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Abstract. We study an agent who chooses a profile of actions between which she may
misperceive the correlation. Our agent cannot be modeled by reducing every action profile
to an act, as implied by the usual monotonicity axiom. We introduce a novel framework
that explicitly considers action profiles and axiomatically characterize a model that relaxes
monotonicity but retains the rest of the expected utility axioms. Our agent acts as if she
attaches a probability to each possible correlation structure and then maximizes expected
utility using her (possibly misspecified) beliefs. This representation nests several models
used in the behavioral game theory literature to consider imperfect inference, including
correlation neglect.

1. Introduction

Decision problems often involve the interaction among several distinct actions, such as a
portfolio of securities, a profile of strategies, or signals from distinct sources. The environ-
ment in which these variables interact is often very complex and how an agent perceives,
or misperceives, the correlations among the outcomes of different actions is crucial for un-
derstanding the riskiness of her choices. We provide a decision-theoretic analysis of how
environmental complexity can affect an agent’s understanding and choice behavior, with
the aim of providing a functional model of decisions and clarifying the connections between
alternative behavioral approaches in the literature.

We depart from the standard device of modeling the decision maker (DM) as choosing
individual acts, i.e. mappings from states to outcomes. Instead, we propose a framework that
directly considers the choice of profiles including several distinct actions. In our framework,
complexity does not affect the DM’s decisions whenever she reduces profiles to individual
acts, i.e. she is indifferent between any two action profiles corresponding to the same act.
We model misperceptions of correlation as violations of this reduction, while retaining the
remainder of the subjective expected utility axioms.
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Our axioms characterize an agent whose behavior has a probabilistic correlation represen-
tation, or PCR. As in standard subjective expected utility models (SEU), a PCR assigns a
belief that a profile of actions yields a given outcome. Unlike SEU, it also assigns probabil-
ities to outcomes resulting from joint realizations of actions that the modeler knows to be
impossible. Given these possibly misspecified beliefs, a PCR hypothesizes expected utility
maximization.

1.1. Illustration and Plan. We illustrate our framework, model, and results through a
simple portfolio choice exercise. We then show that our trader systematically misvalues
certain portfolios. In particular, she overvalues risky, complex portfolios and undervalues
complex portfolios whose underlying assets hedge one another.

In Section 2, we formally define our primitives, the key ingredients of which we describe
here. There are a set Ω of states of the world and a set of assetsA. Each asset a ∈ A returns a
(real number) a(ω) in state ω. A portfolio is a finite collection assets, denoted 〈a1, a2, ..., an〉,
and yields a payoff equal to the sum of the returns of all the underlying assets. The trader
maximizes a preference relation � defined over portfolios.

Fix any two assets b and c and consider a third asset a satisfying a(ω) = b(ω) + c(ω) in
each ω.1 The profiles 〈b, c〉 and 〈a〉 give the same return in every state. However, if this
trader misperceives the correlation between b and c - for instance, she thinks b and c are
independent although they are positively correlated - then she may not be indifferent between
〈b, c〉 and 〈a〉, thus violating the typical Monotonicity axiom of choice theory. To model this
behavior, we replace the standard Monotonicity axiom with a novel “Weak Monotonicity”
axiom while retaining the other axioms of SEU.

In Section 3, we show that the trader’s behavior satisfies our axioms if and only if her
choices can be represented by a PCR. The trader’s understanding is modeled via a collection
of understanding classes. She understands the relations among the assets within an under-
standing class in the same way as the modeler but may incorrectly perceive the relation
among different understanding classes. For this example only, there are two understanding
classes, labeled B and C, and B ∪ C = A. We model the misperception of correlations by
augmenting the state space to Ω×Ω, where one copy of Ω corresponds to each understand-
ing class. The trader’s beliefs about pairwise correlations are represented by a probability
measure π(·) over Ω× Ω, and her tastes by a utility index u(·).

1While this may seem special special, many real world examples of such profiles exist. For example, a could
be an exchange traded fund with one share of every stock in an industry having two firms, b and c, and
Fleckenstein et al. (2014) give an example using T-Bills, TIPS, STRIPS, and inflation swaps.
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Assume for simplicity that π(·) is symmetric - the probability distribution of individual
assets is perceived correctly. The trader evaluates the utility of the profile 〈b, c〉 as

V 〈b, c〉 =


∑
ω u(b(ω) + c(ω))π(ω × Ω) if b, c ∈ B or b, c ∈ C∑
(ω1,ω2) u(b(ω1) + c(ω2))π(ω1, ω2) otherwise

.

On the one hand, if b and c belong to the same understanding class, i.e. b, c ∈ B or b, c ∈ C,
then the trader understands the connection between the two and evaluates the utility of the
profile 〈b, c〉 according to the usual expected utility criterion. On the other hand, if b and c
belong to different understanding classes, then the trader thinks that she gets the outcome
b(ω1) + c(ω2) with probability π(ω1, ω2).

We call a collection of non-redundant understanding classes that spans all assets a cor-
relation cover. In Section 4, we uniquely identify it from the preference relation under the
assumption that each understanding class contains a rich enough set of acts. However,
unique identification of the trader’s beliefs about correlation depends critically on her risk
attitude. For instance, risk-neutrality implies that any π′ whose marginals agree with π rep-
resents choice, but whenever risk-neutrality fails, π can be uniquely determined. Theorem 3
characterizes the behavior necessary and sufficient to recover the DM’s perceived correlation
structure and relates it to the agents attitude towards (higher-order) risk.

We now turn to how misperception can affect the trader’s valuation of portfolios. For the
remainder of this example, we focus on a special case, the η-misperception model, inspired
by Eyster and Rabin (2005), in which a single parameter, η, captures the misperception of
correlation across classes. Specifically, the trader’s belief π(ω1, ω2) is given by

π(ω1, ω2) =

ηq(ω1)q(ω2) if ω1 6= ω2

ηq(ω1)2 + (1− η)q(ω1) if ω1 = ω2

where q(ω) = π(ω × Ω). If η = 1, then the trader believes that any two securities in
distinct understanding classes are independent, and if η = 0, then the trader understands the
connection between any two securities. Thus, whenever b and c are in distinct understanding
classes, V 〈b, c〉 equals

ηVIND(〈b, c〉) + (1− η)VSEU(〈b, c〉)

where VIND is what the trader’s utility would be if she thought b and c were independent
and VSEU is what her utility would be if she evaluated the profile as the modeler.

Suppose now that u(x) = x − βx2 for β ≥ 0.2 If b and c are in different understanding
classes, indifference between 〈b, c〉 and a may not hold and η can be interpreted as represent-
ing the degree to which the trader misperceives correlations. Letting ρ denote the “modeler’s”

2This specification of utility index is closely related to mean-variance risk preferences.
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correlation coefficient, one can easily show that the trader’s over- or under-valuation of asset
depends on the sign of ρ. Specifically:

• If ρ(b, c) > 0, then 〈b, c〉 � a, and if ρ(b, c) < 0, then a � 〈b, c〉.
• If ρ(b, c) 6= 0, 〈b, c〉 ∼ a if and only if b, c ∈ B, b, c ∈ C, or η = 0.
• The degree of over- or under-valuation increases with η.

Misperception causes the trader to undervalue hedging and overvalue risk. In particu-
lar, the trader may fail to take advantage of arbitrage opportunities and may not realize
the hedging-value of certain assets. Simultaneously, the trader may overpay for securities
derived from correlated assets, underestimating their correlation. Both patterns have em-
pirical support - for instance, Fleckenstein et al. (2014) demonstrate existence of arbitrage
opportunities, and Brunnermeier (2009) appeals to misperception in their analysis of the
mortgage-backed security crisis of 2008.

1.2. Related Literature. Our objective is to provide a general and flexible decision the-
oretic framework for modeling choices made by an agent who may misperceive correlation.
Naturally, our analysis has several points of contact with works in decision theory, bounded
rationality and behavioral economics.

Misperception of correlations is a broad concept that has been studied in various guises,
ranging from the inability to infer patterns, as in Piccione and Rubinstein (2003), Eyster
and Piccione (2013), and Levy and Razin (2015a), to the inability to derive some logical
implications (Lipman, 1999), to attitudes towards different sources of uncertainty (French
and Poterba, 1991). In particular contexts, misperception of correlation has been shown
to lead to a range of behaviors, including social influence (DeMarzo et al., 2003), overcon-
fidence (Ortoleva and Snowberg, 2015), and polarization (Levy and Razin, 2015b). A key
feature of our approach is that, being based on preferences, it is neutral with respect to the
psychological biases and limitations that cause agents to perceive correlations incorrectly.

Framing can also be viewed as a proximate reason for misperception. Within our frame-
work, different framings of the same action can make understanding correlations harder; see
Example 1. More fittingly, different profiles that yield the same outcomes can be viewed as
different framings that affect the DM’s choices. Choice theoretic works that highlight other
aspects of framing include Salant and Rubinstein (2008) who study the conditions under
which choice data can be rationalized as resulting from choice from that menu under differ-
ent frames, and Ahn and Ergin (2010) who axiomatize a formal model where the framing of
an act affects the probabilities used by the DM.

Our results also relate to a body of literature on boundedly rational choice theory. Lip-
man (1999) introduces a decision-theoretic model for relating an agent’s logic to preferences.
Al-Najjar et al. (2003) explicitly model the effects of complex environments on decision mak-
ing as a preference for flexibility. Kochov (2015) develops a model of a DM with imperfect
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foresight, which can be interpreted as misperception of the auto-correlation between actions,
where failure of Monotonicity also plays a role. Lastly, our representation can admit an inter-
pretation in which different, endogenous sources of uncertainty (the understanding classes)
determine beliefs, as in Chew and Sagi (2008) or Gul and Pesendorfer (2015).

In Section 6.2, we apply our representation to two-player incomplete information games.
We show that it is closely related to, and sometimes nests, several models in behavioral game
theory. The equilibrium concept that we develop allows correlation neglect, as in DeMarzo
et al. (2003), and admits as special cases several models of imperfect inference in equilibrium
such as Cursed Equilibrium of Eyster and Rabin (2005) and Analogy Based Expectation
Equilibrium (Jehiel, 2005) in the form studied by Jehiel and Koessler (2008).

Esponda (2008) and Spiegler (2015) have developed approaches to misperception that are
related to ours and are motivated by similar behavioral insights. Their models, however,
do not in general admit PCR representations. Specifically, both models allow the DM’s
perception of correlation between two payoff-relevant variables to be affected by her choice.

Evidence for misperception of correlation in the laboratory is found by, among others,
Eyster and Weizsäcker (2010), Enke and Zimmerman (2013), and Rubinstein and Salant
(2015). We refer the reader to these works for additional motivation.

2. Primitives

There is a set A of actions, with typical elements a, ai, b, bi. Each action results in an
outcome or consequence in a set X, with typical elements x, y, z. This outcome is determined
by a state of the world drawn from the measurable space (Ω,Σ), with typical element ω,
where Ω is a non-empty set and Σ is a σ-algebra on Ω. We primarily use the state space Ω
as a convenient benchmark against which the DM’s subjective perceptions of correlations are
evaluated, that is, the state space is interpreted as the modeler’s or an external observer’s
representation of how the actions correlate with one another. A map ρ : A × Ω → X

determines the relationship between actions, states, and outcomes, with the action a yielding
the outcome ρ(a, ω) in state ω. Slightly abusing notation, we write a(ω) for ρ(a, ω). The
map a(ω) is Σ-measurable for every a ∈ A. Note that the model allows for distinct actions
a and b for which a(ω) = b(ω) for any ω ∈ Ω.

From the set of actions, we derive a set F of action profiles (or profiles). Each F ∈ F is
a finite sequence of actions 〈ai〉ni=1. We assume that with any permutation of F is identical
to F .3 To save notation, we sometimes write 〈ai〉 instead of 〈ai〉ni=1.

An agent who chooses the profile 〈ai〉ni=1 receives the outcomes of all n actions a1, ..., an.
Outcomes combine through an operation + : X ×X → X, with +(x, y) denoted by x + y,
3To define F more formally, let A∗ =

⋃∞
i=1Ai, the set of all finite Cartesian products of A, and define an

equivalence relation R on A∗ by dRd′ if and only if d′ is a reordering of d. The set of profiles F is the set of
R-equivalence classes on A∗.



6 ANDREW ELLIS AND MICHELE PICCIONE

that is commutative and associative, i.e. x+ (y + z) = (x+ y) + z and x+ y = y + x. If the
DM takes two actions that yield outcomes x and y, then she gets the consequence x+ y. We
assume that there exists an element 0 ∈ X so that x + 0 = x. To fix ideas, we often focus
on X = R or X = R+ with the standard addition operation.

