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Introduction Higher Order SVD Simulation: Time x Size x Value portfolios Conclusion & Final Suggestions

In a nutshell

A brief ode to tensors:

e Great refresher/starter on the use of tensors for data representation
e Extension of 2-dimensional (typically T x assets), orthogonalised (linear) latent factor
models to higher-dimension via Tucker / CP compression algos

= 2-D factor models along the (unfolded) modes
Note: Factors are “reduced” form (in the VAR sense) i.e. not orthogonal conditional on
the mode and across modes
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In a nutshell

A brief ode to tensors:

e Great refresher/starter on the use of tensors for data representation

e Extension of 2-dimensional (typically T x assets), orthogonalised (linear) latent factor
models to higher-dimension via Tucker / CP compression algos

= 2-D factor models along the (unfolded) modes
Note: Factors are “reduced” form (in the VAR sense) i.e. not orthogonal conditional on
the mode and across modes

The data application:

e 3D sample (T x characteristic x fund) of mutual funds return

= “compressed” (un-orthogonalized) representation (by a factor of 97%) “explains” a
large share of the data (93% of MSE).

= extracted factors seem to capture salient feature of the characteristics
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What's a tensor anyway?

“Tensors are the facts of the universe”

Lillian Lieber

Def 1 : “Multi-dimensional array of numbers” (aka a grid of numbers)
e Scalar = tensor of rank O; Vector = tensor of rank 1 (1 index); Matrix = tensor of
rank 2 (2 indexes); 3D array = tensor of rank 3 (3 indexes); ...
e ..misses the geometry of it...
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Lillian Lieber

Def 1 : “Multi-dimensional array of numbers” (aka a grid of numbers)
e Scalar = tensor of rank O; Vector = tensor of rank 1 (1 index); Matrix = tensor of
rank 2 (2 indexes); 3D array = tensor of rank 3 (3 indexes); ...
e ..misses the geometry of it...
Def 2 : “An object that is invariant under a change of coordinates, and has components that
change in special, predictable way under a change of coordinates”
E.g. : (Euclidian) vectors (aka, arrows) are invariant (e.g., length and direction) but the
vector components are not invariant
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What's a tensor anyway?

“Tensors are the facts of the universe”

Lillian Lieber

Def 1 : “Multi-dimensional array of numbers” (aka a grid of numbers)
e Scalar = tensor of rank O; Vector = tensor of rank 1 (1 index); Matrix = tensor of
rank 2 (2 indexes); 3D array = tensor of rank 3 (3 indexes); ...
e ..misses the geometry of it...
Def 2 : “An object that is invariant under a change of coordinates, and has components that
change in special, predictable way under a change of coordinates”
E.g. : (Euclidian) vectors (aka, arrows) are invariant (e.g., length and direction) but the
vector components are not invariant
Def 3 : “a collection of (column) vectors and covectors (row vectors) combined together
using the tensor product”
= the working definition here for data encoding and compression
Def 4 : “partial derivatives and gradients that transform with the Jacobian matrix”

= nice connection to tangency and Sharpe ratios (more on this later)
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The Tucker (1966) decomposition

Representation:
Let Y € Riv*k-xli then

V=7 x, U x, U@ ... x, u®

where J € Rl 2%l js the core tensor, UK) € R%>4 are unitary matrices, x denotes
the k-mode product (multiplies each mode-k fiber of ) by U(k)).
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The Tucker (1966) decomposition

Representation:
Let Y € Riv*k-xli then

V=7 x, U x, U@ ... x, u®

where J € Rl 2%l js the core tensor, UK) € R%>4 are unitary matrices, x denotes
the k-mode product (multiplies each mode-k fiber of ) by U(k)).

Approximation / compression:
V=G x1 VD x, V@, VW with G € Rk <Ko K, <
st. Y =argmin||Y - ||

= compression from R <-xIn to RK1*K2... XKy

Note: e components are neither 1) ordered, 2) orthogonal or 3) unique.
e G is not diagonal (but CP, with Kj =, Vj) nor linked to e-values/vectors
e for 2D case, SVD-PCA yields same “type” of representation
= But the latter is more interpretable: ordering of orthogonal SR contributions.
Cf. reduced form VAR vs S-VAR via Choleski decomp.

Christian Julliard (LSE) Discussion of: High Dimensional Factor Models June 10, 2022 3/11



Introduction Higher Order SVD Simulation: Time x Size x Value portfolios Conclusion & Final Suggestions

Example 1: Tucker compression of 3D Array

I3 X R3

P

G

Ry X Ry X R3

%

v

Ry x I

I X R,
L xXhxIl3

Tensor can be decomposed as a core tensor G and factor matrices, one for each mode.
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Example 2: Tucker compression of 3D mandril

Original Image Reconstructed Reconstructed Reconstructed
Mode ranks = Mode ranks = 128x128x3 Mode ranks = 64x64x3 Mode ranks = 32x32x3
256x256x256 Compression = 41.66% Compression = 77.07% Compression = 90.10%
Compression = 0% Error = 12.8% Error = 22.9% Error =31.1%
Error = 0%

= Efficient compression with typically small errors

But: only one of the many compression tools available (e.g., compression via
low-frequency Fourier coefficients)
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Introduction

Why Tucker?

