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ABSTRACT: In this paper some classical representational ideas of Hertz and Duhem are used to show how the di-
chotomy between representation and intervention can be overcome. More precisely, scientific theories are
reconstructed as complex networks of intervening representations (or representational interventions). The
formal apparatus developed is applied to elucidate vatious theoretical and practical aspects of the in vivo/in
vitro problem of biochemistry. Moreover, adjoint situations (Galois connections) are used to explain the re-
lation between empirical facts and theoretical laws in a new way.
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1. Introduction

The concept of representation has not yet been secured on the agenda of philosophy
of science. Some philosophers flatly deny that it could be of any use in epistemology
or philosophy of science. Instead, they claim, the concept of representation leads us
into a hopeless maze of pseudo-questions without answers. This is the case of Rorty
and his antirepresentationalist followers. According to them, epistemology based on
the notions of negotiation and interpretation should replace epistemological accounts
based on ‘representation’. In this paper, we will not address this kind of radical anti-
representationalism. But suffice to say, it is based on a rather primitive conception of
representation identifying representation with some kind of copying or mirroring.

In this paper we want to elaborate some classical representational ideas of Hertz
and Duhem in order to show that a diagrammatical or combinatorial account of repre-
sentations can be useful for elucidating the role of representations in describing the
practice of representational reasoning in science.

The outline of this paper is as follows: in section 2, we outline some ideas of Hertz
and Duhem concerning the structure of scientific reasoning that can be used to un-
derstand how representations in science work. More precisely, following Hertz the
idea of a commutative diagram of interconnected representations is introduced, and
Duhem’s account of empirical theories will lead us to the idea that the theoretical and
the empirical are correlated in a so called adjoint situation. In section 3, the rudiments
of a combinatorial theory of representations are introduced, and are put to use in sec-
tion 4 for the representational elucidation of the in vitro/in vivo problem in bioche-
mistry. In section 5, it is shown that Duhem’s account of an empirical theory as a cor-
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relation of symbolical and empirical facts leads to the conception of an empirical the-
ory as a Galois connection (or, more generally, an adjoint situation) in the sense of
mathematical category theory. We close with some general remarks on the role of rep-
resentational concepts in philosophy of science.

2. Classical ldeas of Representations

Let us start with some basic ideas on scientific representations put forward by the
classical philosopher-scientists Hertz and Duhem. These ideas naturally lead towards
an interesting conception of scientific theories as representations.

As our first classical intuition pump for the development of a comprehensive ac-
count of representation, we take Hertz’s well known ‘symbolical account’ put forward
in his The Principles of Mechanics presented in a New Form (Hertz 1894) where he described
the general procedure of scientific representations as follows:

We form for ourselves images or symbols of external objects; and the form which we give them
is such that the necessary consequents of the images in thought are always the images of the nec-
essary consequents in nature of the things pictured. In order that this requirement may be satis-

fied, there must be certain conformity between nature and our thought. Experience teaches us
that the requirement can be satisfied, and hence that such a conformity does in fact exist. [...]

The images, which we may form of things, are not determined without ambiguity by the require-
ment that the consequents of the images must be the images of the consequents. Various images
of the same objects are possible, and the images may differ in various respects. [...]

Of two images of equal distinctness the more appropriate is the one which contains, in addition
to the essential characteristics, the smaller number of superfluous or empty relations, —the sim-
pler of the two. Empty relations cannot be altogether avoided: they enter into the images because
they are simply images ... produced by our mind and necessarily affected by the characteristics of
its mode of portrayal. (Hertz 1894, pp. 1f.)

We propose to translate Hertz’s informal description of the representational activ-
ity of science in a diagrammatical language as follows: let the set of "external objects"
be denoted by E, and denote the set of "images" by . The following diagram may be
used to capture the essential structure of Hertz’s account:

E——=y

E =3
The details are as follows: the horizontal arrow # corresponds to Hertz’s formation of
mental images. More precisely, if ¢ € E is an external object, #¢) € 5 is the image cot-
responding to it. In other words, #¢) may be considered as the theoretical counterpart
of ¢. The left vertical arrow fin Hertz’s diagram is to be conceived as a process or an
experiment that ‘necessarily’ brings about the external fact that e is changed to another
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external fact f(¢) € E. In Hertz’s terms, f(¢) is the ‘necessary consequent’ of e. Analo-
gously, the vertical arrow g on the right may be interpreted as a mathematical calcula-
tion or a logical argument that leads from a ‘symbol’ s € § to another symbol g(s). It is
to be interpreted as the result or the conclusion of the symbolical transaction g. In
Hertz’s terms, g(s) is the ‘necessary consequent’ of 5. These ingredients of Hertz’s dia-
gram are of course not independent of each other; rather, as is informally stated in his
Principles, they form a commutative diagram in ‘that necessary consequents of the im-
ages in thought are always the images of the necessary consequents in nature’, which
in our diagrammatical language just amounts to the commutativity of the diagram:

