f), ..., Un(c, π, f) and the conditions Ψ1, ...,Ψn be defined as above. We
say Property Ψ holds if conditions Ψ2 through Ψn hold simultaneously, i.e., if

n∏
j=2

∫ ∞
Uj(c,π,f)

f(x|G)dx >
c

1 + c

11



Given c and π, the property defined above imposes a restriction on the information system, i.e.,
on the stochastic process generating the private information processes of the agents. Stated in
words, Property Ψ simply says that in the good state, the information system must be reliable
enough, i.e., generate signals above predetermined levels (the Uj’s) with sufficient probability.
This property turns out to be useful for the case with unbounded likelihood ratios.7 However, for
the present case with bounded likelihood ratios, we need a slightly stronger condition. Finally,
therefore, a last definition.

Definition 6 We say that f satisfies Property Ψ+ in Γ(n) if it satisfies Property Ψ and if

π

1− π

1 + c

c

∏
j>1

Pr(s ≥ Uj|G)− 1

 > B

Then the following result holds:

Proposition 2 When Property Ψ+ holds, there exist L,U ∈ S with L < U and U < s̄ such that
for t ∈ [L,U ], β(t) ∈ [L,U ].

Proof: Let L = (L1, L2, ..., Ln), where Li = β((U1, ..., Ui−1), (Li+1, ..., Ln)) where Ui is defined
as above. Let U = (U1, U2, ..., Un). Clearly, L < U . Let t ∈ [L,U ]. Since Property Ψ+ holds,
U1 < s̄, thus t is interior in [s, s̄] and β(t) ∈ (B, T ). Thus,

βi(t) = r−1

 π

1− π

1 + c

c

∏
j>i

Pr(s ≥ tj|G)− 1

∏
j<i

Pr(s ≥ tj|G)

Pr(s ≥ tj|B)


Notice that

Li = r−1

 π

1− π

1 + c

c

∏
j>i

Pr(s ≥ Lj|G)− 1

∏
j<i

Pr(s ≥ Uj|G)

Pr(s ≥ Uj|B)


and since L ≤ t ≤ U , βi(t) ≥ Li. Similarly, notice that

Ui = r−1

 π

1− π

1 + c

c

∏
j>i

Pr(s ≥ Uj|G)− 1


and thus βi(t) ≤ Ui. �

Corollary 1 When Property Ψ+ holds, there is an investment equilibrium in Γ(n) with bounded
signal support.

7As we shall see below, Property Ψ turns out to be sufficient to guarantee existence of investment equilibria
in Γ(n) when S = IR.
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Proof: When Property Ψ+ holds, there exists a compact and convex set [L,U ] ⊂ [s, s̄] with
L < s̄ such that β(t) ∈ [L,U ] for all t ∈ [L,U ]. Observation of the best response mapping estab-
lishes immediately that β(.) is continuous on [L,U ]. Thus, by Brouwer’s Fixed Point Theorem,
β(.) has a fixed point in [L,U ]. �

We now turn to the case for existence of trigger equilibria in the case with unbounded signal
support (thus unbounded likelihood ratios).

2.5.2 Case 2: Signals drawn from IR

Since we do not have to worry about endpoint problems when S = IR, the best response mapping
is more simply defined than above. Given a set of triggers t ∈ IRn, the best response is defined
to be β(t) ∈ IRn, where

βi(t) = r−1

 π

1− π

1 + c

c

∏
j>i

Pr(s ≥ tj|G)− 1

∏
j<i

Pr(s ≥ tj|G)

Pr(s ≥ tj|B)


Given this definition, we are ready to examine the existence of trigger equilibria for the game
with S = IR.

As in the case with bounded signal support, a trivial trigger equilibrium with infinite triggers
exists. Such an equilibrium can be constructed with an argument identical to the one above.
However, the no-investment equilibrium is not very interesting, and we naturally turn to the
existence of investment equilibria. The question of existence of investment equilibria is more
involved when signals are drawn from IR, since the underlying signal generating process has
unbouded support, making it impossible to directly appeal to a fixed point theorem. However,
a subtler argument establishes that if Property Ψ holds, then investment equilibria exist even in
this case. The following result is crucial.

Proposition 3 If Property Ψ holds, then there exist t ∈ IRn and t̄ ∈ IRn such that for all t ∈ <n,
t ≤ β(t) ≤ t̄.

The proof of this result is involved. It is relegated to the appendix.

Corollary 2 When Property Ψ holds, there is an investment equilibrium in Γ(n) with S = IR.

Proof: Proposition 3 tells us that there exists [t, t̄ ] ⊂ IRn such that for all t ∈ <n, β(t) ∈ [t, t̄ ].
Thus, in particular, for all t ∈ [t, t̄ ], β(t) ∈ [t, t̄ ]. Inspection of the best response mapping
establishes that for all t ∈ [t, t̄ ], β(.) is single-valued and continuous. Clearly [t, t̄ ] is compact
and convex. Now, by a simple application of Brouwer’s fixed point theorem, we note that there
exists t∗ ∈ [t, t̄ ] such that t∗ = β(t∗). Thus, a bounded equilibrium of Γ(n) exists. �

Next we examine some pertinent properties of these investment equilibria.
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3 Properties of Investment Equilibria

In this section we demonstrate two key structural properties of investment equilibria. The prop-
erties apply to investment equilibria of Γ(n) in general, regardless of whether the underlying
signals have bounded or unbounded support. Thus, in order to ensure the existence of these
equilibria we tacitly assume that Properties Ψ or Ψ+ hold, depending on which version of Γ(n)
we are considering.

The first of these properties encapsulates a simple relation between the relative magnitudes of
triggers in any investment equilibrium of Γ(n).

Proposition 4 Suppose (t1, t2, ..., tn) is any investment equilibrium of Γ(n). Then, ti is decreas-
ing as a function of tj for j < i, and increasing as a function of tj for j > i. In other words, an
agent’s equilbrium triggers is increasing in the triggers of her successors, and decreasing in the
triggers of her predecessors.

