"Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?"

by JESSICA WACHTER

Christian Julliard

Department of Economics and FMG London School of Economics, and CEPR

NBER's Summer Institute, Asset Pricing workshop July 10th 2008

- 4 同 ト 4 ヨ ト

Outline

Closely Related Literature and Contributions

2 The Degrees of Freedom: Calibrating Disasters• Which Disasters Matter?

- Time-Varying Probability of Disasters
- Calibrating Annual Consumption Disasters

伺き くほき くほ

Rare Events and the Equity Premium:

- Rietz (1988), Barro (2006), Danthine-Donaldson (1999), Copeland-Zhu (2006), Gabaix (2007) ... \Rightarrow all calibration exercises
- Julliard and Ghosh (2008) (more on this later)

This paper's key ingredients:

- Recursive utility (e.g. Barro-Ursua (2008))
- 2 Time varying probability of disasters

Main new finding:

• match the observed volatility of stock returns thanks to the time variation in the probability of disasters (e.g. Gabaix (2007), with "linearity generating" processes and time-varying recovery rate of stocks in disasters)

(日)

Rare Events and the Equity Premium:

- Rietz (1988), Barro (2006), Danthine-Donaldson (1999), Copeland-Zhu (2006), Gabaix (2007) ... \Rightarrow all calibration exercises
- Julliard and Ghosh (2008) (more on this later)

This paper's key ingredients:

- Interpretended in the second state of the s
- 2 Time varying probability of disasters

Main new finding:

• match the observed volatility of stock returns thanks to the time variation in the probability of disasters (e.g. Gabaix (2007), with "linearity generating" processes and time-varying recovery rate of stocks in disasters)

イロト イポト イヨト イヨト 二日

Rare Events and the Equity Premium:

- Rietz (1988), Barro (2006), Danthine-Donaldson (1999), Copeland-Zhu (2006), Gabaix (2007) ... \Rightarrow all calibration exercises
- Julliard and Ghosh (2008) (more on this later)

This paper's key ingredients:

- Recursive utility (e.g. Barro-Ursua (2008))
- 2 Time varying probability of disasters

Main new finding:

• match the observed volatility of stock returns thanks to the time variation in the probability of disasters (e.g. Gabaix (2007), with "linearity generating" processes and time-varying recovery rate of stocks in disasters)

イロト イポト イヨト イヨト 二日

Rare Events and the Equity Premium:

- Rietz (1988), Barro (2006), Danthine-Donaldson (1999), Copeland-Zhu (2006), Gabaix (2007) ... \Rightarrow all calibration exercises
- Julliard and Ghosh (2008) (more on this later)

This paper's key ingredients:

- Recursive utility (e.g. Barro-Ursua (2008))
- Itime varying probability of disasters

Main new finding:

 match the observed volatility of stock returns thanks to the time variation in the probability of disasters (e.g. Gabaix (2007), with "linearity generating" processes and time-varying recovery rate of stocks in disasters)

イロト イポト イヨト イヨト 二日

Rare Events and the Equity Premium:

- Rietz (1988), Barro (2006), Danthine-Donaldson (1999), Copeland-Zhu (2006), Gabaix (2007) ... \Rightarrow all calibration exercises
- Julliard and Ghosh (2008) (more on this later)

This paper's key ingredients:

- Recursive utility (e.g. Barro-Ursua (2008))
- Itime varying probability of disasters

Main new finding:

 match the observed volatility of stock returns thanks to the time variation in the probability of disasters (e.g. Gabaix (2007), with "linearity generating" processes and time-varying recovery rate of stocks in disasters)

・ロト ・同ト ・ヨト ・ヨト ---

The key elements – annual consumption disasters size and probability – are calibrated as follows:

- Average probability of disasters: from the empirical frequency, under cross-country independence assumption
- Size of disasters: empirical distribution of multi-year cumulated GDP contractions (more on this later)
- Note: both as in Barro (2006) (Maddison (2003) data on 35 countries over the period 1900-2000)
 - Volatility of the disaster probability: chosen to match the volatility of returns. Any benchmark?

Remark: results extremely sensitive to the calibrated values – need to report more sensitivity analysis in the paper.

イロト イボト イヨト イヨト

The key elements – annual consumption disasters size and probability – are calibrated as follows:

- Average probability of disasters: from the empirical frequency, under cross-country independence assumption
- Size of disasters: empirical distribution of multi-year cumulated GDP contractions (more on this later)
- Note: both as in Barro (2006) (Maddison (2003) data on 35 countries over the period 1900-2000)
 - Volatility of the disaster probability: chosen to match the volatility of returns. Any benchmark?

Remark: results extremely sensitive to the calibrated values – need to report more sensitivity analysis in the paper.

(a)

The key elements – annual consumption disasters size and probability – are calibrated as follows:

- Average probability of disasters: from the empirical frequency, under cross-country independence assumption
- Size of disasters: empirical distribution of multi-year cumulated GDP contractions (more on this later)
- Note: both as in Barro (2006) (Maddison (2003) data on 35 countries over the period 1900-2000)
 - Volatility of the disaster probability: chosen to match the volatility of returns. Any benchmark?

