Discussion of:

High Dimensional Factor Models with an Application to Mutual Fund Characteristics

by Martin Lettau

Christian Julliard

London School of Economics

BI-SHoF Conference 2022

Int					

In a nutshell

A brief ode to tensors:

- Great refresher/starter on the use of tensors for data representation
- Extension of 2-dimensional (typically T x assets), orthogonalised (linear) latent factor models to higher-dimension via Tucker / CP compression algos
 - $\Rightarrow~$ 2-D factor models along the (unfolded) modes
- Note: Factors are "reduced" form (in the VAR sense) i.e. not orthogonal conditional on the mode and across modes

The data application:

- 3D sample (T x characteristic x fund) of mutual funds return
- ⇒ "compressed" (un-orthogonalized) representation (by a factor of 97%) "explains" a large share of the data (93% of MSE).
- \Rightarrow extracted factors seem to capture salient feature of the characteristics

Discussion of: High Dimensional Factor Models

Int			

In a nutshell

A brief ode to tensors:

- Great refresher/starter on the use of tensors for data representation
- Extension of 2-dimensional (typically T x assets), orthogonalised (linear) latent factor models to higher-dimension via Tucker / CP compression algos
 - $\Rightarrow~$ 2-D factor models along the (unfolded) modes
- Note: Factors are "reduced" form (in the VAR sense) i.e. not orthogonal conditional on the mode and across modes

The data application:

- 3D sample (T x characteristic x fund) of mutual funds return
- \Rightarrow "compressed" (un-orthogonalized) representation (by a factor of 97%) "explains" a large share of the data (93% of MSE).
- $\Rightarrow\,$ extracted factors seem to capture salient feature of the characteristics

What's a tensor anyway?

"Tensors are the facts of the universe"

Lillian Lieber

Def 1: "Multi-dimensional array of numbers" (aka a grid of numbers)

- Scalar = tensor of rank 0; Vector = tensor of rank 1 (1 index); Matrix = tensor of rank 2 (2 indexes); 3D array = tensor of rank 3 (3 indexes); ...
- ...misses the geometry of it...

- - Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

What's a tensor anyway?

"Tensors are the facts of the universe"

Lillian Lieber

- **Def 1**: "Multi-dimensional array of numbers" (aka a grid of numbers)
 - Scalar = tensor of rank 0; Vector = tensor of rank 1 (1 index); Matrix = tensor of rank 2 (2 indexes); 3D array = tensor of rank 3 (3 indexes); ...
 - ...misses the geometry of it...
- Def 2 : "An object that is invariant under a change of coordinates, and has components that change in special, predictable way under a change of coordinates"
 - E.g. : (Euclidian) vectors (aka, arrows) are invariant (e.g., length and direction) but the vector components are not invariant
- - Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

What's a tensor anyway?

"Tensors are the facts of the universe"

Lillian Lieber

Def 1 : "Multi-dimensional array of numbers" (aka a grid of numbers)

- Scalar = tensor of rank 0; Vector = tensor of rank 1 (1 index); Matrix = tensor of rank 2 (2 indexes); 3D array = tensor of rank 3 (3 indexes); ...
- ...misses the geometry of it...
- Def 2 : "An object that is invariant under a change of coordinates, and has components that change in special, predictable way under a change of coordinates"
 - E.g. : (Euclidian) vectors (aka, arrows) are invariant (e.g., length and direction) but the vector components are not invariant
- Def 3 : "a collection of (column) vectors and covectors (row vectors) combined together using the tensor product"
 - $\Rightarrow\,$ the working definition here for data encoding and compression
- Def 4 : "partial derivatives and gradients that transform with the Jacobian matrix"

The Tucker (1966) decomposition

Representation:

Let $\mathcal{Y} \in \mathbb{R}^{I_1 \times I_2 \dots \times I_n}$, then

$$\mathcal{Y} \equiv \tilde{\mathcal{Y}} \times_1 U^{(1)} \times_2 U^{(2)} \dots \times_n U^{(n)}$$

where $\tilde{\mathcal{Y}} \in \mathbb{R}^{I_1 \times I_2 \dots \times I_n}$ is the <u>core tensor</u>, $U^{(k)} \in \mathbb{R}^{d_k \times d_k}$ are <u>unitary matrices</u>, \times_k denotes the *k*-mode product (multiplies each mode-*k* fiber of $\tilde{\mathcal{Y}}$ by $U^{(k)}$).

