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The problem: “Why did nobody notice it?”
We would like to forecast the next (financial) crisis:

1 Without knowing the “true” model of the economy.
⇒ Reduced form forecasting.

2 Using as much information as possible → N >> T
⇒ Average forecasts over multiple, low dimension, sub-models –

“experts”
3 In a way that is robust to the naïve Lucas critique (Sims (1980, 1987),

Sargent (1994)...)

⇒ Need flexibility to accommodate dynamic evolving forecasting
⇒ time varying weights to “experts’ opinions”

4 In a computationally feasible way.
⇒ “online” update rather than “batch” estimation.

Puzzle: but the “paper” actually does MLE (I think) for each model
considered ... only aggregation is online...

Note: we can only hope to forecast crises types in the convex hull of
history.
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Optimal Learning

generally, there is no uniformly optimal estimation strategy.
E.g.: 1) minimax principle: optimizes prediction for worst true density

2) Rao-Cramér efficiency: minimum variance in the unbiased
estimators class (or as T →∞)

3) Bayesian: can define an “average case” optimality (average over
both random drawing of data and of true parameters of the DGP)

Remark: “average” optimality implies that no estimator can beat a
Bayesian procedure for all true parameters.

Note: quadratic loss function over prediction densities implies that
the optimal “on average” is the mixture of all possible
distributions (in the considered family) weighted by their
posterior probabilities aka Bayesian Model Averaging.

Bonus: the BMA predictive distribution minimizes the relative
entropy, KLIC, relative to the true unknown DGP ⇒ i.e. as
close as possible to the unknown truth even if misspecified.
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Bayesian Learning and Model Averaging
P(Dt |θk) : likelihood function of data Dt := (z1, ..., zt) in k-th model.

p(θk) : prior belief (arbitrarily diffuse) on DGP parameters θk ∈ Θk in
k-th model/distribution/expert.

p(θk |Dt) : posterior distribution ∝ P(Dt |θk)p(θk)
In any k model can forecast any f (θk |Dt) (e.g. pre-crisis prob.):

f̂ k
t :=

∫
Θk

f (θk |Dt)p(θk |Dt)dθk

BMA: optimal “on average” forecast
f̂t :=

∑
k

f̂ k
t π

k
t

combine multiple models’/experts’ forecasts using
models’ posterior probabilities πk

t given by:
prob. of Dt in k-th model× πk

0∑
k prob. of Dt in k-th model× πk

0
≡

∫
Θk P(Dt |θk)p(θk)dθk × πk

0∑
k
∫

Θk P(Dt |θk)p(θk)dθk × πk
0

where πk
0 = prior probability of model k (e.g. 1/#models)
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This paper: an “approximated” BMA (hence, I like it! ,)

With:
1) the class of DGP considered: P(Dt |θk) is logistic.
2) f̂ k

t : posterior mean approximated by the forecast at the MLEs.
⇒ negligible approximation error IF the likelihoods are very sharp.

(Are they? AUROC preselection might be helping...)
Note: could replace/mix “batch” MLE with “online” learning too (e.g.

gradient descent) ⇒ massive computational time gain to be had.
3) πk

0 : prior on models is 1/#number of models
4) πk

t : posterior model prob. replaced by a (gradient descent algo) EWA.
T →∞ “should” converge to weights given by: e−

1
2 BICk

t∑
k e−

1
2 BICk

t
...

... and this converges to πk
t IF data are (covariance) stationary.

5) preselect subset of possible models based on performance on
sub-sample: ≈ 20-25 variable, 1.5-3 mil models per country.

⇒ Compatible with BMA (Occam/principle of parsimony, Madigan and Raftery(1994))

Note: doing proper BMA could construct a Markov Chain over
possible models and feasibly work with even more models...
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Q1: but do we need an approximation?
1 The “online” part of the paper is only (I think) the model

averaging, not the individual model/expert MLE... but that’s
the computationally light part!
Posterior evaluation of Bayesian Probit (e.g Lancaster (2003)) is as
fast as MLE: 1) Gibbs sampler = sequence of Gaussian draws;
2) “embarrassingly parallel” problem.
Given above, computing πk

t is straightforward (e.g. harmonic mean)

And it’s realistically feasible!
Sala-y-Martin AER1997: 2 million models
At today’s processing time ≈ 2 billion models i.e. 5 mil.
models per country with “batch” posterior evaluation ∀t.

2 Posterior evolution can naturally be tracked “online” since
p(θk |Dt+1) ∝ P(zt+1|θk)p(θk |Dt), i.e. time t posterior =
t + 1 prior ⇒ update based on t + 1 data likelihood only.

Baseline: might need more convincing case for the approximation.
Bonus of proper BMA: can directly assess relevance of individual
predictors (BMA of individual coefficients and/or marginal effects).

6/9 C. Julliard Discussion of Fouliard, Howell & Rey (2019) 	



Q2: and is EWA the “best” approximation?

From my understanding of the slides, actually MLE is
performed for each model/expert.

⇒ have the log-likelihood and Hessian at the MLE as a freebie.
But: from Laplace’s method (second order approx.) we have∫

Θk
P(Dt |θk)p(θk)dθk ≈ (2π)d

θk /2
∣∣∣Σ̂θk

∣∣∣ 1
2 P

(
Dt |θ̂k

)
p
(
θ̂k
)

where dθk = dimension of θk , Σ̂−1
θ is the negative Hessian

evaluated at the MLE (i.e. observed Information matrix ) and θ̂k = θ̂k
MLE .

Hence, can compute the posterior probabilities with no
additional computational burden as:

πk
t =

(2π)d
θk /2

∣∣∣Σ̂θk

∣∣∣ 1
2 P

(
Dt |θ̂k

)
∑

k (2π)d
θk /2

∣∣∣Σ̂θk

∣∣∣ 1
2 P

(
Dt |θ̂k

)
Note: valid under the same conditions needed to replace the

posterior mean f̂ k
t with its MLE value (as the authors do)
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"No ���XXXman country is an island"

Financial crises tend to be global, rather than local, phenomena.
Or at least to spill over domestic boundaries.
But: the “experts”/models considered are purely domestic.
⇒ should expand the space of models to include foreign states.
⇒ increases dimensionality of the problem...

need to either replace/mix MLEs with online learning
(frequentist or Bayesian) or construct a Markov Chain over
the the models for taking draws (or again use Occam’s razor)

Note: in Bayesian setting one can also “easily” handle models like:

yi ,t =
{

1 if y∗i ,t = xtβ + φ
∑

j 6=i gi ,j,ty∗j,t + εi ,t < 0
0 otherwise

Where y∗i is the latent state of country i and the weights gi ,j,t
capture the network considered (i.e. trade links, borrowing/lending relations, etc.)

⇒ could be part of BMA/experts considered.
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Summary

An ambitious and needed project.
And the approach proposed does make sense (for a Bayesian at least).

Note: “data mining” is a swear word only in our field...

I look forward to the paper!
And therein I’d like to see:

1 a strong case in favour of the approach proposed vis-à-vis
(proper and/or approximated via Laplace’s method) Bayesian
Model Averaging.

2 experts/models that allow for cross country linkages and
spillovers.
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