(2.1) Commautativity of Hertz's Diagram. Assume ¢, f, and g as characterized above. They
are assumed to satisfy the following concatenation law:

ger=tef

This equation is to be interpreted as follows: If we start with an empirical fact ¢ in the
left upper corner of the Hertz diagram, translate it to its theoretical counterpart #(e),
and use #(¢) as the input for a calculation or a logical argument that leads to g ® #(e),
then this outcome is the same as if we had submitted the empirical fact ¢ to an ex-
perimental transformation f arriving at f(¢), and translated this experimental fact £ (¢)
by # finally yielding 7 ® f(¢) = g ® #e). In other words, the two paths in Hertz’s diagram
are strictly equivalent in that they may be considered as paths that lead to one and the
same destination. As an elementary example consider ¢ to be some chemical substance
that is submitted to a certain chemical experiment f which, say, oxidizes ¢ thereby
yielding as outcome another chemical substance f(¢). For this transaction a chemical
theory has to provide a chemical formula #(¢) for ¢, and a theoretical transformation
g(#(e)) of #(e) such that # f(¢)) = g(#(¢)). As is emphasized by Hertz, given E there may
be different ‘symbolic completions’ S, §°. The choice between them is a pragmatic
matter of simplicity and local usefulness. It may be that for different purposes differ-
ent ‘images’ may be appropriate (cf. Hertz 1894, p. 3).

Second, let us come to Duhem’s contribution to a modern representational ac-
count of scientific theorizing, which is found in his classic The Aim and Structure of
Physical Theory (Duhem 19006). At various occasions in his opus magnum he asserts that
scientific theories are to be conceived as representations. More precisely, he considers
a physical theory ‘as an economical representation’ that

establishes an order and a classification among [the experimental laws]. It brings some laws to-
gether, closely arranged in the same group; it separates some others by placing them into two
groups very far apart. Theory gives, so to speak, the table of contents and the chapter headings
under which the science to be studied will be methodologically divided. (Duhem 1906, pp. 23f).

Later he goes on to explain this ‘representation’ as a correspondence between
‘practical facts” and ‘theoretical” or ‘symbolical facts’. It is certainly not too far fetched
to consider Duhem’s account as presented up to now as just another version of
Hertz's structural approach. But there is one feature in Duhem’s representational ap-
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proach that is novel and not present in Hertz. In describing a physical theory as a cor-
respondence between practical and symbolical facts he insists that
a symbolic formula ... can be translated into concrete facts in an infinity of different ways, because
all these disparate facts admit the same theoretical interpretation. (Ibid,, p. 150)
And, in an analogous vein:

The same practical fact may correspond to an infinity of logically incompatible theoretical facts;
the same group of concrete facts may be made to correspond in general not with a single sym-
bolic judgment but with an infinity of judgments different from one another and logically in con-
tradiction with one another. (Ibid., p. 152)

Duhem’s account is rather informal, and he is not very clear about what is to be
understood by ‘theoretical fact’. In particular, one should not interpret him as conceiv-
ing a ‘theoretical fact’ as a fact ‘belonging’ to a specific theory. Rather, the most ap-
propriate interpretation of Duhemian theoretical facts is to take a theoretical fact as
one that asserts a physical state of affairs in precise mathematical terms, as is explained
by Duhem. A typical example of a theoretical fact (or statement) is the following: ‘An
increased pressure of 100 atmospheres causes the electromotive force of a given gas
battery to increase by 0.0844 volts.” (Ibid., p. 152) Other ‘logically incompatible’ theo-
retical statements would be obtained by replacing ‘0.0844’ by 0.0845” or ’0.0846’.
Hence, Duhem’s account of an empirical theory can be formulated in relational terms
as follows:

(2.2) Dubenr’s Relational Account of Empirical Theories. Denote the class of symbolic facts
by § and the class of practical or empirical facts by E. Then a theory T'is to be con-
ceived as a relation

TcExS.

If (¢, 5) € T then this is to be interpreted as the empirical fact that ¢ is related to s, or,
to put it the other way round, that the symbolic fact s is related to the empirical fact e.

It is important to note that Duhem insisted that this relation is multi-valued: to a
single ¢ there may correspond many symbolic facts s, and, vice versa, to a single s,
there may correspond many empirical facts e. This double ambiguity of the relation
between empirical and symbolical facts is characteristic of Duhem’s account and has
no counterpart in Hertz’s approach. As we shall show in the next section, this feature
may be combined with the representational insights of Hertz to yield a complex repre-
sentational account of empirical theoties.