We assume that each a ∈ A has a finite image and that A includes every constant action.
Thus, for any x ∈ X there is an ax ∈ A such that ax(ω) = x for every ω ∈ X, and we denote
such an action by x. We write σ(a) (σ(a, b)) for the coarsest σ-algebra by which a is (both
a and b are) measurable.

The DM chooses by maximizing a preference relation � defined on ∆F , the set of all
probability distributions over F having finite support. Typical elements of ∆F are p, q.
As is customary, the symbol ∼ denotes indifference and � strict preference. The set ∆F
contains the set of action profiles (the lottery in which profile F has probability 1, often
denoted by F ), the set of actions (the lottery in which profile 〈a〉 has probability 1, often
denoted by a), and the set of lotteries over X (the lottery over constant actions), ∆X, with
typical lottery denoted by (p(xi), xi)ki=1 or simply (p(xi), xi).

The basis of F = 〈ai〉ni=1, denoted by B (F ), is the set of distinct actions that comprise
F . That is, B (F ) is the set {ai}ni=1. Similarly, the basis of a lottery p, denoted by B (p), is
the union of the bases of each action profile in its support. The complement of a set E is
denoted by E.

Our modeling of profiles and outcomes is novel. The overall framework builds on the
reformulation by Battigalli et al. (2013) of Luce and Raiffa (1954)’s model of decsions. As
in that paper, we focus exclusively on ex-ante lotteries. Note that ex-ante lotteries also play
a role in, e.g. Anscombe and Aumann (1963), Seo (2009), and Saito (2015). None of these
distinguish profiles from acts.

3. Foundations and Preliminary Representation

We first introduce some standard assumptions. We then move to the key axiom of Weak
Monotonicity.

3.1. Standard Assumptions. We now state our standard assumptions. Given two lotteries
p, q ∈ ∆F , a mixture αp+ (1−α)q, α ∈ [0, 1], is the lottery in ∆F in which the probability
of each profile in the support of p and q is determined by compounding the probabilities in
the obvious way.

Axiom 1 (Weak order). The preference relation � is complete and transitive.

Axiom 2 (Continuity). The sets {α ∈ [0, 1] : αp + (1 − α)q � r} and {α ∈ [0, 1] : r �
αp+ (1− α)q} are closed for all p, q, r ∈ ∆F .
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Axiom 3 (Independence). For any p, q, r ∈ ∆F and any α ∈ (0, 1], p � q ⇐⇒ αp + (1 −
α)r � αq + (1− α)r.

These are the mixture space axioms of Herstein and Milnor (1953). Their interpretation
is standard. While one may plausibly argue that complexity does or should cause violations
of any of them, we show that complexity need not. In fact, most commonly used models
featuring complexity do not violate any of them.

Note that Independence applies only to ex-ante mixtures of lotteries. Unlike the literature
featuring choice of a menu, alternatives themselves are not mixed. Independence implies a
behavior akin to “complexity neutrality”, namely that the DM does not value the option
to mix between profiles. Such mixing could plausibly reduce exposure to complexity in the
same way that mixing between acts reduces exposure to ambiguity. An extension relaxing
independence to imply “complexity aversion” (or seeking) is left for future work.

3.2. Weak Monotonicity. In the standard approach, a profile 〈ai〉ni=1 corresponds to an
act f : Ω → X, which yields the consequence f(ω) = ∑n

i=1 ai (ω) in state ω. Whenever the
DM reduces action profiles to acts, the map f is a sufficient description of the profile. In
particular, if 〈ai〉ni=1 and 〈bi〉mi=1 correspond to the same act, then 〈ai〉ni=1 ∼ 〈bi〉mi=1. Within
the expected utility framework, reduction to acts is implied by Monotonicity: if for any
ω ∈ Ω

n∑
i=1

ai (ω) �
m∑
i=1

bi (ω)

then 〈ai〉ni=1 � 〈bi〉mi=1. We will return to Monotonicity in Section 6.1; the following example
illustrates a violation.

Example 1. A DM must choose between bets that depend on τ , tomorrow’s high temper-
ature. The DM can have either $100 or the sum of the outcomes of bets bC and bF , where
bC pays $100 if τ is less than 30 degrees Celsius ($0 otherwise) and bF pays $100 if τ is
at least 86 degrees Fahrenheit ($0 otherwise). As 30◦ Celsius equals 86◦ Fahrenheit, a DM
who understands and easily converts Fahrenheit to Celsius expresses indifference between
the sum of bC and bF and $100 for sure. However, a risk averse DM who does not know how
to convert from one unit to the other and believes that the median value of 86◦F is 30◦C
may not exhibit such indifference and reasonably prefer $100 for sure to holding both bC and
bF . Note this non-indifference holds even if both bC and bF are easy to evaluate in isolation.

The expressed preference 〈100〉 � 〈bC , bF 〉 contradicts Monotonicity: 〈bC , bF 〉 and 〈100〉
both correspond to the act that yields 100 in every state but 〈100〉 � 〈bC , bF 〉. Our novel
axiom, Weak Monotonicity, relaxes this property by also considering joint realizations of
consequences possible in alternative joint distributions not implied by the primitive state
space. To motivate it, consider why a DM might prefer 〈100〉 to 〈bC , bF 〉. She can “plausibly”
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conceive four possible joint realizations of 〈bC , bF 〉: (100, 0), (0, 100), (0, 0), (100, 100). If
the DM prefers 100 to 〈bC , bF 〉, then she must think it sufficiently likely that both bets
return 0. Weak Monotonicity subsumes such considerations by strengthening the conditions
under which a lottery dominates another. In particular, it requires that if the lottery over
the consequences generated by p is preferred to that generated by q for every “plausibly”
conceived joint realizations, then p � q.

Formally, for any finite subset of actions {c1, ..., cn} = C ⊂ A, the set of all plausible
realizations of C equals

range(c1)× range(c2)× ...× range(cn).

Thus each plausible realization is a vector of outcomes (xc1 , xc2 , ..., xcn) such that each action
ci could, in isolation, result in xci : for every ci ∈ C, there exists ω ∈ Ω so that xci = ci(ω).
It should be noted that plausible realizations are defined for subsets of actions and not
sequences of actions such as profiles.

In Example 1, the plausible realizations of {bC , bF} are (100, 0), (0, 100), (100, 100), and
(0, 0), which we interpret below as 〈bC , bF 〉 yielding four possible aggregate outcomes, namely,
100, 100, 200, or 0. Similarly, the profile 〈bC , bF , bF 〉 could yield the aggregate outcomes 100,
200, 300, or 0. Naturally, the outcomes of 〈bC , bF , bF 〉 dominate the outcomes of 〈bC , bF 〉
regardless of any uncertainty about the conversion of temperature. Weak Monotonicity
requires that 〈bC , bF , bF 〉 � 〈bC , bF 〉.

Generally, given two profiles 〈ai〉ni=1 and 〈bj〉mj=1, to each plausible realization

(xa′)a′∈B(〈ai〉ni=1)∪B(〈bj〉mj=1)

corresponds a joint outcome that the two profiles 〈ai〉ni=1 and 〈bj〉mj=1 might yield. Specifically,
〈ai〉ni=1 yields ∑n

i=1 x
ai and 〈bj〉mj=1 yields ∑m

j=1 x
bj . It should be noted that xa = xb whenever

a = b regardless of the profile in which they are listed. If
n∑
i=1

xai �
m∑
j=1

xbj

then 〈ai〉ni=1 has a better consequence than 〈bj〉mj=1 in this plausible realization. If this is
true for all plausible realizations of B(〈ai〉ni=1) ∪ B(〈bj〉mj=1), that is, for any perceived corre-
lation among distinct actions, then we say that 〈ai〉ni=1 plausibly dominates 〈bj〉mj=1. We now
formalize this comparison and extend it to lotteries.

Definition 1. A lottery p dominates a lottery q in a plausible realization (xa)a∈B(p)∪B(q) of
B (p) ∪ B (q) if (

p (〈ai〉ni=1) ,
n∑
i=1

xai

)
�

q(〈bj〉mj=1),
m∑
j=1

xbj

 .
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A lottery p plausibly dominates a lottery q if p dominates q in every plausible realization of
B (p) ∪ B (q).

If p plausibly dominates q, then for any plausible realization the DM prefers the lottery
generated by p better than that of q. For example, suppose that p randomizes equally
between 〈bC , bF 〉 and 〈bF 〉 and q selects 〈bF 〉 with certainty. For either of the plausible
realizations (100, 0) or (100, 100), p randomizes equally between two consequences (100 and
0 in the first case, 200 and 100 in the second) while q selects the worse of the two with
certainty (0 and 100, respectively). Similarly, for the plausible realizations (0, 100) and (0, 0)
both lotteries yield respectively 100 and 0 with certainty. Hence, p plausibly dominates q.

Weak Monotonicity requires plausible domination to relate to preference in the natural
way.

Axiom 4 (Weak Monotonicity). For any p, q ∈ ∆F , if p plausibly dominates q, then p � q.

Note that, since 〈bC , bF 〉 does not plausibly dominate 〈100〉, it does not restrict the ranking
of these two profiles.

Weak Monotonicity has some formal similarities with the Dominance axiom of Seo (2009).
It considers all possible beliefs (though here beliefs are about correlation structure) as in
Seo’s axiom, but requires reduction of compound lotteries as well. The Congruence axiom
in Battigalli et al. (2013) is also related, but only considers the outcomes that are possible
according to Ω. In our setting, Congruence is equivalent to the Monotonicity axiom of
Section 6.1.

3.3. Representation. The violation of Monotonicity implies that the DM perceives un-
certainty not captured by the state space Ω. We represent this additional uncertainty by
increasing the dimension of the state space. While one can do this in many ways, we do
so by considering copies of the benchmark state space. Our first result shows that, under
Axioms 1-4, one can obtain an expected utility representation in which each action is as-
signed one copy of the benchmark state space. Naturally, the increase in the dimensionality
of uncertainty for this representation may be excessive and unnecessary, as we shall see in
later sections. However, the result below is instrumental for achieving a parsimonious repre-
sentation. Given a collection of σ-algebras {Σi}i∈I of Ω, denote the product σ-algebra of the
Cartesian product ΩI by ⊗i∈IΣi. Let Ωa the copy of Ω assigned to a ∈ A, ΣA = ⊗a∈Aσ (a)
be the product σ-algebra for the Cartesian product ΩA = ∏

a∈AΩa. Given a state ~ω ∈ ΩA,
ωa denotes the projection of ~ω on Ωa.

Theorem 1. The preference relation � satisfies Weak Order, Continuity, Independence, and
Weak Monotonicity if and only if there exist an index u : X → R and a probability measure
π over ΣA such that � has an expected utility representation with utility index V : F → R
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where
V (〈ai〉ni=1) =

∫
ΩA
u(

n∑
i=1

ai(ωai))dπ.

Furthermore, if there exists p, q where p � q, then u is unique up to a positive affine trans-
formation.

By increasing the dimension of uncertainty, the DM acts as if she is SEU but on a larger
state space. The state space chosen allows the DM to attach positive probability to events
such as “bC yields 0 and bF yields 0” that Ω cannot express. Naturally, uniqueness of the
representation in Theorem 1 is problematic. We address this issue in the next section.

Proof of Theorem 1. Necessity is trivial. We show only the key step for sufficiency in the
main text.

Assume that � satisfies Weak Order, Continuity, Independence, and Weak Monotonicity.
Herstein and Milnor (1953) implies that when restricted to the set of finite lotteries over X,
� has an expected utility representation with utility index u normalized such that u(0) = 0.
The key step is to show that we can map each lottery over action profiles into a (utility
valued) act on the state space ΩA. For any p ∈ ∆F , define the mapping fp : ΩA → R by

fp(~ω) =
∑

p(〈ai〉ni=1)>0
p(〈ai〉ni=1)u(

n∑
i=1

ai(ωai))

for every ~ω ∈ ΩA, where ωai is the component of ~ω corresponding to action ai.

Lemma 1. If fp ≥ fq, then p � q.

