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Abstract

This paper analyses a small open economy that wants to borrow from abroad, cannot commit to

repay debt but faces costs if it decides to default. The model generates analytical expressions for

the impact of shocks on the incentive compatible level of debt. Debt reduction generated by severe

output shocks is no more than a couple of percentage points. In contrast, shocks to world interest

rates can substantially affect the incentive compatible level of debt.
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1 Introduction

What generates sovereign default? Which shocks are behind the episodes of debt crises

we observe? The answer to the question is crucial to policy design. If we want to write

contingent contracts,1 build and operate a sovereign debt restructuring mechanism,2 or

an international lender of last resort,3 we need to know which economic variables are

subject to shocks that significantly increase incentives for default or could take a country

to “bankruptcy”.

I investigate this question by studying a small open economy that wants to borrow from

abroad, cannot commit to repay debt but faces costs if it decides to default. There is an

incentive compatible level of sovereign debt – beyond which greater debt triggers default

– and it fluctuates with economic conditions. The renegotiation process is costless and

restores debt to its incentive compatible level. The model yields analytical expressions
∗London School of Economics, Department of Economics, and Escola de Economia de Sao Paulo, FGV-SP;
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1Borensztein and Mauro (2004) argue for GDP-indexed debt. Kletzer et al (1992) defend indexing debt payments to

commodities prices.
2Krueger (2002) and Bolton and Jeanne (2007) argue for a sovereign debt restructuring mechanism.
3Fisher (1999) argues for an international lender of last resort.

1



that allows us to quantify the impact of different shocks on the incentive compatible level

of debt.

One important result from this framework is that shocks to domestic productivity (or

output) do not generate sizable fluctuations in the incentive compatible level of debt.

Following a severe output shock, debt relief of a couple of percentage points would re-

store incentive compatibility. This is consistent with some empirical evidence (Tomz and

Wright, 2007), although most of the recent quantitative models on debt and default focus

on output shocks.4 This result suggests that the literature has been focusing on the wrong

type of shocks.

On the other hand, shocks to risk-free ‘world’ real interest rates are much more impor-

tant. Debt relief in response to reasonable fluctuations in world interest rates is an order

of magnitude higher than that generated by shocks to output. While a change in interest

rates from 1% to 2% doubles the cost of servicing debt, a 1% fall in output reduces by

just 1% the cost of not repaying. The large effect of shocks to world interest rates on debt

default is present in some empirical work (Uribe and Yue, 2006).

Using data from the Latin American debt crisis of the 1980’s, I compare the model’s

prediction of debt reduction with the observed debt relief. The increase in world interest

rates at the beginning of the 1980’s can solely account for over half of the debt forgiveness

obtained by the main Latin American countries through the Brady agreements.

The model builds on the literature of endogenous sovereign debt and default (Eaton

and Gersovitz (1981), Arellano (2008)). One of the key assumptions in the model is that

if a country repudiated its debt, it would be excluded from capital markets and incur an

output loss.5 The assumption of such costs is a simple way of modeling the costs that

could be imposed on a country that defaults. Debt repudiation might inhibit foreign direct

investment and undermine a country’s capacity to obtain beneficial deals in multi-lateral

organisations such as the WTO. In addition, creditors can threaten countries that might

repudiate debt with sanctions such as the loss of access to short-term trade credit and

seizure of assets.6

In reality, however, observed punishment for default is arguably tame and tempo-

rary. But that is, at least in part, because debtor and creditors renegotiate the debt

and, sooner or later, a new agreement is reached. Although we rarely observe explicit

contingent contracts, premium rates on borrowing and occasional debt reduction are ob-
4For example, Arellano (2008), Aguiar and Gopinath, (2006) and Yue (2010).
5The output cost of debt repudiation, as modeled here, is present in Cohen and Sachs (1986), Bulow and Rogoff (1989)

and Arellano (2008), to name a few.
6For a discussion of such costs, see Bulow and Rogoff (1989), English (1996), Sturzenegger and Zettelmeyer (2006) and

Tomz (2007).
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served, so contracts are contingent de facto even if not written as such.7 The possibility

of renegotiation makes contracts contingent.8

Here, I assume that the borrower can costlessly call for debt renegotiation, but lenders

have all the bargaining power in the renegotiation stage. In equilibrium, the assumption

on bargaining power implies that debt renegotiation simply restores debt to its incentive

compatible level. Costs, delays and further debt reductions associated with the renegoti-

ation process might play an important role, but abstracting from them allows us to better

understand the effects of different shocks on the incentive compatible level of debt.9

I begin with an endowment economy, where borrowers’ impatience drives debt deci-

sions. Then I move to a model with production, where borrowing occurs due to differences

in the marginal productivity of capital. Models with endogenous decision of debt repay-

ment and capital accumulation are not very tractable analytically. However, for some

limiting cases, I can derive simple and intuitive analytical solutions for the level of debt

and debt reduction (“haircut”). The method consists of taking first order approximations

of the Bellman equations. I also solve the model numerically for non-limiting cases and

show that the analytical solutions are good approximations.

The results on debt reduction for both economies are very similar. Debt reduction

predicted by the model depends positively on the magnitude of the shocks and the persis-

tence of states. Importantly, the output cost of defaulting, a variable which is difficult to

measure, has no significant effect on debt relief as a fraction of the outstanding debt. So

the conclusions on the quantitative effects of shocks do not rest on any particular value

of this variable.

There are two key differences between the similar results for both economies. First, in

the economy with capital, differences in the consumption-savings decisions for different

states of the economy could influence decisions on debt and default. However, I show they

produce no first-order effects on the incentive compatible level of debt, as they have only

second order effects on the value functions. Second, growth prospects influence the level

of debt and debt relief, but those effects are not large. The amount of capital influences
7Sovereign debt was analysed as an (implicitly) contingent claim by Grossman and Van Huyck (1988), Atkeson (1991) and

Calvo and Kaminsky (1991) among others. Grossman and Van Huyck show that an equilibrium in which “excusable” default

is allowed without sanctions can be sustained. Alfaro and Kanczuk’s (2005) quantitative analysis builds on Grossman and

Van Huyck. Calvo and Kaminsky (1991) take the optimal contract approach to study whether the small default premium

paid by Latin American countries in the 1970’s would be compatible with large debt reductions in the 1980’s.
8Kocherlakota (1996) and Alvarez and Jermann (2000) analyse models where agents can trade contingent contracts but

cannot commit to repay debt.
9Renegotiation in models of sovereign debt is studied by Bulow and Rogoff (1989), Fernandez and Rosenthal (1990) and

Yue (2010). Kovrijnykh and Szentes (2007) study the return from debt overhang to the credit market.

3



debt relief in both directions, rendering the result ambiguous.10 Therefore, the conclusions

about the impact of shocks on the incentive compatible level of debt are basically the same

in both economies.

Section 2 studies an endowment economy, Section 3 adds capital accumulation to the

model, Section 4 contrasts the results with data from the Latin American debt forgiveness

under the Brady Plan, Section 5 concludes. Most proofs and numerical exercises are in

the appendix.

2 Endowment economy

In this section, I consider a discrete time model of an open endowment economy that

can borrow from abroad, but cannot commit to repay its debts. The focus of the paper

is sovereign debt, so all results in this paper are derived from the point of a view of a

domestic planner.11

The economy is populated by a continuum of infinitely lived agents whose preferences

are aggregated to form the usual representative agent utility function:

∞X
t=0

βtu(ct)

where β ∈ (0, 1) is the subjective time discount factor, ct is consumption at time t and
u(.) is the felicity function that satisfies the Inada conditions.

I model debt default costs as an instantaneous permanent fall in output and loss of

access to capital markets. The permanent fall specifically captures the loss that a country

suffers by taking an antagonistic position towards the rest of the world and never repaying

a cent of its debts. I denote by γ the fraction of output lost due to default, so output is

given by:

yt =

(
yt , if it has never defaulted

(1− γ)yt , if it has ever defaulted

In the model this is out-of-equilibrium behaviour, which corresponds to never observing

such action in reality. For this reason, it is difficult to obtain an estimate of γ, but the

main results of this paper do not depend on the value of γ.
10 In the numerical examples, debt relief depends negatively on the level of capital.
11 In the standard Ramsey model, the central planner solution and the decentralised equilibrium are the same. However,

that is not true without commitment to repay debt. The distinction between the central planner solution and the decen-

tralised allocation is analysed by Kehoe and Perri (2004) and Jeske (2006). Kehoe and Perri (2004) show that the central

planner solution can be decentralised if the central government is in charge of deciding about defaulting or not and taxes

capital income to counteract an externality of capital accumulation. The logic behind Jeske’s argument is similar and he

finds that capital controls may be welfare improving.
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The country can issue only one-period debt (dt). The price of debt is denoted qt.

There is a continuum of risk-neutral lenders that, in equilibrium, lend to the country

as long as the expected return on their assets is not lower than the risk-free interest rate

in international markets, r∗. The price of a bond that delivers one unit of the good next

period with certainty, (1 + r∗)−1, is denoted q∗. There is a maximum amount of debt the

country can contract that prevents it from running Ponzi schemes but it is never reached

in equilibrium.

The economy’s flow budget constraint is then given by:

ct =

(
yt − dt + qtdt+1 , if it has never defaulted

(1− γ)yt , if it has ever defaulted

In a stochastic world, the incentive compatible level of debt fluctuates. If debt goes

above its incentive compatible level, the debtor prefers not to repay it, but then both

creditors and debtors have incentives to renegotiate. I make the extreme assumption that

the country can costlessly renegotiate its debt – there are no delays and no punishment.

There is a stochastic state variable s. At the beginning of the period, its value is

revealed and the country makes decisions about debt and default. The country can:

• Repay its debt d;

• Default: in which case the output loss is incurred and the country loses access to
international capital markets;

• Renegotiate: the debt becomes ad, where a is the outcome of the bargaining process,
as specified below. There is no punishment.

Using the flow budget constraint and the expressions for output, and denoting by dF

the face value of debt to be repayed in the following period, the value functions associated

with each option are:

Vpay(d, s) = max
d0

©
u(y − d+ q(dF , s)dF ) + βE

£
V (dF , s0)

¤ª
Vdef (s) = u((1− γ)y) + βVdef (s)

Vreneg(d, s) = max
d0

©
u(y − ad+ q(dF , s)dF ) + βE

£
V (dF , s0)

¤ª
= Vpay(ad, s)

where dF is the face value of debt and q(dF , s) is its unit price. The country chooses

the maximum of them:

V (d, s) = max {Vpay(d, s), Vpay(ad, s), Vdef (s)}
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The key difference between this and Yue (2010) is that the renegotiation process is

costless and instantaneous. Following Yue (2010), a is determined by a Nash bargaining

game, where the outside option for the country is autarky and the outside option for the

lenders is walking away with no repayment at all. Thus the surpluses for borrower and

lenders are:

∆B(ad, s) = Vpay(ad, s)− Vdef (s)

∆L(ad, s) = ad

The level of debt after renegotiation, α(s)d, is given by:

α(s)d = argmax
ad

³£
∆B(ad, s)

¤θ £
∆L(ad, s)

¤1−θ´
subject to

∆B(ad, s) ≥ 0 and ∆L(ad, s) ≥ 0

As a only appears multiplying d, the solution for α(s)d does not depend on d.