3. Representational Combinatorics

Following Hertz and Duhem in conceiving the practice of science as engaged in pro-
ducing and manipulating representations of various kinds, the impression that comes
to mind is that scientific representations do not live in isolation, rather they may be
combined and concatenated in various ways (Ibarra, Mormann 2000). Hence, investi-
gating these combinatorial aspects of representations is a central task of a general
theory of representation (Ibarra, Mormann 1997 a, b).
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Regardless of what kind of representations we consider, they are not unconnected
with each other, rather, they form a representational network. One and the same en-
tity .4 may be represented by several different entities B, C, D etc. such that we have

representations A " 5B, A——>C, A—L D, etc. On the other hand, it may
happen that one and the same entity E appears as the representative of several differ-

ent entities 4, B, C etc. That is to say we have representations 4 >E, B > E,
C—— E. Furthermore, it can be the case that representations such as .4 —" > Band
B——> C are concatenated yielding an indirect or combined representation

A—"5C

As the result of these considerations, we can see that any theory of representations
should comprise a combinatorial part, which describes the various possibilities of
combinations and iterations of representations. In the following we shall assume that
this combination or concatenation of representations is associative, i.e. representations
1, & and b, which *match’, satisfy the following law of associativity:

(3. Segeh =79 h

The combination or iteration of representations is of utmost importance for the
practice of science. For instance, in the standard representational theory of measure-
ment the numerical measurement of an empirical domain D is conceptualized as a

representation » D——> R of D into the real numbers R. This is a rather idealized

description. Actually, by a closer inspection the representation D ——> R should be
regarded as a more or less extended chain of representations

(3.2) D sE——F R.

In most cases, numerical or, more generally, mathematical representations of em-
pirical data cannot be ‘read off’ directly; usually they have to considered as constructs
which have been built by a more or less complicated constructional processes. The
long way from data to theory shows that the standard dichotomic is, at best, a very
idealized picture. Dealing with an example from general relativity theory, Laymon
gives a detailed account of the ‘long contrafactual path from data to theory’ (cf. Lay-
mon 1982). Other examples of complex ‘long distance’ representations are discussed
in detail in Latour (1999): Latour tells us in detail the long story from raw findings to
theoretically digestible data in the case of ‘botanical pedology’ (zbzd., chapter 2). Not-
withstanding important differences, all these accounts rely —implicitly or explicitly—
on what may be called a combinatorics of representations.

The combination of representations is not restricted, however, to linear combina-
tions. As will be shown by the i vivo/in vitro example of biochemistry, the point of the
combinatorial account of representations only comes to the fore if we do not restrict
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our attention to linear chains of representations but, instead, also take into account
non-linear net-like configurations of representations.

The importance of representational nets or diagrams is evidenced by the fact that
in the last forty years or so mathematics (and parts of other sciences as well) has been
successfully reformulated in terms of representational networks. Here we refer, of
course, to the mathematical theory of categories founded by Eilenberg and Mac Lane
in the forties and presented for the general scientific public in books such as Mac
Lane’s Mathematics — Form and Function (1986) or Lawvere and Schanuel’s Conceptual
Mathematics — A First Introduction to Categories (1996). In category theory, representations
appear under the names morphisms, functors, and natural transformations. In the last
decades it has been shown that not only the bulk of mathematics can be reconstructed
in these terms, but also that this representational reconstruction has lead to new and
fruitful lines of mathematical research. We take this fact, together with the representa-
tional ideas of Hertz and Duhem as evidence that combinations of various kinds of
representations play an indispensable role for a representational theory of scientific
knowledge. This claim is substantiated in the next section in which we propose to
study in some detail various combinations of representations that arise from the so-
called in vitro/ in vitro problem in biochemistry.

4. A Representational Acconnt of the In Vivo/In Vitro Problenm

In this section we are going to apply the formal apparatus sketched so far to a specific
problem of a scientific discipline that up to now has not received too much attention
from philosophy of science, to wit, the so called % vitro/in vive’ problem of biochemis-
try (cf. Strand, Fjelland, and Flatmark 1996 and Strand 1999). For the information on
biochemical matters we heavily rely on these papers. Our purpose is to show that the
rudiments of a theory of meaningful representations set out in the previous sections
may be used to elucidate the problems of the representational practice biochemistry
have to cope with. We chose the approach of Strand e a/ as our starting point since it
seemed to us particularly well suited for our purposes: on the one hand, it is suffi-
ciently complex to require the employment of some non-trivial representational tools;
on the other hand, it is conceptually not too complex as to be inaccessible for non-
experts in biochemistry.

First, let us recall the basic ingredients of the iz vitro/in vivo problem as it presents
itself in biochemistry. The first point to note is that although biochemistry may be de-
fined as ‘the field of science concerned with the chemical substances and processes
that occur in plants, animals, and microorganisms’ it would be misleading to assume
that ‘biochemists study processes that occur in living organisms’ (cf. Strand 1999, p.
273). The reason is that normally

it is impossible to perform a chemical analysis of an intact organism. A biochemical analysis is
typically preceded by an isolation procedure, in which the organism of interest is disrupted and a
specific component of it is isolated. To put another way, almost all biochemical evidence is ob-

tained 7z vitro under artificial experimental conditions. ... [Nevertheless] biochemists are con-
cerned with the chemistry of the living organism, 7z vive. (Strand 1999, p. 273)
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Hence one may even assert:

It would be wrong to say biochemists observe ot describe or study processes that occur in living or-
ganisms, because they very rarely do so. Normally, it is impossible to perform a chemical analysis
of an intact organism. (Ibid., p. 273).
Almost all biochemical evidence is obtained 7 vifro, under artificial experimental con-
ditions.

