EC402 classes

October 20, 2010 Antoine Goujard

Comments on PS1 and PS2

 $[\mathbf{T}]$ means technical and can be omitted in 1^{st} read and 2^{nd} read, just here if you have already seen these technicalities somewhere else. $[\mathbf{O}]$ means optional or indirectly related to the problem sets.

PS1.Q3 [T]

Let f(x, y) be the joint pdf of (X, Y). The question is when can we interchange the order of integration in:

 $A := \int \int g(x, y) f(x, y) dx dy$ And $A_1 := \int \int g(x, y) f(x, y) dy dx$ So that: $A = A_1$

Sufficient conditions are:

- Tonelli's theorem: eg. g() is continuous (or measurable if you know this notion) and non negative.

- Fubini's theorem: eg. g() is continuous (or measurable) and $\int \int |g(x,y)| f(x)f(y) dx dy$ is finite. When $\int \int |g(x,y)| f(x,y) dx dy < \infty$ we say that g() is integrable and $A = A_1$. We always make this assumption, so that we can always interchange the order of the integrals.

PS1.Q4 [O]

Counterexample to prove that: E(Y|X) = E(Y) does not imply X independent of Y. Take a bivariate discrete case:

р	$X = Y^2$	Y
1/3	1	-1
1/3	0	0
1/3	1	1

Then E(Y|X) = E(Y) = 0 but $E(X|Y) \neq E(X)$. And we showed in class that the statement "X is independent of Y" implies conditional mean independence (i.e. that: E(Y|X) = E(Y)and E(X|Y) = E(X)).

Counterexample to prove that: Cov(X, Y) = 0 does not imply E(X|Y) = E(X). Take the same example:

р	$X = Y^2$	Y	$\mathbf{X} \times \mathbf{Y}$
1/3	1	-1	-1
1/3	0	0	0
1/3	1	1	1

Then E(XY) = E(Y) = 0 so Cov(X, Y) = 0 but $E(X|Y) \neq E(X)$.

- 1. $A_{n \times n}$ symmetric matrix is such that A = A'.
- 2. $A_{n \times n}$ idempotent matrix is such that $A^2 = A$.
- 3. $A_{n \times n}$ orthogonal matrix is such that $AA' = A'A = I_n$.
- 4. $A_{n \times n}$ invertible matrix is such that $\exists A^{-1}, A^{-1}A = I_n$.
- 5. $A_{m \times n}$ full column rank matrix is such that for $x_{n \times 1} \neq 0$ then $A \cdot x \neq 0$.
- 6. $A_{n \times n}$ positive definite/semidefinite matrix is such that for $x \neq 0$ then $x'Ax > l \ge 0$.
- 1. Diagonalization of symmetric matrices. If $A_{n \times n}$ is symmetric then there exists $S_{n \times n}$ such that $S'S = I_n$ and $\Lambda = diag(\lambda_1, ..., \lambda_n)$ with the λ_i s the eigenvalues of A such that $S'AS = \Lambda$ or $A = S\Lambda S'$.
- 2. $A_{n \times n}$ symmetric matrix has real eigenvalues.
- 3. $A_{n \times n}$ idempotent matrix has eigenvalues = 0 or = 1.
- 4. $A_{m \times n}$ and $G_{p \times m}$ is full column rank (i.e. r(G) = m) then r(GA) = r(A).
- 5. $A_{m \times n}$ and $G_{n \times p}$ is full row rank (i.e. r(G) = n) then r(AG) = r(A).

PS2.Q4 Quadratric form and Chi-squarred distribution

If M is $n \times n$ symmetric, idempotent and rank M is J and if $x \sim \mathcal{N}(0, I_n)$ then $z := x' \cdot M \cdot x \sim \chi_J^2$.

We can do the proof in 4 steps: Step 1: By the **diagonalization theorem** for symmetric matrices we have: $z := x'.M.x = x'.S\Lambda S'.x$ where $\Lambda = diag(\lambda_1, ..., \lambda_n)$ and $S_{n \times n}$ such that $S'S = I_n$. So that $z := x'.M.x = u'.\Lambda.u$ with u := S'.xBut $u := S'.x \sim \mathcal{N}(0, S'S) = \mathcal{N}(0, I_n)$ Step 2: $\forall i, \lambda_i \in \{0, 1\}$ (we proved this in class using that M is **idempotent**). Step 3: $tr(\Lambda) = \sum_i \lambda_i = r(M) = J$ Step 4: $z = \sum_i \lambda_i u_i^2$ with the u_i 's iid $\mathcal{N}(0, 1)$ so $z \sim \chi_J^2$.

Rk: We can prove step 3, using step 1 and step 2. We have: $tr(M) = tr(S\Lambda S') = tr(\Lambda S'S) = tr(\Lambda) = \sum_i \lambda_i = r(\Lambda)$ But $r(\Lambda) = r(M)$ because S and S' are square invertible matrices.