Discussion of: "Answering the Queen: Online Machine Learning and Financial Crises" by Jérémy Fouliard, Michael Howell, Hélène Rey

Christian Julliard

London School of Economics



### The problem: "Why did nobody notice it?"

We would like to forecast the next (financial) crisis:

- Without knowing the "true" model of the economy.
- $\Rightarrow$  Reduced form forecasting.
- **2** Using as much information as possible  $\rightarrow N >> T$
- ⇒ Average forecasts over multiple, low dimension, sub-models "experts"
- In a way that is robust to the naïve Lucas critique (Sims (1980, 1987), Sargent (1994)...)
- ⇒ Need flexibility to accommodate dynamic evolving forecasting ⇒ time varying weights to "experts' opinions"
- In a computationally feasible way.
- ⇒ "online" update rather than "batch" estimation.
- Puzzle: but the "paper" actually does MLE (I think) for each model considered ... only aggregation is online...
  - Note: we can only hope to forecast crises types in the convex hull of history.

# **Optimal Learning**

• generally, there is no *uniformly* optimal estimation strategy.

- E.g.: 1) minimax principle: optimizes prediction for worst true density
  - 2) Rao-Cramér efficiency: minimum variance in the unbiased estimators class (or as  $\tau \to \infty$ )
  - 3) Bayesian: can define an "average case" optimality (average over both random drawing of data and of true parameters of the DGP)
  - Remark: "average" optimality implies that no estimator can beat a Bayesian procedure for <u>all</u> true parameters.
- Note: <u>quadratic loss</u> function over prediction densities implies that the optimal "on average" is the **mixture of all possible distributions** (in the considered family) **weighted by their posterior probabilities** aka Bayesian Model Averaging.
- Bonus: the BMA predictive distribution minimizes the relative entropy, KLIC, relative to the true unknown DGP  $\Rightarrow$  i.e. as close as possible to the unknown truth even if misspecified.

### Bayesian Learning and Model Averaging

- $P(D^t|\theta^k)$  : likelihood function of data  $D^t := (z_1, ..., z_t)$  in k-th model.
  - $p(\theta^k)$ : prior belief (arbitrarily diffuse) on DGP parameters  $\theta^k \in \Theta^k$  in *k*-th model/distribution/expert.
- $p(\theta^k | D^t)$  : posterior distribution  $\propto P(D^t | \theta^k) p(\theta^k)$ 
  - In any k model can forecast any  $f(\theta^k | D^t)$  (e.g. pre-crisis prob.):

$$\widehat{f}_t^k := \int_{\Theta^k} f( heta^k | D^t) p( heta^k | D^t) d heta^k$$

BMA: optimal "on average" forecast

$$\widehat{f}_t := \sum_k \widehat{f}_t^k \pi_t^k$$

combine multiple models'/experts' forecasts using models' posterior probabilities  $\pi_t^k$  given by:

 $\frac{\text{prob. of } D^t \text{ in k-th model} \times \pi_0^k}{\sum_k \text{prob. of } D^t \text{ in k-th model} \times \pi_0^k} \equiv \frac{\int_{\Theta^k} P(D^t | \theta^k) p(\theta^k) d\theta^k \times \pi_0^k}{\sum_k \int_{\Theta^k} P(D^t | \theta^k) p(\theta^k) d\theta^k \times \pi_0^k}$ where  $\pi_0^k = \text{prior probability of model } k$  (e.g. 1/#models)
C. Julliard Discussion of Fouliard, Howell & Rey (2019)

## This paper: an "approximated" BMA (hence, I like it! $\odot$ )

With:

- the class of DGP considered:  $P(D_t|\theta^k)$  is logistic.
- 2)  $\hat{f}_t^k$ : posterior mean approximated by the forecast at the MLEs.
  - ⇒ negligible approximation error IF the likelihoods are very sharp. (Are they? AUROC preselection might be helping...)
- Note: could replace/mix "batch" MLE with "online" learning too (e.g. gradient descent)  $\Rightarrow$  massive computational time gain to be had.
- 3)  $\pi_0^k$ : prior on models is 1/# number of models
- 4)  $\pi_t^k$ : posterior model prob. replaced by a (gradient descent algo) EWA.

 $T \to \infty$  "should" converge to weights given by:  $\frac{e^{-\frac{1}{2}BIC_t^k}}{\sum_k e^{-\frac{1}{2}BIC_t^k}} \dots$ 

... and this converges to  $\pi_t^k$  IF data are  $_{(\text{covariance})}$  stationary.