An in vipo system is a biologically interesting but experimentally inaccessible system,
and the corresponding iz vitro system as a related accessible, but biologically less intet-
esting system. Although analogous situations also occur in other sciences, the differ-
ence between 7z vitro and in vivo systems is particularly striking in biochemistry. Now
we may define the i vitro/in vivo problem (or the IVIV-problem henceforth) as the pro-
blem of justifying knowledge claims about 7z »ive systems on the basis of evidence ob-
tained in ‘corresponding’ iz vitro systems. Ot, on a more descriptive level, the IVIV-
problem may be said to be the problem of describing as clearly as possible the various
methods used by biochemists to extract the information on iz vivo systems they are
seeking from the evidence they have obtained from i vitro systems.

One has to note that the IVIV distinction is a relative distinction. That is to say, in
one context a system may play the role of the iz vitro part, in another context the same
system may be considered as the zz vivo component. Of course, one may say that in
many sciences one finds analogous distinctions to that of the IVIV distinction in bio-
chemistry. Nevertheless, the case of biochemistry is special since the IVIV is thus cen-
tral for this discipline, as is convincingly pointed out by Strand (1999, pp. 274f). His
discussion may be summed up in the contention that the concept of artifact is central
in any biochemical discussion. A biochemical artifact is a chemical reaction that occurs
between biomolecules 7 vitro, but not in vive. Now, the problem of artifacts is a central

problem of meaningful representations everywhere. Given a representation .4 ——> B
the problem arises to interpret elements and relations defined on B in terms of A, for
instance, if Ha) = /() one may ask if this identity on the representing domain B may
be pulled back to A, i.e., one asks if it is possible to infer a = 4'. Consider first the spe-
cial case that ris a function. Then, of course, this inference is not valid in general. It is
only admissible to infer from r{a) # (a") that 2 # 4. Now let us consider the general
case that the representation r is any relation between .4 and B. Denote the power set
of B by PB. Then, committing an innocent abuse of language, » may be conceived as a

function A—"—> PB defined by n{a) := {4; (4, b) € r}. In the same vein as above one
can infer from na) # r(b) that a # b. In other words, the inequality on B (or PB) can be
pulled back to an inequality on 4. Of course, the problem of artifacts is not restricted
to this kind of artifacts. Other, more complicated relations on B such as R(f(a), ...,
R(f(an)) may be considered and tested for their .4-meaningfulness.

We take the fact that the problem of artifacts can be naturally couched in represen-
tational terms as evidence that the IVIV problem should be treated in terms of a the-
ory of meaningful representations. Thus we propose to conceive the relation between
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an zn vive system S and a corresponding z vitro system S* as a representational relation

§—L 5 g contending that the /z vivo system S is represented by the i vitro system S*.

First, it should be noted that this representation is a material long distance repre-
sentation par excellence: Usually the representing system S* is obtained from § by a
variety of massive, often destructive interventions of various kinds (cf. Strand ez al.
1996, Strand 1999). The representing system S* is far from being similar to 5, and it is
neither natural nor necessary to represent S by S*. There may be many other ways of
representing S by other §*', $*", ... depending on the representational interests and
capacities of those who are engaged in the construction of these intervening representa-
tions. Thus, as the first outcome of considering the IVIV problem in biochemistry we
contend that the dichotomy between representing and intervening put forward by
some philosophers such as Hacking is pointless in the case of biochemistry, and, re-
garding biochemistry as a paradigmatic case for science in general, for other sciences
as well (cf. Hacking 1983).

As lucidly explained by Strand ez @/, there is much more in the IVIV problem than

the statement that it gives rise to an intervening representation S———> §*. To deal
with these more fine-grained aspects of the IVIV problem, let us introduce the follow-
ing terminological conventions: properties, objects, relations, procedures etc. belong-
ing to the realm of 7 vivo systems are denoted by E, F, 4, b, R, p, ..., while the corre-
sponding properties, objects, etc. belonging to the iz vitro realm are denoted by E*, F*,
a*, b*, ... . Our first purpose is to show that IVIV problems give rise in a natural way
to a plurality of Hertz’s diagrams. Given systems § and $*, and important task of the
biochemist’s work is to study how these systems behave under certain perturbations p

and p*. Here, a perturbation p of § may be considered as a map: § —Z— 5. More pre-

cisely, p(s) is to be understood that for s € S the state p(s) € S is the state that resulted
from s when submitted to the perturbation p. Analogously for i vitro states $* and in

vitro perturbations p*: $* —— §*. Then the systems and perturbations S, p, §*, p*
may be said to be optimally correlated if the following Hertz diagram commutes:

d
§ =

» p* pred=dep

T

By definition, an artifact is an 7 vitro perturbation d(s) # p*(d(s)) such that s = p(s).
If the Hertz diagram commutes, artifacts can be shown not to exist: Assume 4(s) #

P(d(s)) and 5 = p(s). From Hertz we get p*(d(s)) = d(p(s)). Hence we get the following

proposition:

Proposition 1. 1f Hertz commutes, then there are no artifacts.
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In a similar vein, one obtains that the non-existence of artifacts implies that the
Hertz diagram commutes for states s that are invariant under the perturbation p, i.e.,
states for which s = p(s):

Proposition 2. 1f 5 is invariant under p AND there are no artifacts, then HERTZ com-
mutes for .