Proof. Fix an arbitrary plausible realization (xa)a∈B of B = B (p) ∪ B (q). By definition,
there exists ωa ∈ Ωa such that xa = a(ωa). Then note that(

p(〈ai〉ni=1),
n∑
i=1

xai

)
�
(
q(〈bi〉mi=1),

m∑
i=1

xbi

)

if and only if (
p(〈ai〉ni=1),

n∑
i=1

ai(ωai)
)
�
(
q(〈bi〉mi=1),

m∑
i=1

bi(ωbi)
)

if and only if ∑
p(〈ai〉)>0

p(〈ai〉)u(
n∑
i=1

ai(ωai)) ≥
∑

q(〈bi〉)>0
q(〈bi〉)u(

m∑
i=1

bi(ωbi))

by the above. By fp ≥ fq, the last inequality is true. Since (xa) was chosen arbitrarily, p
plausibly dominates q. By Weak Monotonicity, p � q. �

Define U = {fp : p ∈ ∆(F)}, noting that U is convex. For φ in U , define I(φ) =
∫
u(x)dr

for some p ∈ ∆(F) s.t. fp = φ, and a lottery r over X satisfying r ∼ p. Such an r exists for
every p by Weak Monotonicity, Completeness, and Continuity, so I is well-defined. Moreover,
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Independence and Weak Monotonicity imply that I is positive and linear. Obviously, I (fp) ≥
I (fq) if and only if p � q. The remainder of the proof, found in Appendix A.1, proceeds
by extending the domain of I (·) using the Hahn-Banach theorem and then applying a Riesz
representation theorem to get the desired representation. Finally, Kolmogorov’s extension
theorem obtains countable additivity. �

4. Identifying Understanding

The representation of Theorem 1 is sufficiently flexible to encompass a variety of subjective
perceptions of correlation. However, it does not provide a tight characterization the DM’s
understanding of the relationship between actions. In this section, we identify the agent’s
degree of understanding from her preferences and consider a representation theorem in the
spirit of Theorem 1 that includes an additional element, the correlation cover, that identifies
the actions among which the DM perceives the relationship correctly. Under the hypothesis
of “richness,” namely that each action belongs to a suitably dense set of understood actions,
we show that the correlation cover is unique. We then turn to the DM’s beliefs about the
joint distribution of outcomes from misunderstood actions. In general, the extent to which
these beliefs affect the agent’s preference over profiles depends on a condition closely related
to her attitude towards higher order risk.

4.1. Understanding. We begin by providing a behavioral definition of understanding that
builds on our Weak Monotonicity axiom. Intuitively, a DM understands a set of actions
{a, b, c} if she recognizes the relationship between the outcomes: she thinks that only joint
realizations for which a gives a(ω), b gives b(ω), and c gives c(ω) for the same ω ∈ Ω are
possible. For an arbitrary C ⊂ A, a DM who understands C necessarily disregards plausible
realizations that do not synchronize the outcomes of the actions therein as with the state
space Ω.

Definition 2. For any B,C ⊆ A, say that a plausible realization (xa)a∈B of B is C-
synchronous if for some ω ∈ Ω

(xa)a∈C∩B = (a(ω))a∈C∩B,

and that p C-dominates q if (p(〈ai〉),
∑
xai) � (q(〈ai〉),

∑
xai) for every C-synchronous plau-

sible realization of B(p) ∪B(q).

A plausible realization of B is C-synchronous if it accords with the distribution of outcomes
implied by Ω for the actions in C, but not necessarily for the distribution of outcomes in
B \ C. That is, if C = {a, b} and B = {a, b, c}, then a plausible realization (xa, xb, xc) of
B is C-synchronous if there exists ω,ω′ ∈ Ω so that xa = a(ω), xb = b(ω) and xc = c (ω′).
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Furthermore, if for any such plausible realizations the lottery induced by p is preferred to
the lottery induced by q, p is said to C-dominate q.

The DM understands C ⊆ A if C-synchronous plausible realizations suffice to determine
her preference.

Definition 3. The preference relation � understands C if p � q whenever p C-dominates q.

Preferences that understand A satisfy Monotonicity. When the preference � understands
C we sometimes say that C is understood.

Of particularly interest for the characterization of the DM’s depth of understanding are
rich, understood sets.

Definition 4. A set B ⊂ A is rich if, for any a, b ∈ B and any σ(a, b)-measurable f : Ω→ X,
there exists c ∈ B with c(ω) = f(ω) for all ω.

A set is a rich if whenever it contains an action it also contains all actions with a coarser
algebra and, whenever it contains two actions, it also contains an action having an algebra
finer than the algebras of both actions. For instance, if A contains an action corresponding
to every Savage act, then it is rich, but a singleton set is rich only if X is also a singleton.

4.2. Rich Representation. The choice of ΩA as a state space in the representation in
Theorem 1 may be far from parsimonious. In this section, we consider a representation that
preserves the product structure of the state space but greatly reduces the dimensions of
uncertainty by modeling explicity the DM’s understanding of the correlation structure. To
this effect, we introduce a correlation cover that describes the subsets of actions understood
by the agent. Formally, a correlation cover U is a collection of subsets of A such that (i) U
covers A; (ii) � understands each C ∈ U ; and (iii) no C ∈ U contains a distinct C ′ ∈ U .
The elements of U are referred to as understanding classes.

As in Theorem 1, the DM is represented as having beliefs π on a state space that is the
product of copies of Ω. The state space, however, is equal to ΩU = ∏

C∈U Ω rather than ΩA,
with the C-coordinate denoted by ΩC . Our representation requires that actions belonging
to the same element C of the correlation cover depend on the same coordinate ΩC of the
product state space. Thus, if a set of actions belong to the same understanding class, the
agent correctly perceives that their joint realizations are generated by a common state of Ω.

For every C ∈ U , denote by ΣC the the coarsest σ-algebra by which every a ∈ C is
measurable. Endow ΩU with the product σ-algebra ΣU = ⊗C∈UΣC . Given a state ~ω ∈ ΩU ,
ωC denotes the projection of ~ω onto ΩC .

Definition 5. The preference relation � has a probabilistic correlation representation, or
PCR, (U , π, u) if there exist a correlation cover U , a finitely-additive probability measure π
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on the probability space (ΩU ,ΣU), and utility function u : X → R such that the preference
� has an expected utility representation with utility index V : F → R where for any 〈ai〉ni=1,

V (〈aj〉nj=1) =
∫

ΩU
u

 n∑
j=1

aj(ωCj )
 dπ

for any vector (C1, ..., Cn) with Cj ∈ U and aj ∈ Cj, j = 1, ...., n. A PCR (U , π, u) is rich if
every C ∈ U is rich.

To illustrate the PCR, recall Example 1. Supposing that U = {BC , BF} where bC ∈ BC

and bF ∈ BF , we can interpret BC and BF as corresponding to actions expressed in Celsius
and actions expressed in Fahrenheit, respectively. Thus each ~τ ∈ Ω{BC ,BF } can be thought
of as a pair of temperatures, one in Celsius and the other in Fahrenheit. A DM for whom
100 � 〈bC , bF 〉 must attach positive probability to τBC > 30◦C and τBF ≤ 86◦F . While
such an event cannot occur if all uncertainty is captured by Ω, our DM can express such a
preference if she does not think that the temperature in Fahrenheit equals that in Celsius,
i.e. that π(τBC 6= 5

9

(
τBF − 32

)
) > 0.

The representation in Theorem 1 is a PCR in which each action is assigned to a distinct
understanding class, i.e. U = {{a} : a ∈ A}. Clearly, this PCR is not rich. However, rich
PCRs arise in many natural contexts.

Example 2. The following are some examples of rich PCRs.

(1) Asset pricing: An asset market consists of a set Ao of assets and the derivatives
thereof. We model a derivative as a pair (γ, ao), where γ is a function from X to
itself and an asset ao ∈ Ao, that yields γ(x) when ao yields x. If the DM understands
the set of all derivatives that depend on the same underlying asset, then she has a
rich PCR when A = G × Ao, for G equal to all functions from X to X, and the
correlation cover consists of the sets Bao = {(γ, ao) : γ ∈ G}.

(2) Framing: Each action consists of a (Savage) act a and a frame f ∈ F, such as Celsius
or Fahrenheit. Let H be the set of measurable functions with finite range for (Ω,Σ).
The DM understands the connection between any acts framed in the same way.
We can model this as a rich PCR where the correlation cover consists of the sets
Bf = {(a, f) : a ∈ H}.

(3) Source preference: Each action is associated with a source Si from a set S. Each Si
is a sub-sigma algebra of Σ. Let Bi be the set of functions with finite range that are
measurable with respect to Si. The correlation cover consists of all sets Bi, one for
each source. Thus, the DM reduces any profile whose contents depend on the same
source to one act but fails to do so when it depends on more than one source.
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Note that a correlation cover need not be a partition.4 While this may seem surprising at
first, we argue below that a parsimonious correlation cover in our model is partitional only if
the DM understands the relation among all actions. In particular, the “largest” correlation
covers are not partitional since each understanding class can always be enlarged to include
all constant actions. More interestingly, consider Example 1 where the DM knows that
0◦C = 32◦F but is unsure about the scaling factor. Thus, she understands the connection
between any actions that only depend on whether or not the temperature is below freezing,
and every such actions belongs to both understanding classes. In the next section, we discuss
the structure of U and show that if U is “universal” in a sense to be made precise, then U is
unique.

4.3. Existence and Uniqueness of Rich PCR. The main theorem in this subsection
shows that, under mild assumptions, a rich PCR exists. Moreover, the correlation cover is
unique, under an appropriate normalization. We begin by defining this normalization.

Definition 6. A rich correlation cover U is universal if the preference � has a rich PCR
(U , π, u) and for any other rich PCR (U ′, π′, u′), whenever B′ ∈ U ′ there exists B ∈ U such
that B′ ⊆ B.

For any understanding class in U ′, there is a larger understanding class in U . Therefore,
any understanding relationship captured by U ′ is also captured by U . Obviously, a rich,
universal correlation cover is unique.

Theorem 2 shows that under two weak assumptions, a rich PCR with a universal correla-
tion cover exists.

Assumption 1 (Strict Concavity). The set X is a convex subset of a linear space and for
any x 6= y ∈ X and λ ∈ (0, 1), (1, λx+ (1− λ)y) � (λ, x; (1− λ), y).

Strict Concavity is ubiquitous in the economic literature and has well-understood behav-
ioral content, specifically its connection to risk aversion. At the end of this subsection, we
discuss significantly weaker alternative assumptions that suffice for Theorem 2.

Assumption 2 (Non-Singularity). Each action a ∈ A belongs to a rich, understood subset
of actions.

Non-singularity is a joint assumption on both � and A. It is an assumption in the spirit
of the Savage (1954) assumption that the domain of preference contains all possible acts. It
is clearly necessary for existence of a rich PCR. More surprisingly, it is also sufficient when
paired with Strict Concavity and Axioms 1-4.
4Because of this, an action that appears twice in the same profile may be modeled as depending on different
components of the product state space. This is purely for notational convenience. The requirement that
every copy of the same action depends on the same coordinate can be imposed without changing any results.
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Theorem 2. The preference relation � satisfies Axioms 1-4, Non-Singularity, and Strict
Concavity if and only if it has a rich PCR (U , π, u) with a strictly concave u and a universal
U . Furthermore, if there exists p, q where p � q, then u is unique up to a positive affine
transformation.

Proof. See Appendix A.2. �

The main difficulty of Theorem 2 is showing that if several sets of actions are understood
individually (as per Definition 3), then plausible realizations that do not synchronize states
within each of these sets simultaneously can be ignored. Strict concavity is one of several
assumptions sufficient for our proof technique to establish this.

Remark 1. Theorem 2 remains true, albeit with different restrictions on u, in any of the
following settings: (i) u is twice differentiable, (ii) strict concavity is replaced by either
additivity or strict convexity, (iii) for all x, y ∈ X (1

2 , x; 1
2 , y) � (1

2 , x + y; 1
2 , 0) without

indifference when x, y 6= 0, or (iv) for for any x, y ∈ X \ 0, there exists z ∈ X such that
(1

2 , x+ z; 1
2 , y + z) 6∼ (1

2 , x+ y + z; 1
2 , z).

5

4.4. Uniqueness of π. In general, a rich PCR may fail to have unique beliefs. Our next
set of results describes the relationship between the beliefs associated with PCRs that are
derived from the same preferences and have a universal correlation cover. Of particular
interest is whether such beliefs necessarily agree on the joint distribution of outcomes from
a given set of actions. If so, then the DM’s perceptions of all orders of correlation among
the actions matter for the choice of the optimal profile. Conversely, when beliefs are not
uniquely pinned down, some of the DM’s perceptions of correlation are inessential for her
choices.

A linear utility provides the most obvious case of non-unique representation of beliefs.
Since maximizing utility is equivalent to maximizing the expected value of the actions, their
hedging properties do not enter her decision. In this case, the DM’s beliefs are pinned
down only if U = A. Thus, non-linearity of the utility index plays a role in identifying
the agent’s beliefs; in fact, any non-linearity of the utility index suffices to identify pairwise
joint distributions. However in general, even strict risk-aversion does not suffice on its own
to identify uniquely the DM’s perceived joint distribution of larger sets of actions. As the
following example shows, conditions related to her higher-order risk attitudes are also needed.

