EC402 classes

November 29, 2010
Antoine Goujard

PS6 Question 1

The model is:
$y_{i}=\beta_{1} \cdot x_{1 i}+\beta_{2} \cdot x_{2 i}+\varepsilon_{i}$
By PS5, we know:
$\hat{\beta}=\binom{1 / 3}{1 / 3}$ and $s^{2}=\frac{R S S}{n-k}=\frac{2}{27}$
And $V(\hat{\beta})=\sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1}=\sigma_{\varepsilon}^{2} \cdot \frac{1}{3} \cdot\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$
Also, $\hat{V}(\hat{\beta})=s^{2} \cdot\left(X^{\prime} X\right)^{-1}=\underbrace{\frac{2}{27} \cdot \frac{1}{3}}_{2 / 81} \cdot\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$
a) Now we want to test: $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$

To perform this test we need to know the distribution of the test statistic under H_{0} so in finite samples we need to make some assumptions on the distribution of the disturbance ε_{i}. We can make two sets of assumptions:
-S1: Under A1, A2, A3F, A5N, we have: $\hat{\beta} \sim \mathcal{N}_{k}\left(\beta, \sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1}\right)$.
-S2: Under A1, A2, A3RFI, A5N, we have: $\hat{\beta} \mid X \sim \mathcal{N}_{k}\left(\beta, \sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1}\right)$.

With A1, A2, A3F, A3FI, A5N as in the lecture notes p24.
A1. $\rho(X)=k \leq n$.
A2. $y=X \beta+\varepsilon$ and $E(\varepsilon)=0$.
A3F. X is fixed in repeated samples .
A3FI. $x_{i k}$ is independent of ε_{j} for all observations i, j and all variable k.
A5N. $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma_{\varepsilon}^{2} \cdot I_{n}\right)$

Rk: we can slightly change the set S 2 of assumptions saying that: A1, A2 hold and that $\varepsilon \mid X \sim \mathcal{N}_{n}\left(0, \sigma_{\varepsilon}^{2} \cdot I_{n}\right)$. The conclusion will be the same: $\hat{\beta} \mid X \sim \mathcal{N}_{k}\left(\beta, \sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1}\right)$. Indeed, $\mathrm{A} 3 \mathrm{FI}+\mathrm{A} 5 \mathrm{~N} \Rightarrow \varepsilon \mid X \sim \mathcal{N}_{n}\left(0, \sigma_{\varepsilon}^{2} \cdot I_{n}\right)$

Let's assume that we are in the case S2. Under H_{0} if we know σ_{ε}^{2} we can test H_{0} using the fact that $\hat{\beta_{1}} \mid X \sim_{H_{0}} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)_{11}^{-1}\right)$.
Here we need to estimate σ_{ε}^{2} by s^{2}. We will use 3 facts from the lecture notes:
1/ $\left.(n-k) \cdot \frac{s^{2}}{\sigma_{\varepsilon}^{2}} \right\rvert\, X \sim \chi_{n-k}^{2}$.
2/ $\hat{\beta} \mid X \sim \mathcal{N}_{k}\left(\beta, \sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1}\right)$
$3 / \hat{\beta}$ and s^{2} are independent (conditional on X).(*)
${ }^{(*)}$ [Technical part] Conditional on X , the only random part of $\hat{\beta}-\beta$ is $\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \mid X$. And s^{2} is a deterministic function of $z:=M_{x} \varepsilon$ because $s^{2}=\frac{z^{\prime} z}{n-k}$. We can prove that $\hat{\beta}$ is independent of z because:
$\binom{\hat{\beta}-\beta}{z}=\binom{\left(X^{\prime} X\right)^{-1} X^{\prime}}{M_{x}}_{(k+n) \times n} . \varepsilon$
And $\left(X^{\prime} X\right)^{-1} X^{\prime} M_{x}=0_{k \times n}$. Moreover $\varepsilon \mid X \sim \mathcal{N}_{n}\left(0, \sigma_{\varepsilon}^{2} . I_{n}\right)$.
So we find: $\binom{\hat{\beta}-\beta}{z} \left\lvert\, X \sim \mathcal{N}_{n+k}\left(\binom{0}{0},\left(\begin{array}{cc}\sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1} & 0 \\ 0 & \sigma_{\varepsilon}^{2} \cdot M_{x}\end{array}\right)\right)\right.$

[Back to PS6Q1a]

We define the t statistic under $H_{0} ; \beta_{1}=0$ as:
$\left.t_{0}=\frac{\hat{\beta}_{1}}{s e\left(\hat{\beta}_{1}\right)} \right\rvert\, X \sim_{H_{0}} t_{n-k}$
We have also $t_{0}=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim_{H_{0}} t_{n-k}$
As the distribution t_{n-k} does not depend on X.
We found a t_{n-k} distribution because:
$t_{0}=\frac{\hat{\beta}_{1}}{\sqrt{V\left(\hat{\boldsymbol{\beta}}_{1}\right)}} \cdot \frac{\sqrt{V\left(\hat{\boldsymbol{\beta}}_{1}\right)}}{\sqrt{\hat{V}\left(\hat{\beta}_{1}\right)}}=\frac{\hat{\beta}_{1}}{\underbrace{\sqrt{V\left(\hat{\beta}_{1}\right)}}_{\mid X \sim \mathcal{N}(0,1)} \cdot \frac{1}{\sqrt{\underbrace{(n-k) \cdot \frac{s^{2}}{\sigma_{\varepsilon}^{2}}}_{\mid X \sim \chi_{n-k}^{2}} /(n-k)}}}$
In our case, $\operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{4 / 81}=2 / 9$ so $t_{0}=9 / 2 * 1 / 3=3 / 2=1.5$.
And $\left|t_{9}^{*}(2.5 \%)\right|=2.262$. So we can not reject H_{0} at the 5% significance level.
b) We test: $H_{0}: \beta_{2}=0$ vs $H_{1}: \beta_{2} \neq 0$