Remark: results extremely sensitive to the calibrated values – need to report more sensitivity analysis in the paper.

イロト イボト イヨト イヨト

The key elements – annual consumption disasters size and probability – are calibrated as follows:

- Average probability of disasters: from the empirical frequency, under cross-country independence assumption
- Size of disasters: empirical distribution of multi-year cumulated GDP contractions (more on this later)
- Note: both as in Barro (2006) (Maddison (2003) data on 35 countries over the period 1900-2000)
 - Volatility of the disaster probability: chosen to match the volatility of returns. Any benchmark?

Remark: results extremely sensitive to the calibrated values – need to report more sensitivity analysis in the paper.

・ロト ・ 同ト ・ ヨト ・ ヨト -

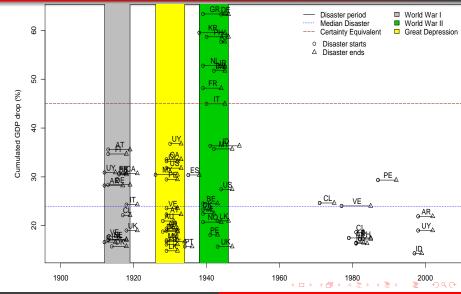
The key elements – annual consumption disasters size and probability – are calibrated as follows:

- Average probability of disasters: from the empirical frequency, under cross-country independence assumption
- Size of disasters: empirical distribution of multi-year cumulated GDP contractions (more on this later)
- Note: both as in Barro (2006) (Maddison (2003) data on 35 countries over the period 1900-2000)
 - Volatility of the disaster probability: chosen to match the volatility of returns. Any benchmark?

Remark: results extremely sensitive to the calibrated values – need to report more sensitivity analysis in the paper.

イロト イポト イヨト イヨト

The key elements – annual consumption disasters size and probability – are calibrated as follows:


- Average probability of disasters: from the empirical frequency, under cross-country independence assumption
- Size of disasters: empirical distribution of multi-year cumulated GDP contractions (more on this later)
- Note: both as in Barro (2006) (Maddison (2003) data on 35 countries over the period 1900-2000)
 - Volatility of the disaster probability: chosen to match the volatility of returns. Any benchmark?

Remark: results extremely sensitive to the calibrated values – need to report more sensitivity analysis in the paper.

イロト イポト イヨト イヨト

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Which Disasters Matter? Major 20th Century GDP Disasters

5/18

Christian Julliard

Discussion of "Rare Disasters and Stock Market Volatility"

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Remarks:

- Independence assumption clearly rejected
- ⇒ but small impact on key results
 - Results driven entirely by events in the largest 14% of disasters (e.g. 9 disaster 0.25% sample frequency)
- ⇒ dropping all other disasters reduces the equity premium by a mere 0.4%

- most extreme WWII events: invasions, nuclear/fire-bombings, civil wars. Do government bonds pay-off in these states? Calibration:
 60% of the time ⇒ stock excess return during disaster: -40.7%.
- But: in the data, during these events stocks outperform bonds by an average 4.51% (Source: Barro (2006))
 - In the data, it is only during the "smaller" 86% of disasters that bonds outperform stocks.
- But: using only these "smaller" disasters the model cannot match the equity premium (too small contractions).

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Remarks:

- Independence assumption clearly rejected
- \Rightarrow but small impact on key results
 - Results driven entirely by events in the largest 14% of disasters (e.g. 9 disaster 0.25% sample frequency)
- $\Rightarrow\,$ dropping all other disasters reduces the equity premium by a mere 0.4%

- most extreme WWII events: invasions, nuclear/fire-bombings, civil wars. Do government bonds pay-off in these states? Calibration:
 60% of the time ⇒ stock excess return during disaster: -40.7%.
- But: in the data, during these events stocks outperform bonds by an average 4.51% (Source: Barro (2006))
 - In the data, it is only during the "smaller" 86% of disasters that bonds outperform stocks.
- But: using only these "smaller" disasters the model cannot match the equity premium (too small contractions).

- Independence assumption clearly rejected
- \Rightarrow but small impact on key results
 - Results driven entirely by events in the largest 14% of disasters (e.g. 9 disaster 0.25% sample frequency)
- \Rightarrow dropping all other disasters reduces the equity premium by a mere 0.4%

- most extreme WWII events: invasions, nuclear/fire-bombings, civil wars. Do government bonds pay-off in these states? Calibration:
 60% of the time ⇒ stock excess return during disaster: -40.7%.
- But: in the data, during these events stocks outperform bonds by an average 4.51% (Source: Barro (2006))
 - In the data, it is only during the "smaller" 86% of disasters that bonds outperform stocks.
- But: using only these "smaller" disasters the model cannot match the equity premium (too small contractions).

- Independence assumption clearly rejected
- \Rightarrow but small impact on key results
 - Results driven entirely by events in the largest 14% of disasters (e.g. 9 disaster 0.25% sample frequency)
- \Rightarrow dropping all other disasters reduces the equity premium by a mere 0.4%

- most extreme WWII events: invasions, nuclear/fire-bombings, civil wars. