
Discussion of:

High Dimensional Factor Models with an Application to
Mutual Fund Characteristics

by Martin Lettau

Christian Julliard

London School of Economics

BI-SHoF Conference 2022



Introduction Higher Order SVD Simulation: Time x Size x Value portfolios Conclusion & Final Suggestions

In a nutshell

A brief ode to tensors:

• Great refresher/starter on the use of tensors for data representation

• Extension of 2-dimensional (typically T x assets), orthogonalised (linear) latent factor
models to higher-dimension via Tucker / CP compression algos
⇒ 2-D factor models along the (unfolded) modes

Note: Factors are “reduced” form (in the VAR sense) i.e. not orthogonal conditional on
the mode and across modes

The data application:

• 3D sample (T x characteristic x fund) of mutual funds return

⇒ “compressed” (un-orthogonalized) representation (by a factor of 97%) “explains” a
large share of the data (93% of MSE).

⇒ extracted factors seem to capture salient feature of the characteristics
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What’s a tensor anyway?

“Tensors are the facts of the universe”

Lillian Lieber

Def 1 : “Multi-dimensional array of numbers” (aka a grid of numbers)
• Scalar = tensor of rank 0; Vector = tensor of rank 1 (1 index); Matrix = tensor of
rank 2 (2 indexes); 3D array = tensor of rank 3 (3 indexes); ...

• ...misses the geometry of it...
Def 2 : “An object that is invariant under a change of coordinates, and has components that

change in special, predictable way under a change of coordinates”
E.g. : (Euclidian) vectors (aka, arrows) are invariant (e.g., length and direction) but the

vector components are not invariant
Def 3 : “a collection of (column) vectors and covectors (row vectors) combined together

using the tensor product”
⇒ the working definition here for data encoding and compression

Def 4 : “partial derivatives and gradients that transform with the Jacobian matrix”
⇒ nice connection to tangency and Sharpe ratios (more on this later)
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The Tucker (1966) decomposition

Representation:
Let Y ∈ RI1×I2 ...×In , then

Y ≡ Ỹ ×1 U(1) ×2 U(2) . . . ×n U(n)

where Ỹ ∈ RI1×I2 ...×In is the core tensor, U(k) ∈ Rdk×dk are unitary matrices, ×k denotes
the k-mode product (multiplies each mode-k fiber of Ỹ by U(k)).

Approximation / compression:
Ŷ := G ×1 V(1) ×2 V(2) . . . ×n V(n) with G ∈ RK1×K2 ...×Kn , Kj ≤ Ij
s.t. Ŷ = arg min ||Y − Ŷ ||

⇒ compression from RI1×I2 ...×In to RK1×K2 ...×Kn

Note: • components are neither 1) ordered, 2) orthogonal or 3) unique.
• G is not diagonal (but CP, with Kj = κ, ∀j) nor linked to e-values/vectors
• for 2D case, SVD-PCA yields same “type” of representation

⇒ But the latter is more interpretable: ordering of orthogonal SR contributions.
Cf. reduced form VAR vs S-VAR via Choleski decomp.
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Example 1: Tucker compression of 3D Array

Tensor can be decomposed as a core tensor G and factor matrices, one for each mode.
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Example 2: Tucker compression of 3D mandril

⇒ Efficient compression with typically small errors

But: only one of the many compression tools available (e.g., compression via
low-frequency Fourier coefficients)
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Why Tucker?

Given the lack of economic interpretability, and the multiplicity of available methods,
why should Tucker/CP be preferred?

