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ABSTRACT: In this paper some classical representational ideas of Hertz and Duhem are used to show how the di-

chotomy between representation and intervention can be overcome. More precisely, scientific theories are 
reconstructed as complex networks of intervening representations (or representational interventions). The 
formal apparatus developed is applied to elucidate various theoretical and practical aspects of the in vivo/in 
vitro problem of biochemistry. Moreover, adjoint situations (Galois connections) are used to explain the re-
lation between empirical facts and theoretical laws in a new way. 
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1. Introduction 

The concept of representation has not yet been secured on the agenda of philosophy 
of science. Some philosophers flatly deny that it could be of any use in epistemology 
or philosophy of science. Instead, they claim, the concept of representation leads us 
into a hopeless maze of pseudo-questions without answers. This is the case of Rorty 
and his antirepresentationalist followers. According to them, epistemology based on 
the notions of negotiation and interpretation should replace epistemological accounts 
based on ‘representation’. In this paper, we will not address this kind of radical anti-
representationalism. But suffice to say, it is based on a rather primitive conception of 
representation identifying representation with some kind of copying or mirroring. 
 In this paper we want to elaborate some classical representational ideas of Hertz 
and Duhem in order to show that a diagrammatical or combinatorial account of repre-
sentations can be useful for elucidating the role of representations in describing the 
practice of representational reasoning in science.  
 The outline of this paper is as follows: in section 2, we outline some ideas of Hertz 
and Duhem concerning the structure of scientific reasoning that can be used to un-
derstand how representations in science work. More precisely, following Hertz the 
idea of a commutative diagram of interconnected representations is introduced, and 
Duhem’s account of empirical theories will lead us to the idea that the theoretical and 
the empirical are correlated in a so called adjoint situation. In section 3, the rudiments 
of a combinatorial theory of representations are introduced, and are put to use in sec-
tion 4 for the representational elucidation of the in vitro/in vivo problem in bioche-
mistry. In section 5, it is shown that Duhem’s account of an empirical theory as a cor-
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relation of symbolical and empirical facts leads to the conception of an empirical the-
ory as a Galois connection (or, more generally, an adjoint situation) in the sense of 
mathematical category theory. We close with some general remarks on the role of rep-
resentational concepts in philosophy of science. 

2. Classical Ideas of Representations 

Let us start with some basic ideas on scientific representations put forward by the 
classical philosopher-scientists Hertz and Duhem. These ideas naturally lead towards 
an interesting conception of scientific theories as representations. 
 As our first classical intuition pump for the development of a comprehensive ac-
count of representation, we take Hertz’s well known ‘symbolical account’ put forward 
in his The Principles of Mechanics presented in a New Form (Hertz 1894) where he described 
the general procedure of scientific representations as follows:  

We form for ourselves images or symbols of external objects; and the form which we give them 
is such that the necessary consequents of the images in thought are always the images of the nec-
essary consequents in nature of the things pictured. In order that this requirement may be satis-
fied, there must be certain conformity between nature and our thought. Experience teaches us 
that the requirement can be satisfied, and hence that such a conformity does in fact exist. […] 

The images, which we may form of things, are not determined without ambiguity by the require-
ment that the consequents of the images must be the images of the consequents. Various images 
of the same objects are possible, and the images may differ in various respects. […] 

Of two images of equal distinctness the more appropriate is the one which contains, in addition 
to the essential characteristics, the smaller number of superfluous or empty relations, —the sim-
pler of the two. Empty relations cannot be altogether avoided: they enter into the images because 
they are simply images … produced by our mind and necessarily affected by the characteristics of 
its mode of portrayal. (Hertz 1894, pp. 1f.) 

 We propose to translate Hertz’s informal description of the representational activ-
ity of science in a diagrammatical language as follows: let the set of "external objects" 
be denoted by E, and denote the set of "images" by S. The following diagram may be 
used to capture the essential structure of Hertz’s account:  
 
 
 
 

 

  t 

  E   S 

  S   E 

   f   g 

  t 

 
 
 
The details are as follows: the horizontal arrow t corresponds to Hertz’s formation of 
mental images. More precisely, if e ∈ E is an external object, t(e) ∈ S is the image cor-
responding to it. In other words, t(e) may be considered as the theoretical counterpart 
of e. The left vertical arrow f in Hertz’s diagram is to be conceived as a process or an 
experiment that ‘necessarily’ brings about the external fact that e is changed to another 
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external fact f (e) ∈ E. In Hertz’s terms, f (e) is the ‘necessary consequent’ of e. Analo-
gously, the vertical arrow g on the right may be interpreted as a mathematical calcula-
tion or a logical argument that leads from a ‘symbol’ s ∈ S to another symbol g(s). It is 
to be interpreted as the result or the conclusion of the symbolical transaction g. In 
Hertz’s terms, g(s) is the ‘necessary consequent’ of s. These ingredients of Hertz’s dia-
gram are of course not independent of each other; rather, as is informally stated in his 
Principles, they form a commutative diagram in ‘that necessary consequents of the im-
ages in thought are always the images of the necessary consequents in nature’, which 
in our diagrammatical language just amounts to the commutativity of the diagram: 

