Housing Transfer Taxes and Household Mobility: Distortion on the Housing or Labour Market?

Land a	and buildings (on full o	consideration paid)		
Rate	Residentia	Non-residential		
	Disadvantaged areas	Other	£	
	£	£		
Nil	0 - 150,000	0 - 125,000	0 - 150,000	
1%	150,001 - 250,000	125,001 - 250,000	150,001 - 250,000	
3%	250,001 - 500,000	250,001 - 500,000	250,001 - 500,000	
4%	Over 500,000	Over 500,000	Over 500,000	

Shares and securities - rate 0.5%.

Christian Hilber and Teemu Lyytikäinen

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Housing: Microdata, macro problems – A cemmap workshop, London, May 23, 2013

Overview

- Look at long-term effect of UK stamp duty a tax on real estate transfers payable by buyer – on actual household mobility
 - Does tax induced increase in relocation costs reduce mobility? By how much?
 - Does stamp duty affect housing- and job-related mobility differentially?
- How?
 - Use UK micro-data
 - Exploit <u>discontinuous jump</u> in the tax rate from 1 to 3% at the cut-off house value of £250k
 - Use this discontinuity to identify effect of stamp duty on mobility

Contents

- 1. Motivation
- 2. UK stamp duty system & theoretical predictions
- 3. Empirical strategy (RD)
- 4. Data
- **5. Evidence and Robustness** (including analysis of bunching)
- 6. Conclusions

Contents

1. Motivation

- 2. UK stamp duty system & theoretical predictions
- 3. Empirical strategy (RD)
- 4. Data
- **5. Evidence and Robustness** (including analysis of bunching)
- 6. Conclusions

Why should we care?

- 1. Taxes on real estate transactions are economically important
 - ▶ UK: 0 7% of HVs (generating £8 billion in 08/09)
 - Not just UK Most European countries have very substantive tax rates (e.g. Spain: 7%)
 - ► US: 0 2.2% + local taxes
- 2. If stamp duty indeed reduces mobility, this can cause wasteful mismatch in housing and labor markets...

Mirrlees Review 'Tax by Design' (2011):

"By discouraging mutually beneficial transactions, stamp duty ensures that properties are not held by the people who value them most. It creates a disincentive for people to move house, thereby leading to potential inflexibilities in the labour market and encouraging people to *live [...] in* properties of a size and in a location that they may well not otherwise have chosen."

Two open questions

How big is adverse effect of UK stamp duty on actual household mobility?

Are distortions mainly confined to <u>labour</u> <u>or housing markets</u>?

What do we know so far? Little previous empirical work...

- Van Ommeren and van Leuvensteijn (2005)
 - Provide indirect evidence on mobility effects for the NLs using theoretical model to infer effect of transaction costs
 - 1 percentage point increase in transaction costs reduces mobility by at least 8%
- Dachis, Duranton and Turner (2012)
 - Look at short-term effect of a transfer tax in Toronto
 - Estimate effect on housing transaction volume and prices using Diff-in-Diff
 - 1.1% tax on HVs led to a 15% decrease in transactions in first eight months after introduction
- Our study: on UK, on long-term (equilibrium) effects, on actual HH mobility, distinguishing b/w labour and housing related moves and using RD-type design

Basic idea: Exploit discontinuity in UK stamp duty tax rate...

Purchase price	UK Stamp duty rate (during our sample period)
Up to £125,000	0%
£125,001 to £250,000	1%
£250,001 to £500,000	3%
Over £500,000 to £1 million	4%
Over £1 million	5%

- Our focus is on £250k cut-off for three reasons:
 - 1. Tax jump is big: from £2500 to £7500!
 - 2. Data reasonably dense around it
 - 3. Hasn't been affected by regional exemptions

Expected effects of stamp duty increase?

- Stamp duty drives wedge b/w price obtained by seller and price paid by buyer
 - Transaction costs reduce <u>housing transactions</u>
 - But transaction \neq move!
 - Could in theory move without selling, but...
 - Most sellers need down-payment for new home
 - Few people want to be landlord and rent out old home
 - Drop in <u>mobility</u> likely similar to drop in transaction volume
- Propensity of move affected by
 - Expected costs (stamp duty)
 - Expected benefits of move (employment shocks vs. incremental housing related motives)

Job related moves

Housing related moves

Theoretical Predictions

- 1. Stamp duty increase reduces housing transaction volume
- 2. Stamp duty increase reduces household mobility (by a similar fraction)
- Adverse effect on (incremental, shorter-distance) housing related moves is greater than corresponding adverse effect on (longer-distance, shock-driven) job related moves

What exactly happens at cut-off?