Example 3. Suppose that Ω = {H,T} and that there is a rich PCR with three under-
standing classes U = {C1, C2, C3} with ΣCi

= 2Ω for all i. Consider the probability measure
π where π(HHT ) = π(TTT ) = π(THH) = π(HTH) = 1

4 and the probability measure µ

5In (iv), “x, y ∈ X \ 0” can be replaced by “x, y ∈ Q \ 0” where Q is an absorbing subset of X.
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where µ((ω1, ω2, ω3)) = 1
8 for every (ω1, ω2, ω3) ∈ Ω{C1,C2,C3}. Note that

µ (ωi|ωj) = µ (ωi) = π (ωi|ωj) = π (ωi)

whenever i 6= j but that {ω1, ω2, ω3} are mutually independent according to µ but not π:

π(H1|H2T3) = 1 6= π(H1) = 1
2;

Then, if u(x) = x − βx2, both µ and π represent the DM’s beliefs. For instance, for any
profile 〈ai〉, the expectation of ai, a2

i and ai · aj are identical since µ and π agree on pairwise
correlation. However, no higher degrees of correlation enter the valuation of any profile.
Hence, the beliefs µ and π have the same expected utility.

We now define a condition that is closely related to higher-order risk attitudes. Theorem
3 shows that it is necessary and sufficient for unique identification of the DM’s belief about
the joint distributions of actions. We first introduce the n-order apportioned lotteries for
x1, ..., xn ∈ X, denoted pn and p′n, recursively as follows. For n = 1, p1 = (1, x1) and
p′1 = (1, 0), and for any n > 1,

pn = 1
2pn−1 + 1

2(p′n−1(x), x+ xn)p′n−1(x)>0

and
p′n = 1

2p
′
n−1 + 1

2(pn−1(x), x+ xn)pn−1(x)>0.

Similar lotteries are used by Eeckhoudt et al. (2009) in their study of higher order risk.
An implication of their results is that if xi > 0 for i > 0 then pn nth order stochastically
dominates p′n.

Condition (n). There exists x1, ..., xn ∈ X for which the n-order apportioned lotteries pn
and p′n satisfy pn 6∼ p′n.

This conditions is related to risk attitudes when X ⊆R. Specifically, Eeckhoudt et al.
(2009) show that if pn � p′n for any n-order apportioned lotteries, then the DM’s lottery
preference respects n-order stochastic dominance. For example, Condition (2) fails for a
risk-neutral DM and Condition (3) fails for the DM described in Example 3.

We now show that Condition (N) suffices to uniquely identify the DM’s beliefs about the
correlation between any N actions. Given a correlation cover U , define an event E ∈ ΣU to
be an n-dimensional rectangle if

E = {~ω : ωCi ∈ Ei for i = 1, ..., n}

for distinct C1, ..., Cn ∈ U and Ei ∈ σ (ai), ai ∈ Ci for i = 1, ..., n. The utility of any profile
of n actions is measurable with respect to n-dimensional rectangles.
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Theorem 3. If the preference � has a rich PCR (U , π, u) and

N∗ = inf{N ∈ N : Condition (N) fails},

then the PCR (U , µ, u) represents � if and only if π(E) = µ(E) for all n-dimensional rect-
angles E with n < N∗.

Proof. See Appendix A.3. �

For most standard utility indexes, including CARA and CRRA, Condition (n) holds for
every (n); see Corollary 1. By convention, inf ∅ = ∞, so if Condition (n) holds for every
n, then µ(E) = π(E) for any n-dimensional rectangle. Moreover, if π and µ are countably
additive, then Kolmogorov’s extension theorem implies that π = µ; see Section 5. Thus,
non-uniqueness is not problematic for widely used utility indexes. There exist examples
of k non-independent random variables where any k − 1 element subset are independent.
Hence, Example 3 generalizes. In particular, for any u(·) for which Condition (n) fails, one
can construct a correlation cover, state spaces, and two distinct probability measures that
represent the same preference relation.

Corollary 1. Suppose that X is either R or R+ and that � has rich PCR (U , π, u), with
u ∈ C∞. For some point x ∈ int(X), let

N∗ = inf{N ∈ N : for all n ≥ N , ∂
nu(x)
∂xn

= 0}.

Then, the preference � has a PCR (U , µ, u) if and only if µ(E) = π(E) for every n-
dimensional rectangle E with n < N∗.

Proof. See Appendix A.4. �

5. Interpreting the Correlation Cover

In this section we explore and interpret further the properties of the correlation cover.

5.1. Understanding as Simplification. We define which actions are “revealed” as sim-
plifications of other actions from the DM’s preference. Roughly, action b is a simplification
of action a if b depends on a subset of the events on which a does and, for any rich set of
actions that contains a, adding b to this set preserves understanding. Formally, we define
our simplification relation as follows.

Definition 7. Action b is a rich simplification of a, denoted by aKb, if (i) for any rich,
understood B with a ∈ B, � understands B ∪ {b}; (ii) there exists a rich, understood C

with a ∈ C; and (iii) σ(b) ⊆ σ(a).

The first and key requirement for b to be a rich simplification of a is that understanding the
connection between a and a rich set of actions is sufficient for understanding the connection
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between b and that set. That is, if a ∈ B is understood, the DM recognises the relation
between b and B. This comparison is meaningful only if some rich, understood set containing
a exists, which is the second requirement of our definition. Finally, the outcome of b is
determined by a subset of the events that determine the consequences of a. This ensures
that inserting b into the set does not introduce new relationships between events that must
be understood.

The rich simplification relation has a tight connection to existence of a rich PCR.

Proposition 1. If the preference � satisfies Axioms 1-4 and Strict Concavity holds, then
the set {b : aKb} is non-empty for every a if and only if � has a rich PCR.

Proof. If {b : aKb} is non-empty for all a, then for every a, aKb for some b, there must
exists a rich, understood subset containing a. Theorem 2 implies existence of a rich PCR.
Conversely, if � has a rich PCR, then there must exists a rich, understood subset containing
a for each a, so clearly aKa and a ∈ {b : aKb}. �

We now construct some properties of K under the assumption that a rich PCR exists.
Here, we view K as a binary relation.

Theorem 4. If the preference � has a rich PCR and Strict Concavity holds, then K is
reflexive, transitive, and the set {b : aKb} is rich and understood.

The properties of the binary relation K in Theorem 4 are quite natural and need no addi-
tional remarks. The role of Strict Concavity is again to extend the individual understanding
of some sets to their simultaneous understanding as shown in following Lemma, which is an
important tool to prove Theorem 4 and later 5.

Lemma 2. Consider rich B,C ⊆ A and for a ∈ B ∩ C let Ca = {c ∈ C : σ(c) ⊆ σ (a)}. If
the DM is strictly risk averse and % understands B and C, then � understands Ca ∪B.

Proof. Fix any a. Take U = {B,Ca, {a′}a′∈A\(B∪Ca)}. An argument analogous to the proof
of Theorem 2 establishes that there exists a PCR (U , π, u) where u is strictly concave. Now,
consider the profile 〈a, a〉. Then,

V (〈a, a〉) =
∫

ΩU
u
(
a(ωB) + a(ωCa)

)
dπ

=
∫

ΩU
u
(
2a(ωB)

)
dπ =

∫
ΩU
u
(
2a(ωCa)

)
dπ.

Thus, ∫
ΩU
u
(
a(ωB) + a(ωCa)

)
dπ =

∫
ΩU

1
2u
(
2a(ωB)

)
+ 1

2u
(
2a(ωCa)

)
dπ.

It easily follows that, by strict concavity, if x and y are in the image of a, x 6= y,

π
(
a−1 (x)× a−1 (y)× ΩA\(B∪Ca)

)
= 0.
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One can easily verify that since σ(c) ⊆ σ (a) for every c ∈ Ca if p Ca ∪B-dominates q, then
V (p) > V (q). �

Proof of Theorem 4. K is reflexive since there exists a rich, understood B with a ∈ B for
all a. If aKb and bKc, and B is rich and understood with a ∈ B, then B ∪ {b} is rich and
understood. Since b ∈ B ∪ {b}, B ∪ {b, c} and thus B ∪ {c} are understood, so aKc. To see
that {b : aKb} is rich, fix any rich and understood B with a ∈ B. Consider an understanding
class C with a ∈ C. Now, define Ca as in Lemma 2 and pick any c ∈ Ca. Then B ∪ Ca is
understood, implying that B ∪ {c} is also understood. Hence aKc for all c ∈ Ca, which is
rich, implying that {b : aKb} is rich. �

The next result describes how K characterizes the universal correlation cover for a PCR.

Theorem 5. Suppose that the preference � has a rich PCR (U , π, u) with universal U and
strictly concave u. Consider any a, b ∈ A with σ(b) ⊆ σ(a). The following are equivalent:
(i) aKb; (ii) b ∈ C whenever a ∈ C ∈ U ; (iii) a, b ∈ C for some C ∈ U .

Theorem 5 characterizes the relationship betweenK and U . The action b is a simplification
of a if and only if there exists C ∈ U with a, b ∈ C. Moreover, any understanding class
containing a also contains b. Theorem 5 thus characterizes the structure of the universal
correlation cover: if σ(b) ⊆ σ(a), then a and b belong to some understanding class if and
only if whenever a belongs to an understanding class, so does b.

Proof of Theorem 5. [(i) → (ii)] Suppose that aKb and let a ∈ C ∈ U . By definition, aKb
implies C ∪ {b} is understood and rich. Since U is universal, b ∈ C. [(ii) → (iii)] This
implication is trivial. [(iii) → (i)] Suppose a, b ∈ C for some C ∈ U , and a ∈ B is rich
and understood. Lemma 2 implies B ∪ Ca is understood. Since b ∈ Ca, B ∪ {b} is also
understood, and so aKb. �

Theorem 5 suggests the following “as if” interpretation of the DM’s evaluation of a profile
〈a1, a2, ..., an〉. The DM consider which pairs of actions are simpler than a common third
action and reduces them to single action. For instance, if a1, a2 belong to the understanding
class C, there exists b such that bKa1, bKa2, and b(ω) = a1(ω) + a2(ω). Therefore, the DM
recognizes that 〈a1, a2, ..., an〉 is the same as 〈b, a3, ..., an〉. The DM can then apply the same
procedure to the profile 〈b, a3, ..., an〉, and then to the resulting profile 〈b, c, a4, ..., an〉, etc.
Eventually, she ends up with a profile 〈b1, ..., bm〉 with fewer actions than before and where
no actions further reduce. She then evaluates this profile using her best estimate, i.e π, of
their joint distribution.

5.2. Comparing Understanding. Consider two DMs, DM1 and DM2, having the prefer-
ence relations �1 and �2, respectively.
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Definition 8. The preference �1 understands more connections than the preference �2

whenever for any rich B ⊆ A, if �2 understands B, then �1 understands B.

In words, whenever DM2 understands a rich subset of actions, so does DM1. This com-
parison corresponds to the following relationship between the universal correlation covers
representing the two DMs.

Theorem 6. If each preference �i has a universal and rich PCR (Ui, πi, ui), i = 1, 2, then
�1 understands more connections than �2 if and only if for any B ∈ U2, there exists B′ ∈ U1

with B ⊆ B′.

When �1 understands more connections than �2, there is a sense in which U2 is a subset
of U1. In fact, Theorem 2 implies that �1 can be represented with the correlation cover U2.

Proof. Suppose �1 understands more connections than �2 and pick any rich B ∈ U2. The
set B is rich and �1-understood. Hence, it is contained in a maximal, rich, �1-understood
subset B′. By the construction of U1 in Theorem 2, B′ ∈ U1. Conversely, suppose for any
B ∈ U2, there exists B′ ∈ U1 with B ⊆ B′, that B is rich, and that �2 understands B. Then
B is contained in a maximal element C ∈ U2, which is in turn contained in C ′ ∈ U1. Since
C ′ is �1-understood and B ⊆ C ′, B is �1-understood, completing the proof. �

Other comparisons of understanding relate to the DMs’ beliefs rather than correlation
covers. For instance, Subsection 1.1 offers one case in which the correlation coefficient char-
acterizes the DM’s perception of correlation. In the interest of space, we explore characterize
this comparison fully in the appendix. Roughly, we show that DM1 overvalues (undervalues)
positively (negatively) correlated profiles relative to DM2 if and only if the absolute value of
her subjective correlation coefficient is smaller than DM2’s for every pair of actions.6

5.3. The Minimal Correlation Cover. A rich correlation cover U is minimal if U fails to
cover A whenever any one of its understanding classes is removed. Note that if a universal
correlation cover U is minimal, then for any PCR rich (U ′, µ′, u), the cardinality of U cannot
exceed that of U ′. In particular, exists a surjective map f : U ′ → U such that C ⊆ f (C) for
any C ∈ U ′.

Theorem 7. Suppose that preference � has a PCR (U , π, u) where U is a universal cor-
relation cover and u is strictly concave. If for each C ∈ U there exists a ∈ C such that
σ(a) = ΣC, then:

(i) π can be taken to be countably additive,
(ii) U is a minimal correlation cover, and
(iii) for every C ∈ U∗, there exists a so that C = {b : aKb}.