(2.1) Commutativity of Hertz’s Diagram. Assume t, f, and g as characterized above. They 
are assumed to satisfy the following concatenation law: 

g • t = t • f 

This equation is to be interpreted as follows: If we start with an empirical fact e in the 
left upper corner of the Hertz diagram, translate it to its theoretical counterpart t(e), 
and use t(e) as the input for a calculation or a logical argument that leads to g • t(e), 
then this outcome is the same as if we had submitted the empirical fact e to an ex-
perimental transformation f arriving at f (e), and translated this experimental fact f (e) 
by t finally yielding t • f (e) = g • t(e). In other words, the two paths in Hertz’s diagram 
are strictly equivalent in that they may be considered as paths that lead to one and the 
same destination. As an elementary example consider e to be some chemical substance 
that is submitted to a certain chemical experiment f which, say, oxidizes e thereby 
yielding as outcome another chemical substance f (e). For this transaction a chemical 
theory has to provide a chemical formula t(e) for e, and a theoretical transformation 
g(t(e)) of t(e) such that t( f (e)) = g(t(e)). As is emphasized by Hertz, given E there may 
be different ‘symbolic completions’ S, S’. The choice between them is a pragmatic 
matter of simplicity and local usefulness. It may be that for different purposes differ-
ent ‘images’ may be appropriate (cf. Hertz 1894, p. 3). 
 Second, let us come to Duhem’s contribution to a modern representational ac-
count of scientific theorizing, which is found in his classic The Aim and Structure of 
Physical Theory (Duhem 1906). At various occasions in his opus magnum he asserts that 
scientific theories are to be conceived as representations. More precisely, he considers 
a physical theory ‘as an economical representation’ that 

establishes an order and a classification among [the experimental laws]. It brings some laws to-
gether, closely arranged in the same group; it separates some others by placing them into two 
groups very far apart. Theory gives, so to speak, the table of contents and the chapter headings 
under which the science to be studied will be methodologically divided. (Duhem 1906, pp. 23f).  

 Later he goes on to explain this ‘representation’ as a correspondence between 
‘practical facts’ and ‘theoretical’ or ‘symbolical facts’. It is certainly not too far fetched 
to consider Duhem’s account as presented up to now as just another version of 
Hertz's structural approach. But there is one feature in Duhem’s representational ap-
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proach that is novel and not present in Hertz. In describing a physical theory as a cor-
respondence between practical and symbolical facts he insists that 

a symbolic formula … can be translated into concrete facts in an infinity of different ways, because 
all these disparate facts admit the same theoretical interpretation. (Ibid,, p. 150) 

And, in an analogous vein: 
The same practical fact may correspond to an infinity of logically incompatible theoretical facts; 
the same group of concrete facts may be made to correspond in general not with a single sym-
bolic judgment but with an infinity of judgments different from one another and logically in con-
tradiction with one another. (Ibid., p. 152) 

 Duhem’s account is rather informal, and he is not very clear about what is to be 
understood by ‘theoretical fact’. In particular, one should not interpret him as conceiv-
ing a ‘theoretical fact’ as a fact ‘belonging’ to a specific theory. Rather, the most ap-
propriate interpretation of Duhemian theoretical facts is to take a theoretical fact as 
one that asserts a physical state of affairs in precise mathematical terms, as is explained 
by Duhem. A typical example of a theoretical fact (or statement) is the following: ‘An 
increased pressure of 100 atmospheres causes the electromotive force of a given gas 
battery to increase by 0.0844 volts.’ (Ibid., p. 152) Other ‘logically incompatible’ theo-
retical statements would be obtained by replacing ‘0.0844’ by ‘0.0845’ or ’0.0846’. 
Hence, Duhem’s account of an empirical theory can be formulated in relational terms 
as follows: 

(2.2) Duhem’s Relational Account of Empirical Theories. Denote the class of symbolic facts 
by S and the class of practical or empirical facts by E. Then a theory T is to be con-
ceived as a relation  

T ⊆ E × S. 

If (e, s) ∈ T then this is to be interpreted as the empirical fact that e is related to s, or, 
to put it the other way round, that the symbolic fact s is related to the empirical fact e. 
 It is important to note that Duhem insisted that this relation is multi-valued: to a 
single e there may correspond many symbolic facts s, and, vice versa, to a single s, 
there may correspond many empirical facts e. This double ambiguity of the relation 
between empirical and symbolical facts is characteristic of Duhem’s account and has 
no counterpart in Hertz’s approach. As we shall show in the next section, this feature 
may be combined with the representational insights of Hertz to yield a complex repre-
sentational account of empirical theories.  

3. Representational Combinatorics 

Following Hertz and Duhem in conceiving the practice of science as engaged in pro-
ducing and manipulating representations of various kinds, the impression that comes 
to mind is that scientific representations do not live in isolation, rather they may be 
combined and concatenated in various ways (Ibarra, Mormann 2000). Hence, investi-
gating these combinatorial aspects of representations is a central task of a general 
theory of representation (Ibarra, Mormann 1997 a, b). 
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 Regardless of what kind of representations we consider, they are not unconnected 
with each other, rather, they form a representational network. One and the same en-
tity A may be represented by several different entities B, C, D etc. such that we have 
representations A B, A C, A D, etc. On the other hand, it may 
happen that one and the same entity E appears as the representative of several differ-
ent entities A, B, C etc. That is to say we have representations A E, B E, 
C E. Furthermore, it can be the case that representations such as A B and 
B C are concatenated yielding an indirect or combined representation 
A C. 