Approximation / compression: $\hat{\mathcal{Y}} := \mathcal{G} \times_1 V^{(1)} \times_2 V^{(2)} \ldots \times_n V^{(n)}$ with $\mathcal{G} \in \mathbb{R}^{K_1 \times K_2 \ldots \times K_n}$, $K_j \leq I_j$ s.t. $\hat{\mathcal{Y}} = \arg \min ||\mathcal{Y} - \hat{\mathcal{Y}}||$

 \Rightarrow compression from $\mathbb{R}^{I_1 imes I_2 ... imes I_n}$ to $\mathbb{R}^{K_1 imes K_2 ... imes K_n}$

Note: • components are neither 1) ordered, 2) orthogonal or 3) unique.

• \mathcal{G} is not diagonal (but CP, with $K_j = \kappa, \forall j$) nor linked to e-values/vectors

- for 2D case, SVD-PCA yields same "type" of representation
- \Rightarrow But the latter is more interpretable: ordering of orthogonal SR contributions.
- Cf. reduced form VAR vs S-VAR via Choleski decomp.

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

The Tucker (1966) decomposition

Representation:

Let $\mathcal{Y} \in \mathbb{R}^{I_1 \times I_2 \dots \times I_n}$, then

$$\mathcal{Y} \equiv \tilde{\mathcal{Y}} \times_1 U^{(1)} \times_2 U^{(2)} \dots \times_n U^{(n)}$$

where $\tilde{\mathcal{Y}} \in \mathbb{R}^{I_1 \times I_2 \dots \times I_n}$ is the <u>core tensor</u>, $U^{(k)} \in \mathbb{R}^{d_k \times d_k}$ are <u>unitary matrices</u>, \times_k denotes the *k*-mode product (multiplies each mode-*k* fiber of $\tilde{\mathcal{Y}}$ by $U^{(k)}$).

Approximation / compression:

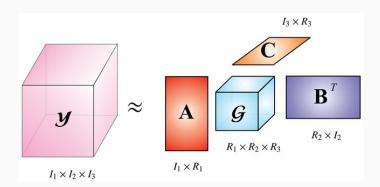
 $\begin{aligned} \hat{\mathcal{Y}} &:= \mathcal{G} \times_1 V^{(1)} \times_2 V^{(2)} \dots \times_n V^{(n)} \text{ with } \mathcal{G} \in \mathbb{R}^{K_1 \times K_2 \dots \times K_n}, K_j \leq I_j \\ \text{s.t. } \hat{\mathcal{Y}} &= \arg\min ||\mathcal{Y} - \hat{\mathcal{Y}}|| \end{aligned}$

 \Rightarrow compression from $\mathbb{R}^{I_1 \times I_2 \dots \times I_n}$ to $\mathbb{R}^{K_1 \times K_2 \dots \times K_n}$

- Note: components are neither 1) ordered, 2) orthogonal or 3) unique.
 - G is not diagonal (but CP, with $K_j = \kappa, \forall j$) nor linked to e-values/vectors
 - for 2D case, SVD-PCA yields same "type" of representation
 - \Rightarrow But the latter is more interpretable: ordering of orthogonal SR contributions.
 - Cf. reduced form VAR vs S-VAR via Choleski decomp.

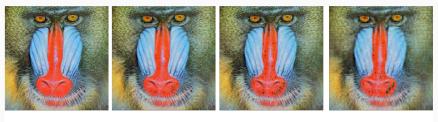
Christian Julliard (LSE)

Example 1: Tucker compression of 3D Array



Tensor can be decomposed as a core tensor G and factor matrices, one for each mode.

Example 2: Tucker compression of 3D mandril



Original Image Mode ranks = 256x256x256 Compression = 0% Error = 0% Reconstructed Mode ranks = 128x128x3 Compression = 41.66% Error = 12.8% Reconstructed Mode ranks = 64x64x3 Compression = 77.07% Error = 22.9% Reconstructed Mode ranks = 32x32x3 Compression = 90.10% Error = 31.1%

 \Rightarrow Efficient compression with typically small errors

But: only one of the many compression tools available (e.g., compression via low-frequency Fourier coefficients)

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

June 10, 2022

5/11

Why Tucker?

Given the lack of economic interpretability, and the multiplicity of available methods, why should Tucker/CP be preferred?