Proof: The proof follows directly upon examination of the best response correspondence. Let
(t1, t2, ..., tn) be any investment equilbrium of Γ(n). Then, by the definition of the best response
mapping:

ti = r−1

 π

1− π

1 + c

c

∏
j>i

Pr(s ≥ tj|G)− 1

∏
j<i

Pr(s ≥ tj|G)

Pr(s ≥ tj|B)


Now it is apparent that ti is increasing in tj for j > i and decreasing in tj for j < i since r(s) is

decreasing and Pr(s≥x|G)
Pr(s≥x|B)

is increasing in x. �

The intuition behind this result is simple. In equilibrium, conditional upon observing investment
by a predecessor, the higher the predecessor’s trigger, the higher the signal the predecessor must
have observed. The MLRP property of the information system of Γ(n) implies that higher pri-
vate signals make players more optimistic about the state of the world. Large signals are “good
news” for would-be investors. They make it likelier that the state is G, which in turn makes
it likelier that other players will receive relatively high signals. Thus, observing investment by
a predecessor with a high trigger conveys more “good news” for a player, and makes her more
optimistic about the state of the world, and about the probability that her successors will also
invest. Agents in this model have two sources of information, both of which affect their level of
optimism: the public information encapsulated in the observed decisions of their predecessors,
and the private information contained in their signals. Thus, when an agent observes more en-
couraging public information (investment by predecessors with high triggers), she requires less
persuasive private information in order to choose to invest. Thus, she picks a lower trigger.
Similarly, if an agent believes that her successors have extremely high triggers, then she may
be concerned that they shall not invest with higher probability, and “leave her stranded” if she
chooses to invest. Thus, she will be inclined in equilibrium to require more persuasive private
evidence for the fact that the state is G before deciding to invest. In other words, she will choose
a higher trigger.
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The above proposition has an immediate consequence for the two player version of our game, as
we note below:

Corollary 3 There is a unique investment equilibrium in Γ(2).

In an investment equilibrium, the process by which agents become more optimistic (or pes-
simistic) about the state of the world is by Bayesian learning. Agents update their priors about
the state of the world by Bayes’ Rule upon observing their predecessor’s actions. As we have
just argued, observation of investment by a predecessor with a high trigger makes an agent more
optimistic about the state of the world than the observation of investment by a predecessor with
a low trigger. Intuitively, it seems also likely that observing investment by two predecessors
makes an agent (at least weakly) more optimistic about the state of the world than observing
investment by one predecessor.8 Thus, upon observing investment by more and more predeces-
sors, later players will require less and less persuasive private information in order to invest. In
other words, the greater the mass of public evidence in favour of a good state, the lower the level
of private evidence required to make investors take potentially productive but risky actions. The
following result captures this intuition.

Proposition 5 In any Investment Equilibrium of Γ(n), (t1, ..., tn), tj ≥ tj+1 for j = 1, .., n− 1.

Proof: In equilibrium (t1, ..., tn), consider the magnitudes of ti and ti+1. We know from the
definition of the best response mapping:

f(ti|B)

f(ti|G)
=

π

1− π

1 + c

c

n∏
j=i+1

Pr(sj ≥ tj|G)− 1

 i−1∏
j=1

Pr(sj ≥ tj|G)

Pr(sj ≥ tj|B)

f(ti+1|B)

f(ti+1|G)
=

π

1− π

1 + c

c

n∏
j=i+2

Pr(sj ≥ tj|G)− 1

 i∏
i=1

Pr(sj ≥ tj|G)

Pr(sj ≥ tj|B)

Note that Pr(s ≥ ti+1|G) ≤ 1 and Pr(s≥ti|G)
Pr(s≥ti|B)

≥ 1 due to the MLRP property of f . Note that
the equalities follow in both cases if and only if ti+1 = sor −∞ and ti = sor −∞ respectively.

Thus,
∏n
j=i+1 Pr(sj ≥ tj|G) ≤ ∏n

j=i+2 Pr(sj ≥ tj|G) and
∏i−1
j=1

Pr(sj≥tj |G)

Pr(sj≥tj |B)
≤ ∏i

j=1
Pr(sj≥tj |G)

Pr(sj≥tj |B)
. This

means that f(ti|B)
f(ti|G)

≤ f(ti+1|B)
f(ti+1|G)

, and thus ti ≥ ti+1. �

This proposition implies that conditional upon observing investment by predecessors, later play-
ers shall tend to invest more easily, i.e., for larger ranges of private information. Very roughly
speaking, this means that later agents are less concerned about the content of their private in-
formation than earlier agents. This is because the observation of investment by predecessors
make later players progressively more optimistic. Let us consider an instance of such optimism
by returning to the example of section 2.4 with a Gaussian information system. Here, there

8If the second predecessor has a trigger of s or −∞, then her decision to invest does not affect the optimism
of succeeding players. Hence the relation if weak.
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are only 4 players. The first player pays some attention to her private information. She picks
a trigger of 1.71 and the probability that she shall not invest based upon discouraging private
information is about 26%. However, the fourth player pays very little attention to her private
information. She picks a trigger of −5.46 and the probability that she shall not invest based
upon discouraging private information is only about 2%. So, even upon observing investment by
only three predecessors, it is possible for the fourth player to invest for extremely large ranges of
her own private information.

The extreme optimism of player 4 in this example raises the natural question: is it possible that
Bayesian learning has made players “too optimistic” relative to some (as yet unspecified) superior
social alternative? Could there be versions of Γ(n) where successors completely ignore their
private information upon observing predecessors invest, and thereby clearly act suboptimally in
a social sense? These questions are addressed in the following section.