⎯→⎯r ⎯→⎯s ⎯→⎯t

⎯→⎯ ⎯→⎯

⎯→⎯ ⎯→⎯r

⎯→⎯s

⎯⎯→⎯ •rs

 As the result of these considerations, we can see that any theory of representations 
should comprise a combinatorial part, which describes the various possibilities of 
combinations and iterations of representations. In the following we shall assume that 
this combination or concatenation of representations is associative, i.e. representations 
f, g, and h, which ’match’, satisfy the following law of associativity: 

(3.1)     f • (g • h) = (f • g) • h. 

 The combination or iteration of representations is of utmost importance for the 
practice of science. For instance, in the standard representational theory of measure-
ment the numerical measurement of an empirical domain D is conceptualized as a 
representation r: D ℜ of D into the real numbers ℜ. This is a rather idealized 
description. Actually, by a closer inspection the representation D ℜ should be 
regarded as a more or less extended chain of representations 

⎯→⎯

⎯→⎯r

(3.2)   D E F  ...  ℜ. ⎯→⎯ ⎯→⎯ ⎯→⎯ ⎯→⎯

 In most cases, numerical or, more generally, mathematical representations of em-
pirical data cannot be ‘read off’ directly; usually they have to considered as constructs 
which have been built by a more or less complicated constructional processes. The 
long way from data to theory shows that the standard dichotomic is, at best, a very 
idealized picture. Dealing with an example from general relativity theory, Laymon 
gives a detailed account of the ‘long contrafactual path from data to theory’ (cf. Lay-
mon 1982). Other examples of complex ‘long distance’ representations are discussed 
in detail in Latour (1999): Latour tells us in detail the long story from raw findings to 
theoretically digestible data in the case of ‘botanical pedology’ (ibid., chapter 2). Not-
withstanding important differences, all these accounts rely —implicitly or explicitly— 
on what may be called a combinatorics of representations. 
 The combination of representations is not restricted, however, to linear combina-
tions. As will be shown by the in vivo/in vitro example of biochemistry, the point of the 
combinatorial account of representations only comes to the fore if we do not restrict 
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our attention to linear chains of representations but, instead, also take into account 
non-linear net-like configurations of representations.  
 The importance of representational nets or diagrams is evidenced by the fact that 
in the last forty years or so mathematics (and parts of other sciences as well) has been 
successfully reformulated in terms of representational networks. Here we refer, of 
course, to the mathematical theory of categories founded by Eilenberg and Mac Lane 
in the forties and presented for the general scientific public in books such as Mac 
Lane’s Mathematics – Form and Function (1986) or Lawvere and Schanuel’s Conceptual 
Mathematics – A First Introduction to Categories (1996). In category theory, representations 
appear under the names morphisms, functors, and natural transformations. In the last 
decades it has been shown that not only the bulk of mathematics can be reconstructed 
in these terms, but also that this representational reconstruction has lead to new and 
fruitful lines of mathematical research. We take this fact, together with the representa-
tional ideas of Hertz and Duhem as evidence that combinations of various kinds of 
representations play an indispensable role for a representational theory of scientific 
knowledge. This claim is substantiated in the next section in which we propose to 
study in some detail various combinations of representations that arise from the so-
called in vitro/in vitro problem in biochemistry. 

4. A Representational Account of the In Vivo/In Vitro Problem 

In this section we are going to apply the formal apparatus sketched so far to a specific 
problem of a scientific discipline that up to now has not received too much attention 
from philosophy of science, to wit, the so called ‘in vitro/in vivo’ problem of biochemis-
try (cf. Strand, Fjelland, and Flatmark 1996 and Strand 1999). For the information on 
biochemical matters we heavily rely on these papers. Our purpose is to show that the 
rudiments of a theory of meaningful representations set out in the previous sections 
may be used to elucidate the problems of the representational practice biochemistry 
have to cope with. We chose the approach of Strand et al. as our starting point since it 
seemed to us particularly well suited for our purposes: on the one hand, it is suffi-
ciently complex to require the employment of some non-trivial representational tools; 
on the other hand, it is conceptually not too complex as to be inaccessible for non-
experts in biochemistry. 
 First, let us recall the basic ingredients of the in vitro/in vivo problem as it presents 
itself in biochemistry. The first point to note is that although biochemistry may be de-
fined as ‘the field of science concerned with the chemical substances and processes 
that occur in plants, animals, and microorganisms’ it would be misleading to assume 
that ‘biochemists study processes that occur in living organisms’ (cf. Strand 1999, p. 
273). The reason is that normally  

it is impossible to perform a chemical analysis of an intact organism. A biochemical analysis is 
typically preceded by an isolation procedure, in which the organism of interest is disrupted and a 
specific component of it is isolated. To put another way, almost all biochemical evidence is ob-
tained in vitro under artificial experimental conditions. … [Nevertheless] biochemists are con-
cerned with the chemistry of the living organism, in vivo. (Strand 1999, p. 273) 



Scientific Theories as Intervening Representations 27 

Hence one may even assert: 
It would be wrong to say biochemists observe or describe or study processes that occur in living or-
ganisms, because they very rarely do so. Normally, it is impossible to perform a chemical analysis 
of an intact organism. (Ibid., p. 273). 