Proof. Assume s = p(s). Then d(s) = d( p(5)). Assume that HERTZ does not commute
for 5. That is to say p*(d(s)) # d ( p(s)). Then p*(d(s)) # d(s). Since there are no artifacts
one infers s # p(s). This is a contradiction. B

In sum, the diagrammatically natural requirement that Hertz diagrams commute is a
bit stronger than the claim that no artifacts exist. The existence of artifacts is, how-
ever, not the only problem that may atrise when studying the relation between i vivo
and 7 vitro systems. It may well happen that the combination of iz vitro perturbation

P $¥—— 5* and the intervening representation 4: § ——> §* are jointly too inva-
sive and too coarse, such that a salient 7z vivo perturbation p fails to be detected by
them. This is the case if it happens that s # p(s) but d(s) = p*(d(s)). This may be called
an artificial null effect. Artificial null effects and the commuting of the Hertz diagram
are related as follows:

Proposition 3. 1f the Hertz diagram commutes and the representation & §——— 5% is
mono, i.e., d@) = d(b) implies a2 = b, then no artificial null effects occur. B

In this implication, the second clause of the antecedent is clearly necessary. This may
be more conspicuously expressed by contraposition:

Proposition 4. 1f artificial null effects occur, then either the Hertz diagram does not

commute or the IVIV representation 4 § ——> §* is not mono. R

One may ask whether the converse holds: If no artificial null effects occur, does
the Hertz diagram commute and is 4 mono? As is easily checked by examples, this is
not the case. In other words, the conjunctive assumption that the Hertz diagram is
commutative and the IVIV representation 4 is mono is strictly stronger than the non-
existence of artificial null effects.

As has been pointed by Strand ez @/, the IVIV problem is not completely described
by a Hertz diagram connecting an 7z vivo systems S and an 7 vitro systems S*. Usually
these systems are accompanied by what may be called their model systems M and M*
respectively. That is to say, for the iz vivo system § there is a theoretical (or maybe
sometimes a computer) model M, and for the 7 vitro system S* there is a theoretical
(computer model) model A*. Then it is natural to assume that M is an appropriate
representation of .5, and M* is an appropriate representation of S*. These may be ex-



30 Andoni IBARRA, Thomas MORMANN

plicated by the assumption that the representations S—-—> M and §* ——> M* have
Hertz diagrams of the following kind:

’ t
“4.1) S —=M o ——=>
§ —=M o=

4 t

For each of these diagrams one may study the various ways in which artifacts may in-
fluence the reliability of surrogative reasoning dealing with M, §*, and M* and finally
bound to obtain information about the 7 vivo system S.

For dealing in a reasonable way with problems of this kind it is not sufficient,
however, to assume that Hertz diagrams for (8, $%), (5, M), and (5*, M*) exist. One
has to assume the existence of a further ‘purely theoretical’ Hertz diagram for (M, M*)
such that the following ‘3-dimensional’ or ‘cubical’ diagram commutes:

4.2)

Of course, it can hardly be expected that in reality the cube (4.2) is fully commutative.
Rather, there will exist various sources of non-commutativity, which show that the
various kinds of systems and models only match approximately. Nevertheless, the
cube presentation (4.2) may be useful as an idealized model to spot where precisely
commutativity and thereby the validity of surrogative reasoning via models and sys-
tems of various kinds may fail.

Let us consider a particulatly simple theoretical model of (i vivo ot in vitro) systems,
which, at first, may not appear as models at all. Assume that for a given system S the
possible states s of .§ may have certain properties. This assumption may be cast in a

representational framework by stipulating that there is a map F: § —— C, C being a
structure whose elements are to be interpreted as properties belonging to a certain
property type. In other words, F(s), 5 € S, is to be conceived as the assertion that the

state s has the property F(s). Given a perturbation p: § —— 5 one may ask, if F is in-
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variant with respect to p, i.e., if F' ( p(s)) = F(s), or not. Analogously, for in vitro proper-
ties F*: §* —— C* a corresponding 7 vitro perturbation p*: §$* —— §* is defined

that may or may not be invariant under the iz vitro property F*: §* —— C*. The
properties F and I are correlated by 4 and 4, iff there is a commutative diagram of
the following kind:

?

F
L o
d d:
p*
2

SF = (¥
F*

This diagram describes the (ideal) relation between in vivo properties I and in vi-
tro properties . From now on, let us assume that F and F* are such that there exist
d and 4, so that the diagram commutes. This means that F and F* are reasonably cor-
related with each other. This is to ensure that assertions dealing with F* may be possi-
bly translated into assertions dealing with F, that is to say that F and F* can be corre-
lated by surrogative reasoning. On this non-trivial assumption about F and F* is based
the entite 7z vivo/in vitro argumentation.