- Consider setting
 - Dwellings produce housing services H
 - Buyer's willingness to pay for one unit of *H* is *P*
 - For simplicity P=1
 - Stamp duty t is capitalized into house price V:
 V=PH/(1+t)=H/(1+t)
- Owner's incentive to sell and move depends on V/H =1/(1+t)
 - An increase in stamp duty t decreases V/H

Implications for empirical work

 Price per unit of H obtained by seller decreases sharply at the £250k cut-off from 0.99 to 0.97 → Above cut-off sellers will tolerate larger disequilibrium before moving (so will be less likely to move)

Distribution of housing transaction prices (in 2005)

... But note: we do not use transaction prices (in core analysis) but rather <u>self-assessed</u> HVs...

Intro/Motivation Setup/Theory Empirical Strategy Data Evidence/Robustness Conclusions & Implications

Our treatment variable

- Treatment= 1 if <u>self-assessed</u> house value > £250k
 - Pr(affected by the 3% rate) increases sharply at £250k
 - But we can't identify those who really took treatment
 - Compliers on either side of cut-off ⇒ downward bias
- ⇒ We estimate the *reduced form* of a *fuzzy* Regression Discontinuity IV regression
 - Fuzzy because can't be sure all HH above cut-off are indeed affected
 - Reduced form because we don't observe actual treatment so have to use likelihood of obtaining treatment directly, not as instrument

Self assessed house values (in 2005)

- People tend to report rounded values but no abnormal pile-up at £250k (unlike in transaction price distribution)
- ⇒ Supports validity of RD design (no precise manipulation of assignment variable)

Empirical model

We estimate using 20 to 40% bands around house value of £250k by OLS:

 $Move_{it} = \beta_t + \beta_1 Treat_{it-1} + f(House value_{it-1}) + u_{it}$

- Treat = 1 if self-reported house value > £250k
- ► f(House value_{it-1}) is 1st-4th order polynomial
- <u>Identifying assumption</u>: all other factors that determine mobility evolve smoothly w.r.t. house values

Two concerns & proposed remedies

- 1. HHs who intend to stay may not follow market as closely and may be more likely to give "rounded" estimates of their HV (including £250k)
 - Include dummy for round values (in multiples of £50k)
- 2. Recent movers are problematic
 - They have just "precisely manipulated" the assignment variable
 - Sorting on unobservables possible
 - ► Exclude those who moved in t-1 ⇒ slightly stronger results

Data

British Household Panel Survey (BHPS)

- Roughly 10,000 HHs annually
- Sample period: 2003 to 2008 (2003 = First year with new stamp duty system with stricter control on tax evasion)

Key variables

- Mover indicator (1/0): 1 if household moved between interviews in t-1 and t
- Self-assessed house values
 - Arguably, this is relevant HV measure for mobility decisions

Controls

Age, kids, HH income, region dummies, GCE A-levels or higher, bachelor degree or higher, year dummies, dummy for round HVs

Main Results I

Dependent variable: household moved (0/1)						
Band around	Order of polynomial of house value					
£250k cut-off	NO	1st	2nd	3rd	4th	Ν
20 %	-0.001	-0.02	-0.037**	-0.055**	-0.044	6665
	[0.007]	[0.018]	[0.018]	[0.027]	[0.028]	
30 %	0.006	-0.025***	-0.027***	-0.022**	-0.029**	14151
	[0.004]	[0.008]	[0.010]	[0.010]	[0.014]	
40 %	0.003	-0.011	-0.015*	-0.029***	-0.024**	17997
	[0.004]	[0.007]	[0.008]	[0.009]	[0.011]	

Notes: Additional control variables: year dummies, dummy for round house value. Standard errors clustered at household level brackets. * p<0.1, ** p<0.05, *** p<0.01. Preferred specification in row according to AIC score indicated by *italics*.

<u>Preferred specification</u>: band wide enough for reasonably precise estimation; higher than 3rd order polynomial increases AIC score.

