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PS6 Question 1

The model is:

yi = β1.x1i + β2.x2i + εi

By PS5, we know:

β̂ =

(
1/3

1/3

)
and s2 = RSS

n−k = 2
27

And V (β̂) = σ2
ε .(X

′X)−1 = σ2
ε .

1
3 .
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Also, V̂ (β̂) = s2.(X ′X)−1 =
2
27
.
1
3︸ ︷︷ ︸

2/81

.
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a) Now we want to test: H0 : β1 = 0 vs H1 : β1 6= 0

To perform this test we need to know the distribution of the test statistic under H0 so in finite

samples we need to make some assumptions on the distribution of the disturbance εi. We can

make two sets of assumptions:

-S1: Under A1, A2, A3F, A5N, we have: β̂ ∼ Nk(β, σ2
ε .(X

′X)−1).

-S2: Under A1, A2, A3RFI, A5N, we have: β̂|X ∼ Nk(β, σ2
ε .(X

′X)−1).

With A1, A2, A3F, A3FI, A5N as in the lecture notes p24.

A1. ρ(X) = k ≤ n.

A2. y = Xβ + ε and E(ε) = 0.

A3F. X is fixed in repeated samples .

A3FI. xik is independent of εj for all observations i, j and all variable k.

A5N. ε ∼ Nn(0, σ2
ε .In)

Rk: we can slightly change the set S2 of assumptions saying that: A1, A2 hold and that

ε|X ∼ Nn(0, σ2
ε .In). The conclusion will be the same: β̂|X ∼ Nk(β, σ2

ε .(X
′X)−1). Indeed,

A3FI+A5N ⇒ ε|X ∼ Nn(0, σ2
ε .In)

Let’s assume that we are in the case S2. Under H0 if we know σ2
ε we can test H0 using

the fact that β̂1|X ∼H0 N (0, σ2
ε .(X

′X)−1
11 ).

Here we need to estimate σ2
ε by s2. We will use 3 facts from the lecture notes:

1/ (n− k). s
2

σ2
ε
|X ∼ χ2

n−k.

2/ β̂|X ∼ Nk(β, σ2
ε .(X

′X)−1)

3/ β̂ and s2 are independent (conditional on X).(*)
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(*)[Technical part] Conditional on X, the only random part of β̂−β is (X ′X)−1X ′ε|X. And

s2 is a deterministic function of z := Mxε because s2 = z′z
n−k . We can prove that β̂ is indepen-

dent of z because:(
β̂ − β
z

)
=

(
(X ′X)−1X ′

Mx

)
(k+n)×n

.ε

And (X ′X)−1X ′Mx = 0k×n. Moreover ε|X ∼ Nn(0, σ2
ε .In).

So we find:

(
β̂ − β
z

)
|X ∼ Nn+k(

(
0

0

)
,

(
σ2
ε .(X

′X)−1 0

0 σ2
ε .Mx

)
)

[Back to PS6Q1a]

We define the t statistic under H0; β1 = 0 as:

t0 = β̂1

se(β̂1)
|X ∼H0 tn−k

We have also t0 = β̂1

se(β̂1)
∼H0 tn−k

As the distribution tn−k does not depend on X.

We found a tn−k distribution because:

t0 = β̂1√
V (β̂1)

.

√
V (β̂1)√
V̂ (β̂1)

=
β̂1√
V (β̂1)︸ ︷︷ ︸

|X∼N (0,1)

. 1√√√√√√√√
(n− k).

s2

σ2
ε︸ ︷︷ ︸

|X∼χ2
n−k

/(n−k)

In our case, se(β̂1) =
√

4/81 = 2/9 so t0 = 9/2 ∗ 1/3 = 3/2 = 1.5.

And |t∗9(2.5%)| = 2.262. So we can not reject H0 at the 5% significance level.

b) We test: H0 : β2 = 0 vs H1 : β2 6= 0

Now, t0 = 1/3 ∗
√

81/4 = 1.5. So we have the same conclusion.

c) We test: H0 : β1 = β2 = 0 vs H1 : β1 6= 0 or β2 6= 0

In matrix notation, H0 : R.β = q with q = 02×1 and R = I2.

(Here clearly ρ(R) = r = 2, but it may be important to check before performing your compu-

tations that your constraints are linearly independent).

The idea of the Wald test is to see if β̂ satisfies approximately the restrictions imposed under

H0. That is if R.β̂ ' q.
Under the set of assumptions S2, we have β̂|X ∼ Nk(β, σ2

ε .(X
′X)−1).

So it comes (under H0) Rβ̂ − q|X ∼ Nr(0, σ2
ε .R(X ′X)−1R′)

Thus by PS2 Q5b, we have: (Rβ̂ − q)′(σ2
ε .R(X ′X)−1R′)−1(Rβ̂ − q)|X ∼H0 χ

2
r

Unfortunately we can not use this statistic because we do not know σ2
ε . So we work with:

F = (Rβ̂−q)′(s2.R(X′X)−1R′)−1(Rβ̂−q)
r

F = (Rβ̂−q)′(σ2
ε .R(X′X)−1R′)−1(Rβ̂−q)/r
(n−k)∗s2

σ2
ε

/(n−k)
|X ∼H0 F (r, n− k)

rk: the numerator depends only on β̂ and the denominator is a function of s2 so they are

independent conditional on X, following two χ2 distributions with the right degrees of freedom

divided by r and n− k.
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In our case, R = I2 and q = 02×1 so this simplifies to:

F = β̂′(s2.(X ′X)−1)−1β̂/2 = s−2ŷ′ŷ/2 = 27/2 ∗ 2/3 ∗ 1/2 = 4.5 (see PS5 Q1 for the value of

ŷ′ŷ).

Here F ∗2,9(5%) = 4.26 so we can reject H0 at the 5% significance level.

d) The results are consistent because the first two tests are testing the marginal explana-

tory power of x1 controlling for x2 and the marginal explanatory power of x2 controlling for

x1. The last one tests the joint explanatory power of x1 and x2. This suggests that the two

explanatory variables have some degree of collinearity so that once we control for one, adding

the other does not add much information to the model. However, the two explanatory variables

have a significant joint explanatory power on the variations of y.

rk. This case is possible but the other one is not. If we do not reject H0 for the last joint

hypothesis, we should not reject the simple hypothesis (at the same significance level).

PS6 Question 2

(*) yt = β1 + β2.x2t + β3.x3t + β4.x4t + εt

with ρ(X ′X) = 4 and ε|X ∼ Nn(0, σ2
ε .In).

This gives us: β̂|X ∼ Nk(β, σ2
ε .(X

′X)−1).

a) The explanation to test H0 : R.β = q is detailed in Q3. Under H0 the F statistic has a

Fr,T−k distributions, where r is the number of independent linear constraints, T the number of

observations and k is the number of parameters of the unconstrained model (here k = 4).

b)RSSU comes from fitting the model (*).

i) H0 : β2 − 3β3 = 4 and β1 = 2β4. Let’s impose these constraints in model (*). This can be

done by substitution because we know that under H0, β1 = 2β4 and β2 = 4 + 3β3. We get:

yt = 2β4 + (4 + 3β3).x2t + β3.x3t + β4.x4t + εt

Or yt − 4x2t︸ ︷︷ ︸
ut

= β3. (3x2t + x3t)︸ ︷︷ ︸
vt

+β4.(2 + x4t︸ ︷︷ ︸
wt

) + εt

So to compute RSSR we need to regress ut on vt and wt without a constant.

Moreover we have r = 2, so this fully characterize the F-statistic and its distribution under H0.
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