Almost all biochemical evidence is obtained in vitro, under artificial experimental con-
ditions. 
 An in vivo system is a biologically interesting but experimentally inaccessible system, 
and the corresponding in vitro system as a related accessible, but biologically less inter-
esting system. Although analogous situations also occur in other sciences, the differ-
ence between in vitro and in vivo systems is particularly striking in biochemistry. Now 
we may define the in vitro/in vivo problem (or the IVIV-problem henceforth) as the pro-
blem of justifying knowledge claims about in vivo systems on the basis of evidence ob-
tained in ‘corresponding’ in vitro systems. Or, on a more descriptive level, the IVIV-
problem may be said to be the problem of describing as clearly as possible the various 
methods used by biochemists to extract the information on in vivo systems they are 
seeking from the evidence they have obtained from in vitro systems.  
 One has to note that the IVIV distinction is a relative distinction. That is to say, in 
one context a system may play the role of the in vitro part, in another context the same 
system may be considered as the in vivo component. Of course, one may say that in 
many sciences one finds analogous distinctions to that of the IVIV distinction in bio-
chemistry. Nevertheless, the case of biochemistry is special since the IVIV is thus cen-
tral for this discipline, as is convincingly pointed out by Strand (1999, pp. 274f). His 
discussion may be summed up in the contention that the concept of artifact is central 
in any biochemical discussion. A biochemical artifact is a chemical reaction that occurs 
between biomolecules in vitro, but not in vivo. Now, the problem of artifacts is a central 
problem of meaningful representations everywhere. Given a representation A B 
the problem arises to interpret elements and relations defined on B in terms of A, for 
instance, if r(a) = r(a') one may ask if this identity on the representing domain B may 
be pulled back to A, i.e., one asks if it is possible to infer a = a'. Consider first the spe-
cial case that r is a function. Then, of course, this inference is not valid in general. It is 
only admissible to infer from r(a) ≠ r(a') that a ≠ a'. Now let us consider the general 
case that the representation r is any relation between A and B. Denote the power set 
of B by PB. Then, committing an innocent abuse of language, r may be conceived as a 
function A PB defined by r(a) := {b; (a, b) ∈ r}. In the same vein as above one 
can infer from r(a) ≠ r(b) that a ≠ b. In other words, the inequality on B (or PB) can be 
pulled back to an inequality on A. Of course, the problem of artifacts is not restricted 
to this kind of artifacts. Other, more complicated relations on B such as R( f (a

⎯→⎯r

⎯→⎯r

1), … , 
R( f (an)) may be considered and tested for their A-meaningfulness.  
 We take the fact that the problem of artifacts can be naturally couched in represen-
tational terms as evidence that the IVIV problem should be treated in terms of a the-
ory of meaningful representations. Thus we propose to conceive the relation between 
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an in vivo system S and a corresponding in vitro system S* as a representational relation 
S S* contending that the in vivo system S is represented by the in vitro system S*. ⎯→⎯d

 First, it should be noted that this representation is a material long distance repre-
sentation par excellence: Usually the representing system S* is obtained from S by a 
variety of massive, often destructive interventions of various kinds (cf. Strand et al. 
1996, Strand 1999). The representing system S* is far from being similar to S, and it is 
neither natural nor necessary to represent S by S*. There may be many other ways of 
representing S by other S*', S*'', … depending on the representational interests and 
capacities of those who are engaged in the construction of these intervening representa-
tions. Thus, as the first outcome of considering the IVIV problem in biochemistry we 
contend that the dichotomy between representing and intervening put forward by 
some philosophers such as Hacking is pointless in the case of biochemistry, and, re-
garding biochemistry as a paradigmatic case for science in general, for other sciences 
as well (cf. Hacking 1983). 
 As lucidly explained by Strand et al., there is much more in the IVIV problem than 
the statement that it gives rise to an intervening representation S S*. To deal 
with these more fine-grained aspects of the IVIV problem, let us introduce the follow-
ing terminological conventions: properties, objects, relations, procedures etc. belong-
ing to the realm of in vivo systems are denoted by E, F, a, b, R, p, …, while the corre-
sponding properties, objects, etc. belonging to the in vitro realm are denoted by E*, F*, 
a*, b*, … . Our first purpose is to show that IVIV problems give rise in a natural way 
to a plurality of Hertz’s diagrams. Given systems S and S*, and important task of the 
biochemist’s work is to study how these systems behave under certain perturbations p 
and p*. Here, a perturbation p of S may be considered as a map: S S. More pre-
cisely, p(s) is to be understood that for s ∈ S the state p(s) ∈ S is the state that resulted 
from s when submitted to the perturbation p. Analogously for in vitro states S* and in 
vitro perturbations p*: S* S*. Then the systems and perturbations S, p, S*, p* 
may be said to be optimally correlated if the following Hertz diagram commutes:  

⎯→⎯

⎯→⎯p

⎯→⎯

 
 
 
       p* • d = d • p. 
 

 

  d 

  S   S* 

  S*   S 

   p   p* 

  d 
 
 
 By definition, an artifact is an in vitro perturbation d(s) ≠ p*(d(s)) such that s = p(s). 
If the Hertz diagram commutes, artifacts can be shown not to exist: Assume d(s) ≠ 
p*(d(s)) and s = p(s). From Hertz we get p*(d(s)) = d(p(s)). Hence we get the following 
proposition: 

Proposition 1. If Hertz commutes, then there are no artifacts. 
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 In a similar vein, one obtains that the non-existence of artifacts implies that the 
Hertz diagram commutes for states s that are invariant under the perturbation p, i.e., 
states for which s = p(s): 

Proposition 2. If s is invariant under p AND there are no artifacts, then HERTZ com-
mutes for s. 