Miaz Brothers: The Muse, 2020

Nick Smith: Girl with the Pink Earring, 2019

J. Vermeer: Girl with a Pearl Earring, c. 1665

Does Tucker/CP outperforms e.g. simple PCs? And what are the metrics of success? Just in sample MSE? X-Section? Predictability? OSS?

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

A Multilinear SVD

We can actually perform a decomposition of tensors that:

- 1. is ordered, fast, accurate and has the canonical SVD/PC as a particular case
- 2. is as economically "interpretable" as canonical PCs, and can be "shrunk" accordingly (cf. Kozak, Nagel, Santosh (2020))

Theorem (HOSVD, De Lathauwer, De Moor, Vandewalle (2000))

Every $(I_1 \times I_2 \ldots \times I_n)$ -tensor \mathcal{Y} can be written as the product

 $\mathcal{Y} = \mathcal{S} \times_1 U^{(1)} \times_2 U^{(2)} \dots \times_n U^{(n)}$ where

- **1**. $U^{(n)}$ is a unitary $I_n imes I_n$ matrix
- 2. the $(I_1 \times I_2 \ldots \times I_n)$ -tensor S of which the sub-tensors $S_{i_n=\alpha}$, obtained fixing the nth index to α , have the properties of:
 - (i) all-orthogonality: $S_{i_n=\alpha} \perp S_{i_n=\beta} \forall n, \alpha \neq \beta$: i.e., $\langle S_{i_n=\alpha}, S_{i_n=\beta} \rangle = 0$ (ii) ordering: $||S_{i_n=\alpha} \perp S_{i_n=\beta} \rangle = 0$

The Frobenius-norms $||S_{i_n=i}|| =: \sigma_i^{(n)}$ are the n-mode singular values of \mathcal{Y} and the vector $U_i^{(n)}$ is an ith n-mode singular vector

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

A Multilinear SVD

We can actually perform a decomposition of tensors that:

- 1. is ordered, fast, accurate and has the canonical SVD/PC as a particular case
- 2. is as economically "interpretable" as canonical PCs, and can be "shrunk" accordingly (cf. Kozak, Nagel, Santosh (2020))

Theorem (HOSVD, De Lathauwer, De Moor, Vandewalle (2000))

Every $(I_1 \times I_2 \ldots \times I_n)$ -tensor \mathcal{Y} can be written as the product

$$\mathcal{Y} = \mathcal{S} \times_1 U^{(1)} \times_2 U^{(2)} \dots \times_n U^{(n)}$$
 where

- **1.** $U^{(n)}$ is a unitary $I_n \times I_n$ matrix
- **2.** the $(I_1 \times I_2 \ldots \times I_n)$ -tensor S of which the sub-tensors $S_{i_n=\alpha}$, obtained fixing the nth index to α , have the properties of:
 - (i) all-orthogonality: $S_{i_n=\alpha} \perp S_{i_n=\beta} \forall n, \alpha \neq \beta$: i.e., $\langle S_{i_n=\alpha}, S_{i_n=\beta} \rangle = 0$ (ii) ordering: $||S_{i_n=1}|| \ge ||S_{i_n=2}|| \ge \ldots \ge ||S_{i_n=I_n}|| \forall n$

The Frobenius-norms $||S_{i_n=i}|| =: \sigma_i^{(n)}$ are the n-mode singular values of \mathcal{Y} and the vector $U_i^{(n)}$ is an ith n-mode singular vector

For a tensor $\mathcal{Y} \in \mathbb{R}^{I_1 \times I_2 \times I_3}$, the Thm implies that:

6

$$\mathcal{S} = \mathcal{Y} imes_1 U^{(1)^{ op}} imes_2 U^{(2)^{ op}} imes_n U^{(3)^{ op}}$$

is all orthogonal and sorted: i.e., the different "horizontal"/" frontal"/" vertical" matrices of S (fix first/second/thid index $i_1/i_2/i_3$, while others are free), are mutually orthogonal.