6We thank Davin Ahn for drawing our attention to this characterization.
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Proof. See Appendix A.5 �

Of course, the hypothesis of Theorem 7 is satisfied whenever Ω or Σ is finite. Arguments in
the proof also establish that the universal U is minimal whenever U itself is finite, regardless
of the cardinality of Ω. Finally, it should be noted that counter-examples exist for each of
the three claims when the hypothesis of Theorem 7 fails.

6. Discussion

In this section, we illustrate some applications of our approach and relate them to the
existing literature.

6.1. Special Cases of PCRs. For simplicity of exposition, we maintain throughout this
subsection that Ω is finite, that Σ = 2Ω, and that for all C ∈ U , ΣC = Σ. For E ∈ Σ,
write EC for {~ω : ωC ∈ E}. It is easy to adapt Theorem 2 to show existence of such a
representation by strengthening Non-Singularity in the natural way.

The first is the model where the DM understands all correlations. This is simply the usual
Monotonicity condition.

Axiom 5 (Monotonicity). If(
p(〈ai〉ni=1),

n∑
i=1

ai(ω)
)
�
(
q(〈bi〉mi=1),

m∑
i=1

bi(ω)
)

for every ω ∈ Ω, then p � q.

See also Battigalli et al. (2013) who call their analog of this condition congruence. Axioms
1, 2, 3, and 5 imply SEU.

Proposition 2. Suppose � has a rich PCR (U , π, u) with universal U . the preference �
satisfies Monotonicity if and only if U = {A}.

Proof. By Monotonicity, the DM understands any finite subset of A. This implies the DM
understands A (which is rich), and U = {A} if U is universal. �

In some models of imperfect inference, agents have the same beliefs about the distribution
of individual, equivalent actions. That is, an agent’s beliefs about the distribution of Ω do
not depend on the action being evaluated. In particular, if a(ω) = b(ω) for all ω, then a ∼ b.
Formally, the preference � has a representation in the following class.

Definition 9. A rich PCR (U , π, u) has consistent marginal beliefs if π(EC) = π(EC′) for
all C,C ′ ∈ U and all E ∈ Σ.

The following axiom characterizes marginal belief consistency. It requires that Monotonic-
ity holds when comparing any two lotteries whose support includes only “simple” profiles
that consist of a single action.
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Axiom 6 (Simple Monotonicity). If p, q ∈ ∆(A) and

(p(a), a(ω)) � (q(b), b(ω))

for all ω ∈ Ω, then p � q.

Proposition 3. Let the preference � have a rich PCR (U , π, u) with non-constant u. Then,
the preference � satisfies Simple Monotonicity if and only if it has consistent marginal beliefs.

Proof. Apply Anscombe and Aumann (1963) to ∆(A) to get a measure q : Σ → [0, 1]
representing beliefs and a utility index v. As ∆(X) belongs to both ∆(A) and ∆(F), u must
be an affine transformation of v. By Theorem 3, q(E) = π(EC), establishing the result. �

Note that a risk neutral DM who satisfies simple montonicity acts as if she understands
any subset of actions (provided that A is rich). Under risk neutrality, the representation in
Theorem 1 yields

V (〈ai〉ni=1) =
n∑
i=1

V (〈ai〉)

where each V (〈ai〉) can be obtained by restricting the representation to individual actions
in the standard way and thus with one copy of the state space. Given a linear u, simple
montonicity is equivalent to monotonicity, and non-linearity of u is thus a necessary condition
for this equivalence to fail.

Within the class of models that satisfy simple monotonicity, full correlation neglect has
received a great deal of attention, see DeMarzo et al. (2003), Eyster and Weizsäcker (2010),
and Levy and Razin (2015a). In these models either the DM perfectly understands the
connection between a and b or believes that a and b are independent. In our model, this can
be obtained by having

(1) π(EC ∩ E ′C′) = π(EC)π(E ′C′)

for all C 6= C ′ ∈ U and all E,E ′ ∈ Σ. An axiomatization of full correlation neglect is
provided in the Appendix. One can of course envisage intermediate cases of correlation
neglect as in Subsection 1.1, where full correlation neglect corresponds to the case η = 1.

6.2. Misperceived Incomplete Information Games. In this section, we adapt and ap-
ply our framework and model to strategic environments. In particular, we consider games
of incomplete information played by players represented by PCRs. We formulate a general
solution concept, which is shown to be equivalent to a game played between two players
who misperceive the opponent’s strategies in a systematic way. We generalize some existing
solution concepts and suggests new ones, such as self-similar equilibrium where each player
overweighs the probability that the opponent’s type is the same as hers.
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An two-player game of incomplete information Γ is a tuple

(T1, T2, q,A1,A2, u1, u2)

where Ti is the set of player i’s types, which we assume to be finite for simplicity, q is a
probability distribution over T1 × T2 assigning positive probability to every {t1} × T2 and
T1 × {t2}, Ai is a finite set of strategies for player i, and ui : A1 ×A2 × T1 × T2 → R is the
payoff for player i. The set of Bayesian strategies Si of player i maps Ti to ∆(Ai), the set
of probability distributions on Ai. The probability with which type ti ∈ Ti plays ai ∈ Ai is
denoted by σi(ti)(ai). For any σi, σ′i ∈ Si and α ∈ [0, 1], we write ασi + (1 − α)σ′i for the
strategy that plays ai ∈ Ai with probability ασi(ti)(ai) + (1 − α)σ′i(ti)(ai) when player i’s
type is ti.

We generalize the PCR to allow state-dependent preferences and adapt it to a strategic
setting. For the exercise, we are only interested in how players evaluate profiles consisting
of pairs of strategies (σ1, σ2) in S1×S2. The state space is T1×T2, and we assume player i’s
correlation cover of S1 ∪S2 is Ui = {S1, S2}. In what follows, with a slight abuse we adopt a
symmetric notation where player i denotes a player and player j her opponent. Thus, player
i’s utility index is vi(ai, aj, ti, tj) and her beliefs are πi : (Ti × Tj){Si,Sj} → [0, 1].

Definition 10. Player i has a state-dependent PCR (Ui, πi, vi) if her utility from the strategy
profile (σi, σj) is given by

Vi(σi, σj) =
∑
ti,tj ,t̂j

πi
(
ti, tj, Ti, t̂j

) ∑
aj ,ai

σi(ti)(ai)σj(t̂j)(aj)vi(ai, aj, ti, tj).

All components of the state-dependent PCR have similar interpretation as in PCR.7 The
key difference is that the utility index, vi, depends on the Si-copy of the state space. Hence
player i understands the connection between the payoff relevant state and her own strategy
but may not understand its connection to the strategy of player j.

The definition below defines equilibrium when each player has a state-dependent PCR
over strategy profiles.

Definition 11. A PCR equilibrium is a pair of strategies (σ∗1, σ∗2) and a pair of state-
dependent PCR’s (U1, π1, u1) and (U2, π2, u2) where, for i = 1, 2,

πi (ti, tj, Ti, Tj) = q (ti, tj) and πi
(
Ti, Tj, Ti, t̂j

)
= q

(
Ti, t̂j

)
and

Vi(σ∗i , σ∗j ) ≥ Vi(σi, σ∗j )

for all σi ∈ Si.

7Indeed, a PCR generates a family of state dependent PCRs for appropriately chosen X, +, and U ; see
supplementary material.
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Remark 2. Given our assumptions that Ti and Ai are finite, standard arguments show that
a PCR equilibrium exists.

To compare our approach to other approaches in the literature, we first introduce an
alternative definition of equilibrium with misperceptions and show its equivalence with PCR
equilibria. A family of misperceptions associates to each strategy σj ∈ Sj a misperception
σ̄j : Ti × Tj → ∆(Aj). Thus, σ̄j denotes player i’s misperception of player j’s strategy σj.
Note that we allow player i’s misperception of player j’s strategy to depend on player i’s
type.

Definition 12. A family of misperceptions {σ̄j}σj∈Sj
is Markov if:

(1) For any σj ∈ Sj and any aj ∈ Aj,∑
(τi,τj)∈Ti×Tj

q(τi, τj)σj(τi, τj)(aj) =
∑
tj∈Tj

q(tj, T−j)σj(tj)(aj),

and
(2) For any σj, υj ∈ Sj and any α ∈ [0, 1],

ασj + (1− α)υj = ασj + (1− α)υj.

Property 1 says that the ex-ante probability for a strategy of playing any action is the
same as for its misperception. Property 2 says that the misperception of a mixture of two
strategies is exactly the mixture of the misperceptions. Critically, σ̄j does not depend on σi,
and the support of σ̄j is the same as that of σj. This rules out some interesting deviations,
including Esponda (2008), self confirming equilibria of Fudenberg and Levine (1993), and
Madarasz (2014).

The following definition extends the notion of Bayesian Nash equilibrium by incorporating
Markov misperceptions.

Definition 13. Given Markov families of misperceptions, {σ̄1}σ1∈S1 and {σ̄2}σ2∈S2 , a mis-
perception equilibrium is pair of strategies (σ∗1, σ∗2) such that

σ∗i (ti) ∈ arg max
ai∈Ai

∑
tj∈Tj

q(ti, tj)
∑
aj∈Aj

σ̄∗j (ti, tj)(aj)ui(ai, aj, ti, tj).

for every ti ∈ Ti, i = 1, 2.

We now turn to the equivalence of PCR and misperception equilibria. To establish this,
we characterize the structure of Markov families of misperceptions.

Lemma 3. The family of misperceptions {σ̄j : σj ∈ Sj} is Markov if and only if there exists
a Kernel Kj : Ti × Tj → ∆Tj such that∑

(τi,τj)∈Ti×Tj

q(τi, τj)Kj(τi, τj)(tj) = q(tj, T−j)



COMPLEXITY, CORRELATION AND CHOICE 25

and, for any aj ∈ Aj,

σ̄j(τi, τj)(aj) =
∑
tj∈Tj

Kj(τi, τj)(tj)σj(tj)(aj).

Proof. See Appendix A.6. �

Proposition 4. For any Γ, the set of misperception equilibria equals the set of PCR equilibria
when

πi (τi, τj, Ti, tj) = q (τi, τj)Kj(τi, τj) (tj)

for all (τi, τj) with q(τi, τj) > 0.

Proof. Fixing either π1 and π2 or K1 and K2, and defining the other pair from the equation
in the Proposition, note that∑

tj ,τj

πi (τi, τj, Ti, tj)
∑
aj

σj (tj) (aj)ui(ai, aj, τi, τj)

=
∑
tj ,τj

q (τi, τj)Kj(τi, τj) (tj)
∑
aj

σj (tj) (aj)ui(ai, aj, τi, τj)

=
∑
τj

q (τi, τj)
∑
aj

σj (τi, τj) (aj)ui(ai, aj, τi, τj)

so the evaluations of every pair of strategies coincide. �

We can thus easily establish that many equilibrium notions of imperfect inference are
special cases of misperception equilibria. Cursed equilibrium (Eyster and Rabin, 2005) is
such that

Kj(τi, τj)(tj) = χq(tj|τi) + (1− χ) δτj
(tj)

where δτj
(tj) = 1 when τj = tj and zero otherwise. Thus,

σ̄j(τi, τj)(aj) = χ
∑
tj∈Tj

q(tj|τi)σj(tj)(aj) + (1− χ)σj(τj)(aj),

In ABEE with analogy partition of Ti × Tj for player i being Qi(Jehiel and Koessler, 2008)

Kj(τi, τj)(tj) = q(tj|Qi(τi, τj))

and thus
σ̄j(τi, τj)(aj) =

∑
tj∈Tj

σj(tj)(aj)q(τj|Qi(τi, τj))

where Qi (τi, τj) is the element of Qi containing (τi, τj). Of course, Bayesian Nash equilibrium
(Harsanyi, 1967-1968) is such that

K(τi, τj)(tj) = δτj
(tj).

Note that, if neither A1 nor A2 is a singleton, then Kernels are (q almost surely) unique
given a family of misperceptions. To see that the Kernel, if it exists, is unique, let σi be
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a strategy of player i where type τi plays bi and all other types play ai 6= bi. Any Kernel
must satisfy Kj(tj, ti)(τi) = σ̄(tj, ti)(bi), establishing uniqueness. Although the Kernel is
a high-dimensional parameter, the unique correspondence between it and the misperceived
strategy makes interpreting changes in the Kernel straightforward. In contrast, for instance,
two distinct analogy partitions in ABEE (Jehiel and Koessler, 2008) may generate the same
families of misperceptions.