4 Herding

In settings with sequential decision making in the presence of uncertainty, private information,
and observed public actions, agents are said to “herd” if they blindly imitate their predecessors’
choices without heed to their own private information. In other words, herd behavior occurs
when, in the words of Douglas Gale (1996) “imitation dominates information.” Interpreting this
concept literally in terms of our trigger equilibria, agents herd in equilibrium if one or more
successors set their triggers to s, the lower bound of the signal generating process. This means
that conditional upon observing investment by their predecessors, some agents choose to invest
for all possible values of their private signals. The strongest version of such her behavior is if all
successors choose to blindly imitate the first player. We shall call this type of behavior strong
herding. For our purposes, we shall also define a much weaker form of herd behavior. When
strong herding occurs, later agents become so optimistic that they pay no attention whatsoever
to their private information. However, it is not difficult to imagine situations in which agents do
not become optimistic enough that to imitate blindly, but still become overoptimistic compared
to a situation where private information was aggregated efficiently in the market. We shall call
such phenomena weak herding. The idea is formally defined later in the paper.

It turns out that strong herding can occur in Γ(n) only if signals are drawn from a bounded
support, i.e. the likelihood ratios are bounded. However, in the case where signals are drawn
from IR and likelihood ratios are unbounded, there can still be weak herding. In what follows,
we lay down the informational prerequisites for strong and weak herding in Γ(n).

4.1 Bounded Likelihood Ratios: Strong Herd Behavior

We begin with a definition.

Definition 7 An investment equilibrium t of Γ(n) exhibits strong herding if s < t1 < s̄ and
tj = s for j ≥ 2.

16



In words, this simply means that all followers choose to completely ignore their private informa-
tion. This definition, taken together with Proposition 4 leads to a very useful property of strong
herding equilibria.

Proposition 6 If investment equilibrium t of Γ(n) exhibits strong herding, it is unique.

Proof: Let t = (t1, s, ..., s) where s < t1 < s̄ be a strong herding equilibrium. Suppose it is not
unique. Let z be an investment equilibrium, with z 6= t. Since z 6= t, clearly, there is a j, j ≥ 2
such that zj > tj. Proposition 5 implies that if this is so, z2 > t2. For simplicity, let zj = tj for
j ≥ 3. Let z2 > t2. Then, by Proposition 4 we know z1 > t1 (equilibrium triggers are increasing
in those of successors). But this in turn implies, also by Proposition 4, that z2 < t2 (equilibrium
triggers are decreasing in those of predecessors). This is a contradiction. �

Proposition 6 tells us that if Γ(n) has a strong herding equilibrium, it is unique in the class of
investment equilibria. Corollary 3 tells us that the two player game has a unique equilibrium.
Together the two imply that in order to analyze whether Γ(n) has a unique strong herding equi-
librium, it is sufficient to look at Γ(2). In what follows, therefore, we lay down the conditions
under which Γ(2) has a strong herding equilibrium.

Let (t1, t2) be any investment equilibrium of Γ(2). Recall that r(s) ∈ [B, T ]. Then,

r(t1) =
π

1− π

[
1 + c

c
Pr(s ≥ t2|G)− 1

]

r(t2) =
π

1− π
1

c

Pr(s ≥ t1|G)

Pr(s ≥ t1|B)

For t to be a strong herding equilibrium, we need t2 = s. So t1 = r−1
(

π
1−π

1
c

)
. But if t2 = s, then

r(t2) ≥ T . This implies

Pr(s ≥ r−1
(

π
1−π

1
c

)
|G)

Pr(s ≥ r−1
(

π
1−π

1
c

)
|B)
≥ 1− π

π
c T

This condition defines precisely the informational requirements for strong herding in Γ(2), and
therefore for Γ(n). It is apparent that there is no unique way of characterizing the information
systems that satisfy such a condition. However, it is possible to provide tight characterizations
over broad classes of information systems. Below, we provide such a characterization for all
information systems where the signal generating processes are linear in the signals.

In considering the case for linear signal generating processes we limit attention without loss
of generality to a support of [0, 1]. In addition, since it is the ratio of densities and not the
individual densities that are important in our model, we normalize the density in state G to be
uniform (U [0, 1]) also without loss of generality. Given the strict MLRP, this means that f(s|B)
is decreasing and linear in s. We are now ready to provide two results characterizing when strong
herding will occur in Γ(n).
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Proposition 7 Suppose S = [0, 1]. Let f(s|G) = 1. Consider the class of densities in state B
that are linear in the signal and that do not have full support. Then, for a given c and for any
prior π we can construct an information system such that Γ(n) has a unique equilibrium with
the strong herding property.

Proof: Let f(s|B) = a− bs, where a > 0 and b > 0. Since f(s|B) is a density, it must integrate
to 1 over its support. The support is given by [0, a

b
] where since f(s|B) is not full support we

require that a ≤ b. Also,
∫ a/b

0 (a− bs)ds = 1 implies b = a2

2
. Putting this two relations together,

we get a ≥ 2. Thus, f(s|B) = a − a2

2
s, and since f(s|G) = 1, r(s) = f(s|B). Thus, clearly,

0 ≤ r(s) ≤ a. Let k = π
1−π

1
c
. By the conditions defining a strong herding equilibrium (t1, t2),

we require that r(t1) = k which implies t1 = 2
a2 (a − k). To ensure that this is an investment

equilibrium, we require that t1 < 1, i.e., a− a2

2
< k. To ensure that the equilibrium is not trivial,

we require t1 > 0, i.e., a > k. Finally, in order to make r(t2) ≥ a, we require k Pr(s≥t1|G)
Pr(s≥t1|B)

≥ a,

which, upon algebraic simplification implies that we require a−2
1− 2

a

≥ k. Thus we want a ≥ 2,

a > k, a− a2

2
< k, and a−2

1− 2
a

≥ k. Clearly, for any given k, by picking a large enough, we can sat-

isfy these conditions, which are necessary and sufficient for the existence of a unique investment
equilibrium with strong herding. �

Proposition 8 Suppose S = [0, 1]. Let f(s|G) = 1. Consider the class of densities in state B
that are linear in the signal and full support. Then there is no equilibrium of Γ(n) with the strong
herding property.