Given the lack of economic interpretability, and the multiplicity of available methods,
why should Tucker/CP be preferred?

Miaz Brothers: The Nick Smith: Girl with J. Vermeer: Girl with a
Muse, 2020 the Pink Earring, 2019 Pearl Earring, c. 1665

Does Tucker/CP outperforms e.g. simple PCs? And what are the metrics of success?
Just in sample MSE? X-Section? Predictability? OSS?
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A Multilinear SVD

We can actually perform a decomposition of tensors that:
1. is ordered, fast, accurate and has the canonical SVD/PC as a particular case
2. is as economically “interpretable” as canonical PCs, and can be “shrunk” accordingly
(cf. Kozak, Nagel, Santosh (2020))
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A Multilinear SVD

We can actually perform a decomposition of tensors that:
1. is ordered, fast, accurate and has the canonical SVD/PC as a particular case
2. is as economically “interpretable” as canonical PCs, and can be “shrunk” accordingly
(cf. Kozak, Nagel, Santosh (2020))
Theorem (HOSVD, De Lathauwer, De Moor, Vandewalle (2000))

Every (I x I, ... x I,;)-tensor ) can be written as the product
Y=8x, UV x, U? ... x, U™ where

1. U™ js a unitary I,, x I, matrix
2. the (I; x I ... x I)-tensor S of which the sub-tensors S; _,, obtained fixing the nth
index to «, have the properties of:
(i) all-orthogonality: S; — L S;,—p V1, a # B:ie, (S; -4 Si,—p) =0
(ii) ordering: ||S;,—1]| = [|S;,=all = ... = [|Si,=1,[| V1
The Frobenius-norms ||S; _|| =: cri(”) are the n-mode singular values of Y and the vector

LII.(") is an ith n-mode singular vector
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A Multilinear SVD cont’d

For a tensor Y € Ri*2xI the Thm implies that:
S=Yx; UM x,u®" x, u®’

is all orthogonal and sorted: i.e., the different “horizontal”/“frontal”/“vertical” matrices of
S (fix first/second/thid index i1 /i, /i3, while others are free), are mutually orthogonal.

= orthogonal portfolios, ordered by their relevance, for any given dimension of the
data, e.g., characteristic specific PCs
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A Multilinear SVD cont’d

For a tensor Y € Ri*2xI the Thm implies that:
S=Yx; UM x,u®" x, u®’

is all orthogonal and sorted: i.e., the different “horizontal”/“frontal”/“vertical” matrices of
S (fix first/second/thid index i1 /i, /i3, while others are free), are mutually orthogonal.

= orthogonal portfolios, ordered by their relevance, for any given dimension of the
data, e.g., characteristic specific PCs

Corollary of the HOSVD Thm:

if we construct a tensor J with n-mode rank of R, (1 < n < N) by discarding the
smallest n-mode singular values U'(, J)rl, a;, +)1’ ey 01({11) for given values of I,, i.e. set the
corresponding parts of S equal to zero, then we have

Ry
1Y =P < Z 24+ Z 24+ ¥

i 1’+1 iy= 1/+1 in=I+1

= knows exactly how much is left unexplained, i.e., the SR? of the (orthogonal) “alphas”
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A Multilinear SVD cont’d

Also: YV =P + &, with & L Y by construction of HOSVD
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A Multilinear SVD cont’d

Also: YV =P + &, with & L Y by construction of HOSVD
= can make distributional assumptions for £ and perform proper model selection via:

e Bayesian methods (cf., Bryzgalova et al. (2022)): prior on £ = prior on SR, and
can base selection on the ability of pricing the cross-section
e Shrinkage (cf., Kozak et al. (2020)).
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A Multilinear SVD cont’d

Also: YV =P + &, with & L Y by construction of HOSVD
= can make distributional assumptions for £ and perform proper model selection via:

e Bayesian methods (cf., Bryzgalova et al. (2022)): prior on £ = prior on SR, and
can base selection on the ability of pricing the cross-section
e Shrinkage (cf., Kozak et al. (2020)).

Note: paper lacks a formal selection approach, the method proposed feels “incomplete”
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Example 3: a calibrated & simulated T x Size (5) x Value (5) tensor compression
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Example 3: a calibrated & simulated T x Size (5) x Value (5) tensor compression
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Example 3: a calibrated & simulated T x Size (5) x Value (5) tensor compression
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Tucker factors can explain a large share of the RMSE... roughly as much as naive time

series PCs... and higher order SVD has similar performance...

= Needs better evaluation metric than just in sample MSE: e.g., X-sectional pricing,

0SS, SRs.
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Conclusion & Final Suggestions

A great read for an intro to the potential uses of tensors in AP (cf., Bryzgalova, Kozak,
Pelger, Ye (2022))

Tucker/CP representations are not unique and harder to economically interpret than
PCs/HOSVD — I'd use HOSVD (+Bayesian selection)

Selection of dimensionality reduction should be formal

In sample RMSE is an underwhelming metric of “success” (cf. Lettau & Pelger (2020),
Bryzgalova et al. (2022))

Needs proper comparison/horse race for methods and OSS evaluation
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