Proof. Assume s = p(s). Then d(s) = d( p(s)). Assume that HERTZ does not commute 
for s. That is to say p*(d(s)) ≠ d ( p(s)). Then p*(d(s)) ≠ d(s). Since there are no artifacts 
one infers s ≠ p(s). This is a contradiction.   

In sum, the diagrammatically natural requirement that Hertz diagrams commute is a 
bit stronger than the claim that no artifacts exist. The existence of artifacts is, how-
ever, not the only problem that may arise when studying the relation between in vivo 
and in vitro systems. It may well happen that the combination of in vitro perturbation 
p*: S* S* and the intervening representation d: S S* are jointly too inva-
sive and too coarse, such that a salient in vivo perturbation p fails to be detected by 
them. This is the case if it happens that s ≠ p(s) but d(s) = p*(d(s)). This may be called 
an artificial null effect. Artificial null effects and the commuting of the Hertz diagram 
are related as follows: 

⎯→⎯ ⎯→⎯

Proposition 3. If the Hertz diagram commutes and the representation d: S S* is 
mono, i.e., d(a) = d(b) implies a = b, then no artificial null effects occur.  

⎯→⎯

In this implication, the second clause of the antecedent is clearly necessary. This may 
be more conspicuously expressed by contraposition: 

Proposition 4. If artificial null effects occur, then either the Hertz diagram does not 
commute or the IVIV representation d: S S* is not mono.  ⎯→⎯

 One may ask whether the converse holds: If no artificial null effects occur, does 
the Hertz diagram commute and is d mono? As is easily checked by examples, this is 
not the case. In other words, the conjunctive assumption that the Hertz diagram is 
commutative and the IVIV representation d is mono is strictly stronger than the non-
existence of artificial null effects.  
 As has been pointed by Strand et al., the IVIV problem is not completely described 
by a Hertz diagram connecting an in vivo systems S and an in vitro systems S*. Usually 
these systems are accompanied by what may be called their model systems M and M* 
respectively. That is to say, for the in vivo system S there is a theoretical (or maybe 
sometimes a computer) model M, and for the in vitro system S* there is a theoretical 
(computer model) model M*. Then it is natural to assume that M is an appropriate 
representation of S, and M* is an appropriate representation of S*. These may be ex-
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plicated by the assumption that the representations S M and S* M* have 
Hertz diagrams of the following kind: 

⎯→⎯t ⎯→⎯t

  t 

  S   M 

  M   S 

       

  t 

  t 

  S*   M* 

  M*   S* 

       

  t 

(4.1) 

 

 

 
 

For each of these diagrams one may study the various ways in which artifacts may in-
fluence the reliability of surrogative reasoning dealing with M, S*, and M* and finally 
bound to obtain information about the in vivo system S. 
 For dealing in a reasonable way with problems of this kind it is not sufficient, 
however, to assume that Hertz diagrams for (S, S*), (S, M), and (S*, M*) exist. One 
has to assume the existence of a further ‘purely theoretical’ Hertz diagram for (M, M*) 
such that the following ‘3-dimensional’ or ‘cubical’ diagram commutes:  

(4.2) 

  t 

  t* 

t* 

   t 

  S*   M*

  M*  S* 

   

  

 

  S   M 

  M   S 

 
 
 
 
 
 

  
 
 
Of course, it can hardly be expected that in reality the cube (4.2) is fully commutative. 
Rather, there will exist various sources of non-commutativity, which show that the 
various kinds of systems and models only match approximately. Nevertheless, the 
cube presentation (4.2) may be useful as an idealized model to spot where precisely 
commutativity and thereby the validity of surrogative reasoning via models and sys-
tems of various kinds may fail. 
 Let us consider a particularly simple theoretical model of (in vivo or in vitro) systems, 
which, at first, may not appear as models at all. Assume that for a given system S the 
possible states s of S may have certain properties. This assumption may be cast in a 
representational framework by stipulating that there is a map F: S C, C being a 
structure whose elements are to be interpreted as properties belonging to a certain 
property type. In other words, F(s), s ∈ S, is to be conceived as the assertion that the 
state s has the property F(s). Given a perturbation p: S S one may ask, if F is in-

⎯→⎯

⎯→⎯
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variant with respect to p, i.e., if F ( p(s)) = F(s), or not. Analogously, for in vitro proper-
ties F*: S* C* a corresponding in vitro perturbation p*: S* S* is defined 
that may or may not be invariant under the in vitro property F*: S* C*. The 
properties F and F* are correlated by d and d

⎯→⎯ ⎯→⎯

⎯→⎯
c iff there is a commutative diagram of 

the following kind: 
 

d 

 S* 

S
  F 

p*

  C* 

  C 

  dc

  F* 

p
 
 
 
 
 
 
 
 This diagram describes the (ideal) relation between in vivo properties F and in vi-
tro properties F*. From now on, let us assume that F and F* are such that there exist 
d and dc so that the diagram commutes. This means that F and F* are reasonably cor-
related with each other. This is to ensure that assertions dealing with F* may be possi-
bly translated into assertions dealing with F, that is to say that F and F* can be corre-
lated by surrogative reasoning. On this non-trivial assumption about F and F* is based 
the entire in vivo/in vitro argumentation. 
 Usually, the domain of values C of a property F is not just a set, but has some 
structure. For instance, often C is assumed to be endowed with an order relation ≤. 
Then we may define an order relation on S by pulling back the order defined on C by 
the following definition: 

s ≤ s' := F(s) ≤ F(s'). 