I assume θ = 0: lenders have all the bargaining power in the renegotiation stage,

so the borrower gets no surplus from the bargaining process. Most of the literature

following Eaton and Gersovitz (1981) assumes that the borrower fully repays its debt

provided it is incentive compatible to do so. As noted by Fernandez and Rosenthal

(1990), that is equivalent to assuming that all bargaining power lies with the creditors (ex-

post). Here, by assuming θ = 0, I am adding costless renegotiation and maintaining that

assumption: creditors are able to extract the maximum incentive compatible payments

from the borrower up to the face value of debt, dF .

The recovery rate α(s) is given by:

∆B(α(s)d, s) = 0 =⇒ Vpay(α(s)d, s) = Vdef (s)

For θ = 0 , α(s)d is the incentive compatible level of debt, beyond which greater debt

would make the country prefer to default.12 Hence, the country is always indifferent

between defaulting and renegotiating, and it is assumed it chooses the latter.13

As renegotiation is costless, at state s lenders know they will receive at most α(s)d,

and borrowers will always repay their debt up to α(s)d. If d > α(s)d for some state

s, there is no cost for borrowers to convert their debt d into α(s)d. The possibility of

costless renegotiation with θ = 0 makes debt contingent in a particular way: debt can be

costlessly reduced to its incentive compatible level.
12Vpay is decreasing in the level of debt, and Vdef is independent of the level of debt. So α(s)d is the maximum value of

debt such that Vpay(α(s)d, s) ≥ Vdef (s).
13Alternatively, I am assuming θ is larger than 0, but very small.
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Higher values of θ would lead to larger reductions in debt. Owing to its barganing

power, the borrower would obtain part of what lenders could lose in the renegotiation

process (the full debt, d). In the extreme case of θ = 1 , the borrower would have all the

bargaining power and α(s) would be 0.14

For simplicity, there are 2 possible states, st ∈ {h, l}, and the probability of switching
states is ψ. Pr (st 6= st−1) = ψ, Pr (st = st−1) = 1 − ψ. ψ ≤ 0.5. Let V h(d) and V l(d)

be value functions in the high and low states, respectively, and denote by dhand dl the

incentive compatible level of debt in each state such that:

V h
pay(d

h) = V h
def , V l

pay(d
l) = V l

def

Assume WLOG dh > dl. If the face value of debt dF is smaller than dl, debt is not

contingent and there is no debt reduction in the following period. But if the country

chooses dF such that dl < dF ≤ dh, debt repayments are de-facto contingent.

Consider dF ∈ (dl, dh]. If s0 = h then dF will be repayed; if s0 = l, repayment will be

dl and debt reduction will be ∆d = dF − dl. Denote the the expected repayment by d0.

If s = h, the expected repayment d0 = (1− ψ)dF + ψdl. If s = l, the expected repayment

d0 = (1 − ψ)dl + ψdF . Thus if s = h, repayments in the following period are given by

dF = d0 + ψ∆d (if s0 = h) and dl = d0 − (1− ψ)∆d (if s0 = h).15

As lenders are risk neutral and competitive, equilibrium bond prices q(dF , s) are such

that q(dF , s)dF = q∗d0. Consider the case s = h and s0 = l. Then, debt will be renegotiated

and reduced. The “haircut” corresponds to the proportional fall in the level of debt,

∆d/dF . That is the key variable of the model. The spread over treasuries is the rate paid

above the risk-free rate if there is no renegotiation, so it is the difference between the face

value of debt dF and the expected repayment d0, divided by dF . Thus the spread over

treasuries is ψ∆d/dF – the probability of renegotiation (ψ) times the haircut.

Two stochastic versions of the model are considered: stochastic r∗ and stochastic y.

Throughout the paper, I make assumptions to ensure that the country exhausts its

borrowing possibilities: it borrows dF = dh, making debt as high as possible in each

possible state. In this section I will assume that β is very low, as is typically assumed in

the recent quantitative models of sovereign default.16 In Section 3, the assumption of a

very low β is removed and replaced by the assumption of a high marginal productivity

of capital. As in general dF ≤ dh, the results in this paper can be seen as upper bounds
14As renegotiation is costless, if θ = 1 there would be no borrowing in equilibrium. A model with θ = 1 requires some

costs for renegotiating debt.
15Likewise, if s = l, repayments in the following period are dl = d0 −ψ∆d (if s0 = l) and dF = d0 + (1−ψ)∆d (if s0 = h).
16Arellano (2008) uses β = 0.82/year, Aguiar and Gopinath (2006) and Yue (2010) use lower values. Such extreme

impatience is often interpreted as the discount rate of the policy maker, different from the population.
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for debt delief following a negative shock, under the assumption that the renegotiation

process generates no further reductions in debt.

2.1 Stochastic world interest rates

Here, I analyse the contingent debt contract for an economy with fixed per-period endow-

ment, but fluctuations in world interest rates, r∗, leading to fluctuations in the price of

risk-free debt, q∗. The price of a riskless bond in international markets is q∗h in the high

state and q∗l in the low state, q∗h > q∗l.

In equilibrium bond prices are such that q(dF , s)dF = q∗hd0 in the high state and

q(dF , s)dF = q∗ld0 in the low state. If dF < dl, the value functions conditional on repay-

ment are:

V h
pay(d) = max

dF

©
u(y − d+ q∗hdF ) + β

£
(1− ψ)V h

pay(d
F ) + ψV l

pay(d
F )
¤ª

V l
pay(d) = max

dF

©
u(y − d+ q∗ldF ) + β

£
(1− ψ)V l

pay(d
F ) + ψV h

pay(d
F )
¤ª

If dF ∈ (dl, dh], the value functions conditional on repayment are:

V h
pay(d) = max

dF

©
u(y − d+ q∗h

£
(1− ψ)dF + ψdl

¤
) + β

£
(1− ψ)V h

pay(d
F ) + ψV l

pay(d
l)
¤ª

V l
pay(d) = max

dF

©
u(y − d+ q∗l

£
(1− ψ)dl + ψdF

¤
) + β

£
(1− ψ)V l

pay(d
l) + ψV h

pay(d
F )
¤ª

The value functions in the following period are those associated with repayment and

the level of debt is adjusted to its incentive compatible level.

In case of default, the value function in both states is:

Vdef = u((1− γ)y) + βVdef =
u((1− γ)y)

1− β

It makes no difference whether foreign interest rates are low or high if the country is

excluded from international financial markets.

I assume β < q∗l, which implies that the country will choose to borrow and, if possible,

increase current consumption at expense of future consumption. I focus on the “steady

state” of the model, where consumption might depend on the state, but does not depend

on time.

Proposition 1 If β < q∗l, an equilibrium with cht = ch and clt = cl for all t and some

constants ch and cl such that ch ≥ cl implies that the country always borrows as much as

it can, dF = dh in all periods and states.

Proof. See appendix.
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As the country is borrowing as much as it can, the country’s debt is equal to its

incentive compatible level in each future state: debt payment is dh if s0 = h and dl if

s0 = l – which is equivalent to what they would be in a world with complete contingent

contracts but no commitment to repay.

As the value function in case of default does not depend on the state, V h
pay(d

h) = Vdef =

V l
pay(d

l). Consequently, consumption is given by:

ch = cl = (1− γ)y

Denote q̄ = (q∗h + q∗l)/2. The following proposition establishes the value of ∆d:

Proposition 2 If dF = dh in all periods and states, ∆d is given by:

dh − dl

dh
=

q∗h − q∗l

1− q∗l + 2ψq̄
,

dh − dl

dl
=

q∗h − q∗l

1− q∗h + 2ψq̄
(1)

Proof. As dF = dh and V h
pay(d

h) = Vdef = V l
pay(d

l), the value functions in the high

and low states are:

V h
pay(d

h) = u(y − dh + q∗h
£
(1− ψ)dh + ψdl

¤
) + βVdef

V l
pay(d

l) = u(y − dl + q∗l
£
(1− ψ)dl + ψdh

¤
) + βVdef

so V h
pay(d

h) = V l
pay(d

l) implies:

y − dh + q∗h
£
(1− ψ)dh + ψdl

¤
= y − dl + q∗l

£
(1− ψ)dl + ψdh

¤
which yields the claim.

Debt relief depends on: (i) the magnitude of interest rate fluctuations and (ii) the

persistence of the interest rate process. In the i.i.d. case, ψ = 0.5, debt relief when the

state switches from h to l is approximately equal to
¡
q∗h − q∗l

¢
. In the other extreme, as

ψ → 0, debt reduction is much higher:
¡
q∗h − q∗l

¢
/(1− q∗l), as it has to compensate for

all the expected future loss brought on by the fall in q∗. Hence, higher persistence implies

higher difference between dh and dl.

The output cost γ has no effect on ∆d/d. It is important to determine the level of d,

but it does not influence the ratio between the incentive compatible levels of debt in both

states.

2.2 Stochastic endowment

In this section, I fix the world interest rates at r∗ and allow y to fluctuate between yh in

the high state and yl in the low state, yh > yl.
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If dF ∈ (dl, dh], the value functions conditional on repayment are:

V h
pay(d) = max

dF

©
u(yh − d+ q∗

£
(1− ψ)dF + ψdl

¤
) + β

£
(1− ψ)V h(dF ) + ψV l(dl)

¤ª
V l
pay(d) = max

dF

©
u(yl − d+ q∗

£
(1− ψ)dl + ψdF

¤
) + β

£
(1− ψ)V l(dl) + ψV h(dF )

¤ª
Should the country go into default, the value functions are:

V h
def = u((1− γ)yh) + β

£
(1− ψ)V h

def + ψV l
def

¤
V l
def = u((1− γ)yl) + β

£
(1− ψ)V l

def + ψV h
def

¤
I assume β < q∗l. An argument identical to Proposition 1 shows that in the “steady

state” of the model, the country exhausts its borrowing possibilities, choosing dF = dh in

all states and periods.

The following proposition establishes the value of ∆d:

Proposition 3 If dF = dh in all periods and states, ∆d is given by:

dh − dl

d̄
=

(1− q∗)

1− q∗(1− 2ψ)
yh − yl

ȳ
(2)

where d̄ =
¡
dh + dl

¢
/2 and ȳ =

¡
yh + yl

¢
/2.

Proof. Consider the case y = yh. If the borrowing constraint is binding and debt is at

its maximum level, then:

V h
pay(d

h) = u(yh − dh + q∗
£
ψdl + (1− ψ)dh

¤
) + β

£
(1− ψ)V h

def + ψV l
def

¤
Making V h

pay(d
h) = V h

def , we get:

dh − q∗
£
ψdl + (1− ψ)dh

¤
= γyh (3)

Analogously:

dl − q∗
£
ψdh + (1− ψ)dl

¤
= γyl (4)

Subtracting (4) from (3), we get:¡
dh − dl

¢
[1− q∗(1− 2ψ)] = γ(yh − yl) (5)

Summing (4) and (3) and manipulating, we get:

γ =
d̄

ȳ
(1− q∗)

Substituting the value of γ in (5), we get the claim.

As before, larger fluctuations and more persistent states imply higher debt relief and

γ has no effect on ∆d/d̄.
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2.3 Contrasting stochastic q∗ and stochastic y

In order to contrast debt relief in the cases of stochastic interest rates and endowments, we

need to contrast the numerators of Equations (1) and (2), as the denominators are virtually

the same. The key distinction is that the numerator of Equation 1 is the difference between

interest rates in both states, while the numerator of Equation 2 is the relative change in

endowment multiplied by (1 − q∗), the present discounted interest rate. A reasonable

range for the numerator of Equation 1 (stochastic interest rates) is between 2% and 4%.

On the other hand, a reasonable range for endowment fluctuations is from 2% to, say,

7%, which in combination with a range of average real interest rates from 1% to 3% gives

a range for the numerator of Equation 2 (stochastic technology) of 0.02% to 0.2%. This

is one or two orders of magnitude below what we get from fluctuations in world interest

rates.

Even permanent fluctuations in output would not generate sizable debt relief. The

effect of a permanent output fall on debt relief can be found by taking the limit ψ → 0.

In that case, we get
dh − dl

d̄
=

yh − yl

ȳ

so a permanent 2% fall in output leads to a fall of 2% in the incentive compatible level

of debt.

Fluctuations in q∗ alter the cost of servicing debt. Shocks to y change the present value

of output losses due to default. Both these changes affect the incentive compatible level

of debt. However, there is a great distinction in quantitative effects of shocks to y and q∗.

Shocks to y affect the economy regardless of the decision on default. Defaulting on

debt does not solve the problem, does not increase the endowment. Low output increases

the incentives for default only because the punishment for default is assumed to be pro-

portional to output. Therefore, in order to generate a fall in the incentive compatible

level of debt of x%, the expected present value of output (considering the present and

all future periods) needs to decline by x%. But that cannot be more than a couple of

percentage points.17

On the other hand, if the country decides not to repay and stops interacting with

world financial markets, q∗ has no effect in the economy. In this sense, default “solves”

the problem of high interest rates. As an illustration, if the country finds incentive
17 In Aguiar and Gopinath (2006) and Yue (2010), the loss of ouput in autarky is multiplicative, exactly like here.

Productivity shocks may lead to larger changes in the incentive compatible level of debt if the costs of defaulting are smaller

at the low state. That is an implicit assumption in Arellano (2008). However, if that is the case, fluctuations in the cost of

defaulting are playing the main role — not fluctuations in output — and a better understanding of the costs of defaulting is

needed before we can accept productivity shocks as important drivers of default.
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compatible to repay $1 a year, at a permanent interest rate of 1% this implies the country

can sustain a debt of $100. If interest rates are constant and equal to 2%, that implies

an incentive compatible level of debt of $50. How large is the debt reduction generated

by observed shocks to world interest rates? Section 4 provides the answer in the case of

the large interest rate hikes of the early 1980’s.

In general, the results of this paper point to the importance of shocks that have large

impacts in the economy only (or mostly) if the country chooses to keep interacting with

world financial markets or only (or mostly) if the country chooses to default on its debt.

By affecting only Vpay or only Vdef , those shocks provide larger incentives to “switch to

the other value function”.

In the model of sovereign default and debt renegotiation in Yue (2010), the recovery

rate depends on the bargaining power of the borrower, θ ∈ [0, 1]. As in this paper, if
θ = 1, the haircut is 100%, by construction. This paper corresponds to the case θ = 0,

the haircut is given solely by the fall in the incentive compatible level of debt, which is

close to 0 in the case of an output shock. Yue (2010) uses θ = 0.72, which means that the

borrower gets 72% of the total surplus and, indeed, the obtained haircut is 73%. That

does not seem inconsistent with a very small fall in the incentive compatible level of debt.

But if the bulk of the debt reduction is due to the bargaining process, any shock that

generates a fall of a few percentage points in the incentive compatible level of debt would

also lead to a large debt reduction.

3 Debt and default in a growth model

In this Section, I introduce capital accumulation in the model. The domestic country

borrows because its marginal product of capital is higher, not because of risk sharing or

impatience. The assumption of a low β is replaced with β = q∗. In the case of stochastic

world interest rates, q∗ fluctuates around β.

The main conclusion is that the impact of output and interest-rate shocks on the

incentive compatible level of debt are very similar to their impact in the endowment

economy.

The model follows the structure of the previous section, but with capital, kt, depreci-

ating at rate δ and output a function solely of the level of capital, as labour is normalised

to 1:

yt =

(
At.f(kt) , if it has never defaulted

At(1− γ).f(kt) , if it has ever defaulted

12



The economy’s flow budget constraint is then given by:

ct + kt+1 =

(
At.f(kt) + (1− δ)kt − dt + qtdt+1 , if it has never defaulted

At(1− γ).f(kt) + (1− δ)kt , if it has ever defaulted

3.1 Deterministic Model

The deterministic version of the model with capital accumulation serves two purposes: it

sheds light on the relationship between growth and capital flows, and helps to understand

the results of the stochastic model.18

The value functions of the deterministic model are given by:

V (k, d) = max {Vpay(k, d), Vdef (k, γ)}

and:

Vpay(k, d) = max
k0,d0

{u(Af(k) + (1− δ)k − k0 − d+ qd0) + βV (k0, d0)}

Vdef(k, γ) = max
k0
{u((1− γ)Af(k) + (1− δ)k − k0) + βVdef (k

0)}

I assume that decisions about k0 and d0 are made simultaneously and lenders can

observe k0 before taking their lending decisions (or condition their decisions on k0). As

noted by Cohen and Sachs (1986), the country would otherwise have an incentive to

borrow d0 but then invest less, consume more and default on its debt.19

The following results hold in an equilibrium with no uncertainty:

1. q = q∗, a constant. As there is no uncertainty, q = q∗ if the country will repay and

q = 0 otherwise. The choice d0 = 0 is strictly better than any choice d0 such that q = 0

because that yields the same amount of consumption today and more production next

period (by avoiding the γAf(k) output loss). The no-default condition is Vpay(k, d) ≥
Vdef (k, γ).

18The study of external debt and default is closely related to the question of why capital does not flow from rich to

poor countries. One proposed explanation is that the risk of default prevents larger capital inflows in emerging economies

(Reinhart and Rogoff (2004) and Reinhart, Rogoff and Savastano (2003)). Alternative explanations emphasise differences

in productivity (Lucas (1990)) and question whether the marginal productivity of capital is really higher in poor countries

(Caselli and Feyrer (2007)). Yet, most of the recent work on debt and default building on Eaton and Gersovitz (1981) focuses

on risk sharing. Cohen and Sachs (1986) present a growth model in which debt is repaid only if it is incentive compatible

to do so, but assume a linear production function and have no uncertainty. They also analyse a numerical example with

decreasing returns to capital which is essentially the deterministic model of this section. Marcet and Marimon (1992) and

Kehoe and Perri (2004) also study economies with capital accumulation.
19To see this, note that in the optimal plan Vpay(k0, d0) = Vdef (k

0, γ) and u0(c) = β
∂Vpay
∂k0 (k0, d0). But ∂Vpay

∂k0 (k0, d0) >
∂Vdef
∂k0 (k

0), so if the country has already borrowed d0 and hasn’t committed to k0, a marginal decrease in k0 leads to an

increase in today’s utility that is bigger than the decrease in tomorrow’s value. This type of moral hazard problem is studied

by Atkeson (1991).
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2. dmax(k, γ) is the maximum level of incentive compatible debt and is increasing in γ.

Since by differentiating the value function we obtain that Vpay is decreasing in d and

Vdef is decreasing in γ, Vpay(k, dmax) = Vdef (k, γ). Thus, an increase in γ implies an

increase in dmax(k, γ).

3. If k0 is below the steady state level of capital, k∗, then d0 = dmax. In the steady state,

k0 = k = k∗ and the marginal productivity of capital, mpk = Af 0(k∗)− δ, equals the

marginal cost of renting an extra unit of capital, r∗. In this case, the country has

no incentive to change the level of its debt, because capital is at the optimal level

and smooth consumption can be achieved by always choosing d0 = d. In contrast,

if k < k∗, mpk > r∗ and d cannot be smaller than dmax, otherwise the no-default

condition would not bind, so the country could borrow an extra unit at r∗, invest it

and obtain a greater return than r∗ next period.

4. If γ = 0 , no debt can be sustained. If γ = 0, any positive discounted stream of

repayment is worse than defaulting, so the maximum incentive compatible positive

discounted stream of repayment is zero.20

5. If γ = 1, we obtain full commitment. If γ = 1 with no default, in the steady state,

the country obtains consumption equal to Af(k∗) − δk∗ − r∗d∗ which is positive

because d∗ ≤ k∗, Af 0(k∗) − δ = r∗ and f(k∗) > k∗f 0(k∗). Hence the first best, full

commitment equilibrium is incentive compatible.

Using these results, I now derive the path of debt in the neighbourhood of γ = 0. I

will detail two observations that are used to derive it.

First, consider k0p and d0 such that Vpay(k
0
p, d

0) = Vdef (k
0
p, γ) and k0p ≤ k∗. Then

there exists some k ≤ k0p and d such that the country is indifferent between “repaying

and choosing (k0p, d
0)” and “defaulting and choosing (k0d)”. The value functions will be

equivalent in this case and are given by:

Vpay(k, d) = max
k0p,d0

©
u(y + (1− δ)k − k0p − d+ qd0) + βVpay(k

0
p, d

0)
ª

Vdef (k, γ) = max
k0d

{u((1− γ)y + (1− δ)k − k0d) + βVdef (k
0
d, γ)}

Second, from result 4, we know that the value functions when γ = d = d0 = 0 are
20This result is due to the absence of uncertainty in the model. It has already been shown in the literature that, with

uncertainty, there may be debt in equilibrium even in the absence of output costs (Eaton and Gersovitz, 1981).
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identical and have a common optimal level of capital:

V0(k) = max
k0
{u(y + (1− δ)k − k0) + βVdef (k

0, 0)}

= max
k0
{u(y + (1− δ)k − k0) + βVpay(k

0, 0)}

Then, from result 3, we always have d0 = dmax and therefore the no default condition

will always bind: Vpay(k, dmax) = Vdef (k, γ). Using the first observation, we rewrite these

value functions in the form above. Then by taking a linear approximation of Vpay(k, d)

and Vdef(k, γ) around V0(k) and manipulating the linearised expressions, we can find d

and γ that equate Vpay(k, d) and Vdef (k, γ) without solving for the value functions. The

expression for d turns out to be a good approximation for its true value if γ is not more

than a few percentage points. This is because when γ → 0, the optimal choice of capital

is independent of the decision about defaulting – which allows us to get the analytical

results. As γ moves away from 0, that is no longer true, however the impact on the value

function of reoptimising the level of capital due to a 1% or 2% fall in productivity is very

small, and so is its impact on the maximum incentive compatible level of debt.

The results do not depend on the functional forms of utility or production, which have

only second order effects.

Proposition 4 In this economy, for a very small γ:

1. In steady state:

d∗ =
γy∗

1− q∗
(6)

2. For yt < y∗:
dt+1
yt

=
γ

1− q
+

∆dt+1
(1− q)yt

and:

dt = q.dt+1 + (1− q)
γyt
1− q

Proof. See appendix.

Part (1) of the proposition shows that in the steady state, the country keeps repaying

its debt if the interest payment, d∗(1− q∗), is not greater than the output loss, γy∗, due

to default. The debt as proportion of GDP is, to a first order approximation, equal to

γ/(1−q∗). Positive debt with no uncertainty arises in equilibrium to finance convergence.
If γ = 1% and q∗ = 0.98 (r∗ ≈ 2%), the debt-GDP ratio is 50%.
The level of debt is proportional to the output loss and inversely proportional to the

risk-free interest rate. Note that a change in interest rate from 1% to 2% has the same
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impact on d as a 50% decrease in GDP. The intuition for the different impacts of A and

q∗ on the incentive compatible level of debt (Equation 6) is similar to the reasons for their

distinct effects of shocks in Section 2 (Equations 1 and 2).

Part (2) of the proposition shows that for yt < y∗, the condition for default reduces to

a comparison between output losses and resources paid to foreign agents in the present

period. But the increase in debt is endogenously determined by considering that the

country will be indifferent in the next period between repaying and defaulting – so,

ultimately, debt at period t is obtained by backward induction from the steady state level

of debt.

For yt < y∗, the absolute level of debt is increasing over time because the present value

of the output loss due to default is increasing as output rises to its steady state level. The

debt-GDP ratio is decreasing over time, because positive capital inflows generate greater

incentive for the country to repay, and capital inflows are decreasing over time.

The proposition also shows that in equilibrium the country must experience net out-

flows of resources on the path of convergence. Debt is increasing (financial account is in

surplus) but the increase is smaller than the interest paid on its debt. So, even though

the current account is in deficit, the country is a net exporter of goods.

In the appendix, I present a numerical example that confirms the analytical expression

is a good approximation for the results and illustrates convergence in this economy.

3.2 Stochastic world interest rates

Here, I analyse an economy with fixed technology, A, and fluctuations in world interest

rates, r∗, which lead to fluctuations in the price of risk-free debt, q∗. Except for capital

accumulation and the assumption that q∗h and q∗l are close to β, the model is identical

to that of section 2.1.

As in section 2, renegotiation restores debt to its incentive compatible level. Denote

by dhand dl the incentive compatible level of debt in the high and low states, respectively,

such that V h
pay(k, d

h) = V h
def (k) and V

l
pay(d

l, k) = V l
def (k). If the face value of debt d

F ≤ dl,

the value functions are:

V h
pay(k, d) = max

k0,dF

©
u(ch) + β

£
(1− ψ)V h

pay(k
0, dF ) + ψV l

pay(k
0, dF )

¤ª
V l
pay(k, d) = max

k0,dF

©
u(cl) + β

£
(1− ψ)V l

pay(k
0, dF ) + ψV h

pay(k
0, dF )

¤ª
where ci = Af(k) + (1− δ)k − k0 − d+ q∗idF for i ∈ {l, h}.
If dF ∈ (dl, dh], then dl is repayed if s0 = l and dF is repayed if s0 = h. The value
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functions associated with repayment are:

V h
pay(k, d) = max

k0,dF

©
u(ch) + β

£
(1− ψ)V h

pay(k
0, dF ) + ψV l

pay(k
0, dl)

¤ª
V l
pay(k, d) = max

k0,dF

©
u(cl) + β

£
(1− ψ)V l

pay(k
0, dl) + ψV h

pay(k
0, dF )

¤ª
where ch = Af(k) + (1− δ)k − k0 − d+ q∗h

£
(1− ψ)dF + ψdl

¤
and cl = Af(k) + (1−

δ)k − k0 − d+ q∗l
£
(1− ψ)dl + ψdF

¤
.

In the event of default, the value function in both states is:

Vdef (k, γ) = max
k0
{u((1− γ)Af(k) + (1− δ)k − k0) + βVdef(k

0, γ)}

Define mpk = Af 0(k0)− δ and r∗i = 1/q∗i − 1. If the marginal productivity of capital
mpk is larger that the interest rates and q∗h and q∗l are arbitrarily close to β, then the

country borrows as much as it can, the face value of debt dF is dh. The next proposition

formalizes that.

Proposition 5 If mpk > r∗i, q∗h− q∗l is arbitrarily small, and q∗h and q∗l are arbitrarily

close to β, then dF = dh.

Proof. See appendix.

If the country’s borrowing constraint is binding, ∆d = dh − dl. In order to expand its

borrowing possibilities, a country with a high marginal productivity of capital chooses

to make debt in each of the future states as high as possible, respecting the incen-

tive compatibility constraints. Debt repayment in each state, dh and dl, are such that

V h
pay(k, d

h) = V l
pay(k, d

l) = Vdef (k).

When the borrowing constraint is binding, the problem of the country is analogous to

choosing debt in each state dh and dl – or to choosing the expected debt repayment d0

and debt reduction ∆d – subject to incentive compatibility constraints.

3.2.1 The value of ∆d

For analytical convenience, I consider that dq∗ = q∗h − q∗l is sufficiently small and work

with linear approximations, which implies we are not considering the effects on the value

function of reoptimising the choice of k0 when the country changes state.

In addition, I temporarily consider an alternative process for q∗ that I denote by the

ξ-process, as opposed to the ψ-process that we described above. At time t = 0, q∗0 = q∗ξ;

from time t = 1 on, there is a constant probability at each period that q∗ permanently

goes to q̄. So, for t > 0:
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• if q∗t−1 = q∗ξ, Pr(q∗t = q∗ξ) = ξ and Pr(q∗t = q̄) = 1− ξ;

• if q∗t−1 = q̄, q∗t = q̄.

The value function at (k, d) if qt = q∗ξ is:

V ξ(k, d, q∗ξ) = max
k0,d0,d0ξ

©
u (c) + β

£
(1− ξ)V det(k0, d0) + ξV ξ(k0, d0ξ, q∗ξ)

¤ª
where c = Af(k)+(1−δ)k−k0−d+q∗ξ(d0(1−ξ)+ξd0ξ) and V det is the value function

in the model with no uncertainty.

The ξ-process and the ψ-process are related using the following lemma:

Lemma 6 Define q̄ = (q∗h+ q∗l)/2 and denote by V h(k, d, q∗h) the value function for the

ψ-process. Then V h(k, d, q∗h) = V ξ(k, d, q∗h) if ξ = 1− 2ψ.
Proof. See appendix.

Compare the following two cases when q∗ follows the ξ-process: (1) q∗ = q∗ξ and debt

is dξ0 and (2) q
∗ = q̄ and debt is d0. We want to find the values of d

ξ
0 and d0 that make

the country indifferent between both cases in order to determine ∆d using proposition

5. By taking a linear approximation of V ξ(k, dξ, q∗ξ) around V det(k, d0) and using the

indifference condition that V ξ(k, dξ, q∗ξ) = V det(k, d0), we get the following lemma:

Lemma 7 Indifference between both states, V ξ(k, dξ, q∗ξ) = V det(k, d0), implies:

u0(c0)
³
dξ0 − d0

´
(7)

=
∞X
t=0

(βξ)t u0(ct)
¡
q∗ξ − q̄

¢
dt+1 +

∞X
t=0

(βξ)t
∙
u0(ct)q̄ + β

∂V (kt+1, dt+1)

∂d

¸
(dξt+1 − dt+1)

where dξt+1 is debt contracted at time t if q
∗
t = q∗ξ and dt+1 is debt contracted at time t

if q∗t = q̄.

Proof. See appendix.

Suppose that q∗ξ > q̄. The first line in the above expression shows the utility cost

of having higher debt. The second line shows the utility benefit of borrowing at a lower

rate, taking into account the probability of cheaper borrowing in future periods, plus

the benefit of being able to borrow more due to lower interest rates. If the borrowing

constraint is binding, then

u0(ct)q̄ > −β
∂V (kt+1, dt+1)

∂d
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which means that the benefit of borrowing an extra unit this period is greater than

the cost of holding an extra unit of debt next period.

From Lemma 7, we can write:

dξ0 − d0
d0

>
∞X
t=0

(βξ)t
u0(ct)

u0(c0)

¡
qξ − q̄

¢ dt+1
d0

It is convenient to consider Equation 7 as we approach the steady state of the determin-

istic economy. Formally, first I take the limit of small shocks (q∗h − q∗l → 0+) and then I

consider the limit of small differences in the marginal product of capital (mpk−r∗ → 0+).

In the limit of small shocks, as k approaches k∗, the borrowing constraint stops binding,

ct and dt approach their steady state, constant, values, and we get::

dξ0 − d0
d0

=
qξ − q̄

1− βξ
(8)

And that leads to the following proposition:

Proposition 8 Consider a deterministic steady state around, k̄, d̄ and q̄, such that q∗h

and q∗l are close to q̄ = β and q̄ =
¡
q∗h + q∗l

¢
/2. Then, a linear approximation around

the steady state will satisfy V (k̄, dh, q∗h) = V
¡
k̄, dl, q∗l

¢
when:

dh − dl

d̄
=

q∗h − q∗l

1− q̄(1− 2ψ) (9)

where d̄ =
¡
dh + dl

¢
/2.

Proof. See appendix.

Equation 9 is very similar to equation 1, and for small fluctuations of q∗, they are

exactly the same. There are two differences between the case with capital accumulation

and the endowment economy. One is that, with capital accumulation, the optimal decision

on consumption and savings depends on the state, which influences the value function.

But because of the envelope theorem, around the point of maximum, those differences in

the choice of k have only second order effects on the value function. It follows that they

have no first order impact on the incentive compatible level of debt.

The second difference is that growth prospects have an influence on the incentive

compatible level of debt. Proposition 8 shows that in the steady state, debt relief for

economies with and without capital coincide. But lemma 7 shows that, outside the steady

state, ∆d/d̄ depends not only on the the magnitude of interest rate fluctuations and the

persistence of the interest rate process, but also on the current level of capital – and

its marginal productivity. The lower is the level of capital, the greater are the marginal
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productivity of capital and the difference between u0(c)q̄ and −β ∂V (k0,d0)
∂d

, which contribute

to increase∆d: a switch to the low state that prevents the country from borrowing is more

punitive when capital is lower. A lower level of capital also implies lower consumption

and, therefore, higher marginal utilities, so present consumption is more important and

higher costs of borrowing in the future are less relevant, which induces a decrease in ∆d.

Lastly, a higher ratio between future and present debt increases the importance of future

costs of borrowing, which induces an increase in ∆d. Thus the overall effect cannot be

deduced from the formula. In the numerical examples, ∆d is slightly decreasing in k,

implying the effect of the borrowing constraint predominates.

The analysis has focused on the two-state case, but the same insights apply if we

consider more general processes. The next proposition considers the case of an auto-

regressive process for q∗.

Proposition 9 Suppose that q∗ follows an AR(1) process:

q∗t+1 − q̄ = ζ(q∗t − q̄) + εt+1

and V ar(εt) is arbitrarily small. If the economy is close to its steady state (k ' k∗),

V (k, d1, q∗1) = V (k, d2, q∗2) for any {q∗1, q∗2} close to q̄ and {d1, d2} when:

d1 − d2

d̄
=

q∗1 − q∗2

1− βζ

where d̄ is the level of debt in the deterministic model when q = q̄.

Proof. See appendix.

3.3 Stochastic technology

In this section, I consider fixing the world interest rates at r∗ and allowing for fluctuations

in A. Productivity is Ah in the high state and Al in the low state, Ah > Al. It is assumed

q∗ = β. If the face value of debt dF ≤ dl, there is no debt reduction and the value

functions are:

V h
pay(k, d) = max

k0,dF

©
u(ch) + β

£
(1− ψ)V h

pay(k
0, dF ) + ψV l

pay(k
0, dF )

¤ª
V l
pay(k, d) = max

k0,dF

©
u(cl) + β

£
(1− ψ)V l

pay(k
0, dF ) + ψV h

pay(k
0, dF )

¤ª
where ci = Aif(k) + (1 − δ)k − k0 − d + q∗dF for i ∈ {l, h}. If dF ∈ (dl, dh], then

dl is repayed if s0 = l and dF is repayed if s0 = h. The value functions associated with
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repayment are:

V h
pay(k, d) = max

k0,dF

©
u(ch) + β

£
(1− ψ)V h

pay(k
0, dF ) + ψV l

pay(k
0, dl)

¤ª
V l
pay(k, d) = max

k0,dF

©
u(cl) + β

£
(1− ψ)V l

pay(k
0, dl) + ψV h

pay(k
0, dF )

¤ª
where ch = Ahf(k) + (1− δ)k − k0 − d+ q∗

£
(1− ψ)dF + ψdl

¤
and cl = Alf(k) + (1−

δ)k − k0 − d+ q∗
£
(1− ψ)dl + ψdF

¤
.

In case of default, the value functions are:

V h
def (k, γ) = max

k0

©
u((1− γ)Ahf(k) + (1− δ)k − k0) + β

£
(1− ψ)V h

def (k
0, γ) + ψV l

def (k
0, γ)

¤ª
V l
def (k, γ) = max

k0

©
u((1− γ)Alf(k) + (1− δ)k − k0) + β

£
(1− ψ)V l

def (k
0, γ) + ψV h

def (k
0, γ)

¤ª
As before, if the marginal productivity of capital is higher than the interest rates

(mpk > r∗) and fluctuations (Ah −Al) are small, the country borrows up to a debt limit

in each possible future state that ensures it remains incentive compatible for it to repay.

The proof is analogous to the proof of Proposition 5. The face value of debt dF is equal

to dh, and V h
pay(k

0, dh) = V h
def(k

0, γ) and V l
pay(k

0, dl) = V l
def(k

0, γ).

As before, we need to obtain an expression for ∆d. The analogy to Proposition 8 for

the case of stochastic technology requires the additional assumption that γ is arbitrarily

small and yields the following result:

Proposition 10 Consider a deterministic steady state, {k̄, d̄, Ā}, such that Ah and Al

are close to Ā =
¡
Ah +Al

¢
/2. Then, for arbitrarily small γ, a linear approximation

around the steady state will satisfy V h
pay(k

0, dh) = V h
def(k

0, γ) and V l
pay(k

0, dl) = V l
def (k

0, γ)

when:
dh − dl

d̄
=

(1− q∗)

1− q∗(1− 2ψ)
Ah −Al

Ā
(10)

where d̄ =
¡
dh + dl

¢
/2.

Proof. See appendix.

Equation 10 is exactly the same as equation 2.

4 The Latin American debt crisis of the 1980’s

In this section, I contrast the predictions of the model with data from the Latin American

debt crisis of the 1980’s. The results show that the interest rate shock at the beginning

of the 1980’s can account for a large part of the observed debt relief.
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4.1 Observed debt relief

External shocks were important factors in the Latin American debt crisis of the 1980’s. As

noted by Diaz-Alejandro (1984), countries with different policies and distinct economies

ended up in similar crises in the beginning of the 1980’s, facing problems that in 1979

would have been considered unlikely.

One key external shock was the increase in US real interest rates, shown in Figure 1

(from Dotsey et al, 2003). In contrast to the 1970’s when real interest rates were around

0%, in the 1980’s they were around 4%. Such large increase in US real interest rates makes

the The Latin American crisis a convenient case to evaluate the model’s predictions.21

Figure 1: US real interest rates

In the beginning of the 1980’s, the prices of Latin American bonds in secondary mar-

kets collapsed, capital flows to those economies dried or reverted and the fast process

of economic growth of the 1970’s stopped. After countless IMF missions, several debt

reschedules and some attempts of debt renegotiation (including the Baker Plan), came

the Brady agreements, starting in 1989. In the period between 1989 and 1994, most of
21There are other cases in which interest rate increases in the US contributed to crises in other countries. For example,

the sharp increase in US interest rates in 1994 is sometimes mentioned as one of the factors that almost led Mexico to

default in December 1994 (see Calvo, Leiderman and Reinhart, 1996).
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the main Latin American countries got some debt relief. Table 1 shows the debt relief

following the Brady Plan agreements as a percentage of the outstanding long term debt in

the main Latin American countries. With the exception of Venezuela, at 20%, the other

four countries are around 30%.22

Table 1: Debt relief — Brady plan agreements, Cline (1995)

Venezuela 20%

Brazil 28%

Argentina 29%

Mexico 30%

Uruguay 31%

As the Brady agreements did not cover all forms of external debt, the figures in Table

1 should be seen as upper bounds (Cline, 1995).

In the model, renegotiation is costless, instantaneous and the borrower extracts no

surplus from the process. In reality, debt relief came ten years after the shock, and what

happened in those ten years had some influence on the final agreement. Despite the delay,

it is worth comparing the debt relief prescribed by the model and the Brady agreements

because the latter were in fact the relief solution to the crisis.

4.2 Debt relief according to the model

If the borrowing constraints of the Latin American countries were binding in 1979, then

the interest rate rise at the beginning of the 1980’s would bring debt, d, above its incentive

compatible level. In this section, I compute the debt reduction prescribed by the model

and compare it to the data.

Consider the model calibrated to represent the 1970’s and 1980’s. Suppose that world

interest rates may be either 0% or 4% a year and that each state lasts for an average of

10 years: q∗h = 1.00, q∗l = 1.04−1, β = 1.02−1 and ψ = 0.10. Equation 9 yields the debt

reduction given a switch from the high state to the low:

∆d

d̄
=

1.00− 1.04−1
1− 1.02−1(1− 2× 0.10) = 0.178

22As noted by Cline (1995), the initial approach for dealing with the problem of debt overhang was aimed both at reducing

debt and providing new loans, but “for practical purposes the Brady Plan has been all forgiveness and no new money”

(Cline, 1995, page 236). Indeed, according to the model, if the amount of debt exceeds its incentive compatible level, new

money will not be made available.
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That implies a spread over treasury of ψ∆d/d̄ = 1.8% when the state is high but debt

relief of 18% when the state switches to low and interest rates jump from 0% to 4%. Data

from 1973-80 show a spread over treasury of 1.4% for Brazil and Argentina and 1.1% for

Mexico (Calvo and Kaminsky, 1991).

∆d/d̄ is not significantly affected by the length of debt contracts. If we work with a

period of 5 years instead of one year, q∗h = 1.00, q∗l = 1.04−5, β = 1.02−5 and ψ = 0.50,

we still obtain
¡
dh − dl

¢
/d̄ = 0.178.

The result holds for any γ > 0 and is robust to other interest rates processes. Using the

auto-regressive process and assuming a half-life of 3 years for the interest rate increase,

the AR-1 coefficient, ζ, would be 0.79. A jump in real interest rates from 1% a year to

6% a year would then imply even greater debt relief: ∆d/d̄ = 22.5%.

In sum, the decrease in the level of debt predicted by the model in response to an

interest rate increase of the magnitude observed in the data exceeds half the debt relief

of the Brady agreements. In contrast, a negative productivity shock would not generate

results of similar magnitude. A huge 10% reduction in productivity, assuming an average

persistence of 10 years (ψ = 0.10) and world interest rates of 2% a year would imply debt

reduction slightly below 1% according to Equation 10.

Numerical results, presented in the appendix, show that lower marginal productivity

of capital (combined with low adjustment costs for capital) reduces the amount of debt

relief prescribed by the model, but confirm they are quantitatively important.

5 Concluding remarks

Recent quantitative models of sovereign debt aim at explaining the recent debt crisis in

Argentina using output shocks. However, according to the model in this paper, output

fluctuations do not have a sizable effect on the incentive compatible level of debt –

nothing remotely close to the observed debt reduction of 71%.23 On the other hand,

fluctuations in world interest rates can have a strong impact on the incentive compatible

level of sovereign debt.

Given the costs of renegotiating debt, should countries issue debt contingent on world

real interest rates? In the case of the Latin American debt crisis of the 1980’s, such

contracts could have avoided 10 years of costly bargaining. However, while the real

interest rate shock of 1980 can be seen as a policy decision, other movements on world
23The negative correlation between probability of default and output does not tell us about causality, because a high

probability of default has a negative impact on output of emerging economies through its impact on interest rates (Neumeyer

and Perri, 2005).
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real interest rates might be correlated with variables that affect the incentive compatible

level of debt, in the opposite direction. For example, the financial crises of 2008/09 led

to lower real interest rates but capital outflows from emerging economies. Indeed, Foley-

Fisher and Guimaraes (2009) find that policy-induced increases in US rates raise default

risk in emerging markets, but the overall correlation between default risk and US real

interest rates is actually not positive.

Incentives for defaulting on debt depend not on how much a shock affects the country,

but on the differential effects of a shock if the country repays and if the country defaults.

Output shocks affect a country regardless of its decisions on default. In contrast, world

interest rate shocks affect the country only if it keeps interacting with international fi-

nancial markets, so have a much stronger effect on the incentive compatible level of debt.

Other shocks that have an impact on international financial markets could lead to similar

effects – for instance, by affecting investors’ risk appetite. Fluctuations that affect the

country only if it defaults, such as shocks that influence the costs of defaulting, could also

have large effects on the incentive compatible level of debt.24

A Proofs

While proving the propositions of the model with capital accumulation, I often use the following

method and I refer to it as a first order Taylor approximation. Consider the following Value

function:

V (x, y) = max
a,b,c

{u (x, y, a, b, c) + βV (x0(a, b, c), y0(a, b, c))}

So the values of a, b, c are chosen, which determine the next period’s x, y (denoted as a

convention by x0, y0). Take the function that is to be maximised:

f(x, y, a, b, c) = u (x, y, a, b, c) + βV (x0(a, b, c), y0(a, b, c))

Denote by a∗, b∗ and c∗ the maximising values of V (x, y) and by ã∗, b̃∗ and c̃∗ the maximising

values of V (x̃, ỹ). Then V (x, y) = f(x, y, a∗, b∗, c∗) and V (x̃, ỹ) = f(x̃, ỹ, ã∗, b̃∗, c̃∗). Now, if (x, y)

and (x̃, ỹ) are sufficiently close, we can take the approximation of the maximand function with
24Foley-Fisher (2008) applies the method developed in this paper to study the effect of terms of trade shocks on the

incentive compatible level of debt, and contrasts the results to data on debt relief for the highly indepted poor countries.

In his model, countries in default are subject to trade sanctions, so shocks to the terms of trade have a large effect on the

cost of defaulting. His results show that terms of trade shocks can explain a significant part of the observed debt relief.
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respect to the variables to be chosen:

f(x, y, a∗, b∗, c∗) ≈ f(x̃, ỹ, ã∗, b̃∗, c̃∗) +
X

z=x,y,a,b,c

∂f(x̃, ỹ, ã∗, b̃∗, c̃∗)

∂z
(z∗ − z̃∗)

= V (x̃, ỹ) +
X

z=x,y,a,b,c

Ã
∂u(x̃, ỹ, ã∗, b̃∗, c̃∗)

∂z
+ β

∂V (x̃0, ỹ0)

∂z

!
(z∗ − z̃∗)

If there is a binding constraint on the possible values of a variable, then its maximised value

will be determined by the constraint. Otherwise, the envelope theorem applies and the derivative

of f with respect to that variable will be zero.

This method is different from the general first order Taylor approximation: the original

function V (x, y) is not a function of the variables with respect to which the approximation is

done. This is why the maximand function has to be defined.

A.1 Proposition 1

Proof. Suppose qF < ql. Then the first order condition with respect to dF would have to hold

with equality in both states:

∂V h

∂dF
= 0⇔

³
q∗h − β(1− ψ)

´
u0
³
ch
´
= βψu0

³
cl
´

∂V l

∂dF
= 0⇔

³
q∗l − β(1− ψ)

´
u0
³
cl
´
= βψu0

³
ch
´

q∗h > β implies q∗h−β(1−ψ) > βψ, so the first first order condition implies u0(ch) < u0(cl).

But similarly, q∗l > β implies q∗l − β(1 − ψ) > βψ, so the second first order condition implies

u0(cl) < u0(ch). Contradiction.

Now suppose qF ∈ (ql, qh). Again, the first order condition with respect to dF would have to
hold with equality in both states:

∂V h

∂dF
= 0⇔ u0

³
ch
´
q∗h(1− ψ) = β(1− ψ)u0

³
ch
´

∂V l

∂dF
= 0⇔ u0

³
cl
´
q∗lψ = βψu0

³
ch
´

which contradicts the assumptions that β < q∗l and cl ≤ ch.

A.2 Proposition 4

Proof. The value functions in case of repayment and in case of default are maximised at (k0p, d
0
p)

and (k0d) respectively, which means that:

Vpay(k, d) = u(y + (1− δ)k − k0p − d+ qd0p) + βVpay(k
0
p, d

0
p)

Vdef (k, γ) = u(y + (1− δ)k − k0d − γy) + βVdef (k
0
d, γ)
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When d = d0 = 0 and γ = 0, the value functions are identical in the two cases, V0(k). It is

maximised by choosing k0 = k0o.

Consider (k, d, γ) such that the country is indifferent between repaying and choosing (k0p, d
0)

or defaulting and choosing (k0d), which means that Vpay(k, d) = Vdef (k, γ). Approximate the

functions that are to be maximised,

fpay(d, k
0, d0) = u(y + (1− δ)k − k0 − d+ qd0) + βVpay(k

0, d0)

fdef (k
0, γ) = u(y + (1− δ)k − k0 − γy) + βVdef (k

0, γ)

around V0(k). The first order Taylor approximation of these functions around V0(k) with

respect to (k0, d, d0) or (k0, γ) respectively yields

fpay(d, k
0, d0) = Vpay(k, 0) +

∂fpay(0, k
0
o, 0)

∂d
(d− 0) + ∂fpay(0, k

0
o, 0)

∂d0
(d0 − 0)

+
∂fpay(0, k

0
o, 0)

∂k0
(k0 − k0o) +Ok,p

= V0(k) + u0(co)(−d+ qd0) + β
∂Vpay(k

0
o, 0)

∂d0
d0 +Ok,p

fdef (k
0, γ) = Vdef (k, 0) +

∂fdef (k
0
o, 0)

∂γ
(γ − 0) + ∂fdef (k

0
o, 0)

∂k0
(k0 − k0o) +Ok,d

= V0(k)− u0(co)γy + β
∂Vdef (k

0
o, 0)

∂γ
γ +Ok,d

Where I used that since
∂Vpay
∂k0

=
∂Vdef
∂k0

= 0 due to the Envelope condition for the un-

constrained maximization of Vpay and Vdef with respect to k0, their evaluation
∂Vpay(k, 0)

∂k0
=

∂Vdef (k, 0)

∂k0
= 0 as well. The optimal consumption with no borrowing, no punishment is denoted

by co = y + (1− δ)k − k0o. Furthermore, lim
(d,d0,k0)→(0,0,k0o)

Ok,p

kd,d0,k0k2 = 0 and lim
(γ,k0)→(0,k0o)

Ok,p

kγ,k0k2 = 0.

Note that Vpay(k, d) = Vdef (k, γ) ⇐⇒ fpay(d, k
0
p, d

0) = fdef (k
0
d, γ). Using the first order

Taylor expansions at points (d, k0p, d
0) and (k0d, γ), we get:

u0(co)(−d+ qd0 + γy) + β

µ
∂Vpay(k

0
o, 0)

∂d0
d0 − ∂Vdef (k

0
o, 0)

∂γ
γ

¶
+ (Ok,p −Ok,d) = 0.

The last part is to show that
∂Vpay(k

0
o, 0)

∂d0
d0 − ∂Vdef (k

0
o, 0)

∂γ
γ is approximately zero.

If k < k∗ then the country borrows the maximum level of incentive compatible debt. This

debt level makes the country indifferent between repaying and defaulting at (k0p, d
0):

Vpay(k
0
p, d

0) = Vdef (k
0
p, γ)

First order Taylor approximations of Vpay(k0p, d
0) and Vdef (k

0
p, γ) around Vo(k

0
o) with respect
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to only k0, d0 and γ yield:

Vpay(k
0
p, d

0) = V0(k
0
p) +

∂Vpay(k
0
o, 0)

∂k0
.(k0p − k0o) +

∂Vpay(k
0
o, 0)

∂d0
.d0 +Ok0(d

02)

Vdef (k
0
p, γ) = V0(k

0
p) +

∂Vdef (k
0
o, 0)

∂k0
.(k0p − k0o) +

∂Vdef (k
0
o, 0)

∂γ
.γ +Ok0(γ

2)

Vpay(k
0
p, d

0) = Vdef (k
0
p, γ) implies:

∂Vpay(k
0
p, 0)

∂d0
.d0 −

∂Vdef (k
0
p, 0)

∂γ
.γ ≈ 0

Using this last equation the difference of the original Taylor expansions simplifies to:

u0(co)
¡
−d+ qd0 + γy

¢
+ (Ok,p −Ok,d) ≈ 0

u0(co) 6= 0, and (Ok,p − Ok,d) is very small near (d, d0, k0) =
¡
0, 0, k0p

¢
and (γ, k0) = (0, k0d)

imply that

−d+ qd0 + γy = 0⇐⇒ d = qd0 + γy

Which yields the second part of the claim. In steady state, d = d0, and we get the first part

of the claim.

A.3 Proposition 5

Proof. First, consider s = h and dF is such that dl < dF < dh. The first order condition with

respect to dF would have to hold with equality. The first order conditions with respect to k0

and dF are:

u0
³
cht

´
=

¡
Af 0(k0) + 1− δ

¢
β
h
(1− ψ)u0

³
cht+1

´
+ ψu0

³
clt+1

´i
u0
³
cht

´
q∗h(1− ψ) = β(1− ψ)u0

³
cht+1

´
Combining both yields:

1 = q∗h
¡
Af 0(k0) + 1− δ

¢Ã
1− ψ

"
1−

u0
¡
clt+1

¢
u0
¡
cht+1

¢#!

As clt+1 and cht+1 are similar, that implies:

1

q∗h
− 1 ≈ Af 0(k0)− δ

which contradicts the assumption that mpk > r∗h.

If s = l and dF is such that dl < dF < dh, a similar procedure leads to

1 = q∗l
¡
Af 0(k0) + 1− δ

¢Ã
1− (1− ψ)

"
1−

u0
¡
clt+1

¢
u0
¡
cht+1

¢#!
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which also contradicts the assumption that mpk > r∗h.

Last, if dF < dl, combining the first order conditions with respect to dF and k0 yields:

1

q∗i
− 1 = Af 0(k0)− δ

for i ∈ {l, h}, which is a contradiction.

A.4 Lemma 6

Before proving lemma 6, we need an auxiliary result:

Lemma 11 Consider the model with 2 states, h and l, and probability of changing state equal

to ψ. Define q̄ = (qh + ql)/2. In a first order approximation,

V (k, d, q̄) =
h
V (k, d, qh) + V (k, d, ql)

i
÷ 2

Proof. Proof: Comes directly from a Taylor expansion of V (k̄, d̄, qh) and V (k̄, d̄, ql) around

V (k̄, d̄, q̄).

We are ready to prove lemma 6.

Proof. First, we need to show that, close to the deterministic steady state (k = k̄, d = d̄),

V (k̄, d̄, qh) = V ξ(k̄, d̄, qh) if ξ = 1− 2ψ.

V ξ(k, d, qh) = max
k0,d0,∆d

(
u(Af(k) + (1− δ)k − k0 − d+ qhd0)

+β
£
(1− ξ)V det(k0, d0 − ξ∆d) + ξV ξ(k0, d0 + (1− ξ)∆d, qh)

¤ )
Near the deterministic steady state, choosing the optimal (d0, k0) instead of (d̄, k̄) has only second

order effect on the value function V ξ. As a first order approximation, we can write:

V ξ(k, d, qh) = u(ch) + β
h
(1− ξ)V det(k, d− ξ∆d) + ξV ξ(k, d+ (1− ξ)∆d, qh)

i
V det

¡
k, d

¢
= u(c) + βV det(k, d)

where ch = Af(k)− δk − d(1− qh) and c = Af(k)− δk − d(1− q).

Taking a first order Taylor approximation of fξ(k, d, qh,∆d) = V ξ(k, d, qh) around V det
¡
k, d

¢
(qh = q and ∆d = 0) with respect to q,∆d, we get:

V ξ(k, d, qh) ≈ u (c) + u0(c)(qh − q)d+ β

µ
V det(k, d) + (1− ξ)

∂V det(k, d)

∂d
(−ξ)(∆d− 0)

¶
+βξ

µ
∂V ξ(k, d, q)

∂d
(1− ξ)(∆d− 0) + ∂V ξ(k, d, q)

∂q
(qh − q)

¶
= u (c) + u0(c)(qh − q)d+ βV det(k, d) + β(qh − q)ξ

∂V ξ(k, d, q)

∂q

As a simple first order Taylor approximation,
∂V ξ(k, d, q)

∂q
(qh − q) = V ξ(k, d, qh) − V ξ(k, d, q),

so the above approximation can be written as:

V ξ(k, d, qh) = u (c) + u0(c)(qh − q)d+ βV det(k, d) + βξ
h
V ξ(k, d, qh)− V ξ(k, d, q)

i
29



Since V ξ(k, d, q) = V det(k, d) = u (c) + βV det(k, d),

V ξ(k, d, qh)− V det(k, d) = u0(c)(qh − q)d+ βξ
h
V ξ(k, d, qh)− V det(k, d)

i
so

V ξ(k, d, qh)− V det(k, d) =
u0(c)(qh − q)d

1− βξ
(11)

Now, note that, as a first order approximation:

V (k̄, d̄, qh)− V det(k̄, d̄) = u0(c̄)
³
qh − q̄

´
d̄+ β

h
(1− ψ)V (k̄, d̄, qh) + ψV (k̄, d̄, ql)− V det(k̄, d̄)

i
= u0(c̄)

³
qh − q̄

´
d̄+ β(1− 2ψ)

h
V (k̄, d̄, qh)− V det(k̄, d̄)

i
the last equality follows from lemma 11. Then:

V (k̄, d̄, qh)− V det(k̄, d̄) =
u0(c̄)

¡
qh − q̄

¢
d̄

1− β(1− 2ψ) (12)

If ξ = 1− 2ψ, Equations (11) and (12) imply that V (k̄, d̄, qh) = V ξ(k̄, d̄, qh).

Now, we complete the proof by induction. Away from the steady state, we have:

V ξ(k, d, qh) = u(Af(k) + (1− δ)k − k0 − d+ qhd) + β
h
ξV ξ(k0, d0, qh) + (1− ξ)V det(k0, d0)

i
and

V (k, d, qh) = u(Af(k) + (1− δ)k − k0 − d+ qhd) + β
h
(1− ψ)V (k0, d0, qh) + ψV det(k0, d0)

i
If V ξ(k0, d0, qh) = V (k0, d0, qh), then, using lemma 11, we can write:

V (k, d, qh) = u(Af(k) + (1− δ)k − k0 − d+ qhd) + β
h
ξV ξ(k0, d0, qh) + (1− ξ)V det(k0, d0)

i
and thus V ξ(k, d, qh) = V (k, d, qh).

A.5 Lemma 7

Proof. Subscripts denote time (k0 is capital at time 0). The superscript ξ for t > 0 means that

at time t− 1, when the variable (k or d) has been chosen, q∗ = q∗ξ.

V ξ(k0, d
ξ
0, q

ξ) = max
kξ1,d

ξ
1,∆d

(
u(Af(ko) + (1− δ)ko − kξ1 − dξ0 + q∗ξdξ1)

+β[(1− ξ)V det(kξ1, d
ξ
1 − ξ∆d) + ξV ξ(kξ1, d

ξ
1 + (1− ξ)∆d, q∗ξ)]

)

again define the function to be maximised:

f(k0, d
ξ
0, q

ξ, kξ1, d
ξ
1,∆d) = u(Af(ko) + (1− δ)ko − kξ1 − dξ0 + q∗ξdξ1)

+β[(1− ξ)V det(kξ1, d
ξ
1 − ξ∆d) + ξV ξ(kξ1, d

ξ
1 + (1− ξ)∆d, q∗ξ)]
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and take a Taylor approximation with respect to k1, d0, d1, q,∆d around q = q, d = d0, ∆d = 0

that is when f () = V det(k0, d0).

V ξ(k0, d
ξ
0, q

∗ξ) = f(k0, d
ξ
0, q

∗ξ, kξ1, d
ξ
1,∆d)

≈ u(Af(ko) + (1− δ)ko − k1 − d0 + qd1) + β
h
(1− ξ)V det(k1, d1) + ξV ξ(k1, d1, q)

i
+
∂f(k0, d0, q, k1, d1, 0)

∂k1
(kξ1 − k1) +

∂f(k0, d0, q, k1, d1, 0)

∂d0
(dξ0 − d0)

+
∂f(k0, d0, q, k1, d1, 0)

∂d1
(dξ1 − d1) +

∂f(k0, d0, q, k1, d1, 0)

∂q
(q∗ξ − q)

+
∂f(k0, d0, q, k1, d1, 0)

∂∆d
(∆d− 0)

= V det(k0, d0) + βξ[V ξ(k1, d1, q)− V det(k1, d1)] + u0(c0)[−(dξ0 − d0) + q(dξ1 − d1) + d1(q
∗ξ − q)]

+β
∂V det(k1, d1)

∂d1

n
(1− ξ)[(dξ1 − d1)− ξ(∆d− 0)]

o
+β

∂V ξ(k1, d1, q)

∂d1

n
ξ[(dξ1 − d1) + (1− ξ)(∆d− 0)]

o
+ βξ

∂V ξ(k1, d1, q)

∂q
(q∗ξ − q)

Where I used that V det(k0, d0) = u(Af(ko) + (1− δ)ko − k1 − d0 + qd1) + βV det(k1, d1).

Note that as a first order Taylor approximation:

V ξ(k1, d1, q
∗ξ) = V ξ(k1, d1, q) + β

∙
(1− ξ)

∂V det(k1, d1)

∂q
+ ξ

∂V ξ(k1, d1, q)

∂q

¸
(q∗ξ − q)

= V ξ(k1, d1, q) + βξ
∂V ξ(k1, d1, q)

∂q
(q∗ξ − q)

Vhen q = q, V det(k1, d1) = V ξ(k1, d1, q) and
∂V det(k1, d1)

∂d1
=

∂V ξ(k1, d1, q)

∂d1
. Using these last

equations I get:

V ξ(k0, d
ξ
0, q

∗ξ)− V det(k0, d0) = u0(c0)[−(dξ0 − d0) + q(dξ1 − d1) + d1(q
∗ξ − q)]

+β
∂V ξ(k1, d1, q)

∂d1
(dξ1 − d1) + βξ[V ξ(k1, d1, q

∗ξ)− V det(k1, d1)].

Analogously, for t > 0 and starting with equal initial debts at both states, we get:

V ξ(kt, dt, q
∗ξ)− V det(kt, dt) = u0(ct)[q(d

ξ
t+1 − dt+1) + dt+1(q

∗ξ − q)]

+β
∂V ξ(kt+1, dt+1, q)

∂dt+1
(dξt+1 − dt+1)

+βξ[V ξ(kt+1, dt+1, q
∗ξ)− V det(kt+1, dt+1)]

Recursive substitution leads to

V ξ(k0, d
ξ
0, q

∗ξ)− V det(k0, d0) = −u0(c0)(dξ0 − d0)

+
∞X
t=0

(βξ)t
∙
u0(ct)[q(d

ξ
t+1 − dt+1) + dt+1(q

∗ξ − q)] + β
∂V det(kt+1, dt+1)

∂dt+1
(dξt+1 − dt+1)

¸
Imposing V ξ(k0, d

ξ
0, q

∗ξ) = V det(k0, d0) we get the claim.
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A.6 Proposition 8

Proof. Using Lemma 6 and Equation 8:

V (k̄, dh, q∗h) = V (k̄, d̄, q̄)⇒

V ξ(k̄, dh, q∗h) = V (k̄, d̄, q̄)⇒
dh − d̄

d̄
=

q∗h − q̄

1− β(1− 2ψ)

Analogously, V (k̄, dl, q∗l) = V (k̄, d̄, q̄)⇒

dl − d̄

d̄
=

q∗l − q̄

1− β(1− 2ψ)

Using both equations, we get the claim.

A.7 Proposition 9

Proof. Consider a Taylor approximation of V AR(k, di, q∗i) around the deterministic steady state

(V det(k, d, q)). The borrowing constraint is not binding, so choosing the optimal (d0, k0) instead

of (k, d) has only second order effects on the value function V AR. As a first order approximation,

we can write:

V AR(k, di, q∗i) = E

Ã ∞X
t=0

βtu
¡
Af(kt) + (1− δ)kt − kt+1 − dit + q∗idit+1

¢!

≈
∞X
t=0

βtu(c) +E

Ã ∞X
t=0

βtu0(c)d(q∗it − q)

!
− u0(c)(di0 − d)

Where c = Af(k)− δk − (1− q)d.

Looking at the middle part of this expression,

E

Ã ∞X
t=0

βtu0(c)d(q∗it − q)

!
= u0(c)d

£
(q∗i0 − q) +E

¡
β
¡
ζ(q∗i0 − q) + ε1

¢
+ β2

¡
ζ
¡
ζ(q∗i0 − q) + ε1

¢
+ ε2

¢
+ ...

¢¤
= u0(c)d

"
(q∗i0 − q)

∞X
t=0

(βζ)t +E

Ã ∞X
t=1

βtεt
1

1− βζ

!#

=
∞X
t=0

(βζ)t u0(c)d
¡
q∗i0 − q

¢
= u0(c)d

¡
q∗i0 − q

¢ 1

1− βζ

So:

V AR(k, di, q∗i) ≈
∞X
t=0

βtu(c) + u0(c)d
¡
q∗i0 − q

¢ 1

1− βζ
− u0(c)(di0 − d)

Now imposing V AR(k, d1, q∗1) = V AR(k, d2, q∗2), we get:
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∞X
t=0

βtu(c) + u0(c)d
¡
q∗1 − q

¢ 1

1− βζ
− u0(c)(d1 − d)

=
∞X
t=0

βtu(c) + u0(c)d
¡
q∗2 − q

¢ 1

1− βζ
− u0(c)(d2 − d)

⇒ (d2 − d)− (d1 − d) =
1

1− βζ
d
¡¡
q∗2 − q

¢
−
¡
q∗1 − q

¢¢
⇒ d2 − d1 =

1

1− βζ
d(q∗2 − q∗1)

⇒ d2 − d1

d
=

q∗2 − q∗1

1− βζ

A.8 Proposition 10

Proof. Consider that productivity follows the ξ-process, so that A0 = Aξ and for t > 0:

• if At−1 = Aξ, Pr(A = Aξ) = ξ and Pr(A = Ā) = 1− ξ;

• if At−1 = Ā, At = Ā.

The value function at (k, d) if At = Aξ is:

V ξ(k, d,Aξ) = max
k0,d0,d0ξ

n
u (c) + β

h
(1− ξ)V det(k0, d0) + ξV ξ(k0, d0ξ, Aξ)

io
where c = Aξf(k) + (1− δ)k− k0 − d+ q∗(d0(1− ξ) + ξd0ξ) and V det is the value function in the

model with no uncertainty.

A Taylor approximation of V ξ(k, d,Aξ) around the deterministic steady state (V det(k, d))

yields:

V ξ
pay(k, d,A

ξ) = u(c) + u0(c)(Aξ − Ā)f(k) + β(1− ξ)V det(k, d) + βξV ξ(k, d,Aξ)

where c = Āf(k)− δk − (1− q∗)d.

So:

V ξ
pay(k, d,A

ξ)− V det(k, d) = u0(c)(Aξ − Ā)f(k) + βξ
h
V ξ
pay(k, d,A

ξ)− V det(k, d)
i

which yields:

V ξ
pay(k, d,A

ξ) = V det(k, d) +
u0(c)(Aξ − Ā)f(k)

1− βξ

If dξ is close to d, V ξ
pay(k, dξ, Aξ) can be written as:

V ξ
pay(k, d

ξ, Aξ) = V det(k, d) +
u0(c)(Aξ − Ā)f(k)

1− βξ
− u0(c)

³
dξ − d

´
(13)
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Out of the equilibrium path, the value function conditional on default is:

V ξ
def (k, γ,A

ξ) = max
k0

n
u (c) + β

h
(1− ξ)V detdef (k

0, γ) + ξV ξ
def (k

0, γ,Aξ)
io

where c = (1 − γ)Aξf(k) + (1 − δ)k − k0 and V detdef is the value function in the model with no

uncertainty if the country decides to default.

A Taylor approximation of V ξ
def (k, γ,A

ξ) around the deterministic steady state (V detdef (k, γ))

yields:

V ξ
def (k, γ,A

ξ) = u(cd) + u0(cd)(A
ξ − Ā)(1− γ)f(k) + β(1− ξ)V detdef (k, γ) + βξV ξ

def (k, γ,A
ξ)

where cd = (1− γ)Āf(k)− δk, which yields:

V ξ
def (k, γ,A

ξ) = V detdef (k, γ) +
u0(cd)(1− γ)(Aξ − Ā)f(k)

1− βξ
(14)

Using an argument similar to Lemma 6, if ξ = 1−2ψ and fluctuations of technology are small,
V h(k, d,Ah) = V ξ(k, d,Ah) and an argument similar to Proposition ?? shows that if the country

is constrained, dξ and d are such that V ξ
pay(k0, dξ) = V ξ

def (k
0, γ) and V detpay (k

0, d) = V detdef (k
0, γ). We

want to know the values of dξ and d that make such equalities hold when we are close to the

deterministic steady state.

Using Equations 13 and 14, V detpay (k, d) = V detdef (k, γ) imply:

V ξ
pay(k, d

ξ, Aξ) = V ξ
def (k, γ,A

ξ)− u0(cd)(1− γ)(Aξ − Ā)f(k)

1− βξ

+
u0(c)(Aξ − Ā)f(k)

1− βξ
− u0(c)

³
dξ − d

´
= V ξ

def (k, γ,A
ξ) +

[γu0(c) + u0(c)− u0(cd)] (Aξ − Ā)f(k)

1− βξ
− u0(c)

³
dξ − d

´
From Proposition 4:

V detpay (k, d) = V detdef (k, γ)⇒ d =
γAf(k)

1− q∗

which implies cd = c.

So V ξ
pay(k, dξ, Aξ) = V ξ

def (k, γ,A
ξ) if:

(1− q∗)d

Āf(k)
u0(c)

(Aξ − Ā)f(k)

1− βξ
= u0(c)

³
dξ − d

´
⇒

(1− q∗)d

1− βξ

(Aξ − Ā)

Ā
= dξ − d

Using ξ = 1 − 2ψ and substituting
¡
Aξ, dξ

¢
for

¡
Ah, dh

¢
and

¡
Al, dl

¢
we get 2 equations

that relate debt and productivity at each of the two states. Combining both equations, we get

Equation 10.
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B Numerical examples

B.1 Deterministic model

In the numerical examples of this paper, specific utility and production functional forms

are assumed as follows:

u(c) =
c1−σ

1− σ
, f(k) = kα

I calibrate the specific parameters as follows: one period corresponds to one year.

A = 1, α = 0.36, β = 1.02−1, σ = 3 and δ = 0.10. The price of a riskless bond, q∗ , equals

β. The output loss in terms of default, γ = 0.01.

The numerical solution is obtained through value function iteration. The state space

is discretised using grids for debt and capital but the planner can choose any point in the

grid. From Figure 2, the numbers obtained in this solution are very similar to those from

the analytical formulae using the path of yt given by the numerical example.

Figure 2 also shows the behaviour of capital in this economy, γ = 0.01, compared to

the closed-economy case, γ = 0, and the full-commitment open-economy case, γ = 1.

Without the possibility of default, the level of capital jumps to its steady state level and

the marginal productivity of capital equals r∗ in one period. The possibility of default

makes convergence slower. Due to the initial capital inflow, the level of capital is higher

in this economy than in the closed economy case until they converge. However, the closed

economy slowly catches up, as the open economy will be experiencing net capital outflows

(trade balance surpluses) during the whole history, as shown at Figure 2. Debt stabilises

at 51% of GDP but reaches 60% of GDP at earlier stages.

A usual intuition is that financially open economies should converge faster to their

steady states (Barro, Mankiw and Sala-i-Martin, 1995). In contrast, the equilibrium from

this model shows that an indebted open economy would take more time to converge than

a closed economy with the same level of capital. After the initial capital inflow, the

country experiences net outflows of resources i.e. a positive trade balance. In addition, a

closed economy that opens to capital flows would not converge significantly faster but, on

the way towards the steady state, would have higher output than if it remained closed.

In order to experience faster convergence, emerging economies need trade deficits and, as

Proposition 4 shows, that does not occur in equilibrium.

B.2 Stochastic model

In this section, the accuracy of the analytical approximations used in Section 4.2 is checked

using numerical simulations.
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Figure 2: Deterministic model

I want to obtain the values of ∆d/d0 that make V h(k0, dh) = V l(k0, dl) at every state

(k, d). The numerical solution is obtained through value function iteration. The state

space is discretised using grids for debt and capital but the planner can choose any point

in the grid. At the beginning of each iteration, ∆d is calculated to make V h(k0, dh) =

V l(k0, dl).

I use the same stylisation of the 1970’s and 1980’s to calibrate the model: one period

correspond to one year, α = 0.36, β = 1.02−1, γ = 0.01, σ = 3 and δ = 0.10. A = 1,

and q∗ fluctuates around β: q∗l = 1.04−1 and q∗h = 1.00. I constrain k0 − k to lie in some

interval – adjustment costs for capital are zero in that interval and infinity outside it.

Figure 3 shows∆d/d0 as a function of the marginal productivity of capital if the borrowing

constraint is binding and the state is high in two situations: (a) k0 − k ∈ (−0.10k, 0.10k)
and (b) k0 − k ∈ (−0.05k, 0.10k).
The main results are as follows:

• For mpk > 0.04 = r∗l, the linear approximation works well: ∆d/d0 is around 0.17
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Figure 3: Debt relief

and gradually increasing in mpk. The possibility of borrowing an additional unit in

the high state is worth slightly more to countries with high mpk.

• For mpk below r∗l = 4%, ∆d/d0 is considerably smaller. For lower values of mpk,

when the state shifts to low, interest rates are higher than mpk, so the country

sells capital and could even end up buying high-interest-rate foreign bonds. This

might sound unrealistic because adjustment costs for capital would prevent such

rapid capital movement. Indeed, the debt reduction ∆d/d0 for lower values of mpk

are sensitive to the assumptions on adjustment costs. Figure 3 shows that whenmpk

is at its lowest value, k0 = k, then ∆d/d0 is around 0.10 with adjustment costs given

by (a) and around 0.11 in case (b).
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