Discussion of: "The Lost Capital Asset Pricing Model" by Daniel Andrei, Julien Cujean, Mungo Wilson

Christian Julliard

London School of Economics

Discussion of Andrei, Cujean & Wilson (2018)

In a Nutshell

- Key idea: econometrician has limited information compared to market participants (Roll (1977), Hansen and Richard (1987), Jagannathan and Wang (1996)) ⇒ can lead to spurious rejection of asset pricing models.
- Paper's key ingredient: stochastic supply of assets Market return = $M^{\top}R$, $\overline{R \in \mathbb{R}^N}$, $M \sim (\overline{M} = \frac{1}{N}\mathbf{1}, Var(M))$,
- CARA + everything Gaussian/linear + single aggregate risk source ⇒ <u>CAPM holds under the market info-set</u>

$$\mathbb{E}[R] = \beta \mathbb{E}[R_{\bar{M}}] = \beta \mathbb{E}[\bar{M}^{\mathsf{T}}R]$$

• The econometrician does not observe M (but knows \overline{M}) \Rightarrow cannot filter out idiosyncratic noise, therefore estimates:

$$\tilde{\beta} = \beta + \delta \left(\beta - \mathbf{1} \right) = (1 + \delta)\beta - \delta \mathbf{1}$$

(

⇒ $\alpha \neq 0$ in her "filtration" → wrongly (and naively) rejects CAPM. $\delta > 0 \Rightarrow$ "flatter" SML BaB : makes "alpha" on measurementuserrorAndre(orumaybe(inot))018)

What about a *less-naive* econometrician?

Note that:

$$\tilde{\beta} \propto \beta$$

 \Rightarrow Unconditional expected returns linear in $\tilde{\beta}$, therefore:

- monotone risk premia
- 100% cross-sectional R^2 for unconditional CAPM estimated with a common free intercept.
- \Rightarrow let's check in the paper itself...

(

Monotone risk premia in $\tilde{\beta}$?

	Panel A: Ten beta-sorted portfolios					
		(a)	(b)	(c)	(d)	(e)
		Avg. excess	Sample	Adj. betas	Adj. betas	Adj. betas
	Portfolio	returns	betas	$(\delta = 0.5)$	$(\delta = 3)$	$(\delta = 4.5)$
1	Low	0.54 🖌	0.61	0.74	0.90	0.93
	2	0.51	0.73	0.82	0.93	0.95
	3	0.58 •	0.83	0.89	0.96	0.97
	4	0.66 🧖	0.97	0.98	0.99	0.99
	5	0.54	1.01	1.01	1.00	1.00
	6	0.63	1.08	1.05	1.02	1.01
	7	0.51	1.15	1.10	1.04	1.03
	8	0.65 •	1.27	1.18	1.07	1.05
	9	C 0.63 •	1.39	1.26	1.10	1.07
45	High	1 7 0.61	1.61	1.40	1.15	1.11
	Panel B: Securities Market Line					
	Intercept	24	0.49	0.44	0.20	0.06
			(0.09)	(0.09)	(0.23)	(0.32)
	Slope		0.09	0.14	0.38	0.52
			(0.06)	(0.09)	(0.23)	(0.32)

Table 2: Resurrecting the CAPM. Columns (a) and (b) of Panel A report average Violates 42.2% of monotonicity restrictions (19/45, "adjusted" or not) \Rightarrow worse than "flip of a coin" model is classical differences in 0.22 or posts $\mathbb{P}r = 0$

Q

100% cross-sectional R^2 ?

Q

"[...] Living with the Roll critique" — Shanken $(1987)^*$

• The econometrician observes a proxy, $R_{\overline{M}} = \overline{M}^{\top}R$, for the true market portfolio, $R_M = M^{\top}R$.

