

Discussion of:
“Changes in the Risk-Free Rate: Evaluating
Asset Pricing Risk Models”

by Marianne Andries and Jean-Guillaume Sahuc

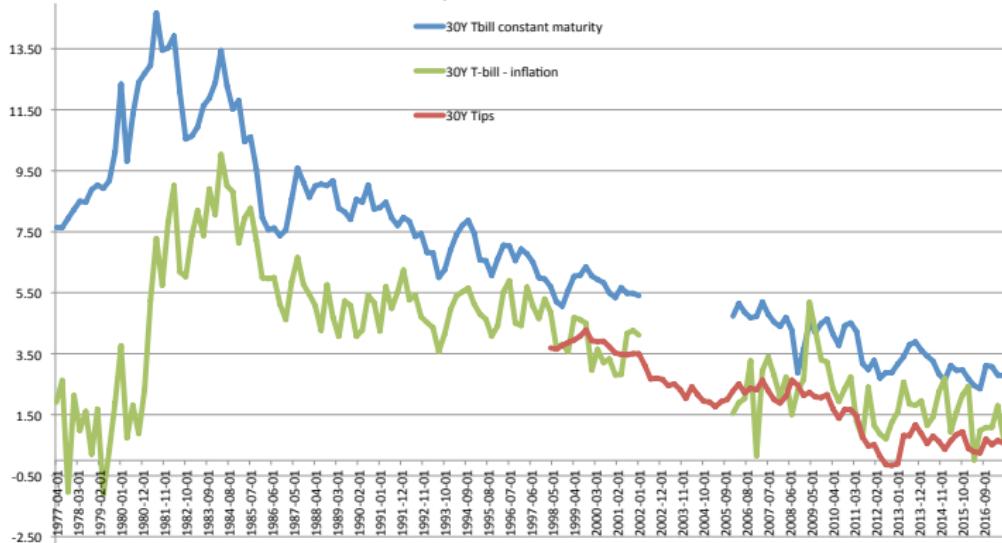
Christian Julliard

London School of Economics

Key Idea: risk-free rate change as a model diagnostic

The paper is based on two observations

- ① Dramatic reduction of $R_{f,t}$ since early 80s ($\approx 9\%$):



- ② Given a SDF, M , we have that: $R_{f,t} = 1/\mathbb{E}_t [M_{t+1}]$

Q: which models can accommodate (and how) the change in $R_{f,t}$?

A Simple Benchmark: CRRA and log-normality

$$\log R_{f,t} = -\log \beta + \gamma \mu_t - \frac{\gamma^2}{2} \sigma_t^2$$

- Interest rate higher when:

① investor are more impatient (low $\beta \rightarrow$ want to consume now)

Note: life expectancy $\uparrow \Rightarrow \beta \uparrow \Rightarrow \downarrow R_f$

② when consumption growth (μ) is high (consumption smoothing)

\Rightarrow rates more sensitive to μ when IES ($=1/\gamma$) low.

③ risk is low (\downarrow precautionary savings)

\Rightarrow larger effect when RRA= γ high.

④ when “realistic” γ is high (for aggregate μ and σ)

Note: with $\gamma \approx 10$ and change in μ of about 0.8%, fits change in R_f

But: CRRA+log-N cannot explain the equity premium...

... so consider rare disasters (with CRRA), habits, and LRR.

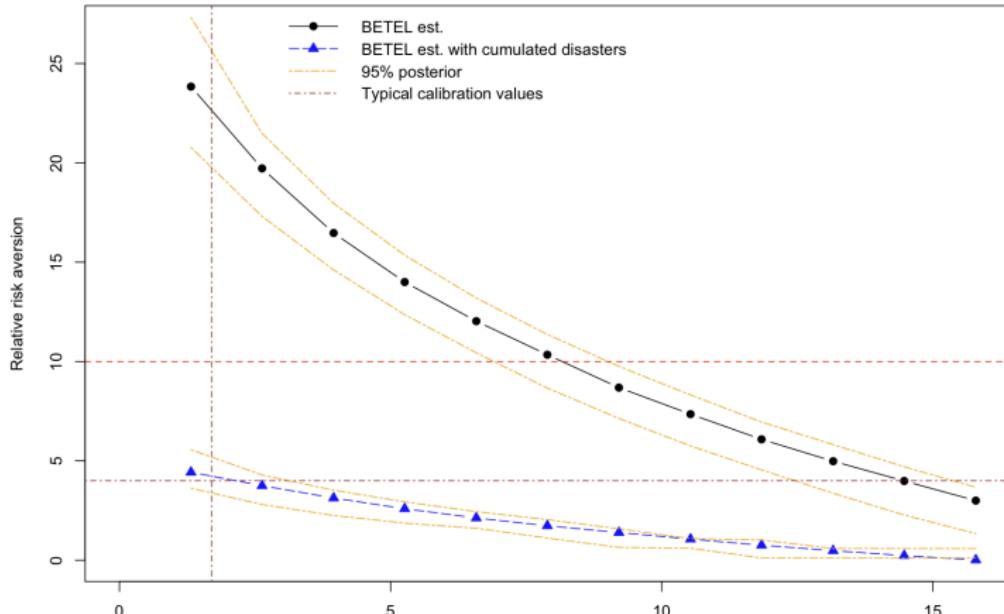
Rare Disasters à la Gabaix (2012)

$$\log R_{f,t} = -\log \beta + \gamma \mu_t - p_t \mathbb{E}_t^D \left[B_{t+1}^{-\gamma} - 1 \right]$$

- The CRRA bit can explain 1/2 of the change (γ calibrated at 4)

But: this model **cannot explain the equity premium!**

⇒ one-year disasters calibrated to match multi-year disasters



$$\log R_{f,t} = -\log \beta + \gamma \mu - \frac{1}{2} \gamma (1 - \phi)$$

- since $\gamma = 2$, change in μ can explain no more than 1/5 of the change.
- Changing ϕ (the AR(1) coefficient of the log surplus consumption ratio), would change the autocorrelation of P/D (how much?) but no evidence of this in the data...

But: CC99 needs $\gamma > 10$ to satisfy the HJ bound, and > 23 to satisfy entropy bounds (Ghosh, Julliard, Taylor (2016)).

⇒ A 0.80% reduction in μ implies a too large reduction in R_f .

- AS18 also consider an alternative process for the vol of the surplus consumption ratio that delivers a time varying R_f .
- ⇒ inconsistent with the smooth decline in the R_f (should have “jumped” like P/D in 2008-09)

If IES = 1

$$\log R_{f,t} = -\log \beta + \mu_t - \left(\gamma - \frac{1}{2} \right) \sigma_t^2$$

- hence change in μ is not enough... and even with $\gamma = 10$, the required increase in σ^2 is unrealistically high...
- ... besides, consumption vol clustering is hard to see in data

But if IES $\neq 1$

$$\log R_{f,t} = -\kappa + \frac{1}{\psi} \mu_t + \left(\frac{\gamma - \psi^{-1}}{1 - \gamma} \right) \mathbb{E}_t r_{a,t+1}^e - \frac{1}{2} \text{var}_t (\log M_{t+1})$$

- hence the change in μ is still not enough...
- ... and the needed increase in the risk premium is $\approx 1 : 1$.
- Consistent with the data?
 - Campbell and Thompson (2008): U-shaped risk premia 1980-2010
 - Martin (2016): highly volatile and with jump-like behaviour around 2000 and 2009

A few more comments and suggestions

- ① But is the 80-2010s R_f reduction the right quantity to target?
 - Maybe the 70-80s where the exception?
 - Post-WWII interest rate time series is tent shaped.
 - And the 70-80s where a the Burns/Miller/Volker years
 - ⇒ maybe all these models need is a NK twist? (E.g. G.E. stability as a function of Taylor rule coefficients)
- ② The LRR and habits formulation used were not designed for capturing interest rate dynamics. But there are alternatives:
LRR: e.g. Bansal-Shaliastovich (2013)
Habits: e.g. Wachter (2006)
- ③ Life expectancy of the affluent ones has dramatically increased
⇒ take formally into account its effect on β .
- ④ Aggregate consumption volatility underestimate the individual precautionary saving incentive (vol off by one order of magnitude and much small tail risk).
⇒ habits à la Constantinides and Ghosh (2016)?

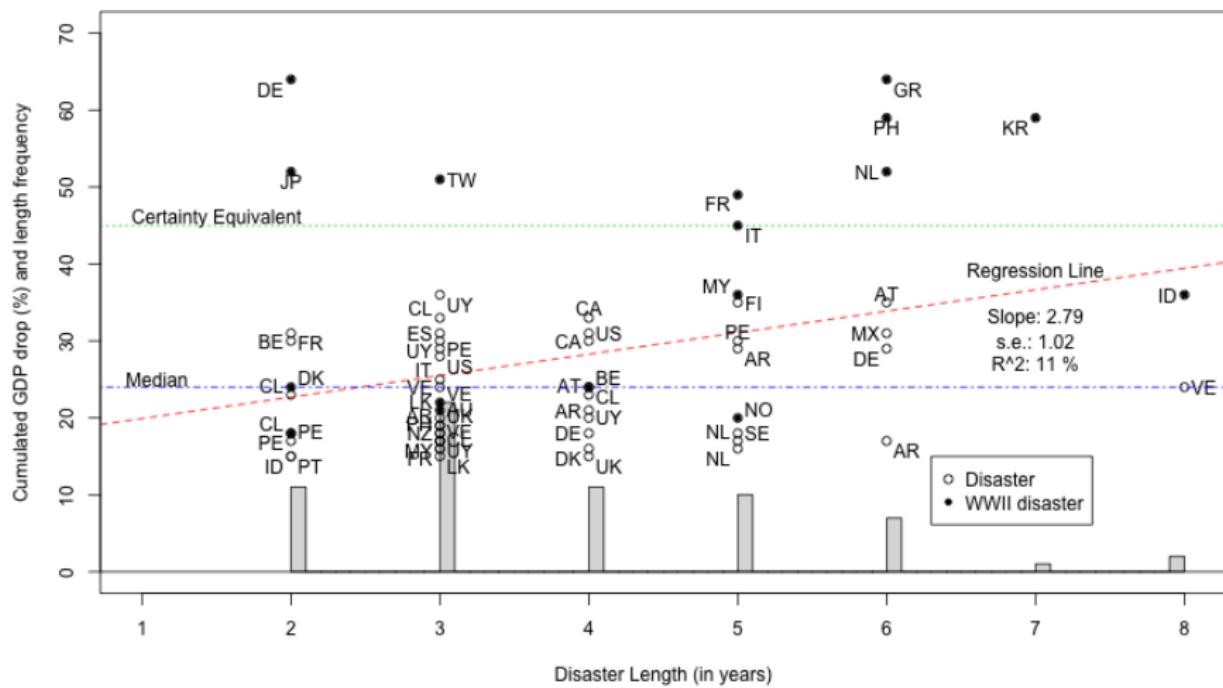
- Andries and Sahuc have picked up a hard (and surprisingly so) empirical fact for these models to explain.
⇒ a very interesting research project.

But:

- write-up is very preliminary (e.g. what's really your target R_f reduction changes during the paper)
- CRRA + disasters is a debunked framework – time to drop it.
- chosen formulations for habits and LRR might not be the best ones for the task at hand.
- but if the above does not do the trick, what does?
Heterogeneous agents? Nominal frictions?
- I would target the up and down of R_f rather than only the latter.

Barro's Economic Disasters of the XX Century

Size and Length of Twentieth Century Economic Disasters



Is consumption Vol autocorrelated?

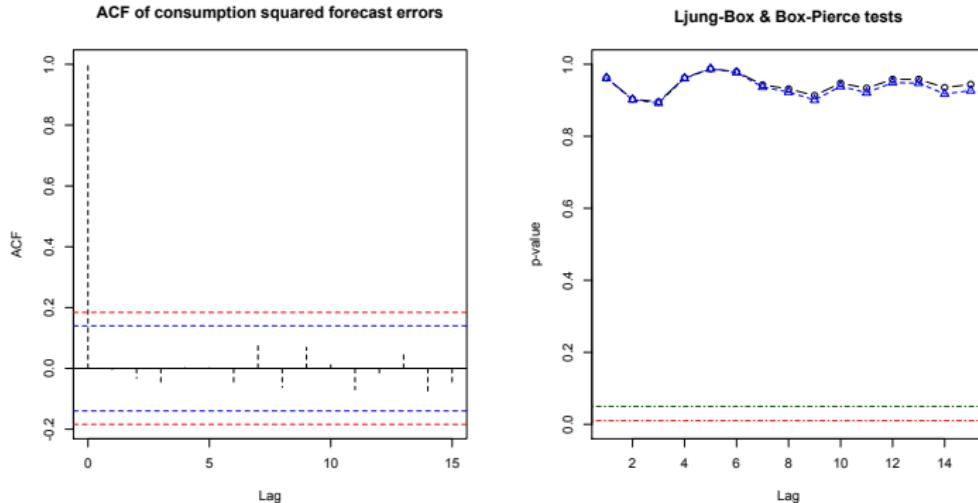


Figure: Autocorrelation structure of consumption growth squared forecast errors. Left panel: acf of $(\Delta c_{t,t+1} - \widehat{\mathbb{E}}_t [\Delta c_{t,t+1}])^2$, where $\widehat{\mathbb{E}}_t$ denotes long memory MA based forecasts, with 95% and 99% confidence bands. Right panel: p -values of LB (triangles) and BP (circles) tests.

