EC402 classes

November 17, 2010
Antoine Goujard

PS5 Question 1, out of sample prediction

Here is a detailed solution to exercise 1 (see also Johnston \& Dinardo, p99).
We have 11 observations (1...11) of the model:
$y_{i}=\beta_{1} \cdot x_{1 i}+\beta_{2} \cdot x_{2 i}+\varepsilon_{i}=x_{i}^{\prime} \cdot \beta+\varepsilon_{i}$. with ε_{i} i.i.d $N\left(0, \sigma^{2}\right)$
And we want to predict y_{12} and $E\left(y_{12}\right)$.

We need to do three steps. $\underline{\mathbf{1} /}$ First we need to find the predicted value at x_{12}, \hat{y}_{12} and the precision of our estimates. $\underline{\mathbf{2 /}}$ Then we need to evaluate the variance and the distribution of $\hat{y}_{12}-y_{12}$ if we are interested in predicting the value of observation 12. 3/ Finally, we need to evaluate the variance and the distribution of $\hat{y}_{12}-E\left(y_{12}\right)$ if we are interested in predicting the expected value of observation 12 .

1/ Using the OLS estimator formula, we get:
$\hat{\beta}_{\text {ols }}=\binom{1 / 3}{1 / 3}$, thus, $\hat{y}_{12}:=\hat{\beta}_{1} \cdot x_{12}+\hat{\beta}_{2} \cdot x_{12}=(5-2) / 3=1$
Moreover we know that: $V\left(\hat{y}_{12}\right)=V\left(x_{12}^{\prime} \cdot \hat{\beta}_{\text {ols }}\right)=x_{12}^{\prime} \cdot V\left(\hat{\beta}_{\text {ols }}\right) \cdot x_{12}$.
And that we can estimate $V\left(\hat{\beta}_{o l s}\right)$ by $\hat{V}\left(\hat{\beta}_{o l s}\right)=\frac{R S S}{n-k} \cdot\left(X^{\prime} X\right)^{-1}$.
So we need to evaluate:
$R S S=\hat{\varepsilon}^{\prime} \hat{\varepsilon}=y^{\prime} \cdot y-\hat{y}^{\prime} \cdot \hat{y}$.
$\hat{y}^{\prime} \cdot \hat{y}=\hat{\beta}_{o l s}^{\prime} \cdot X^{\prime} X \cdot \hat{\beta}_{o l s}=\frac{1}{9} \cdot\left(\begin{array}{ll}1 & 1\end{array}\right) \cdot\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right) \cdot\binom{1}{1}=6 / 9=2 / 3$
Thus $R S S=4 / 3-2 / 3=2 / 3$ and $s^{2}=\frac{R S S}{n-k}=\frac{2}{3} \cdot \frac{1}{11-2}=\frac{2}{27}$
This gives us:
$\hat{V}\left(\hat{\beta}_{\text {ols }}\right)=s^{2} \cdot\left(X^{\prime} X\right)^{-1}=\underbrace{\frac{2}{27} \cdot \frac{1}{3}}_{2 / 81} \cdot\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$
So that: $\hat{V}\left(\hat{y}_{12}\right)=\frac{2}{81} \cdot\left(\begin{array}{ll}5 & -2\end{array}\right) \cdot\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right) \cdot\binom{5}{-2}=\frac{156}{81}$
 the variance of $\hat{y}_{12}-y_{12}=x_{12}^{\prime} \cdot\left(\hat{\beta}_{o l s}-\beta\right)-\varepsilon_{12}$.

$$
V\left(\hat{y}_{12}-y_{12}\right)=\underbrace{V\left(\hat{y}_{12}\right)}_{\simeq \frac{156}{81}}+\underbrace{V\left(y_{12}\right)}_{\simeq \hat{V}\left(\varepsilon_{12}\right)}+2 \cdot \underbrace{\operatorname{Cov}\left(\hat{y}_{12}, y_{12}\right)}_{=0}
$$

We know that the first term estimate is $\frac{156}{81}$, the second term is estimated by $s^{2}=\frac{2}{27}$ and the third term is 0 because we have assumed that ε_{i} is i.i.d, so y_{12} is independent of y_{i} for $i \leq 11$
and it follows that y_{12} from \hat{y}_{12}. Thus,
$\hat{V}\left(\hat{y}_{12}-y_{12}\right)=2$
Moreover, we have:
$\frac{\hat{y}_{12}-y_{12}}{\sqrt{\hat{V}\left(\hat{y}_{12}-y_{12}\right)}} \sim t_{n-k}$
Because:
$-\frac{\hat{y}_{12}-y_{12}}{\sqrt{V\left(\hat{y}_{12}-y_{12}\right)}} \sim N(0,1)$ (here A5Normality A3fixed regressors and A4 scalar covariance matrix are satisfied).
$-(n-k) \cdot \frac{\hat{V}\left(\hat{y}_{12}-y_{12}\right)}{V\left(\hat{y}_{12}-y_{12}\right)} \sim \chi_{n-k}^{2}$
(To see this point, note that: $\hat{V}\left(\hat{y}_{12}-y_{12}\right)=s^{2} \cdot\left(1+x_{12}^{\prime} \cdot\left(X^{\prime} X\right)^{-1} \cdot x_{12}\right)$ and:
$V\left(\hat{y}_{12}-y_{12}\right)=\sigma^{2} \cdot\left(1+x_{12}^{\prime} \cdot\left(X^{\prime} X\right)^{-1} \cdot x_{12}\right)$. This implies: $(n-k) \cdot \frac{\hat{V}}{V}=(n-k) \cdot \frac{s^{2}}{\sigma^{2}}$ so we can apply the results of the lecture notes p30.)

- The numerator and denominator are independent.
(For the fixed regressors case (or conditionnal on X), the random part of the denominator is s^{2} computed with observations $1 \ldots 11 . s^{2}$ is independent of $\hat{\beta}$ (see p30) and thus of \hat{y}_{12}. Moreover as s^{2} do not depend on observation 12 , it is independent of y_{12}).

This gives us, $y_{12} \in\left[\hat{y}_{12}+/-\sqrt{\hat{V}\left(\hat{y}_{12}-y_{12}\right)} \cdot t_{n-k}^{*}(10 \%)\right]$

3/ Now if we want a confidence interval for $E\left(y_{12}\right)=\beta_{1} \cdot x_{12}+\beta_{2} \cdot x_{12}$, we have to evaluate $\hat{V}\left(\hat{y}_{12}-E\left(y_{12}\right)\right)$. This is $\hat{V}\left(\hat{y}_{12}\right)=\frac{156}{81}$ by what we did before. By the previous arguments, we can construct the confidence interval using:
$\frac{\hat{y}_{12}-E\left(y_{12}\right)}{\sqrt{\hat{V}\left(\hat{y}_{12}\right)}} \sim t_{n-k}$