5) preselect subset of possible models based on performance on sub-sample:  $\approx$  20-25 variable, 1.5-3 mil models per country.

 $\Rightarrow$  Compatible with BMA (Occam/principle of parsimony, Madigan and Raftery(1994))

Note: doing proper BMA could construct a Markov Chain over possible models and feasibly work with even more models...

## Q1: but do we need an approximation?

- The "online" part of the paper is only (I think) the model averaging, not the individual model/expert MLE... but that's the computationally light part!
  - Posterior evaluation of Bayesian <u>Probit</u> (e.g Lancaster (2003)) is as fast as MLE: 1) Gibbs sampler = sequence of Gaussian draws;
     2) "embarrassingly parallel" problem.
  - Given above, computing  $\pi_t^k$  is straightforward (e.g. harmonic mean)
  - And it's realistically feasible!
    - Sala-y-Martin AER1997: 2 million models
    - At today's processing time ≈ 2 <u>billion</u> models i.e. 5 mil. models per country with "batch" posterior evaluation ∀t.
- **2** Posterior evolution can naturally be tracked "online" since  $p(\theta^k | D^{t+1}) \propto P(z_{t+1} | \theta^k) p(\theta^k | D^t)$ , i.e. time *t* posterior = t + 1 prior  $\Rightarrow$  update based on t + 1 data likelihood only.

Baseline: might need more convincing case for the approximation.

Bonus of proper BMA: can directly assess relevance of individual predictors (BMA of individual coefficients and/or marginal effects).

0

#### Q2: and is EWA the "best" approximation?

- From my understanding of the slides, actually MLE is performed for each model/expert.
- $\Rightarrow$  have the log-likelihood and Hessian at the MLE as a freebie.
- But: from Laplace's method (second order approx.) we have

$$\int_{\Theta^k} P(D^t | \theta^k) p(\theta^k) d\theta^k \approx (2\pi)^{d_{\theta^k}/2} \left| \hat{\Sigma}_{\theta^k} \right|^{\frac{1}{2}} P\left( D^t | \hat{\theta}^k \right) p\left( \hat{\theta}^k \right)$$

where  $d_{\theta^k} = \text{dimension of } \theta^k$ ,  $\hat{\Sigma}_{\theta}^{-1}$  is the negative Hessian evaluated at the MLE (i.e. observed Information matrix ) and  $\hat{\theta}^k = \hat{\theta}_{MIF}^k$ .

• Hence, can compute the posterior probabilities with no additional computational burden as:

$$\pi_t^k = \frac{(2\pi)^{d_{\theta^k}/2} \left| \hat{\Sigma}_{\theta^k} \right|^{\frac{1}{2}} P\left( D^t | \hat{\theta}^k \right)}{\sum_k (2\pi)^{d_{\theta^k}/2} \left| \hat{\Sigma}_{\theta^k} \right|^{\frac{1}{2}} P\left( D^t | \hat{\theta}^k \right)}$$

Note: valid under the same conditions needed to replace the posterior mean  $\hat{f}_t^k$  with its MLE value (as the authors do)

#### "No man country is an island"

Financial crises tend to be global, rather than local, phenomena. Or at least to spill over domestic boundaries.

But: the "experts"/models considered are purely domestic.

- $\Rightarrow$  should expand the space of models to include foreign states.
- $\Rightarrow$  increases dimensionality of the problem...
  - need to either replace/mix MLEs with online learning (frequentist or Bayesian) or construct a Markov Chain over the the models for taking draws (or again use Occam's razor)

Note: in Bayesian setting one can also "easily" handle models like:

$$y_{i,t} = \begin{cases} 1 & \text{if } y_{i,t}^* = x_t \beta + \phi \sum_{j \neq i} g_{i,j,t} y_{j,t}^* + \varepsilon_{i,t} < 0 \\ 0 & \text{otherwise} \end{cases}$$

Where  $y_i^*$  is the latent state of country *i* and the weights  $g_{i,j,t}$  capture the network considered (i.e. trade links, borrowing/lending relations, etc.)  $\Rightarrow$  could be part of BMA/experts considered.

# Summary

- An ambitious and needed project.
- And the approach proposed does make sense (for a Bayesian at least).

Note: "data mining" is a swear word only in our field...

- I look forward to the paper!
- And therein I'd like to see:
  - a strong case in favour of the approach proposed vis-à-vis (proper and/or approximated via Laplace's method) Bayesian Model Averaging.
  - experts/models that allow for cross country linkages and spillovers.