 In an analogous way the state space S* of an in vitro system may be endowed with 
an order via a map S* C* of S* into an ordered property space C*. The in vivo 
property F is stable under the in vivo perturbation p: S S iff s ≤ s' implies 
p(s) ≤ p(s'), i.e., iff F(s) ≤ F(s') ⇒ F( p(s)) ≤ F( p(s')). Analogously for in vitro perturba-
tion p* and an in vitro feature F*. Of course, the two properties F and F* and the per-
turbations p and p* should not be unrelated to each other. Rather, the in vivo property 
F and the in vitro property F* should obey the following relation: 

⎯→⎯ *F

⎯→⎯

F( p(s)) ≤ F( p(s')) ⇒ F*( p*(d(s))) ≤ F*( p*(d(s'))). 

In this case, from the accessible in vitro relation NOT(F*( p*(d(s))) ≤ F*( p*(d(s')))) one 
can infer NOT(F( p(s)) ≤ F( p(s')). 
 Discussing the structural features of the IVIV problem shows that in the bio-
chemical practice the concepts of representation and intervention are intimately re-
lated. More precisely, they are correlated by a variety of commutative diagrams that 
combine in vivo systems, in vitro systems, in vivo models, and in vitro models by a com-
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plex net of representational and intervening links. The basic building block of this net, 
which intertwines theoretical representations and practical interventions are various 
kinds of Hertz diagrams. Thus, taking the IVIV problem in biochemistry as paradig-
matical for empirical theories in general we contend that representations and interven-
tions should be treated together, since both may be characterized as moves in the 
complex network of an empirical theory. 
 The IVIV problem of biochemistry is particularly interesting for a representational 
philosophy of science as it shows the necessity of considering iterations and combi-
nations of various kinds of interventions and representations. The language of repre-
sentational diagrams is particularly apt for dealing with the various kinds of connec-
tions. We think that the opposition between the representative and the performative 
perspective in philosophy of science is an artifact of a misinformed philosophy of sci-
ence. One does not have to choose between them. Indeed, in some sense, every repre-
sentation has an interventional aspect, at least indirectly, and every intervention leads 
to a representation. 

5. Adjoint Situations 

In this section we are going to show that Duhem’s relational account of theories that 
conceives a theory T as a relation T ⊆ S × E between symbolic and empirical facts 
may be elucidated by using so called Galois connections or, more generally, adjoint 
situations in the sense of category theory. This part of the paper is the most specula-
tive one, and some readers may object that we introduce a heavy formal apparatus 
without real justification. Thus the following preliminary remark may be in order. Our 
point is this: conceiving an empirical theory as a certain relation between empirical and 
theoretical facts seems to us quite a natural and intuitive approach. Otherwise Duhem, 
who certainly was not interested in formal technicalities, would not have endorsed it. 
Now, as soon as a theory is given as a relation T ⊆ S × E, the whole apparatus of Ga-
lois relations is available. One may even say that a Galois relation between PS and PE 
is nothing but a relation. Since Galois connections have turned out to be a useful tool 
in the study of binary relations in mathematics, computer science and elsewhere. 
Hence, one may suspect that they could do some useful work in formal philosophy of 
science as well. This conjecture is further supported by the fact that Galois connec-
tions are just a very special case of adjoint situations that may be characterized as the 
fundamental concept of category theory. Hence, there is some hope that these con-
ceptual tools have some applications in philosophy of science as well. 
 By conceiving a theory as a relation T ⊆ E × S of empirical and symbolical facts in 
the sense of Duhem’s The Aim and Structure of Physical Theory, it is not claimed, of 
course, that any relation X ⊆ S × E counts as a genuine theory. There are countless 
relations between the two classes of facts that make no sense at all. Further restric-
tions will have to be imposed on T in order that T can be acknowledged as a genuine 
theory. As will be shown later, for this task the representational ideas of Hertz turn 
out to be useful. 
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 For the moment we only want to emphasize Duhem’s main point, to wit, that for 
any given empirical fact f ∈ E there may be many symbolic facts s ∈ S such that f and 
s are theoretically correlated, i.e., that ( f, s) ∈T, and that vice versa for any s ∈ S there 
may be many empirical facts f ∈ E such that ( f, s) ∈ T (cf. Duhem 1906, pp. 152ff). 
Formally, this means that T ⊆ E × S is a relation and not a function. 
 This multivalued correlation between empirical and symbolical facts renders it 
plausible that a single fact, be it symbolical or empirical, hardly makes sense as such. 
That is to say, a single s ∈ S or f ∈ E is an object that in real science hardly occurs. 
Rather, what shows up in the practice of real science are clusters or complexes of empiri-
cal and theoretical facts. Thus, we propose to consider appropriate sets A ⊆ S and 
B ⊆ E as the real building blocks of scientific theories; single empirical facts f ∈ E or 
symbolic facts s ∈ S are auxiliary concepts introduced for methodological reasons. 
Replacing elements by subsets in this way is a natural generalization in so far as the 
‘elementary’ facts of type s and f may be considered as special cases of facts of type A 
and B by identifying s and f with their singletons {s} and { f }. This technical move 
from elementary facts to subsets of elementary facts resembles the approach Duhem’s 
Austrian colleague Ernst Mach proposed long time ago: according to Mach, it was the 
task of science to describe the functional relations of appropriate complexes or clus-
ters of elements in the most economical way possible. In any case, the move from 
elements to subsets facilitates to get started the formal apparatus we are going to apply 
in order to elucidate Duhem’s relational account of scientific theories. After these pre-
paratory remarks we are now ready to set up the formal apparatus we need in order to 
cast Duhem’s relational account of empirical theories in the framework of Galois 
connections. First, let us deal with the necessary technicalities. 
 Denote by PS and PE the power sets of S and E, respectively. For the moment, let 
us assume that PS and PE are endowed with their natural (set-theoretical) order struc-
tures (PS, ⊆) and (PE, ⊆). A theory T ⊆ E × S gives rise to order-preserving maps be-
tween PS and PE by the following recipe: 