Proof: Let f(s|B) = a − bs where a > 0 and b > 0. Since f(s|B is a density it must integrate
to 1 over it’s support. The support in this case is given by [0, 1] and in order to ensure this full
support, we require that a > b. So,

∫ 1
0 (a − bs)ds = 1 which implies b = 2(a − 1). Together,

these imply a < 2 and, since b > 0, a > 1. Thus, 1 < a < 2. So, f(s|B) = a − 2(a − 1)s and
r(s) = f(s|B). Clearly, 2− a ≤ r(s) ≤ a. Let k = π

1−π
1
c
. (t1, t2) is a strong herding equilibrium

if and only if t1 = r−1(k) = a−k
2(a−1)

. Also, since 0 < t1 < 1 by definition of strong herding, a > k

and a > 2− k. Finally, t2 = 0 if and only if k Pr(s≥t1|G)
Pr(s≥t1|B)

≥ a. Upon algebraic simplification, this
yields, a ≤ k. But we have already required a > k. This is a contradiction. �

Thus, in the class of linear information systems with bounded likelihood ratios, Γ(n) can have a
strong herding equilibrium if and only if the the signal generating process in state B is not full
support. This provides a criterion for mechanism design in contexts where players need to be
coordinated upon some socially productive risky action (or prevented from coordinating upon
a socially unproductive one). If it was possible for the mechanism designer to provide private
information via linear stochastic processes to the players, she would know exactly how to make
all but one player ignore their own private information, or, by the same token, how to force
players to pay more attention to their private information.

We now address the question of herd behavior when likelihood ratios are unbounded.
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4.2 Unbounded Likelihood Ratios: Weak Herd Behavior

It is apparent by inspection of the best response mapping that when r(s) is unbounded, i.e.,
when S = IR, it is impossible to have strong herding in Γ(n). However, the lack of extreme
informational inefficiencies in such instances does not mean that there aren’t any. Inefficiencies
in the aggregation of information can lead to “excessive optimism” in Γ(n). How can we measure
such excessive optimism?

Information about the state of the world in Γ(n) is generated by the sequence of payoff relevant
private signals that the players receive. The problem is that the signals are private, i.e., only the
original recipient of the signal can observe its true value. Others must be satisfied with simply
observing the actions chosen by the original recipient and guessing from this action what the
recipient’s signal may have been. If information was efficiently aggregated, each agent would be
able to observe the equivalent of all signals that had been received (by herself or others) at the
point of time they she is called upon to act. This could be achieved, for example, by a social
planner, who could observe each agent’s signal and announce it to the rest of the group.9 Let us
denote this variation of Γ(n) with observed signals by Γ̂(n). We can now define weak herding in
Γ(n).

Definition 8 An investment equilibrium t in Γ(n) is said to exhibit weak herding if there exists
i > 1 such that with positive probability ti < t̂i, where t̂ is the unique equilibrium in Γ̂(n).

In other words, an investment equilibrium of Γ(n) exhibits weak herding if at least one follower
becomes excessively optimistic with positive probability. In what follows we present in brief the
game with observed signals. For brevity, we simply consider the two-player case.

4.2.1 Γ(2) with Observed Signals

Let π2 denote player 2’s updated prior after she has observed her predecessor’s signal. Clearly,

π2

1− π2

=
π

1− π
f(s1|G)

f(s1|B)
,

where s1 is the realization of player 1’s signal. Upon observing player 1 invest, player 2’s expected
utility from investing is given by

EU2(I) =
π2

π2 + (1− π2)f(s2|B)
f(s2|G)

(1 + c)− c

if she observes private signal s2. Her expected utility from not investing is 0. Since EU2(I) is
clearly increasing and continuous in s2, player 2 shall choose a trigger strategy, where her trigger

9Note that it is not easily possible to simply get each agent to simply announce their signals, since there are
significant credibility problems inherent in such announcements. Once an agent has chosen to invest, she has a
clear incentive to get her successors to invest, regardless of the actual state of the world, and thus has motive to
overstate her signal.
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t̂2 is defined by t̂2 = r−1( π2

1−π2

1
c
), i.e.,

t̂2 = r−1(
π

1− π
1

c

f(s1|G)

f(s1|B)
)

.
We are now ready to provide a characterization of weak herding in Γ(2). Recall that by definition

of the best response mapping in Γ(2), t2 = r−1( π
1−π

1
c
Pr(s≥t1|G)
Pr(s≥t1|B)

). The investment equilbrium t

possesses the weak herding property if with positive probability, t2 < t̂2, i.e. with positive
probability

Pr(s ≥ t1|G)

Pr(s ≥ t1|B)
>
f(s1|G)

f(s1|B)

It is apparent that this property shall hold for large classes of full support distributions on IR,
particularly those with thin tails. A natural example of this is the Gaussian Distribution. In
what follows, we present a few examples of how weak herding occurs with positive probability in
Γ(2) when the information system is Normal.

The results are presented in Table 1. We assume the same parameter values as in the example
in Section 2.4, but vary the standard deviation of the signal generating processes. In each case,
in the table below, we provide, the unique equilibrium triggers of Γ(2), the ranges of signals for
which weak herding occurs, as well as the corresponding ex ante probability of weak herd be-
havior. We call the upper and lower bounds of the weak herding range whU , and whL respectively.