Autocorrelation structure of consumption growth

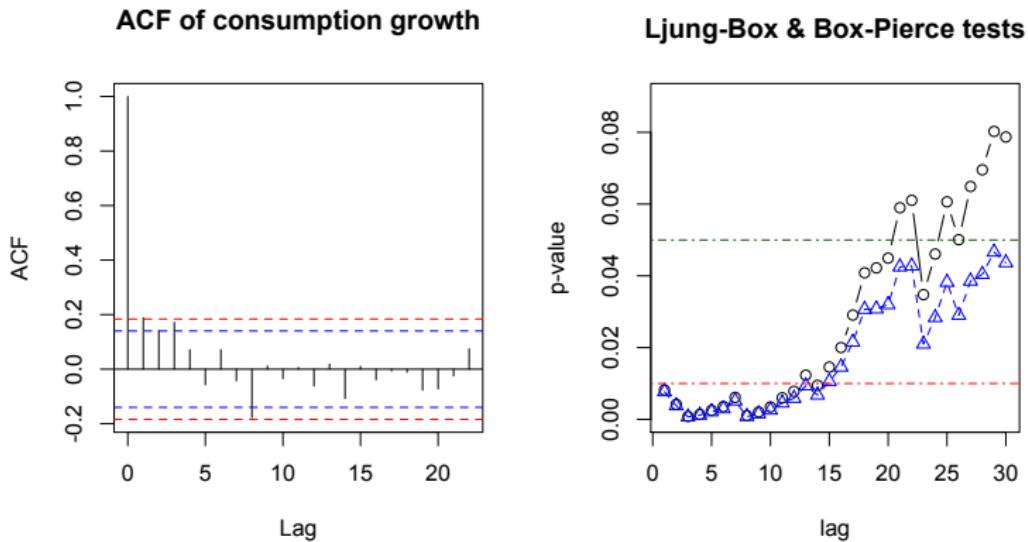


Figure: Autocorrelation structure of quarterly consumption growth. Left panel: autocorrelation function with 95% and 99% confidence bands. Right panel: p -values of LB (triangles) and BP (circles) tests.

A spurious link between Δc Vol and asset returns?

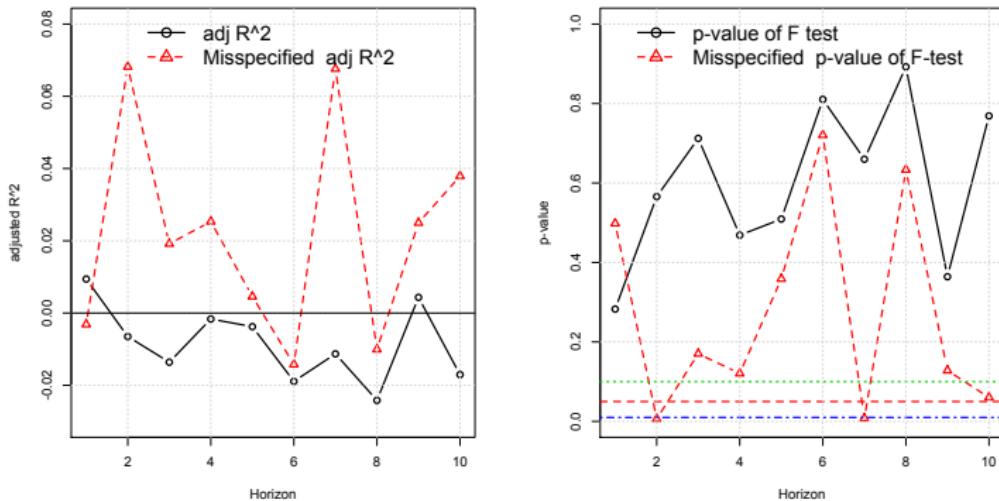


Figure: Predictability of consumption squared forecast errors on the first eight principal components of asset returns at several horizons. Assuming either a long memory *MA* for the consumption growth mean or, counterfactually, a constant mean.

- ... not too unlikely ...