Of course, our approach to misperception is sufficiently general to incorporate new and
intuitive concepts. Rubinstein and Salant (2015) suggest, albeit in a perfect information
game, that players believe others are more likely to act like them. To incorporate this
insight, we introduce a special case of misperception/PCR equilibrium, the χ-self-similar
equilibrium, that applies to symmetric games, or more generally those where T1 = T2. We
characterize the misperception strategies by the Kernel

Kj(τi, τj)(tj) = χδτi
(tj) + (1− χ)δτj

(tj)

so that
σ̄j(τi, τj)(aj) = χσj(τi)(aj) + (1− χ)σj(τj)(aj)

for all j. In any symmetric, self-similar equilibrium, player i overweighs the probability that
player j takes the same action as hers.

Appendix A. Proof not in main text

A.1. Proof of Theorem 1.

Lemma 4. I has a positive linear extension F to the smallest subspace U∗ that contains U .

Proof. Define U∗ = {λ1x1 − λ2x2 : x1, x2 ∈ U, λ1, λ2 ∈ R+}. U∗ is clearly a subspace
and contains U . Let U ′ be any other subspace containing U . Pick any y ∈ U∗. Then
y = λ1x1 − λ2x2, and since x1, x2 ∈ U ⊂ U ′, y ∈ U ′; hence U∗ ⊆ U ′. Suppose that
λ1x1 − λ2x2 = y and y ∈ U . Then

λ1

1 + λ1 + λ2
x1 = λ2

1 + λ1 + λ2
x2 + 1

1 + λ1 + λ2
y.

Since x1, x2, y, 0 ∈ U , so are the LHS and RHS above. Linearity of I on U gives that I(y) =
λ1I(x1) − λ2I(x2). So the function F = y 7→ λ1I(x1) − λ2I(x2) whenever y = λ1x1 − λ2x2

is well-defined and extends I. Linearity of F follows from linearity of I. To see that F
is positive, fix φ ∈ U∗ with φ ≥ 0. Then φ = λ1x1 − λ2x2; if λ1 = λ2 = 0, φ = 0 so
F (φ) = F (0) = 0. Otherwise,

λ1

λ1 + λ2
x1 ≥

λ2

λ1 + λ2
x2

and since both the LHS and RHS are in U , F ( λ1
λ1+λ2

x1) ≥ F ( λ2
λ1+λ2

x2). The remainder follows
from linearity of F . �
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For any J ⊆ A, define ΣJ = ⊗a∈Jσ(a), the product σ−algebra on ΩJ and B0(ΣA) the set
of simple ΣA-measurable functions. Note that the set U∗ is a vector subspace of B0(ΣA).

Lemma 5. There is a positive linear extension F̂ of F to all of B0(ΣA) such that

F̂ (φ) =
∫
φdπo,

for a finitely additive probability measure πo on ΣA.

Proof. The function F is linear on U∗ and x ≥ 0 implies F (x) ≥ 0. Pick any y ∈ B0(ΣA).
Since y is bounded, let z be an upper bound for y. z is a constant so z ∈ U∗. Hence
U∗ majorizes B0(ΣA). By Theorem 8.32 of Aliprantis and Border (2006), F extends to a
positive linear function on B0(ΣA). By Theorem 14.4 of Aliprantis and Border (2006), there
is a finitely additive signed measure of bounded variation, πo : ΣA → R, such that

F̂ (φ) =
∫
φdπo,

and the result follows from showing that we can replace πo with a finitely additive probability
measure. Consider the constant function 1. Since F̂ (1) = 1, πo(ΩA) = 1. Now, for any
E ∈ ΣA, consider the indicator function χE. Since χE ≥ 0, F̂ (χE) ≥ F̂ (0) = 0. Since
F̂ (χE) = πo(E), πo(E) ≥ 0 for all E. Consequently, πo is a finitely additive probability
measure. �

Proof of Theorem 1. Necessity is easily verified. Lemma 5 yields a finitely additive proba-
bility πo. To construct a countably additive probability, for every finite J ⊆ A define a set
function πJ on (ΩJ ,ΣJ) using the formula

πJ(E) = πo(E × ΩA\J)

for every E ∈ ΣJ . Each πJ inherits finite additivity from πo; in fact, since ΣJ has a finite
number of members, πJ is countably additive and so a probability measure. By construction
the family {πJ} is Kolmogorov consistent. As a finite set, each ΣJ is a compact class, and
trivially

πJ(E) = sup{πJ(E ′) : E ⊇ E ′ ∈ ΣJ}.

By Kolmogorov’s extension theorem (Theorem 15.26, Aliprantis and Border (2006)), there
is a unique, countably additive π : ΣA → [0, 1] that extends each πJ . For any p, there is a
finite Jp ⊂ A such that fp is ΣJp measurable. Letting f̂p be the natural projection of fp onto
ΩJp , ∫

ΩA
fpdπ

o =
∫

ΩJp

f̂pdπJp =
∫

ΩA
fpdπ.

Therefore the function U : ∆F → R defined by

U(p) =
∫
fpdπ
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represents the DM’s preference. To conclude, rewrite U(p) as∫
ΩA
fpdπ =

∫
ΩA

∑
p(〈ai〉)>0

p(〈ai〉ni=1)u(
n∑
i=1

ai(ωai))dπ

=
∑

p(〈ai〉)>0
p(〈ai〉ni=1)

∫
ΩA
u(

n∑
i=1

ai(ωai))dπ,

the desired representation. �

A.2. Proof of Theorem 2.

Proof of Theorem 2. Necessity is straightforward. For sufficiency, we first show the existence
of a universal, rich correlation cover U .8 Let {Bt}t∈T be a chain of rich understood subsets
of A. We claim that B∗ = ∪t∈TBt is rich and understood and thus an upperbound by set
inclusion. The set B∗ is understood since for any p, q, B(p)∪B(q) is finite. Richness follows
since, if a, b in B∗, a, b ∈ Bt for some t so for any f : Ω→ X that is σ(a, b)-measurable, there
exists c ∈ Bt ⊆ B∗ with c(ω) = f(ω) for any ω ∈ Ω. Hence, by Zorn’s lemma, there exists
at least one maximal element. Let U be the set of all maximal, rich and understood subsets.
The set U covers A by assumption and, by definition, no element is contained in any other.
By Theorem 1, the preference relation � has a PCR ({a}a∈A, π0, u0). We show it also has
rich PCR with (U , π, u) with u = u0. Consider a lottery r. For each profile F = 〈aj〉nj=1 in
the support select a vector CF =

(
CF

1 , ..., C
F
n

)
such that CF

j ∈ U and aj ∈ CF
j , j = 1, ...., n.

For every ~ω ∈ ΩU , construct a map

fr(~ω) =
∑

r(F )>0
r(F )u

 n∑
j=1

aj(ωC
F
j )


Each vector CF , which we call a profile allocation, assigns actions in each profile that has
a positive probability to understanding classes. Note that many profile allocations may be
associated with the same lottery if its actions belongs to several understanding classes and
that many fr’s are generated for the same lottery r depending on the profile allocations
chosen. To save notation, we omit the dependence of the fr’s generated for the same lottery
on the profile allocations. In particular, the same action can be assigned to different classes
even within the same profile should the action appear more than once. Construct all such
maps for all lotteries and profile allocations. The remainder of the proof follows from the
arguments in Lemmas 1-5 if we show that, for any such maps, if for some choice of profile
allocations fp ≥ fq then p � q. Pick arbitrary p, q satisfying fp ≥ fq for some selection
of profile allocations {CF}p(F )>0 and {(C ′)F}q(F )>0. Define {B1, ..., Bn} = {CF}p(F )>0 ∪
{(C ′)F}q(F )>0; note that the corresponding fp and fq are both measurable with respect to

8The proof below works (but does not deliver maximality) for any rich understanding structure U .
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the product σ-algebra
⊗ni=1ΣBi

⊗B∈U\{Bi}n
i=1
{Ω, ∅}.

For every F = 〈aj〉nj=1 with p(F ) > 0, define aF1 , ..., aFm ∈ A by aggregating the actions
assigned to the same understanding class, that is,

aFi (ω) =
∑

{aj :CF
j =Bi}

aj(ω)

By richness, aFi ∈ Bi. Since the preference � understands every Bi, 〈aFi 〉mi=1 ∼ F . Repeat this
procedure for all profiles in the support of p, and similarly for q. Consider an understanding
class B in a profile allocation. Let {Ek}Kk=1 be the finest partition of Ω for which every action
in B that is assigned positive probability by p or q is measurable. For x ∈ X, define the
action βkx ∈ B such that

βkx(ω) = xEk0(ω).

for all ω. Since U is rich such actions exists in B. Now, consider {xk}Kk=1, xk 6= 0 for all k.
For any xi, xj, i 6= j,

1
2β

i
xi

+ 1
2β

j
xj
∼ 1

2〈β
i
xi
, βjxj
〉+ 1

20.

Then, letting Ek = {~ω ∈ ΩA : ωβk
xi ∈ Ek} and E = E i ∩ E j, we have

π0(E i)u(xi) + π0(E j)u(xj)

= [π0(E i)− π0(E)]u(xi) + [π0(E j)− π0(E)]u(xj) + π0(E)u(xi + xj)

after normalizing so that u(0) = 0. Since u(xi +xj) < u(xi) +u(xj) by Strict Concavity, the
two are equal if and only if

(2) π0(E) = 0.

Equation 2 implies that

π0

(
K⋃
k=1
Ek
)

=
K∑
k=1

π0
(
Ek
)

Now consider βkx , βky ∈ B and b ∈ B that is equal to xEk0. Define

Ek,x = {~ω ∈ ΩA : ωβk
x ∈ Ek}

Ek,y = {~ω ∈ ΩA : ωβk
y ∈ Ek}

Eb = {~ω ∈ ΩA : ωb ∈ Ek}.

By arguments analogous to the preceding ones,

π0
(
Ek,x ∩ Eb

)
= π0

(
Ek,y ∩ Eb

)
= 0.

The above equality yields
π0
(
Ek,x ∩ (Eb

)
= π0

(
Ek,x

)
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Since � understands {βkx , b}, 〈βkx , b〉 ∼ x and π0(Ek,x) + π0(Eb) = 1. Then

π0
(
Ek,x ∩ Eb

)
+ π0

(
Ek,x

)
= 1− π0(Eb) = π0(Ek,x)

and thus
π0
(
Ek,x ∩ Eb

)
= 0.

Now,
π0(Ek,x ∩ Ek,y ∩ Eb) + π0(Ek,x ∩ Ek,y ∩ Eb) = 0

implying that
π0
(
Ek,x ∩ Ek,y

)
= 0

and that
π0
(
Ek,y ∩ Ek,x

)
= π0

(
Ek,y

)
By a symmetric argument with b′ = yEk0, we conclude

π0
(
Ek,x ∩ Ek,y

)
= π0

(
Ek,x ∩ Ek,y

)
= 0(3)

π0
(
Ek,y ∩ Ek,x

)
= π0

(
Ek,y

)
= π0(Ek,x)

Take y 6= 0 and note
( 1
K
, 〈βiy〉)ni=1 ∼ ( 1

K
, y; K − 1

K
, 0).

since βiy ∈ B for all i. Then, by Equations 2 and 3
K∑
k=1

π0
(
Ek,y

)
u (y) =

K∑
k=1

π0
(
Ek,xk

)
u (y) = u (y) .

Hence,

π0

(
K⋃
k=1
Ek,xk

)
=

K∑
k=1

π0
(
Ek,xk

)
= 1.

and

(4) π0

(
K⋂
k=1
Ek
)

= 0.

Thus, π0 assigns zero probability to any event where the outcomes of two distinct βixi
and

βjxj
are “misaligned” with respect to {Ek}Kk=1. Consider again an action aFi ∈ Bi and let

{Ei,k}Ki
k=1 be the finest partition of Ω for which every action allocated to Bi and assigned

positive probability by p or q is measurable. Define a profile 〈βi,Fxk
〉k∈Ii,F where I i,F is a

subsequence of {1, ...., Ki}, each βi,Fxk
is such that

βi,Fxk
= xkE

i,k0, xk 6= 0,

and
aFi (ω) =

∑
k∈Ii,F

βi,Fxk
(ω)
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for every ω ∈ Ω. Note that the subsequence I i,F excludes actions for which xk = 0 and
that are thus constant actions. By replacing each aFi in the profile F with the corresponding
profile 〈βi,Fxk

〉k∈Ii,F , we obtain a profile F ′ that is such that F ∼ F ′ since all substitutions are
made within the same understanding class. Repeat this procedure until every F is replaced
by an F ′. Call the resulting lotteries over profiles p′ and q′. Note p′ ∼ p and q′ ∼ q by
Independence. For notational covenience, relabel all the actions βi,Fxk

in p′ and q′ as {βi}Ti=1

and the corresponding events Ei,k as {Ei}Ti=1. Note that the same Ei,k may appear more
than once as it may correspond to two distinct βi’s. Let JF be the subsequence of (1, ..., T )
that selects the actions in 〈βi,Fxk

〉k∈Ii,F . Consider the cylinders

E = L1 × ...× LT ⊗a∈A\{βi}T
i=1

σ(a)

where each Li is either Ei or Ei. Note that for all states(
ωβ1 , ..., ωβT , {ωa}a∈A\{βi}T

i=1

)
within such a cylinder, the outcome

T∑
i=1

βi
(
ωβ1

)
is constant. By Equations 2, 3, and 4 a cylinder E has positive probability only if :

(i): if βi and βj are in the same understanding class and Ei = Ej then Li = Lj;
(ii): if βi and βj are in the same understanding class and Ei 6= Ej then either Li = Ei

and Lj = Ej or Li = Ei and Lj = Ej;
(iii): If βi1 , βi2 , ...., βiN are in the same understanding class and

Lik = Eik , k = 1, ..., N

then
N⋂
k=1

Eik 6= ∅.