StDev Equilibrium WH Range Pr(Herding)
σ t1 t2 whL whU (ex ante)

1 2.419 1.449 2.419 2.908 1%
2 2.199 0.645 2.199 3.477 12%
3 1.910 -0.344 1.910 4.187 22%
4 1.559 -1.478 1.559 4.937 27%
5 1.123 -2.735 1.123 5.712 32%
10 -3.011 -10.471 -3.011 9.647 46%

Table 1: Signal Ranges for Weak Herding

Thus, when c = 1, π = 0.6, f(s|G) = N(5, 5), and f(s|B) = N(0, 5), agents will exhibit weak
herd behavior whenever signals are anywhere between 1.123 and 5.712, which implies an ex ante
probability of weak herd behavior of about 32%.10

10Naturally, in each of the cases above, it is also possible that weak herd behavior shall not occur, since the
signals received shall be high enough to justify, or even dwarf, the optimism inherent in the trigger equilibrium.
The point of this exercise with unbounded likelihood ratios is to demonstrate that overoptimism is likely, not
inevitable, as the outcome of rational behavior in Γ(2).
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The comparison of Γ(2) with the game with observed signals raises an obvious related question.
If inappropriate aggregation of information in Γ(2) represents a source of potential inefficiency, so
do the strategic complementarities built into the payoffs. Conditional upon investment by their
predecessors, when agents choose whether to invest or not, they take into account only their
personal gains and losses from investing, not the gains and losses to society as a whole. When
agent 2 chooses not to invest (conditional upon agent 1 having already invested) she imposes an
immediate cost of −c on Agent 1. Agent 2 does not take this cost into account, and thereby
may possibly be too conservative in her investment strategy relative to the social optimum. In
order to compare Γ(2) with the alternative game that incorporates both observed signals and
awareness of social costs, we have to consider the single-agent decision problem. In this, one
agent chooses successively to invest or not, and gains the sum of the payoffs to individual players
in Γ(2). This means that she earns 2 at the end if she chooses to invest twice and the state is G,
−2c if the state is B, −c if she chooses to invest exactly once, and 0 if she does does not invest
at all. The agent remembers her history of signals when choosing to invest. The comparison of
the equilibrium of this single agent decision problem with the trigger equilibria of Γ(2) turns out
to be similar to the comparison with the case of observed signals above. The broad conclusions
are that the trigger equilibrium of Γ(2) is inefficient for sure, and can exhibit both overoptimism
and overpessimism with positive probability. The single agent version of Γ(2) is worked out in
the appendix.

The lack of the strong herding property in equilibria of Γ(n) when S = IRraises another interest-
ing question. When an equilibrium of Γ(n) exhibits the strong herding property, it is possible to
coordinate an infinite number of players upon risky investment. However, when the equilibria of
Γ(n) lack the strong herding property it is natural to wonder whether it is possible to coordinate
larger and larger numbers of players upon investment in equilibrium. Intuitively, since all players
in the game choose finite triggers, as the number of players get larger and larger, it may be harder
and harder to convince the first player to take a risk and invest, since there are more and more
later players who could “leave him stranded” by choosing to not invest after he does so. What
would happen in Γ(n) with S = IRas n grew larger and larger? Is it still possible to make Player
1 invest in equilibrium?

Recall that in our discussion to date, we have assumed that the information system in Γ(n)
satisfied Property Ψ, which guaranteed the existence of a investment equilibrium when S = IR.
However, a cursory glance at the definition of Property Ψ might lead one to believe that as one
increased the number of players, the information system may no longer satisfy Ψ. However,
note that Ψ is only sufficient and not necessary for the existence of equilibria in this model.
Whether we can satisfy Ψ in Γ(n) as n grows larger, and whether an equilibrium might exist
even if Ψ is violated, depends crucially on the information structure chosen for the game. Thus,
in considering the effects of increasing n, we are effectively proposing an exercise in comparative
information systems. In order to give some structure to such a comparative exercise, it is neces-
sary to parametrize the information system. For this purpose, we henceforth consider Gaussian
(Normal) information systems for arbitrary (general) parameter values. This is simply an ana-
lytical simplification. Several of our results will not be contingent on the precise functional form
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of the Gaussian distribution, and we shall point out generalizations in due course. With this in
mind, we progress to characterizing the informational requirements for creating the possibility
of coordinated investment in Γ(n) when S = IR.

5 On the Possibility of Coordination

The existence of investment equilibria in Γ(n) ensures the possibility of coordinated investment
by the participants in the game. It is intuitive that it should be harder to coordinate progres-
sively larger numbers of players upon a risky but socially productive action in our setting. In
this section, we explore the informational conditions that will allow us to ensure that it is at
least possible to coordinate a large number of players upon a productive risky action.

Our new setting specializes the original setting in one sense. The information system f =
{f(.|G), f(.|B)} is specified to be Gaussian. In the good state, signals are generated by some
arbitrary Gaussian process with mean µ > 0 and standard deviation σ > 0. In the bad state,
signals are generated by a Gaussian process with mean 0 and standard deviation σ. Choosing
the standard deviation to be identical in both states ensures the strict MLRP property of f . The
choice of 0 as the mean of the signal generating process in the bad state is without loss of gener-
ality. It is easy to see that what matters is the difference between the two means. Thus, µ the
mean in the good state could also be viewed as the difference of means between the two states:
µ = µG− µB. µB is set to 0 for notational simplicity. In sum, therefore, f = {N(µ, σ), N(0, σ)}.
We denote this information system by f(µ, σ).

In this new setting consider what happens in Γ(n) as n gets bigger. It is easy to see that as
the number of players gets large, it becomes harder for f to satisfy Property Ψ. Whether Ψ is
violated or not turns out to depend on the initial level of optimism of the players. We shall show
below that for initial priors above a certain cutoff point determined solely by the parameters,
we can always find an information system to satisfy Ψ, and thus ensure the existence of an
investment equilibrium. On the other hand, for priors below this cutoff point, there is some
finite n for which Ψ is violated in Γ(n). However, Ψ is only sufficient and not necessary for the
existence of an investment equilibrium. Thus, the violation of Ψ does not exclude the possibility
of investment equilibria. In fact, we shall show that for any nondegenerate prior on the states,
we can find an information system that ensures the existence of an investment equilibrium for
Γ(n) where n is as large as we please in the set of integers. The following propositions explicate
these points.

Proposition 9 If π > c
1+c

, then for any n ∈ Z++ there exists a f(µ, σ) with σ large and finite
such that Property Ψ is satisfied in Γ(n). If π < c

1+c
there exists n ∈ Z++ such that Ψ is violated

for Γ(n).