Miaz Brothers: The
Muse, 2020

Nick Smith: Girl with
the Pink Earring, 2019

J. Vermeer: Girl with a
Pearl Earring, c. 1665

Does Tucker/CP outperforms e.g. simple PCs? And what are the metrics of success?
Just in sample MSE? X-Section? Predictability? OSS?
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AMultilinear SVD

We can actually perform a decomposition of tensors that:
1. is ordered, fast, accurate and has the canonical SVD/PC as a particular case
2. is as economically “interpretable” as canonical PCs, and can be “shrunk” accordingly

(cf. Kozak, Nagel, Santosh (2020))

Theorem (HOSVD, De Lathauwer, De Moor, Vandewalle (2000))
Every (I1 × I2 . . . × In)-tensor Y can be written as the product

Y = S ×1 U(1) ×2 U(2) . . . ×n U(n) where

1. U(n) is a unitary In × In matrix

2. the (I1 × I2 . . . × In)-tensor S of which the sub-tensors Sin=α, obtained fixing the nth
index to α, have the properties of:
(i) all-orthogonality: Sin=α ⊥ Sin=β ∀n, α ∕= β: i.e., 〈Sin=α,Sin=β〉 = 0
(ii) ordering: ||Sin=1|| ≥ ||Sin=2|| ≥ . . . ≥ ||Sin=In || ∀n

The Frobenius-norms ||Sin=i|| =: σ
(n)
i are the n-mode singular values of Y and the vector

U(n)
i is an ith n-mode singular vector
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AMultilinear SVD cont’d

For a tensor Y ∈ RI1×I2×I3 , the Thm implies that:

S = Y ×1 U(1)⊤ ×2 U(2)⊤ ×n U(3)⊤

is all orthogonal and sorted: i.e., the different “horizontal”/“frontal”/“vertical” matrices of
S (fix first/second/thid index i1/i2/i3, while others are free), are mutually orthogonal.

⇒ orthogonal portfolios, ordered by their relevance, for any given dimension of the
data, e.g., characteristic specific PCs

Corollary of the HOSVD Thm:
if we construct a tensor Ŷ with n-mode rank of Rn (1 ≤ n ≤ N) by discarding the
smallest n-mode singular values σ

(n)
I′n+1, σ

(n)
I′n+1, ..., σ

(n)
Rn

for given values of I′n, i.e. set the
corresponding parts of S equal to zero, then we have

||Y − Ŷ ||2 ≤
R1

∑
i1=I′1+1

(σ
(1)
i1

)2 +
R2

∑
i2=I′1+1

(σ
(2)
i2

)2 + . . . +
RN

∑
iN=I′N+1

(σ
(1)
i1

)2

⇒ knows exactly howmuch is left unexplained, i.e., the SR2 of the (orthogonal) “alphas”
Christian Julliard (LSE) Discussion of: High Dimensional Factor Models June 10, 2022 8 / 11
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AMultilinear SVD cont’d

Also: Y ≡ Ŷ + E , with E ⊥ Ŷ by construction of HOSVD

⇒ can make distributional assumptions for E and perform proper model selection via:
• Bayesian methods (cf., Bryzgalova et al. (2022)): prior on E ≡ prior on SR2, and
can base selection on the ability of pricing the cross-section

• Shrinkage (cf., Kozak et al. (2020)).

Note: paper lacks a formal selection approach, the method proposed feels “incomplete”

Christian Julliard (LSE) Discussion of: High Dimensional Factor Models June 10, 2022 9 / 11
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Example 3: a calibrated & simulated T x Size (5) x Value (5) tensor compression
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Example 3: a calibrated & simulated T x Size (5) x Value (5) tensor compression
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Tucker factors can explain a large share of the RMSE...
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Tucker factors can explain a large share of the RMSE... roughly as much as naive time
series PCs... and higher order SVD has similar performance...

⇒ Needs better evaluation metric than just in sample MSE: e.g., X-sectional pricing,
OSS, SRs.
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Conclusion & Final Suggestions

• A great read for an intro to the potential uses of tensors in AP (cf., Bryzgalova, Kozak,
Pelger, Ye (2022))

• Tucker/CP representations are not unique and harder to economically interpret than
PCs/HOSVD → I’d use HOSVD (+Bayesian selection)

• Selection of dimensionality reduction should be formal

• In sample RMSE is an underwhelming metric of “success” (cf. Lettau & Pelger (2020),
Bryzgalova et al. (2022))

• Needs proper comparison/horse race for methods and OSS evaluation

Christian Julliard (LSE) Discussion of: High Dimensional Factor Models June 10, 2022 11 / 11