Consider now a state ~ω ∈ ΩA in a cylinder E satisfying (i), (ii) and (iii). The difference in
expected utility of lottery p′ and q′ at state ~ω is

(5)
∑

p(F )>0
p(F )u

 n∑
j∈JF

βj(ωβj )
− ∑

q(F )>0
q(F )u

 n∑
j∈JF

βj(ωβj )


Conditions (i) and (ii) imply that if βi(ωβi) 6= 0 for some i, there exists ω′ ∈ Ω such that
βj(ω′) = βj(ωβj ) for all βj in the same understanding class as βi. Condition (iii) implies
that if βj(ωβj ) = 0 for all βj in the same understanding class, there exists ω′ ∈ Ω such that
βj(ω′) = 0 for all βj in the same understanding class. Thus, if fp ≥ fq, the expected utility
of p′ is greater than the expected utility of q′ for the PCR ({a}a∈A, π0, u0). Thus, p′ � q′
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and p � q. Repeating the remaining steps of Theorem 1 completes the sufficiency proof.
Uniqueness of u is standard. �

A.3. Proof of Theorem 3. To prove Theorem 3, we first show some preliminary results.

Lemma 6. Consider a set of 1-dimensional rectangles {Ei}Ni=1 corresponding to distinct
understanding classes, that is, for distinct C1, ..., Cn ∈ U and Ei ∈ σ (ai), ai ∈ Ci for
i = 1, ..., N ,

Ei = {~ω : ωCi ∈ Ei}.

Then π(⋂j≤n Ej ⋂j>n Ej) equals
N−n−1∑
i=0

(−1)iπ(
⋂

j≤n+i
Ej

⋂
j>n+1+i

Ej) + (−1)N−nπ(
⋂
j

Ej).

Proof. The claim follows by recursive substitutions, noting that

π(
⋂

j≤n+i
Ej

⋂
j>n+i

Ej)

equals
π(

⋂
j≤n+i

Ej
⋂

j>n+1+i
Ej)− π(

⋂
j≤n+1+i

Ej
⋂

j>n+1+i
Ej)

and π(⋂i≤N−1 Ei ∩ EN) = π(⋂i≤N−1 Ei)− π(⋂i Ei). �

Let Qm,N be the set of all m element subsets of {1, ..., N} and

(6) SN((xi)Ni=1) =
N∑
m=0

∑
q∈Qm,N

(−1)m+1u(
∑
i∈q

xi).

Lemma 7. Condition (N) holds if and only if there exist (xi)Ni=1 such that

SN((xi)Ni=1) 6= 0.

Proof. For a sequence {yi}∞i=0, let
∑N
O ym and ∑N

E ym be, respectively, the sum of all odd
and even indexed yi with index between 0 and N , inclusive. Note that S1((x1)) = u(x1),
so Condition (1) clearly implies there exists x1 so that S1((x1)) 6= 0. For N > 1, note that
SN((xi)Ni=1) = 0 if and only if

N∑
E

∑
q∈Qm,N

u(
∑
i∈q

xi) =
N∑
O

∑
q∈Qm,N

u(
∑
i∈q

xi)

Now, simple calculations show that

2U(p2) =
2∑
O

∑
q∈Qm,2

u(
∑
i∈q

xi)
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and
2U(p′2) =

2∑
E

∑
q∈Qm,2

u(
∑
i∈q

xi).

Furthermore, by simple recursion if

2N−2U (pN−1) =
N−1∑
O

∑
q∈Qm,N−1

u(
∑
i∈q

xi)

and
2N−2U

(
p′N−1

)
=

N−1∑
E

∑
q∈Qm,N−1

u(
∑
i∈q

xi)

then one obtains that

2N−1U (pN) =
N−1∑
O

∑
q∈Qm,N−1

u(
∑
i∈q

xi) +
N−1∑
E

∑
q∈Qm,N−1

u(
∑
i∈q

xi + xN)

=
N∑
O

∑
q∈Qm,N

u(
∑
i∈q

xi)

and
2N−1U (p′N) =

N∑
E

∑
q∈Qm,N

u(
∑
i∈q

xi).

Note SN((xi)Ni=1) = 2N−1 (U (pN)− U (p′N)), completing the proof. �

Proof of Theorem 3. Suppose that (U , π, u) and (U , µ, u) both represent the preference �.
Let Vπ and Vµ be the respective utility indexes. Proceed by induction to establish uniqueness.
The case of 1-dimensional rectangles is standard since both PCRs are rich. Suppose that
π(E ′) = µ(E ′) whenever E ′ is an N − 1-dimensional rectangle. Let E be an arbitrary N -
dimensional rectangle, generated by E1, ..., EN where Ei ∈ σ(a′i) for some a′i ∈ Ci ∈ U with
distinct C1, ..., CN . By Lemma 7, let x1, ..., xn ∈ X be so that SN((xi)Ni=1) 6= 0. Consider
the profile F = 〈ai〉Ni=1 where ai ∈ Ci and ai(ω) equals xi if ω ∈ Ei and equals 0 otherwise.
Define

Ei = {~ω : ωCi ∈ Ei}.

Note that

Vπ(F ) =
N∑
m=0

∑
q∈Qm,N

π(
⋂
i∈q
Ei
⋂
j /∈q
Ej)u(

∑
i∈q

xi)

=
N∑
m=0

∑
q∈Qm,N

[K(q,m,N) + (−1)N−mπ(E)]u(
∑
i∈q

xi)

= K + SN((xi)Ni=1)π(E)

where K(q,m,N) andK are weighted sums of probabilities of (N−1)-dimensional rectangles.
Such a decomposition exists by Lemma 6. Since µ agrees with π on N − 1 dimensional
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rectangles,
Vµ(F ) = K + SN((xi)Ni=1)µ(E).

There exists a lottery q such q ∼ F . Then Vµ(F ) = ∑
q(y)>0 q(y)u(y) = Vπ(F ). Hence

Vµ(F ) = Vπ(F ), which requires that µ(E) = π(E). Conversely, suppose that Condition (N)
fails, and that π agrees with µ on all N − 1 dimensional rectangles. Consider any profile
〈ai〉mi=1, and assume WLOG that each ai belongs to a distinct understanding class Ci; we
show that

Vπ(〈ai〉mi=1) = Vµ(〈ai〉mi=1).

This is trivially true if m < N . The claim is proved if we show that, when m ≥ N , we can
replace each Vπ(〈ai〉mi=1) and Vµ(〈ai〉mi=1) with the ( possibly negatively) weighted sum of the
utilities of “sub-profiles” of 〈ai〉mi=1 with at most N − 1 elements. To do this, we rely on the
following implication of Lemma 7 when Condition (N) fails: for any x1, ..., xn,

(7) u(
N∑
i=1

xi) = (−1)N
N−1∑

O

∑
q∈Qm,N

u(
∑
i∈q

xi)−
N−1∑
E

∑
q∈Qm,N

u(
∑
i∈q

xi)
 .

Now,

Vπ(〈ai〉mi=1) =
∫
u

(
m∑
i=1

ai(ωCi)
)
dπ

=
∫
u

(
N−1∑
i=1

ai(ωCi) + [
m∑
i=N

ai(ωCi)]
)
dπ

Then, by equation 7 where xi = ai(ωCi), i = 1, ..., N − 1, and xN = ∑m
i=N ai(ωCi), each term

u

(
N−1∑
i=1

ai(ωi) + [
m∑
i=N

ai(ωi)]
)

can be written as the sum of utilities where each argument contains the sum of at most
m−1 terms. We can repeat this procedure until the arguments of each u (·) contain the sum
of at most N − 1 terms. Naturally, the exact same procedure can be applied to Vµ. This
establishes the result. �

A.4. Proof of Corollary 1.

Proof. For necessity, note that we can write

u(y) =
N∗−1∑
n=1

∂nu(x)
∂xn

(y − x)n + u(x).

If N∗ < ∞, then, as in Theorem 3, u(x1, ..., xN) is a weighted sum of the utility of subsets
of {x1, ..., xN} with at most N∗ elements. Arguments as in Theorem 3 establish the result.



COMPLEXITY, CORRELATION AND CHOICE 35

For sufficiency, recall Condition (N) is equivalent to∑
pN (x)>0

pN(x)u(x) 6=
∑

p′N (x)>0
p′N(x)u(x)

for some N order apportioned lotteries pN and p′N . Say Condition (N) holds for v ∈ C∞ if
the above holds when u is replaced by v. We show that for any v where for all n ≤ N there
exists yn such that ∂

nv(x)
∂xn

|x=yn 6= 0 implies Condition (N) for v. Proceed by induction. If
N = 1, and ∂v

∂x
6= 0 for some x, then there clearly exists x1 with v(x1) 6= v(0), establishing

Condition (1) for v. For the induction hypothesis, suppose that if for all n ≤ N there exists

yn with ∂nv(x)
∂xn

|x=yn 6= 0, then Condition (N) holds for v. Fix any u s.t. for all n ≤ N + 1

there exists yn with ∂nu(x)
∂xn

|x=yn 6= 0. Consider any (xi)N+1
i=1 and the resulting N + 1-order

apportioned lotteries pN+1, p
′
N+1. As in Lemma 7, V (pN+1)− V (p′N+1) equals

N∑
O

∑
q∈Qm,N

u(
∑
i∈q

xi) +
N∑
E

∑
q∈Qm,N

u(
∑
i∈q

xi + xN+1)

− [
N∑
O

∑
q∈Qm,N

u(
∑
i∈q

xi + xN+1) +
N∑
E

∑
q∈Qm,N

u(
∑
i∈q

xi)]

Dividing by xN+1 and letting xN+1 go to zero yields

(8)
N∑
m=0

∑
q∈Qm,N

(−1)mu′(
∑
i∈q

xi)

Note (8) is the difference in utility of two N order apportioned lotteries with utility index
u′. For n ≤ N ,

0 6= ∂n+1u(x)
∂xn+1 |x=yn+1 = ∂nu′(x)

∂xn
|x=yn+1 .

Thus the induction hypothesis implies that there exists x1, ..., xN such that (8) does not
equal zero, and there must exist xN+1 so that the N + 1-order apportioned lotteries for
x1, ..., xN+1 are not indifferent, establishing Condition (N+1) and completing the induction.
The result now follows from observing that whenever n < N∗, there exists yn such that
∂nu(x)
∂xn

|x=yn 6= 0. �

A.5. Proof of Theorem 7.

Proof. (i) Since ΣC is finite for each C ∈ U , π is countably additive when restricted to
any finite collection of understanding classes. The result follows by applying Kolmogorov’s
extension theorem (Theorem 15.26, Aliprantis and Border (2006)) as in the proof of Theorem
1.
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(ii) Suppose not and let B ∈ U be such that⋃
C∈U ,C 6=B

C = A.

Take b ∈ B for which σ(b) = ΣB. Then, by Theorem 5 (ii),

B = {c ∈ A : bKc}.

By hypothesis, b ∈ C for some C ∈ U . Applying Theorem 5 (ii) we have B ⊆ C, a
contradiction since U is universal.

(iii) follows from Theorem 5 (ii). �

A.6. Proof of Lemma 3.

Proof of Lemma 3. Necessity is trivial, as is the case where Aj is a singleton. Thus, suppose
the family is Markov and there are at least two actions . Identify aj ∈ Aj with degenerate
lotteries in ∆Aj and write (p, q)t for the strategy “player j plays p if the type is tj and q

otherwise.” Fix aj. Note that

(bj, aj)tj (τi, τj)(aj) = (cj, aj)tj (τi, τj)(aj)

for any aj, bj, cj ∈ Aj with bj, cj 6= aj, since
1
2(bj, aj)tj (τi, τj)(aj) + 1

2(cj, cj)tj (τi, τj)(aj)

= 1
2(bj, aj)tj + 1

2(cj, cj)tj (τi, τj)(aj)

= 1
2(cj, aj)tj + 1

2(bj, cj)tj (τi, τj)(aj)

= 1
2(cj, aj)tj (τi, τj)(aj) + 1

2(bj, cj)tj (τi, τj)(aj)

where the first and third equalities follow from (2) and the second from the Bayesian strate-
gies being identical. Then by (1),

(cj, cj)tj (τi, τj)(aj) = (bj, cj)tj (τi, τj)(aj) = 0,

which proves the claim. Note that an analogous reasoning yields

(bj, aj)tj (τi, τj)(bj) = (cj, aj)tj (τi, τj)(cj).