Proof: Adapting the best response mapping to the specific context of the Gaussian information
system f(µ, σ), we know that ti is defined by:
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exp(
µ2 − 2µti

2σ2
) =

π

1− π

1 + c

c

n∏
j=i+1

Pr(sj ≥ tj|G)− 1

 i−1∏
j=1

Pr(sj ≥ tj|G)

Pr(sj ≥ tj|B)

This implies,

ti =
µ

2
− σ2

µ
ln

 π

1− π

1 + c

c

n∏
j=i+1

Pr(sj ≥ tj|G)− 1

 i−1∏
j=1

Pr(sj ≥ tj|G)

Pr(sj ≥ tj|B)

 (1)

Now, recalling the definitions of Uj(c, π, f) for j = 2, ..., n from section 2.5, we can write

Un =
µ

2
− σ2

µ
ln
[

π

1− π

(
1 + c

c
− 1

)]
(2)

For i = 2, ..., n− 1

Ui =
µ

2
− σ2

µ
ln

 π

1− π

1 + c

c

n∏
j=i+1

Pr(sj ≥ Uj|G)− 1

 (3)

Now consider the case where π > c
1+c

. This means that ln
[

π
1−π

(
1+c
c
− 1

)]
> 0. Equation (2)

now implies that Un is decreasing as a function of σ. In particular, Un = µ
2
− Jnσ

2 for some
Jn ∈ IR++. This means that by picking σ high enough we can ensure that

ln
[

π

1− π

(
1 + c

c
Pr(s ≥ Un|G)− 1

)]
= ln

[
π

1− π

(
1 + c

c
Pr(z ≥ −Jnσ −

µ

2
)− 1

)]
> 1

where z is the standard Gaussian variable.

But from equation (3), this in turn ensures that Un−1 is also decreasing in σ. In particular,
Un−1 = µ

2
−Jn−1(σ)σ2 for some with 0 < Jn−1(σ) < Jn for σ <∞. So we can pick σ high enough

to ensure that

ln
[

π

1− π

(
1 + c

c
Pr(z ≥ −Jnσ −

µ

2
)Pr(z ≥ −Jn−1σ −

µ

2
)− 1

)]
> 1

where z is the standard normal variable. This ensures that Un−2 is decreasing in σ, Un−2 =
µ
2
− Jn−2(σ)σ2 with Jn−2(σ) < Jn−1(σ) < Jn for any σ < ∞.. Notice that as σ gets arbitrarily

large, the Ji’s get arbitrarily close to each other. Therefore, continuing in this way, for any finite
n, we can clearly choose σ high enough (but finite) to satisfy Property Ψ in Γ(n).

Next consider the case where π < c
1+c

. By analogy to the above, we know that this means that
Un is increasing as a function of σ. Thus, Un is bounded below by µ

2
(corresponding to σ = 0).

But notice that Un−1, Un−2,...etc. are all bounded below by µ
2

because by equation (3) we observe
that they are all of the form

Ui =
µ

2
− σ2

µ
ln
[

π

1− π

(
1 + c

c
J − 1

)]
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where J < 1. But clearly 1+c
c
J − 1 < 1+c

c
− 1 < 1. Thus, the product

∏n
j=2 Pr(sj ≥ Uj|G) is

bounded below by [Pr(s ≥ µ
2
|G)]n−1. This clearly vanishes as n → ∞. Thus, there exists an

n ∈ Z++ for which Ψ is violated in Γ(n). �

This result is ostensibly counterintuitive but powerful. It says that if sufficiently optimistic play-
ers are offered sufficiently garbled information about the state of the world, then there exists
the possibility for coordinated investment regardless of how large the number of players is, as
long as the number is finite and known. What makes the result strong is that the level of initial
optimism is independent of the number of players.

What if the beliefs of potential players fell below the range that guarantees the existence of
an investment equilibrium from Proposition 9? It turns out that there is an alternative way
to ensure the possibility of coordinated investment that is independent of the initial priors: to
provide sufficiently accurate (instead of sufficiently garbled) information to players.

Proposition 10 Fix n ∈ Z++ and µ > 0. Let M > 0 be such that [1− Φ(−M − µ)]n−1 > c
1+c

.
Then we can find (ε, σ) > 0 such that t = (t1, ..., tn) where t1 ∈ [µ

2
− ε, µ

2
+ ε], and tj ≤ −M for

j = 2, ..., n is a trigger equilibrium of Γ(n)

Proof: Recall from equation (1) that

t1 =
µ

2
− σ2

µ
ln

 π

1− π

1 + c

c

n∏
j=2

Pr(sj ≥ tj|G)− 1


Our choice of M above means that t1 is well defined for σ ≤ 1.

t2 =
µ

2
− σ2

µ
ln

 π

1− π

1 + c

c

n∏
j=2

Pr(sj ≥ tj|G)− 1

 Pr(s ≥ t1|G)

Pr(s ≥ t1|B)


Notice that as σ → 0 and resultantly t1 → µ

2
, the thin tailed property of the Gaussian distribu-

tion ensures that Pr(s≥t1|G)
Pr(s≥t1|B)

→∞. In particular, this term explodes much faster than σ2 → 0 so

that t2 → −∞. Thus, for a given M > 0, we can clearly find (ε, σ) > 0 such that t1 ∈ [µ
2
−ε, µ

2
+ε]

and t2 ≤ −M . But notice that in this setting t2 ≥ t3 ≥ ... ≥ tn. Thus clearly tj ≤ −M for
j = 2, ..., n and we have found a f(µ, σ) to rationalize t as a bounded equilibrium of Γ(n). �

Proposition 9 and Proposition 10 lay down sufficient informational conditions to create the
possibility of coordination in Γ(n) for any n ∈ Z++, no matter how large. Jointly they imply
that for initially optimistic individuals, either very good or very bad quality information creates
the possibility of coordinated investment. Intermediate quality information does not guarantee
the possibility of coordination. Sufficiently good quality information always creates the possibility
of coordinated investment regardless of whether agents are initially optimistic or not.
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6 Discussion

The results presented in the preceding sections provide a general framework within which to
view phenomena associated with herd behavior such as market panics, bank runs, and currency
crashes. We unify two prior strands of the literature that address such phenomena: sequential
choice models with Bayesian learning without payoff complementarities (herding models), and
static coordination games with payoff complementarities without Bayesian learning. It is appar-
ent that agents involved in bank runs and financial panics in general have to simultaneously solve
coordination problems (captured by the static games literature), learn from their predecessors
(captured by the herding literature), and send effective signals to other market participants (not
captured by either prior class of models). This model, albeit in extremely stylized form, captures
all these three aspects to the behavior of agents within one framework.

