EC220-PS2
Antoine Goujard
a.j.goujard@lse.ac.uk

Office hour: on Monday in S684 from 17:30 to 18:30
PS2

• First 2 problems (1.3 and 1.4, textbook example p.56): same as PS1, but add the interpretation of the R2.
• 3rd problem (1.6), go back to the least squares (OLS) principles.
• 4th problem (2.3), our first proofs of the properties of the estimator.
Main mistakes for Exercises 1/2

I Econometric crimes

• Interpreting the regression results as the effect of S (dependent var) on ASVABC (expl. Var.) ! (fail the exam)
• Do not state the definitions of the dependent and the explanatory variables or the units of each of the variables. Sloppy statements as:
 « S is positively correlated with ASVABC », …

II Mistakes

• You are expected to give a precise meaning of each estimates and to explain if the estimate makes sense or not. You can use your other economic courses, your common sense.
• Vague definition or interpretation of the R2.
R2 interpretation, goodness of fit

\[\text{TSS} = \text{ESS} + \text{RSS} \]

Does this always hold (for any regression model fitted by OLS)?

\[
R^2 = \frac{\text{ESS}}{\text{TSS}} = \frac{\sum (\hat{Y}_i - \bar{Y})^2}{\sum (Y_i - \bar{Y})^2}
\]

\[
R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\sum e_i^2}{\sum (Y_i - \bar{Y})^2}
\]

The proportion of the variance of \(Y \) explained by the regression equation.

Square of the coefficient of correlation between the true values of \(Y \) and the fitted values.

\[
r_{Y,\hat{Y}} = \frac{\sum (Y_i - \bar{Y})(\hat{Y}_i - \bar{Y})}{\sqrt{\sum (Y_i - \bar{Y})^2 \sum (\hat{Y}_i - \bar{Y})^2}}
\]

Why can the R2 be low? It may be the case that \(S \) depends on ASVABC but also on other important variables. For example, parental education, parental income… The true relationship may also be non linear (why?).
Main mistakes for Exercise 4

Econometric crimes when you try to prove the unbiasedness of an estimator

• Take the expected value of the parameter to prove that the estimator is unbiased.

• Make a confusion between the disturbance term and the residuals.

• Writing a proof without stating the assumptions used to derive the main results (X non stochastic, E(ui)=0, …).

• Use « strange » rules to compute the expectation (E(x/y) is not equal to E(x)/E(y) in general).