Define
Kj(τi, τj)(tj) = (bj, aj)tj (τi, τj)(bj)

for every τi, τj, and tj. By (1),∑
(τi,τj)∈Ti×Tj

q(τi, τj)Kj(τi, τj)(tj) = q(tj).
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Now note that, by (1)
(aj, aj)tj = (aj, aj)tj

Thus, (2) implies that for any strategy σj such that σj(tj) = σj(t′j) for any tj, t′j ∈ Tj, we
have σ̄j = σj. Since ∑

tj∈Tj

1
#Tj

(bj, aj)tj

is a strategy in which every type plays bj with probability 1
#Tj

and aj with probability

#Tj − 1
#Tj

, we have

#Tj
∑
tj∈Tj

1
#Tj

(bj, aj)tj (τi, τj)(bj) = 1.

Hence, ∑
tj∈Tj

Kj(τi, τj)(tj) = 1

for any τi, τj. To complete the proof it suffices to show that for any pure strategy σj and
bj ∈ Aj,

σ̄j(τi, τj)(bj) =
∑

tj :σ(tj)=bj

Kj(τi, τj)(tj).

Assuming #Tj = n, taking aj 6= bj

1
n
σj + n− 1

n
(aj, aj)tj =

∑
tj∈Tj

1
n

(σ(tj), aj)tj .

Thus,
1
n
σ̄j + n− 1

n
(aj, aj)tj =

∑
tj∈Tj

1
n

(σ(tj), aj)tj .

By the above arguments, (σj(tj), aj)tj (τi, τj)(bj) equals Kj(τi, τj)(tj) if σj(tj) = bj and equals
zero otherwise. Thus,

1
n
σ̄j(τi, τj)(bj) =

∑
tj :σ(tj)=bj

1
n
Kj(τi, τj)(tj).

since (aj, aj)tj (bj) = 0. �

Appendix B. Supplementary Results (Online)

B.1. Full Correlation Neglect Characterization. We now turn to the behavioral char-
acterization of the full correlation neglect model, that is Equation (1) holds whenever
C 6= C ′ ∈ U . In this model, either the DM perfectly understands the connection between
a and b or believes that a and b are independent. To compactly state the axiom, for any
a, b ∈ A, let a + b be an arbitrary action with outcome a(ω) + b(ω) in state ω, and for any
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p, q ∈ ∆(X), let p⊕q = (p(x)q(y), x+y)p(x)+q(y)>0, the independent sum of p and q. Consider
the following axiom.

Axiom 7 (Independent Bets). For all ω1, ω2 ∈ Ω, x ∈ X, lotteries p1, p2 over {0, x}, and

a1, a2 ∈ A so that ai(ω) =

x ω = ωi

0 otherwise
for i = 1, 2:

If 〈a1, a2〉 6∼ a1 + a2, a1 ∼ p1 and a2 ∼ p2, then 〈a1, a2〉 ∼ p1 ⊕ p2.

To interpret the axiom, consider a1, a2, p1, p2 satisfying its hypothesis. If 〈a1, a2〉 6∼ a1 +a2,
then the DM misunderstands the connection between a1 and a2. If the DM treats a1 and a2

as independent, then she is indifferent between the independent sum of p1 and p2, p1 ⊕ p2,
and 〈a1, a2〉. This follows from observing that pi ∼ ai only if the objective distribution of pi
equals the subjective distribution of ai.

Proposition 5. Suppose � has a rich PCR with consistent marginal beliefs and strictly
concave utility. Then, � satisfies Independent Bets if and only if � has a full correlation
neglect PCR.

Proof. Suppose Independent Bets, and a rich PCR (U , π, u) with consistent marginal beliefs
and maximal U . WLOG, π(ω) > 0 for all ω Fix arbitrary C,C ′ ∈ U . Label Ω = {ω1, ..., ωn}
and pick ai ∈ C and bj ∈ C ′ so that ai(ω) (bj(ω)) equals x if ω = ωi (= ωj) and 0 otherwise.
If 〈ai, bj〉 ∼ ai + bj for all i, j, then C = C ′ because U is universal.

Otherwise, there exists i, j such that 〈ai, bj〉 6∼ ai + bj. Pick lotteries pi and pj over
{x, 0} such that pi ∼ ai and pj ∼ bj. Note this requires pi(x) = π(ωi) and pj(x) = π(ωj).
Thus, pi ⊕ pj ∼ 〈ai, bj〉 if and only if π({ωi}C ∩ {ωj}C′) = π(ωi)π(ωj). Define E ∈ Σ to
be one of the largest sets (according to set inclusion) such that π({ωi}C ∩ EC′) = 0. We
will show that E = ∅. By above, ωj /∈ E, implying Ē 6= ∅. Consider any ωk ∈ Ē. Since
π({ωi}C)∩{ωk}C′) 6= 0, 〈ai, bk〉 6∼ ai+bk. As above, π({ωi}C)∩{ωk}C′) = π(ωi)π(ωk). Using
additivity, π({ωi}C ∩ ĒC′) = π(ωi)π(Ē). If π(Ē) 6= 1, then there must be another state that
we can add to E, contradicting that E is one of the largest sets. Hence E = ∅ and for any ω,
we can find ω′ 6= ω such that π({ω}C ∩ {ω′}C′) 6= 0, and apply the above steps to conclude
that π({ω}C ∩ {ω′}C′) = π(ω)π(ω′), completing the proof. �

B.2. Comparative Correlation Coefficients. In this subsection, we consider when DM2
believes that any pair of actions is more strongly correlated than DM1.9 We focus on one
common measure, the correlation coefficient, which is given for a and b by

ρ(a, b) = E[ab]− E[a]E[b]√
var[a]var[b]

,

9We thank David Ahn for suggesting this comparison
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where E[·] is the expectation operator and var[·] is the variance operator. Thus we assume
throughout the subsection that X = R.

Formally, we compare the behavior of two risk-averse DMs, one of whom thinks that
the magnitude of the correlation coefficient between a and b is larger than the other. As
correlation has a “second order” effect on preferences, we focus in the main text only on the
case of mean variance preferences, where u(x) = x − βx2 for all x ∈ X. The general case
for concave u can be studied in a similar way, but must rely on approximations, specifically
sequences converging to zero.

Before stating our definition formally, we need some preliminary defintions. First, say that
b ∈ A is �i mean-zero if for any x > 0 and sequence of actions {bn}n∈N with bn(ω) = 1

n
b(ω)

for all ω and n, there exists N such that n > N implies that x �i bn and bn �i −x. This
will be shown to be equivalent to Ei[b] = 0, as shown below. Second, for any b ∈ A, define
−b ∈ A to be any action for which [−b](ω) + b(ω) = 0 for all ω and there exists a rich,
�1-understood B with b,−b ∈ B. If � has a rich PCR, then by Theorem 2, there exists a
−b for every b.

Definition 14. Say that �1 perceives more correlation than �2 if any a, b ∈ A where b is
�i mean-zero and any x ∈ X,

〈a, b〉 �1 〈a,−b〉 and x �1 〈a, b〉 =⇒ x �2 〈a, b〉

and
〈a,−b〉 �1 〈a, b〉 and x �2 〈a, b〉 =⇒ x �1 〈a, b〉.

Pick two actions a and b, where Ei[b] = 0. Suppose that DM1 likes 〈a,−b〉 better than
〈a, b〉. This implies that DM1 thinks b is not a good hedge for a: a and b must be positively
correlated. If DM2 thinks a and b are more strongly correlated than DM1 does, she should
think that b is an even worse hedge for a. Hence, DM2’s certainty equivalent of 〈a, b〉 should
be higher than DM1’s. In contrast, she must also thinks that −b a better hedge than DM1
does. Consequently, her certainty equivalent of 〈a,−b〉 should be at least as high as DM1’s.
Relative to DM1, she overvalues a positively correlated b and undervalues a negatively
correlated b.

The next result establishes that the behavioral comparison above corresponds to higher
perceived correlation. Assuming each �i has a PCR, let ρi(·) and Ei[·] be the correlation
and expectation operators according to πi.

Theorem 8. Let �i have a rich PCRs (U , πi, u) for i = 1, 2, where π1 and π2 have the same
marginals and u(x) = x− βx2 for some β > 0.

If �1 perceives more correlation than �2, then for any a, b ∈ A, ρ1(a, b) > 0 implies
ρ1(a, b) ≥ ρ2(a, b) and ρ1(a, b) < 0 implies ρ1(a, b) ≤ ρ2(a, b).
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Conversely, if for every a, b for which there does not exist C ∈ U with a, b ∈ C, ρ1(a, b) > 0
implies ρ1(a, b) > ρ2(a, b) and ρ1(a, b) < 0 implies ρ1(a, b) < ρ2(a, b) , then �1 perceives more
correlation than �2.

For an example, let each �i have a ηi-misperception representations, as in the introduction,
for i = 1, 2. Then �1 perceives more correlation than �2 if and only if η1 ≥ η2. This follows
from linearity of the correlation with respect to η in the η-misperception model. In particular,
if ρπ(a, b) is the true correlation between a and b according to π, then ρi(a, b) = ηiρπ(a, b).
Hence, when η1 > η2, ρπ(a, b) ≷ 0 implies ρ1(a, b) ≷ ρ2(a, b).

Proof. First, b is �1 mean-zero ⇐⇒ E1[b] = 0. To see this, let bn be as above and note that
by a second order Taylor expansion V (bn) = 1

n
E1[b]+O( 1

n2 ) = O( 1
n2 ) and V (x

n
) = 1

n
x+O( 1

n2 ).
Similarly, 〈a, b〉 �i 〈a,−b〉 if and only if ρi(a, b) < 0 because

V1〈a, b〉 = E1[a+ b]− βE1[a2 + b2 + ab]

≷ E1[a+ b]− βE1[a2 + b2 − ab] = V1〈a,−b〉

if and only if E1[ab] ≶ 0 = E1[a]E1[b] if and only if ρ1(a, b) ≶ 0.
Now, suppose�1 perceives more correlation than�2. Normalize so that u(0) = 0. Pick any

a, b with ρ1(a, b) > 0. If a, b ∈ C ∈ U , then ρ2(a, b) = ρ1(a, b), so suppose a ∈ C =⇒ b /∈ C.
Pick Ca, Cb ∈ U with a ∈ Ca and b ∈ Cb. There exists c ∈ Cb with c(ω) = b(ω) − E1[b];
note ρi(a, b) = ρi(a, c) for i = 1, 2. By above c is mean-zero and 〈a,−c〉 �1 〈a, c〉. Letting
x ∈ X be such that x ∼1 〈a, c〉, it follows that x �2 〈a, c〉. This implies that V2(〈a, c〉) ≥
V1(〈a, c〉). Writing out the utility function as above, conclude that E1[ac] ≥ E2[ac] since
E1[a] = E2[a], E1[c] = E2[c], E1[a2] = E2[a2], and E1[c2] = E2[c2]. As above, this implies
ρ1[a, b] = ρ1[a, c] ≥ ρ2[a, c] = ρ2[a, b]. Repeating the exercise with −b replacing b gives that
−ρ2(a, b) = ρ2(a,−b) ≤ ρ1(a,−b) < −ρ1(a, b). Hence, |ρ1(a, b)| > |ρ2(a, b)|. The negative
correlation case is identical.

Now, suppose ρ1(a, b) ≷ 0 implies ρ1(a, b) ≷ ρ2(a, b) for every a, b with satisfying the
implication a ∈ C =⇒ b /∈ C. Pick arbitrary a, b ∈ A where b is �1 mean-zero and
〈a, b〉 � 〈a,−b〉. By above, E1[b] = 0 and E1[ab] < 0, implying ρ1(a, b) < 0. If there exists
C ∈ U with a, b ∈ C, then x �1 〈a, b〉 if and only if x �2 〈a, b〉. If no such C exists, then
ρ2(a, b) > ρ1(a, b) implying E2[ab] > E1[ab]. Therefore, V2(〈a, b〉) < V1(〈a, b〉) and since
V1(x) = V2(x), x �1 〈a, b〉 implies x �2 〈a, b〉. The case where 〈a,−b〉 �1 〈a, b〉 is similar.
Conclude �1 perceives more correlation than �2. �
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