 $\Rightarrow\,$ orthogonal portfolios, ordered by their relevance, for any given dimension of the data, e.g., characteristic specific PCs

Corollary of the HOSVD Thm:

if we construct a tensor $\hat{\mathcal{Y}}$ with *n*-mode rank of R_n ($1 \le n \le N$) by discarding the smallest *n*-mode singular values $\sigma_{I'_n+1}^{(n)}, \sigma_{I'_n+1}^{(n)}, ..., \sigma_{R_n}^{(n)}$ for given values of I'_n , i.e. set the corresponding parts of S equal to zero, then we have

$$||\mathcal{Y} - \hat{\mathcal{Y}}||^2 \le \sum_{i_1 = l_1' + 1}^{R_1} (\sigma_{i_1}^{(1)})^2 + \sum_{i_2 = l_1' + 1}^{R_2} (\sigma_{i_2}^{(2)})^2 + \ldots + \sum_{i_N = l_N' + 1}^{R_N} (\sigma_{i_1}^{(1)})^2$$

 $\Rightarrow\,$ knows exactly how much is left unexplained, i.e., the SR^2 of the (orthogonal) "alphas"

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

June 10, 2022

8/11

For a tensor $\mathcal{Y} \in \mathbb{R}^{I_1 \times I_2 \times I_3}$, the Thm implies that:

$$\mathcal{S} = \mathcal{Y} imes_1 U^{(1)^{ op}} imes_2 U^{(2)^{ op}} imes_n U^{(3)^{ op}}$$

is all orthogonal and sorted: i.e., the different "horizontal"/" frontal"/" vertical" matrices of S (fix first/second/thid index $i_1/i_2/i_3$, while others are free), are mutually orthogonal.

 $\Rightarrow\,$ orthogonal portfolios, ordered by their relevance, for any given dimension of the data, e.g., characteristic specific PCs

Corollary of the HOSVD Thm:

if we construct a tensor $\hat{\mathcal{Y}}$ with *n*-mode rank of R_n ($1 \le n \le N$) by discarding the smallest *n*-mode singular values $\sigma_{I'_n+1}^{(n)}, \sigma_{I'_n+1}^{(n)}, ..., \sigma_{R_n}^{(n)}$ for given values of I'_n , i.e. set the corresponding parts of S equal to zero, then we have

$$||\mathcal{Y} - \hat{\mathcal{Y}}||^2 \leq \sum_{i_1 = l_1' + 1}^{R_1} (\sigma_{i_1}^{(1)})^2 + \sum_{i_2 = l_1' + 1}^{R_2} (\sigma_{i_2}^{(2)})^2 + \ldots + \sum_{i_N = l_N' + 1}^{R_N} (\sigma_{i_1}^{(1)})^2$$

 \Rightarrow knows exactly how much is left unexplained, i.e., the SR^2 of the (orthogonal) "alphas"

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

June 10, 2022

8 / 11

Also: $\mathcal{Y} \equiv \hat{\mathcal{Y}} + \mathcal{E}$, with $\mathcal{E} \perp \hat{\mathcal{Y}}$ by construction of HOSVD

 \Rightarrow can make distributional assumptions for \mathcal{E} and perform proper model selection via:

- Bayesian methods (cf., Bryzgalova et al. (2022)): prior on $\mathcal{E} \equiv$ prior on SR^2 , and can base selection on the ability of pricing the cross-section
- Shrinkage (cf., Kozak et al. (2020)).

Note: paper lacks a formal selection approach, the method proposed feels "incomplete"

Also: $\mathcal{Y} \equiv \hat{\mathcal{Y}} + \mathcal{E}$, with $\mathcal{E} \perp \hat{\mathcal{Y}}$ by construction of HOSVD

 $\Rightarrow~$ can make distributional assumptions for ${\cal E}$ and perform proper model selection via:

- Bayesian methods (cf., Bryzgalova et al. (2022)): prior on $\mathcal{E} \equiv$ prior on SR^2 , and can base selection on the ability of pricing the cross-section
- Shrinkage (cf., Kozak et al. (2020)).

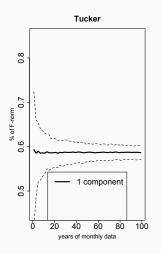
Note: paper lacks a formal selection approach, the method proposed feels "incomplete"

Also: $\mathcal{Y} \equiv \hat{\mathcal{Y}} + \mathcal{E}$, with $\mathcal{E} \perp \hat{\mathcal{Y}}$ by construction of HOSVD

 $\Rightarrow~$ can make distributional assumptions for ${\cal E}$ and perform proper model selection via:

- Bayesian methods (cf., Bryzgalova et al. (2022)): prior on $\mathcal{E} \equiv$ prior on SR^2 , and can base selection on the ability of pricing the cross-section
- Shrinkage (cf., Kozak et al. (2020)).

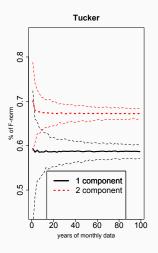
Note: paper lacks a formal selection approach, the method proposed feels "incomplete"



Tucker factors can explain a large share of the RMSE...