An important message that emerges from our analysis is that information matters. In partic-
ular, the stochastic properties of the information that agents receive is relevant in determining
outcomes. In the preceding sections, we have demonstrated that herd behavior emerges in equi-
librium in varying degrees depending on the properties of the information system. In particular,
if the information system is such that agents can exhibit only limited amounts of personal skepti-
cism (bounded likelihood ratios), we have demonstrated that very extreme forms of herd behavior
can emerge as the unique outcome of rational behavior. If information systems are such that
agents exhibit unbounded personal skepticism (unbounded likelihood ratios), however, the out-
comes of the model are less extreme, but by no means represent the efficient aggregation of
information. Agents may still exhibit the excessive optimism (or pessimism) that is often ob-
served in the market.

While extremely stylized, our model can be used to analyze several potential applications. For
example, it can be applied to the problem of technology choice under uncertainty in the pres-
ence of network externalities, much as in Choi (1997). Consider, for example, a group of firms
choosing between a “safe” old technology and a “risky” new one. The older technology provides
a low payoff that is independent of the state of the world and the choices of other firms. The
new technology provides a potentially high payoff, but requires that the various other firms also
adopt it, and that the industrial environment as a whole is conducive to change. If other firms
do not adopt the new technology, the firm that adopts suffers adjustment costs.

The model can also be used to analyze market booms and busts or currency crises, the traditional
subjects of herding models. Since we began our discussion with reference to such phenomena,
it is fitting to conclude with a simple example of how this model can be used to examine these.
We present such an example below.

7 A Simple Application

In what follows, we present a simple example of a model of coordinated attacks on a currency peg
under uncertainty. It contains features of the original example of currency crises as coordination
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games presented by Obstfeld in 1986, and of more recent work building on similar models by
Morris and Shin (1998) and Obstfeld (1998).

We assume that there are two traders who have two choices each: Attack (A) or Don’t Attack
(D). There are two states of the world: either the economy is strong S, and conditions are not
conducive for an attack, or the economy is weak (W ) and conditions are ripe for an attack. By
not attacking, each trader receives a payoff of 0 regardless of the state of the economy. If the
economy is strong, then even a coordinated attack is useless for the traders (even though it may
cause significant stress on the economy not modelled here) and thus in the state S, A produces a
payoff of −c to each player. When the economy is weak, however, a coordinated attack can pay
off: the currency crashes and each trader realizes a payoff of 1. On the other hand, even if the
economy is weak, one trader by herself cannot bring down the currency. If one trader attacks in
state W and the other does not, she realizes a payoff of −c.

The states S and W occur with equal probability. Agents receive private signals about the state
of the world. Signals can be low (L), medium (M), or high (H), indicating the strength of the
economy. When the economy is strong the government has the resources to provide relatively
accurate information to agents and they receive signal H with probability 2

3
, and signal M with

probability 1
3
, but never receive signal L. When the economy is weak, the government has no

control over the signals it sends to agents, and agents receive signals L, M , and H with equal
probability. The information system is summarized in Table 2.

Signals
H M L

pW 1/3 1/3 1/3
pS 2/3 1/3 0

Table 2: Information System in Currency Attack Game

Trader 1 acts first and trader 2 follows after observing her act. In this setting, it is easy to
see based upon our earlier discussion, that there is a unique trigger equilibrium with the strong
herding property. t1 = M , and t2 = H. This means that trader 1 chooses to attack if and only
if she receives signal either M or L. Conditional on trader 1’s attack, trader 2 attacks for sure,
exhibiting strong herding.

The important conclusion of this model is that even when the state of the economy is strong,
there is a 33% chance of a coordinated currency attack. Even though the assumptions of the
model preclude a currency crash in this setting, it is quite likely that such a coordinated attack
will weaken the economy by causing stresses (high interest rates, lowered reserves levels due
to defense of the peg) that shall push the economy to state W and increasing the likelihood
of a future successful currency attack. However, that is not our central point. The startling
conclusion is that unanticipated (and fundamentally unjustified) coordinated currency attacks
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can occur with high probability in the unique outcome of rational behavior. To the casual
observer, such behavior can appear seemingly irrational and be termed herd behavior.

8 Extensions

While our model takes an essential step towards appropriately modeling the strategic aspect of
market booms and busts, and extends the herding literature by incorporating forward-looking
behavior on the part of agents, it admits several caveats. One of these is that we require complete
coordination on the part of agents to achieve positive payoff from investment. A richer model
would allow for payoffs from investment to be a continuous and increasing function of the number
of investors. The arguments in such a model would be complicated by combinatorial considera-
tions, because the order of action matters in models such as ours. However, we conjecture that
the broad results will be similar to ours. In particular, in a set-up similar to this, we antipate
that agents will still follow trigger strategies, and that later agents will choose smaller triggers
exhibiting strong or weak herding along the lines of this model. In particular, since requiring
complete agreement encourages greater conservatism on the part of players in their choices of
action, we conjecture that herd behavior would occur more easily in games where positive payoffs
may be earned even without complete agreement.

Other potential extensions of the model would allow players to choose their time of entry into
the market, i.e., endogenize the order of actions, or allow for imperfect observation of prior
choices. Richer models such as these would more closely approximate the reality of financial
market booms and panics. This model provides a benchmark against which to compare such
future models.

9 Appendix

9.1 Proof of Proposition 3

Consider the largest and smallest possible triggers that can be chosen by the players. Suppose
initially we allow players to choose triggers in an unrestricted way, i.e., anywhere in <. Call the
bounds corresponding to this t0 and t̄0. We denote the jth component of t0 by tj

0 and of t̄0 by

t̄j
0. So, t0 = (−∞, ...,−∞) and t̄0 = (∞, ...,∞).