Usually, the domain of values C of a property F is not just a set, but has some
structure. For instance, often C is assumed to be endowed with an order relation <.
Then we may define an order relation on § by pulling back the order defined on C by
the following definition:

s <5= Fly) < ).
In an analogous way the state space S* of an 7 vitro system may be endowed with
an order via a map S* — " 5 C* of §* into an ordered property space C*. The in vivo

propetty I is stable under the ## vivo pertutbation p: §—— 5 iff ¢ < ' implies
P = p(sh), Le., iff F(s) < F(s") = F(p(s)) < F( p(s)). Analogously for i vitro perturba-
tion p* and an # vitro feature F*. Of course, the two properties IF and F* and the pet-
turbations p and p* should not be unrelated to each other. Rather, the 7 vivo property
Fand the in vitro property F* should obey the following relation:

F(p) = F(p() = FH(pH(d())) < F(pH(d(s)))-

In this case, from the accessible 7z vitro relation NOTI*( p*(d(s))) < F*( p*(d(s")))) one
can infer NOT(F( p(s)) < F( p(s).

Discussing the structural features of the IVIV problem shows that in the bio-
chemical practice the concepts of representation and intervention are intimately re-
lated. More precisely, they are correlated by a variety of commutative diagrams that
combine 7 vivo systems, in vitro systems, in vivo models, and 7z vitro models by a com-



32 Andoni IBARRA, Thomas MORMANN

plex net of representational and intervening links. The basic building block of this net,
which intertwines theoretical representations and practical interventions are vatious
kinds of Hertz diagrams. Thus, taking the IVIV problem in biochemistry as paradig-
matical for empirical theories in general we contend that representations and interven-
tions should be treated together, since both may be characterized as moves in the
complex network of an empirical theory.

The IVIV problem of biochemistry is particularly interesting for a representational
philosophy of science as it shows the necessity of considering iterations and combi-
nations of various kinds of interventions and representations. The language of repre-
sentational diagrams is particularly apt for dealing with the various kinds of connec-
tions. We think that the opposition between the representative and the performative
perspective in philosophy of science is an artifact of a misinformed philosophy of sci-
ence. One does not have to choose between them. Indeed, in some sense, every repre-
sentation has an interventional aspect, at least indirectly, and every intervention leads
to a representation.

5. Adjoint Situations

In this section we are going to show that Duhem’s relational account of theories that

conceives a theory T as a relation T'C § x E between symbolic and empirical facts
may be elucidated by using so called Galois connections or, more generally, adjoint
situations in the sense of category theory. This part of the paper is the most specula-
tive one, and some readers may object that we introduce a heavy formal apparatus
without real justification. Thus the following preliminary remark may be in order. Our
point is this: conceiving an empitical theory as a certain relation between empirical and
theoretical facts seems to us quite a natural and intuitive approach. Otherwise Duhem,
who certainly was not interested in formal technicalities, would not have endorsed it.
Now, as soon as a theory is given as a relation T < § x E, the whole apparatus of Ga-
lois relations is available. One may even say that a Galois relation between PS and PE
is nothing but a relation. Since Galois connections have turned out to be a useful tool
in the study of binary relations in mathematics, computer science and elsewhere.
Hence, one may suspect that they could do some useful work in formal philosophy of
science as well. This conjecture is further supported by the fact that Galois connec-
tions are just a very special case of adjoint situations that may be characterized as #be
fundamental concept of category theory. Hence, there is some hope that these con-
ceptual tools have some applications in philosophy of science as well.

By conceiving a theory as a relation T < E x § of empirical and symbolical facts in
the sense of Duhem’s The Aim and Structure of Physical Theory, it is not claimed, of
course, that any relation X < § X E counts as a genuine theory. There are countless
relations between the two classes of facts that make no sense at all. Further restric-
tions will have to be imposed on T in order that T can be acknowledged as a genuine
theory. As will be shown later, for this task the representational ideas of Hertz turn
out to be useful.
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For the moment we only want to emphasize Duhem’s main point, to wit, that for
any given empirical fact f € E there may be many symbolic facts s € § such that fand
s are theoretically correlated, i.e., that (f; 5) €T, and that vice versa for any s € § there
may be many empirical facts f € E such that (f, 5) € T (cf. Duhem 19006, pp. 152ff).
Formally, this means that T'c E x S is a relation and not a function.

This multivalued correlation between empirical and symbolical facts renders it
plausible that a single fact, be it symbolical or empirical, hardly makes sense as such.
That is to say, a single s € § or f € E is an object that in real science hardly occurs.
Rather, what shows up in the practice of real science are clusters or complexes of empiri-
cal and theoretical facts. Thus, we propose to consider appropriate sets A < § and
B c E as the real building blocks of scientific theories; single empirical facts f € E or
symbolic facts s € S are auxiliary concepts introduced for methodological reasons.
Replacing elements by subsets in this way is a natural generalization in so far as the
‘elementary’ facts of type s and fmay be considered as special cases of facts of type .4
and B by identifying s and f with their singletons {s} and { /}. This technical move
from elementary facts to subsets of elementary facts resembles the approach Duhem’s
Austrian colleague Ernst Mach proposed long time ago: according to Mach, it was the
task of science to describe the functional relations of appropriate complexes or clus-
ters of elements in the most economical way possible. In any case, the move from
elements to subsets facilitates to get started the formal apparatus we are going to apply
in order to elucidate Duhem’s relational account of scientific theories. After these pre-
paratory remarks we are now ready to set up the formal apparatus we need in order to
cast Duhem’s relational account of empirical theories in the framework of Galois
connections. First, let us deal with the necessary technicalities.

