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The big picture

An old idea:

@ Asset returns are an adapted process to the SDF one.

= |. use returns to learn about the latent SDF.

Il. given a candidate SDF, use asset returns to estimate what the SDF
is “missing”

This paper: focus on Il assuming a linear factor structure for asset
returns.

In a nutshell: construct a linear correction (a-SDF) using the implied
cross-sectional pricing errors of a candidate SDF (the $-SDF).
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HJ1: min variance SDF

Hansen-Jagannathan (1991 JPE):

Definition (Canonical HJ-bound)

For each E [M,] = M, the minimum variance SDF is

M (I\_ﬂ) = argmin Var (I\/It (I\_/l)) s.t. 0 =E [RfMt (/\_/I)] (1)
{m(m)},
where RS € RV.
The solution to the above is M; (M) = M + (R¢ — E[R¢])' B4, where
By = Cov (Re)™! (—I\_A]E [R¢]) , and any candidate SDF M, must satisfy
Var (M, (M)) > Var (M; (M)).

= M} = projection of true SDF on space of payoffs.
o Dimensionality of order N?> — problem with large N.

Note: VIO|ateS nOn—negatiVity reStriCtiOn (HJ1 provides a restricted one, but computationally more
complex).
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HJ2: min variance correction to the SDF

Hansen-Jagannathan (1997 JF):

Definition (HJ-correction)
Given a candidate SDF M;:

@2, = minE [(Mt - qt)z] st. 0 =E[qR?].
qelL?

= HJ2 looks for the minimum (in a least square sense) linear
adjustment that makes M; — 0’R§ an admissible SDF (where 6 arises
from the linear projection of M; on the space of returns).

e Again, dimensionality of order N? and violates non-negativity
restriction.
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Changing measures

o Consider the vector of Euler equations

0—E | m(6.0)uRi| = [ m(0,0)viRedP
—_———

M.

where m (0, t) is a known function of observable data, P is the
physical probability measure, and ); is an unobservable component.

@ Under very weak regularity conditions, we have
_ ’(/)t e e _mVv e
0= [ m(6, )1/JR dP= [ m(0,t)R;dV =E" [m(6,t) R{]

where X := E [x], and w‘ = %% is the Radon-Nikodym derivative.

Note: o If m(6,t)is a constant, V= Q
o if not, ¢ is a multiplicative correction of the candidate sdf m
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GJT: minimum entropy SDF and correction

Ghosh, Julliard, Taylor (2016 RFS):
Definition (GJT-SDF)

Given an m(6,t) and a returns data, estimate the W measure as

W= argwmin D (V||P) = argwmin 3—;_5 In Z—;Lde s.t.0 = / m(0,t) REdV

= KLIC minimization under the asset pricing restriction.

@ Since relative entropy is not symmetric, we can also use D (P||V).

@ Dimensionality of order N, and guarantees non-negativity.

@ ML interpretation and properties.

e HJ1/HJ2 as approximations/particular cases.

@ 1 adds minimum amount of additional info needed to to price assets.
Note: correction is not necessarily orthogonal to m. And not, in the data,

for consumption based models.

Out-of-sample (GJT 2018): prices assets (equities, commodities,
currencies...) better than usual factors, and delivers the maximum Sharpe
o ratio returns (e.g. better than 1/, momentum-+value etc
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1 correction a la HJ1

Definition ( Volatility bound for ;)

For each E [1/¢] = %, the minimum variance v, is

(7 (1/_1) = argmin 4/ Var (Q/Jt (1/_))) s.t. 0 =E [Rfm(@, t) ¢y (1/_))] .
{v(@)}.,

The solution of the above minimization for a given m(, t) is
Ui (¢) =¥+ (REm (0, 1) —E[Rim (6,1)])' 85

where 35 = Var (R¢m (6, )" (—YE[R¢m (0, t)])

= 1)} = projection on space of scaled payoffs.

Note: correction is not necessarily orthogonal to m
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. just one more factor

Note: in population or in sample, we are always one factor away from
perfect pricing (e.g. MacKinlay (1995))

Example: consider a model with, as observable factors, k assets with
excess returns in vector z, ;

R? = o+ BZpJ + €t
Ee, =0, Var[e] = NEN, Ez,: = pp, Var[zp:] = KKXIK, cov[zp €] =0

The efficient portfolio of the residual assets is then characterized by
o weights: ¥ 1o
o return: Ry, o e}X tavie Lz,
e squared SR: s? = o’ 1o

= adding this portfolio as a factor we achieve perfect pricing.

This paper: add the linear correction ¢, la to the SDF (a-SDF).
Note: dimensionality is still N2, and still violates non-negativity... but
good properties as N — 0o (under some sort of weighted square integrability of
the betas assumption)... but paper never use the limiting results in

estimation...
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So, what's new here?

= structure on «:
a=a+ Alpmiss s.t. X ta<d<oo VN

where A and \,iss are, respectively, the loading and risk premia of the
missing factors (identified by the diverging eigenvalues of ¥ as N — o0).

But: that's the “extended APT" of Uppal and Zaffaroni (2017)... say it!

So, what's really new here? ... | think: how to estimate the missing
factors... But:
@ that’s only in Appendix E!
@ that's only via Q-MLE (i.e. consistent but not efficient)
© N2 order of dimensionality (no use of limit results)
Q that's (presented at least) only for the case in which observable and
latent factors are orthogonal...

Note: the latter is never the case in popular structural models (e.g.
viewing LRR, habits, heterogeneous agent models etc. as corrections
to the C-CAPM), and not at all what GJT find (for consumption
models at least)... and cannot correct spurious factors with
orthogonal additions.
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Suggestions

VI.

VII.

10/10

. needs clear product differentiation — verbatim identical theorems

across (not cited) different papers ain't cool.

. too much time dedicated to known results — focus on what is new!

How to estimate the “extended APT" is non-trivial, and worth a
paper.

. The case of missing factors orthogonal to the observed ones is

uninteresting — focus on the relevant case.

The constraint Y 1a < § < oo is crucial — de facto, that's what
delivers the identification. For too low § you are imposing perfect
pricing for any T (everything is latent factors). How to chose §7
Cross-validation? Shanken and Barillas (2018 JF)? Sub-sampling in
N?

Need a clearer case to support the approach. The critique of HJ1,
HJ2 etc. based on N? dimensionality is a red herring since, in the
current estimation procedure, you have the same problem...

Do asset pricing out-of-sample to show validity of the method... but
that’s a function of 1.,

Ideally, we should learn from the data something about the behavior
of the true SDF — use your method to dig!
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In summary

(+) The paper is after an important question

(+) Worth writing an empirical “how to” paper about the “extended
APT" (or merge papers?)

(+) Large N property is very good (but typo in Theorems or Lemmata?)...
use it for estimation!

(-) currently, it takes quite some effort to find what is new

(-) the dimensionality argument in favor of the approach is, at this
stage, misleading

(-) Needs a criterion for choosing &

(=) an interesting paper, with a lot of upside potential = looking
forward to the next draft!

Note: it could all be presented in a much simpler fashion: start from the
“magic” ¥ o portfolio, cite the “extended APT" as a way of
putting economic restrictions on it, and write a clear “how to" paper
with a salient empirical application.
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