(5.1) Proposition. Let T ⊆ E × S be a theory. Define maps PE PS and 
PS PE by:  

⎯→⎯t

⎯→⎯e

(a)  For Y ∈ PE define e(Y) by e(Y): = {s; ∃y ( y ∈ Y AND ( y, s) ∈ T} 

(b) For X ∈ PS define t(x) by t(X): = { y; (e ({ y}) ⊆ X}. 

Then the maps e and t are order preserving.  

Proof. Check the definitions of e and t.  

 Obviously, e and t are not unrelated to each other. Indeed, it can be shown that t is 
completely determined by e, and vice versa. Actually, much more is true, as is shown 
by the following proposition: 



Andoni IBARRA, Thomas MORMANN 34

(5.2) Proposition. Let e and t be defined as above. Then for all X ⊆ S and Y ⊆ E the fol-
lowing holds: 

X ⊆ t(Y) IFF e(X) ⊆ Y. 

 In technical jargon, the ordered pair (t, e) is called a Galois connection between the 
order structures PS and PE (cf. Gierz et al. 2003). More precisely, t is called the upper 
(or right) adjoint, and e is called the lower (or left) adjoint. One should note that a Ga-
lois connection (t, e) is not a symmetric notion, i.e., if (t, e) is a Galois connection, usu-
ally (e, t) fails to be a Galois connection. The difference between upper and lower ad-
joint is reflected in the notational convention that t as the upper adjoint is on the right 
or ‘upper’ side of ≤, while e as the lower adjoint is on the ’lower’ side of the order rela-
tion ≤. This asymmetry is essential in the following to set up an asymmetric relation 
between the domain of empirical facts E and the domain of symbolical facts S. 

Proof (5.2). The proof naturally splits into two parts: (i) assume X ⊆ t(Y) and z ∈ e(X). 
Then one has to show z ∈ Y. By definition of e(X) there is an s ∈ X with (s, z ) ∈ T. 
That is to say z ∈ e(s). By presupposition s ∈ t(Y). This means e(s) ⊆ Y, and therefore 
z ∈ Y; (ii) Assume e(X) ⊆ Y and s ∈ X. One has to show s ∈ t(Y). But e(s) ⊆ e(X) ⊆ Y, 
and this just means s ∈ t(Y). 

(5.3) Corollary. The map PS PS is a kernel operator, i.e., e • t(X) ⊆ X, for all 
X ⊆ S, and the map PE PE is a closure operator, i.e. Y ⊆ t • e(Y) for all 
Y ⊆ E. 

⎯→⎯ •te

⎯→⎯ •et

 After having presented these rudiments of the theory of Galois connections, let us 
start now with the task of elucidating the intuitive meaning of this gadget. This 
amounts to an interpretation of the components t and e, which form the Galois con-
nection (t, e), and an explanation of their most important properties in informal terms 
of philosophy of science. 
 For this task it is expedient to start with the map e: PS PE. Recall that sub-
sets X ⊆ S and subsets Y ⊆ E are to be interpreted as symbolic (theoretical) and em-
pirical facts. By definition e(X) is the collection of all ‘atomic’ empirical facts z that are 
empirically correlated to at least one ‘atomic’ symbolic fact s ∈ X. This may be inter-
preted as that the empirical fact e(X) provides an empirical realization of X in a broad 
sense, i.e., it may be that the empirical facts z realizing the symbolic facts of X may 
have theoretical correlates s that do not belong to X but at least X is covered by the 
empirical facts of e(X) in the sense that t(e(X)) ⊇ X. 

⎯→⎯

 Analogously, the map t may be interpreted as a recipe to translate an empirical fact 
Y ⊆ E into a related theoretical fact t(Y) such that each theoretical fact s belongs to 
t(Y), i.e., s ∈ t(Y) if and only if all empirical correlates z of s belong to Y. In other 
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words, t(Y) is the most comprehensive theoretical fact for which Y provides a com-
plete empirical realization. 
 We hasten to add that this relational account of empirical theories as a relation 
T ⊆ E × S is seriously incomplete. Its essential flaw is that it does not allow us to 
distinguish between approximately true theories and false theories, i.e., theories that 
are completely off the mark. If a theory T is just a relation T ⊆ E × S relating symbolic 
and empirical facts, there is no room for asking if T is (approximately) correct or not. 
This is clearly not sufficient to model the way of how theories relate theoretical facts 
to often recalcitrant empirical facts. To overcome this shortcoming, it is expedient to 
rely once more on the insights encapsulated in Hertz’s diagram. In other words, we 
propose to combine the insights of Hertz and Duhem to obtain a better model of sci-
entific theorizing that comprises the advantages of both the Hertzian and the Duhe-
mian accounts. 
 This is done as follows: Let us start over again from the domains PS and PE of 
theoretical facts and symbolic facts, respectively, endowed with maps e: PS PE 
and PE PS as before. That is to say, e and t are to be interpreted as Duhemian 
maps correlating symbolic facts and empirical facts as explained above. The new in-
gredient we are going to introduce in order to distinguish between (approximately) 
true theories and those that are plainly false is provided by the replacement of the triv-
ial set theoretical order relation ⊆

