EC402 classes

October 20, 2010
Antoine Goujard

Comments on PS1 and PS2

[\mathbf{T}] means technical and can be omitted in $1^{\text {st }}$ read and $2^{\text {nd }}$ read, just here if you have already seen these technicalities somewhere else. [O] means optional or indirectly related to the problem sets.

PS1.Q3 [T]

Let $f(x, y)$ be the joint pdf of (X, Y). The question is when can we interchange the order of integration in:
$A:=\iint g(x, y) f(x, y) d x d y$
And $A_{1}:=\iint g(x, y) f(x, y) d y d x$
So that: $A=A_{1}$
Sufficient conditions are:

- Tonelli's theorem: eg. $g()$ is continuous (or measurable if you know this notion) and non negative.
- Fubini's theorem: eg. $g()$ is continuous (or measurable) and $\iint|g(x, y)| f(x) f(y) d x d y$ is finite. When $\iint|g(x, y)| f(x, y) d x d y<\infty$ we say that $g()$ is integrable and $A=A_{1}$. We always make this assumption, so that we can always interchange the order of the integrals.

PS1.Q4 [O]

Counterexample to prove that: $E(Y \mid X)=E(Y)$ does not imply X independent of Y.
Take a bivariate discrete case:

p	$\mathrm{X}=\mathrm{Y}^{2}$	Y
$1 / 3$	1	-1
$1 / 3$	0	0
$1 / 3$	1	1

Then $E(Y \mid X)=E(Y)=0$ but $E(X \mid Y) \neq E(X)$. And we showed in class that the statement " X is independent of Y " implies conditional mean independence (ie. that: $E(Y \mid X)=E(Y)$ and $E(X \mid Y)=E(X)$).
Counterexample to prove that: $\operatorname{Cov}(X, Y)=0$ does not imply $E(X \mid Y)=E(X)$.
Take the same example:

p	$\mathrm{X}=Y^{2}$	Y	$\mathrm{X} \times \mathrm{Y}$
$1 / 3$	1	-1	-1
$1 / 3$	0	0	0
$1 / 3$	1	1	1

Then $E(X Y)=E(Y)=0$ so $\operatorname{Cov}(X, Y)=0$ but $E(X \mid Y) \neq E(X)$.

1. $A_{n \times n}$ symmetric matrix is such that $A=A^{\prime}$.
2. $A_{n \times n}$ idempotent matrix is such that $A^{2}=A$.
3. $A_{n \times n}$ orthogonal matrix is such that $A A^{\prime}=A^{\prime} A=I_{n}$.
4. $A_{n \times n}$ invertible matrix is such that $\exists A^{-1}, A^{-1} A=I_{n}$.
5. $A_{m \times n}$ full column rank matrix is such that for $x_{n \times 1} \neq 0$ then $A . x \neq 0$.
6. $A_{n \times n}$ positive definite/semidefinite matrix is such that for $x \neq 0$ then $x^{\prime} A x>/ \geq 0$.
7. Diagonalization of symmetric matrices. If $A_{n \times n}$ is symmetric then there exists $S_{n \times n}$ such that $S^{\prime} S=I_{n}$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with the λ_{i} s the eigenvalues of A such that $S^{\prime} A S=\Lambda$ or $A=S \Lambda S^{\prime}$.
8. $A_{n \times n}$ symmetric matrix has real eigenvalues.
9. $A_{n \times n}$ idempotent matrix has eigenvalues $=0$ or $=1$.
10. $A_{m \times n}$ and $G_{p \times m}$ is full column rank (ie. $r(G)=m$) then $r(G A)=r(A)$.
11. $A_{m \times n}$ and $G_{n \times p}$ is full row rank (ie. $r(G)=n$) then $r(A G)=r(A)$.

PS2.Q4 Quadratric form and Chi-squarred distribution

If M is $n \times n$ symmetric, idempotent and rank M is J and if $x \sim \mathcal{N}\left(0, I_{n}\right)$ then $z:=x^{\prime} . M . x \sim \chi_{J}^{2}$.

We can do the proof in 4 steps:
Step 1: By the diagonalization theorem for symmetric matrices we have:
$z:=x^{\prime} . M . x=x^{\prime} . S \Lambda S^{\prime} . x$ where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $S_{n \times n}$ such that $S^{\prime} S=I_{n}$.
So that $z:=x^{\prime} . M . x=u^{\prime} . \Lambda . u$ with $u:=S^{\prime} . x$
But $u:=S^{\prime} . x \sim \mathcal{N}\left(0, S^{\prime} S\right)=\mathcal{N}\left(0, I_{n}\right)$
Step 2: $\forall i, \quad \lambda_{i} \in\{0,1\}$ (we proved this in class using that M is idempotent).
Step 3: $\operatorname{tr}(\Lambda)=\sum_{i} \lambda_{i}=r(M)=J$
Step 4: $z=\sum_{i} \lambda_{i} u_{i}^{2}$ with the u_{i} 's iid $\mathcal{N}(0,1)$ so $z \sim \chi_{J}^{2}$.

Rk: We can prove step 3, using step 1 and step 2 . We have:
$\operatorname{tr}(M)=\operatorname{tr}\left(S \Lambda S^{\prime}\right)=\operatorname{tr}\left(\Lambda S^{\prime} S\right)=\operatorname{tr}(\Lambda)=\sum_{i} \lambda_{i}=r(\Lambda)$
But $r(\Lambda)=r(M)$ because S and S^{\prime} are square invertible matrices.