Christian Julliard (LSE)

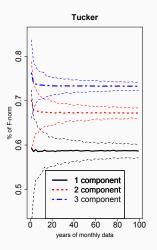
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE...

Christian Julliard (LSE)

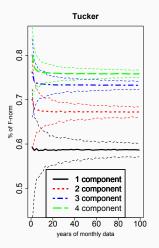
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE...

Christian Julliard (LSE)

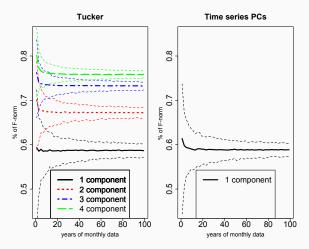
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE...

Christian Julliard (LSE)

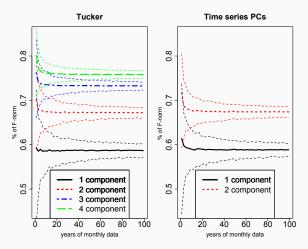
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs...

Christian Julliard (LSE)

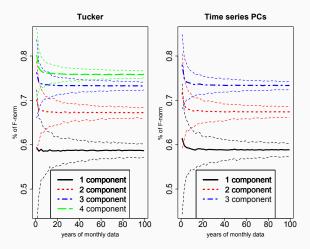
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs...

Christian Julliard (LSE)

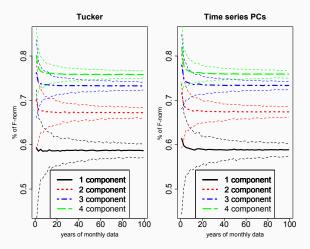
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs...

Christian Julliard (LSE)

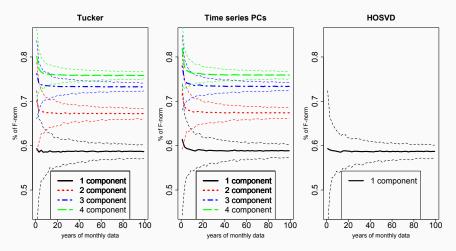
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs...

Christian Julliard (LSE)

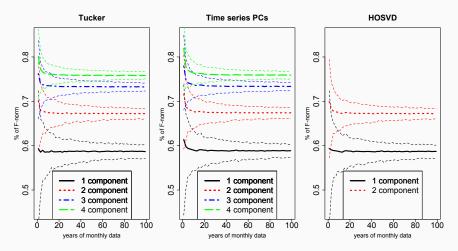
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs... and higher order SVD has similar performance...

Christian Julliard (LSE)

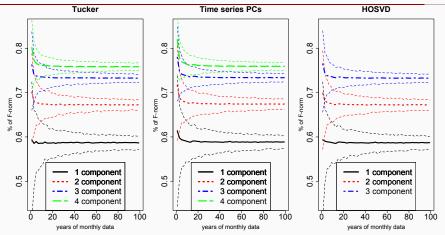
Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs... and higher order SVD has similar performance...

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

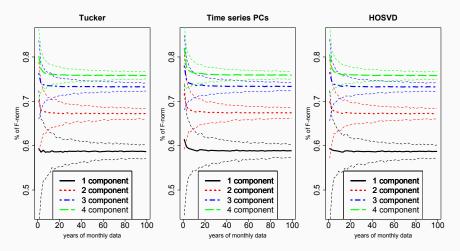


Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs... and higher order SVD has similar performance...

 \Rightarrow Needs better evaluation metric than just in sample MSE: e.g., X-sectional pricing, OSS, SRs.

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models



Tucker factors can explain a large share of the RMSE... roughly as much as naive time series PCs... and higher order SVD has similar performance...

Christian Julliard (LSE)

Discussion of: High Dimensional Factor Models

Conclusion & Final Suggestions

- A great read for an intro to the potential uses of tensors in AP (cf., Bryzgalova, Kozak, Pelger, Ye (2022))
- Tucker/CP representations are not unique and harder to economically interpret than PCs/HOSVD \rightarrow I'd use HOSVD (+Bayesian selection)
- Selection of dimensionality reduction should be formal
- In sample RMSE is an underwhelming metric of "success" (cf. Lettau & Pelger (2020), Bryzgalova et al. (2022))
- Needs proper comparison/horse race for methods and OSS evaluation