But: if $\rho \equiv corr(R_{\bar{M}}, R_M) > 0.7$ the data reject the CAPM*

In this paper:

 $R_M = R_{\overline{M}} + \varepsilon_M^{\mathsf{T}} R$, where $\varepsilon_M \in \mathbb{R}^N$ is the independent M shock

$$\Rightarrow \rho < 0.7 \text{ iff } Var(R_{\bar{M}}) < Var(\varepsilon_M^T R)$$

since Var(R_M) = Var(R_M = M^TR) + Var(ε_M^TR), the CAPM is not rejected only if more than 70% of the market portfolio vol comes from the Stochastic Supply rather than fundamentals ⇒ SS-APM rather than CAPM ☺

C

Other remarks and doubts

I.
$$\delta \to 0$$
 as $N \to \infty \Rightarrow \tilde{\beta} \xrightarrow[N \to \infty]{N \to \infty} \beta$?!

$$\delta \equiv \frac{\kappa/\tilde{N}}{\mathbb{V}[R_{\overline{M}}]} \Rightarrow \frac{1}{N \mathbb{V}[R_{\overline{M}}]} \left[\frac{\gamma^2}{\tau_M \tau_\epsilon} \left(\frac{1}{\tau_\epsilon} + \frac{\Phi' \Phi}{\tau} \right) + \frac{\tau_v}{\tau \tau_\epsilon} \right] > 0.$$
(29)

So if the econometrician uses a large cross-section the inference problem is solved?

II. alphas and BaB? You say: "In the eyes of the empiricist [...]:"

$$\mathbb{E}[R_n] = \underbrace{\delta(1+\delta)^{-1}(1-\widetilde{\beta}_n)\mathbb{E}[R_{\overline{M}}]}_{\text{perceived mispricing (alpha)}} + \widetilde{\beta}_n \mathbb{E}[R_{\overline{M}}].$$
(27)

Nope: (less-naive) empiricist runs a cross-sectional regression on $\ddot{\beta}_n$:

$$\alpha_n = \delta (1+\delta)^{-1} \mathbb{E} \left[R_{\overline{M}} \right] \quad \forall n \quad (\text{as in your eq. (30)})$$

C

⇒ find no excess return from Betting against Beta. This comes from the flatter empirical SML: $\lambda = \mathbb{E} \left[R_{\overline{M}} \right] / (1 + \delta)$. (in eq. (27) you imposed the "right" slope instead) Discussion of Andrei, Cujean & Wilson (2018)

Other remarks and doubts cont'd

- Note: in the model a very smart (i.e. knows the model) econometrician would do X-sectional GMM, recover δ , and not reject the CAPM.
 - ② You can estimate δ directly from the X-sectional â & λ ⇒ do so! You can even do a model specification J-test (over-identified model).
- $\hat{\delta}_{MM} \approx 1.6$ or 4.4 (from α or λ) from your Table 2
 - III. Inconsistent/unnecessary empirical estimate of δ based on Martin (2017) (and Martin and Wagner (2017)) expected returns. (either log utility or lower bound: the former is inconsistent with the theory, the latter gives inconsistent estimates in eq (34))
 - IV. Black (1972) CAPM? With stochastic supply (*M*) the composition of the zero- β portfolio will change a lot $\Rightarrow Var(R_t^f)$?(eigenvalue problem not invariant to *M*)

"[CAPM] Beta is dead" — Fama and French (1992)

- A clever, elegant and well executed work...
- ... but probably beats a dead horse: rationalizes $\alpha \neq 0$ for the CAPM (with naive testing), but still implies monotonicity of returns and perfect cross-sectional fit for the model...
- ⇒ in the data, even if "lost", the CAPM still performs worse than the "flip of a coin" model.
- But: actually the paper's argument is much more general, and important, than just CAPM: maybe the "lost APT" is the right spin? (with the *un-resurrected* "lost CAPM" as a salient example) ⇒ first order filtering problem for asset pricing.
- baseline: recommended reading (but I would market/frame it very differently, and I would make the empiricist a bit smarter).

Discussion of Andrei, Cujean & Wilson (2018)

(