Denote by PS and PE the power sets of § and E, respectively. For the moment, let
us assume that PS and PE are endowed with their natural (set-theoretical) order struc-
tures (PS, ©) and (PE, ©). A theory T C E x § gives rise to order-preserving maps be-
tween PS and PE by the following recipe:

(5.1) Proposition. Let T < E x § be a theory. Define maps PE—L>PS and
PS—— PE by:

(2) For Y € PE define ¢(Y) by e(Y): = {5,y (y € YAND (y,5) € T}
(b) For X € PS define #(x) by AX): = { y; (¢ ({y}) < X}.

Then the maps ¢ and 7 are order preserving.

Proof. Check the definitions of ¢ and ~

Obviously, ¢ and 7 are not unrelated to each other. Indeed, it can be shown that #is
completely determined by ¢, and vice versa. Actually, much more is true, as is shown
by the following proposition:
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(5.2) Proposition. Let ¢ and 7 be defined as above. Then for all X < S and Y c E the fol-
lowing holds:
Xc(Y)IFF (X)) C Y.

In technical jargon, the ordered pair (7 ¢) is called a Galois connection between the
order structures PS and PE (cf. Gierz e al. 2003). More precisely, #is called the upper
(or right) adjoint, and e is called the lower (or left) adjoint. One should note that a Ga-
lois connection (4, ¢) is 7ot a symmetric notion, i.e., if (% ¢) is a Galois connection, usu-
ally (e, ) fails to be a Galois connection. The difference between upper and lower ad-
joint is reflected in the notational convention that 7 as the upper adjoint is on the right
or ‘upper’ side of <, while ¢ as the lower adjoint is on the lower” side of the order rela-
tion <. This asymmetry is essential in the following to set up an asymmetric relation
between the domain of empirical facts E and the domain of symbolical facts 5.

Proof (5.2). The proof naturally splits into two parts: (i) assume X < 4Y) and 7 € ¢X).
Then one has to show g € Y. By definition of ¢(X) there is an s € X with (5, z) € T.
That is to say g € ¢(s). By presupposition s € AY). This means ¢(s) < Y, and therefore
z € Y; (i) Assume ¢(X) < Y and s € X. One has to show s € #Y). But ¢(s) € ¢(X) C Y,
and this just means s € AY).

(5.3) Corollary. The map PS — 5 PS is a kernel operatot, ie., ¢ ® (X) < X, for all

Xc S, and the map PE—"°5 PE is a closure operator, ic. Y C 7 ® ¢(Y) for all
YcCE.

After having presented these rudiments of the theory of Galois connections, let us
start now with the task of elucidating the intuitive meaning of this gadget. This
amounts to an interpretation of the components # and ¢, which form the Galois con-
nection (%, ¢), and an explanation of their most important properties in informal terms
of philosophy of science.

For this task it is expedient to start with the map ¢: P§ —— PE. Recall that sub-
sets X < S and subsets Y < E are to be interpreted as symbolic (theoretical) and em-
pirical facts. By definition ¢(X) is the collection of all ‘atomic’ empirical facts z that are
empirically correlated to at least one ‘atomic’ symbolic fact s € X. This may be inter-
preted as that the empirical fact e(X) provides an empirical realization of X in a broad
sense, i.e., it may be that the empirical facts g realizing the symbolic facts of X may
have theoretical correlates s that do not belong to X but at least X is covered by the
empirical facts of ¢(X) in the sense that #(¢(X)) 2 X.

Analogously, the map 7 may be interpreted as a recipe to translate an empirical fact
Y < E into a related theoretical fact #Y) such that each theoretical fact s belongs to
#Y), ie, s € AY) if and only if all empirical correlates g of s belong to Y. In other
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words, #Y) is the most comprehensive theoretical fact for which Y provides a com-
plete empirical realization.

We hasten to add that this relational account of empirical theories as a relation
Tc E x § is seriously incomplete. Its essential flaw is that it does not allow us to
distinguish between approximately true theories and false theories, i.e., theories that
are completely off the mark. If a theory T'is just a relation T'c E X § relating symbolic
and empirical facts, there is no room for asking if T'is (approximately) correct or not.
This is clearly not sufficient to model the way of how theories relate theoretical facts
to often recalcitrant empirical facts. To overcome this shortcoming, it is expedient to
rely once more on the insights encapsulated in Hertz’s diagram. In other words, we
propose to combine the insights of Hertz and Duhem to obtain a better model of sci-
entific theorizing that comprises the advantages of both the Hertzian and the Duhe-
mian accounts.