Now, $t_{0}=1 / 3 * \sqrt{81 / 4}=1.5$. So we have the same conclusion.
c) We test: $H_{0}: \beta_{1}=\beta_{2}=0$ vs $H_{1}: \beta_{1} \neq 0$ or $\beta_{2} \neq 0$

In matrix notation, $H_{0}: R . \beta=q$ with $q=0_{2 \times 1}$ and $R=I_{2}$.
(Here clearly $\rho(R)=r=2$, but it may be important to check before performing your computations that your constraints are linearly independent).
The idea of the Wald test is to see if $\hat{\beta}$ satisfies approximately the restrictions imposed under H_{0}. That is if $R . \hat{\beta} \simeq q$.
Under the set of assumptions S2, we have $\hat{\beta} \mid X \sim \mathcal{N}_{k}\left(\beta, \sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1}\right)$.
So it comes (under $\left.H_{0}\right) R \hat{\beta}-q \mid X \sim \mathcal{N}_{r}\left(0, \sigma_{\varepsilon}^{2} \cdot R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)$
Thus by PS2 Q5b, we have: $(R \hat{\beta}-q)^{\prime}\left(\sigma_{\varepsilon}^{2} \cdot R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-q) \mid X \sim_{H_{0}} \chi_{r}^{2}$
Unfortunately we can not use this statistic because we do not know σ_{ε}^{2}. So we work with:
$F=\frac{(R \hat{\beta}-q)^{\prime}\left(s^{2} \cdot R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-q)}{r}$
$\left.F=\frac{(R \hat{\beta}-q)^{\prime}\left(\sigma_{\varepsilon}^{2} \cdot R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-q) / r}{\frac{(n-k)+s^{2}}{\sigma_{\varepsilon}^{2}} /(n-k)} \right\rvert\, X \sim_{H_{0}} F(r, n-k)$
rk: the numerator depends only on $\hat{\beta}$ and the denominator is a function of s^{2} so they are independent conditional on X , following two χ^{2} distributions with the right degrees of freedom divided by r and $n-k$.

In our case, $R=I_{2}$ and $q=0_{2 \times 1}$ so this simplifies to:
$F=\hat{\beta}^{\prime}\left(s^{2} \cdot\left(X^{\prime} X\right)^{-1}\right)^{-1} \hat{\beta} / 2=s^{-2} \hat{y}^{\prime} \hat{y} / 2=27 / 2 * 2 / 3 * 1 / 2=4.5$ (see PS5 Q1 for the value of $\left.\hat{y}^{\prime} \hat{y}\right)$.
Here $F_{2,9}^{*}(5 \%)=4.26$ so we can reject H_{0} at the 5% significance level.
d) The results are consistent because the first two tests are testing the marginal explanatory power of x_{1} controlling for x_{2} and the marginal explanatory power of x_{2} controlling for x_{1}. The last one tests the joint explanatory power of x_{1} and x_{2}. This suggests that the two explanatory variables have some degree of collinearity so that once we control for one, adding the other does not add much information to the model. However, the two explanatory variables have a significant joint explanatory power on the variations of y.
rk. This case is possible but the other one is not. If we do not reject H_{0} for the last joint hypothesis, we should not reject the simple hypothesis (at the same significance level).

PS6 Question 2

$\left.{ }^{*}\right) y_{t}=\beta_{1}+\beta_{2} \cdot x_{2 t}+\beta_{3} \cdot x_{3 t}+\beta_{4} \cdot x_{4 t}+\varepsilon_{t}$
with $\rho\left(X^{\prime} X\right)=4$ and $\varepsilon \mid X \sim \mathcal{N}_{n}\left(0, \sigma_{\varepsilon}^{2} \cdot I_{n}\right)$.
This gives us: $\hat{\beta} \mid X \sim \mathcal{N}_{k}\left(\beta, \sigma_{\varepsilon}^{2} \cdot\left(X^{\prime} X\right)^{-1}\right)$.
a) The explanation to test $H_{0}: R . \beta=q$ is detailed in Q3. Under H_{0} the F statistic has a $F_{r, T-k}$ distributions, where r is the number of independent linear constraints, T the number of observations and k is the number of parameters of the unconstrained model (here $k=4$).
b) $R S S_{U}$ comes from fitting the model $\left(^{*}\right)$.
i) $H_{0}: \beta_{2}-3 \beta_{3}=4$ and $\beta_{1}=2 \beta_{4}$. Let's impose these constraints in model $\left({ }^{*}\right)$. This can be done by substitution because we know that under $H_{0}, \beta_{1}=2 \beta_{4}$ and $\beta_{2}=4+3 \beta_{3}$. We get:
$y_{t}=2 \beta_{4}+\left(4+3 \beta_{3}\right) \cdot x_{2 t}+\beta_{3} \cdot x_{3 t}+\beta_{4} \cdot x_{4 t}+\varepsilon_{t}$
Or $\underbrace{y_{t}-4 x_{2 t}}_{u_{t}}=\beta_{3} \cdot \underbrace{\left(3 x_{2 t}+x_{3 t}\right)}_{v_{t}}+\beta_{4} \cdot(\underbrace{2+x_{4 t}}_{w_{t}})+\varepsilon_{t}$
So to compute $R S S_{R}$ we need to regress u_{t} on v_{t} and w_{t} without a constant.
Moreover we have $r=2$, so this fully characterize the F -statistic and its distribution under H_{0}.