Main results II: Differential effects by distance of move and reason of move

Dependent variable: household moved (0/1)							
	3 rd order polynomial of house value						
Band around	Distance of move			Reason for move			
£250k cut-off	<10km	10-30km	>30km	Housing	Employm.	Other	
20 %	-0.057***	0.013	-0.001	-0.027	0.01	-0.032*	
	[0.018]	[0.011]	[0.014]	[0.019]	[0.007]	[0.019]	
30 %	-0.025***	0.002	0.007	-0.019***	0.005	-0.004	
	[0.006]	[0.005]	[0.005]	[0.007]	[0.003]	[0.007]	
40 %	-0.026***	-0.001	0.003	-0.020***	0.002	-0.001	
	[0.005]	[0.004]	[0.005]	[0.006]	[0.003]	[0.006]	

Notes: Additional control variables: year dummies, dummy for round house value. Standard errors clustered at household level brackets. * p<0.1, ** p<0.05, *** p<0.01.

⇒ Adverse effects largely confined to housing related short-distance moves

'Countless' validity & robustness checks...

- **1. Balance of covariance tests**
- 2. Add demographic and location specific controls
- 3. Allow slope of polynomials to differ on the two sides of cut-off
- **4.** Placebo tests w artificial cut-offs: Check results are not driven by 'round value' phenomenon
- 5. Drop HHs who self-report value of 250k
- 6. Limit sample only to HHs who say they are likely to move
- 7. Two-way cluster at HV group level and HH level
- 8. Show 'aggregate effect' on transaction volume of similar magnitude (using transaction price data)

'Aggregate effect' on transaction volume

- Idea: Use <u>universe of housing transaction price data</u> (from Land Registry) to provide estimate of aggregate effect of stamp duty on <u>volume of transactions</u>
- Does not allow us to identify impact on (job- vs. housing related) mobility BUT...
 - Use of alternative dataset & approach provides a <u>cross-</u> <u>validation check</u> of magnitude of adverse effect
 - Gives more <u>precise estimate</u> of <u>overall effect on</u> <u>transaction volume</u> since observe treatment and results based on much larger sample size
 - One might be worried about manipulation of timing of move, but this spec <u>controls for such timing behaviour</u>...

Empirical model (following literature on 'bunching')

- Basic idea: Control for bunching behaviour
- How? Limit sample to transaction prices b/w £150k and £350k, create £5k wide bins & include controls for bunching

$$n(N_{it}) = \beta_{t} + \beta_{1} Treat_{jt} + f_{t}(Price_{jt}) + \lambda_{1} Bin_{240} + ... + \lambda_{6} Bin_{265} + \delta_{1} Round50_{j} + \delta_{2} AfterRound50_{j} + u_{jt}$$

- \triangleright N_{jt} ... Number of transactions in bin j in year t
- Treat = 1 if value of bin > £250k
- f(*Price_{jt}*) is polynomial of upper bound of bin (shape of polynomial allowed to vary by year)
- Control for (i) bins close to cut-off where bunching occurs, (ii) bins with round values, and (iii) bins immediately after round values

Results: Effects on transaction volume

Dependent variable: In(number of transactions in bin)						
	Order of polynomial of house value					
	3rd	4th	5th	6th	7th	
Price>£250k	-0.142***	-0.142***	-0.287***	-0.287***	-0.315***	
	[0.044]	[0.045]	[0.070]	[0.071]	[0.109]	
6 bin dummies	Yes	Yes	Yes	Yes	Yes	
Price>£250k	-0.097	-0.097*	-0.282***	-0.282***	-0.331**	
	[0.063]	[0.055]	[0.094]	[0.092]	[0.164]	
8 bin dummies	Yes	Yes	Yes	Yes	Yes	

Notes: N=240 (6 years × 40 bins). * p<0.1, ** p<0.05, *** p<0.01. Preferred specification in row according to AIC score indicated by *italics*.

Preferred specifications: 5th to 7th order polynomials

Conclusions

The UK stamp duty has <u>strong negative effect</u> on actual household mobility

- 2%-point increase in stamp duty reduces annual rate of mobility by 2-3 percentage points (~ 40% reduction in propensity to move)
- Also find similar adverse effect on transaction volume (~ 30% reduction)
- Naïve estimates fail to identify this effect

 Effect confined to <u>short-distance</u> and <u>non-job related</u> <u>moves</u>

⇒ Implies potentially important welfare losses due to misallocation of housing (rather than labour market mismatch)

Thank you!

Paper downloadable from: http://www.cemmap.ac.uk/forms/Housing%20Conference/ hilber housingtransfertaxes.pdf