This is done as follows: Let us start over again from the domains PS and PE of

theoretical facts and symbolic facts, respectively, endowed with maps ¢ PS ——> PE

and PE —'— PS as before. That is to say, ¢ and 7 are to be interpreted as Duhemian
maps correlating symbolic facts and empirical facts as explained above. The new in-
gredient we are going to introduce in order to distinguish between (approximately)
true theories and those that are plainly false is provided by the replacement of the triv-
ial set theoretical order relation Cs on § and Cg on E by appropriate non-trivial order
relations =5 and < on PS and PE, respectively, which reflect some theoretical or em-
pirical intervention and processes as explained in our discussion of the Hertz diagram
in section 2. More precisely this is explained in the following definition:

(5.4) Definition. (a) Assume Y, Y* € PE. Assume that there is an empirical process P or
intervention such that the empirical fact Y is the initial state P(i) of P, and Y* is the fi-
nal state P(f) of P. It is further assumed that processes or interventions P, P, P"' can
be concatenated associatively. Define Y < Y* := there is a process P with initial state
Y and final state Y*.

(b) Assume X, X* € PS. Assume that there is a symbolic process P or intervention
such that the symbolic fact X is the initial state P(i) of P, and X* is the final state P( f)
of P. It is further assumed that processes or interventions P, P, P' can be concate-
nated associatively. Define X < X* := there is a process P with initial state X and final
state X*.

The class of processes or interventions defined for symbolic and empirical facts
render PS and PE order structures, to be denoted by (PS, <s) and (PE, <g), respec-
tively. From now on, PS and PE are assumed to be endowed with these interventional
orders which differ from the set-theoretical orders <y and cp. In Hertz’s terms, then,
X = X is to read as ‘X’ is a necessary consequent of X, and analogously Y < Y is to
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be read as ‘Y’ is a necessary consequent of Y. Then the following Duhem-Hertz re-
y q g
quirement makes sense:

(5.5) Defnition. Let T < E x § be a relation of symbolical and empirical facts. Assume
PE and PS endowed with interventional orders <g and =<y respectively, X € PS, Y €

PE. Let PS —— PE and PE —— PS defined by T. Then the theory T is said to sat-

isty the Duhem-Hertz condition iff for all X € PS, Y € PE the following equivalence
holds:

(5.6) «(X) <p YIFF X <; ().

In other words, the pair (7, ¢) is a Galois connection between (PS, <y) and (PE, <g).
More precisely, #is the upper (or right) adjoint, and ¢ is the lower (or left) adjoint of
this Galois connection.

Before we explain in some detail why theories satisfying (5.6) should be considered
as (approximately) true let us note that instead of the set theoretical structures PS and
PE it may be more expedient, more intuitive, and even less clumsy to replace PS and
PE by otrdered domains (U, <v) and (1, <1). Then the Duhem-Hertz condition (5.0)

simply requires that there are order-preserving maps U——> 17 and "—— U such
that (7, ¢) defines a Galois connection between U and 17 in the sense of (5.2). This may
be even further generalized by the assumption that U and 17 are categories in an ad-
joint situation (cf. Goldblatt 1978). That is to say, conceiving an empirical theory as an
adjoint situation (F, G) between a category of symbolic facts U and a category 17 of
empirical facts combines in a neat and natural way the classical insights of Hertz and
Duhem.

As a summary of this section let us reformulate once more the basic thesis in
somewhat different terms, assuming that an empirical theory is given as a Galois con-
nection (4, ¢) between an ordered domain (U, <) of symbolic facts and an ordered do-

main (I, <) of empirical facts, i.e. the maps U ——> 1" and U satisfy the
Galois equivalence

(6.7 ex) <a IFF x=#a), xeUaecl.

Then we may conceive x as a theoretical law that may be considered as the blueprint for
the building of a nomological machine or experimental apparatus e(x) that produces
the empirical fact @ as its outcome. Then the Galois connection states:
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The nomological machine ¢(x) brings about the empirical fact a
IFF

The theoretical law x implies an idealized version #(a) of a.

This yields another interpretation of the formal apparatus of Galois connection that
renders plausible the claim why theories which satisfy the Galois connection should
be considered as (approximately) true theories: such theories are approximately true
since they ensure a relation between the empirical and the theoretical that captures the
idea that an approximately true theory should approximately correspond to the facts.

6. Concluding Remarks

The leitmotif of this paper was the thesis that scientific theories are to be considered
as representations, and, more generally, that the practice of science may be conceptual-
ized as a representational practice. This idea is not new, and many have put forward it
in many different ways. Philosopher-scientists such as Hertz and Duhem provide dis-
tinguished examples. Tapping some of their essential insights we hope to have ren-
dered plausible the following theses: (i) representation is a complex concept in need of
a theory, (ii) representations do not live in isolation. Rather, they may be zerated and
combined in various ways, and (ili) representations do not ‘speak for themselves’.
Rather, representations are in need of interpretation. A large part of scientific practice
consists in interpreting and reinterpreting representations.
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