⎯→⎯e

⎯→⎯t

S on S and ⊆E on E by appropriate non-trivial order 
relations ≤S and ≤E on PS and PE, respectively, which reflect some theoretical or em-
pirical intervention and processes as explained in our discussion of the Hertz diagram 
in section 2. More precisely this is explained in the following definition: 

(5.4) Definition. (a) Assume Y, Y* ∈ PE. Assume that there is an empirical process P or 
intervention such that the empirical fact Y is the initial state P(i) of P, and Y* is the fi-
nal state P( f ) of P. It is further assumed that processes or interventions P, P', P'' can 
be concatenated associatively. Define Y ≤ Y* := there is a process P with initial state 
Y and final state Y*. 

(b) Assume X, X* ∈ PS. Assume that there is a symbolic process P or intervention 
such that the symbolic fact X is the initial state P(i) of P, and X* is the final state P( f ) 
of P. It is further assumed that processes or interventions P, P', P'' can be concate-
nated associatively. Define X ≤ X* := there is a process P with initial state X and final 
state X*. 

 The class of processes or interventions defined for symbolic and empirical facts 
render PS and PE order structures, to be denoted by (PS, ≤S ) and (PE, ≤E ), respec-
tively. From now on, PS and PE are assumed to be endowed with these interventional 
orders which differ from the set-theoretical orders ⊆S and ⊆E. In Hertz’s terms, then, 
X ≤ X’ is to read as ‘X’ is a necessary consequent of X’, and analogously Y ≤ Y’ is to 
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be read as ‘Y’ is a necessary consequent of Y’. Then the following Duhem-Hertz re-
quirement makes sense: 

(5.5) Definition. Let T ⊆ E × S be a relation of symbolical and empirical facts. Assume 
PE and PS endowed with interventional orders ≤E and ≤S respectively, X ∈ PS, Y ∈ 
PE. Let PS PE and PE PS defined by T. Then the theory T is said to sat-
isfy the Duhem-Hertz condition iff for all X ∈ PS, Y ∈ PE the following equivalence 
holds: 

⎯→⎯e t⎯→⎯

(5.6)             e(X) ≤E Y IFF X ≤S t(Y). 

In other words, the pair (t, e) is a Galois connection between (PS, ≤S ) and (PE, ≤E ). 
More precisely, t is the upper (or right) adjoint, and e is the lower (or left) adjoint of 
this Galois connection. 
 Before we explain in some detail why theories satisfying (5.6) should be considered 
as (approximately) true let us note that instead of the set theoretical structures PS and 
PE it may be more expedient, more intuitive, and even less clumsy to replace PS and 
PE by ordered domains (U, ≤U ) and (V, ≤V ). Then the Duhem-Hertz condition (5.6) 
simply requires that there are order-preserving maps U V and V U such 
that (t, e) defines a Galois connection between U and V in the sense of (5.2). This may 
be even further generalized by the assumption that U and V are categories in an ad-
joint situation (cf. Goldblatt 1978). That is to say, conceiving an empirical theory as an 
adjoint situation (F, G) between a category of symbolic facts U and a category V of 
empirical facts combines in a neat and natural way the classical insights of Hertz and 
Duhem. 

⎯→⎯e ⎯→⎯t

 As a summary of this section let us reformulate once more the basic thesis in 
somewhat different terms, assuming that an empirical theory is given as a Galois con-
nection (t, e) between an ordered domain (U, ≤) of symbolic facts and an ordered do-
main (V, ≤) of empirical facts, i.e. the maps U V and V U satisfy the 
Galois equivalence 

⎯→⎯e ⎯→⎯t

(5.7)   e(x) ≤ a    IFF    x ≤ t(a),    x ∈ U, a ∈ V. 

Then we may conceive x as a theoretical law that may be considered as the blueprint for 
the building of a nomological machine or experimental apparatus e(x) that produces 
the empirical fact a as its outcome. Then the Galois connection states: 
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 The nomological machine e(x) brings about the empirical fact a  
 

IFF 
 
 The theoretical law x implies an idealized version t(a) of a. 
 

 
This yields another interpretation of the formal apparatus of Galois connection that 
renders plausible the claim why theories which satisfy the Galois connection should 
be considered as (approximately) true theories: such theories are approximately true 
since they ensure a relation between the empirical and the theoretical that captures the 
idea that an approximately true theory should approximately correspond to the facts. 

6. Concluding Remarks 

The leitmotif of this paper was the thesis that scientific theories are to be considered 
as representations, and, more generally, that the practice of science may be conceptual-
ized as a representational practice. This idea is not new, and many have put forward it 
in many different ways. Philosopher-scientists such as Hertz and Duhem provide dis-
tinguished examples. Tapping some of their essential insights we hope to have ren-
dered plausible the following theses: (i) representation is a complex concept in need of 
a theory, (ii) representations do not live in isolation. Rather, they may be iterated and 
combined in various ways, and (iii) representations do not ‘speak for themselves’. 
Rather, representations are in need of interpretation. A large part of scientific practice 
consists in interpreting and reinterpreting representations. 
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