Now consider best responses to triggers chosen in [t0, t̄0]. What range would these best responses
lie in? Call this range [t1, t̄1]. What is t1

1? t1
1 is a best response to (t2

0, ..., tn
0) = (−∞, ...,−∞).

Thus, in the spirit of the computations above, t1
1 is defined by the solution to the equation,

Pr(G|x) = c
1+c

, which implies
f(t11|B)

f(t11|G)
= 1

c
. Thus, t1

1 ∈ IR.11 How about t2
1? It is a best response

to t̄1
0 and (t3

0, ..., tn
0). Since t̄1

0 = ∞ Player 2 assumes upon observing investment that Player

11In particular, t11 = Un(c, π, f) defined above.
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1 must have received an infinitely high signal, or, equivalently, that the state must be G.12 So
t2

1 = −∞. By the same token tj
1 = −∞ for j = 3, ..., n. How about t̄1

1? This is a best response

to (t̄2
0, ..., t̄n

0) = (∞, ...,∞). So, Player 1 knows that Players 2 through n will never invest. So,
her best response must be to set her own trigger to ∞. Thus, t̄1

1 = ∞. Similarly, t̄j
1 = ∞ for

j = 2, ..., n − 1. However, t̄n
1 is a best response to (t1

0, ..., tn−1
0) = (−∞, ...,−∞), and so, by

reasoning identical to the case of t1
1 that t̄n

1 is defined as the solution to Pr(G|x) = c
1+c

, and

thus, t̄n
1 = t1

1 ∈ IR. Thus,

(t1, t̄1) = ((t1
1,−∞, ...,−∞), (∞, ...,∞, t̄n1))

Now consider best responses to triggers in [t1, t̄1]. What range would these best responses lie
in? Call this range [t2, t̄2]. Notice first that t1

2 = t1
1 ∈ IR because they are best reponses to the

same triggers. Also, by an argument identical to that constructed for computing tj
1 = −∞ for

j = 2, ..., n, we observe that tj
2 = −∞ for j = 2, ..., n. Similarly, for j = 1, ..., n−2, each of t̄j

2 is

a best response to at least one successor trigger of∞. So, for j = 1, ..., n− 2, t̄j
2 =∞. However,

¯tn−1
2 is a best response to predecessors (t1

1,−∞, ...,−∞) and successor t̄n
1 ∈ IR. Thus, ¯tn−1

2

is chosen to solve the equation Pr(G, sn ≥ t̄n
1|s1 ≥ t1

1, x) = c
1+c

, and thus clearly, ¯tn−1
2 ∈ IR.

Finally, note that since triggers are decreasing as best responses to their predecessors and since
t1

0 < t1
1 while tj

0 = tj
1 for j = 2, ..., n, t̄n

2 ≤ t̄n
1. Thus,

(t2, t̄2) = ((t1
2,−∞, ...,−∞), (∞, ...,∞, ¯tn−1

2, t̄n
2))

By iterating this argument it is easy to see that

(t3, t̄3) = ((t1
3,−∞, ...,−∞), (∞, ...,∞, ¯tn−2

3, ¯tn−1
3, t̄n

3))

and so on, until finally

(tn+1, t̄n+1) = ((t1
n+1, ..., tn

n+1), (t̄1
n+1, ..., t̄n

n+1))

i.e., (tn+1, t̄n+1) ∈ IRn × IRn.

It is clear that the iterative process defined above satisfies the property that tj ≥ tj−1 for all
j and t̄j ≤ t̄j−1 for all j. Thus, since (tn+1, t̄n+1) ∈ IRn × IRn and (tj, t̄j) ∈ [tn+1, t̄n+1]2 for all
j ≥ n + 1, the trigger bound sequence is monotonic and bounded. So it must converge. Thus
there exist t ∈ IRn and t̄ ∈ IRn such that for all t ∈ <n, t ≤ β(t) ≤ t̄. �

9.2 The Single Player Version of Γ(2)

Consider a modification to Γ(2) in which a single player makes all choices, in order, constrained
by the same signal structure. She remembers her past signals. Her payoffs are given by the total

12This is an ad hoc refinement that we introduce for this iterative process. It is important to note that the
refinement is irrelevant for investment equilibria.
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payoffs at the end of the game contingent upon both her choices in periods 1 and 2, by summing
the final payoffs from these choices. Thus, payoffs are given by the following:

u(G, a1, a2) =


2 when a1 = I and a2 = I,
−c when a1 = I and a2 = N,
−c when a1 = N and a2 = I,
0 when a1 = N

u(B, a1, a2) =


−2c when a1 = I and a2 = I,
−c when a1 = I and a2 = N,
−c when a1 = N and a2 = I,
0 when a1 = N

We denote the decision maker’s updated beliefs about the state after observing the signal in
period 1 by π2. Clearly

π2

1− π2

=
π

1− π
f(s1|G)

f(s1|B)
.

Now, the expected utility to the decision maker of investing in period 2, conditional upon having
invested in the previous period is given by

EU2(I) =
π2

π2 + (1− π2)f(s1|B)
f(s1|G)

(2 + 2c)− 2c.

The expected utility to the decision maker of not investing in period 2 conditional upon having
invested in period 1 is simply −c. Thus, by employing arguments made repeatedly above, the
decision maker shall choose a trigger t

′
2 given by

t
′

2 = r−1

(
π

1− π
f(s1|G)

f(s1|B)

2 + c

c

)
.

Clearly then, the unique trigger equilibrium of Γ(2) is socially optimal only if

Pr(s1 ≥ t1|G)

Pr(s1 ≥ t1|B)
= (2 + c)

f(s1|G)

f(s1|B)
.

This, of course, happens with zero probability given the assumptions on the signal generating pro-
cesses. The trigger equilibrium shall be characterized by both overoptimism and underoptimism
compared to the socially optimal case with positive probability (for finite c).
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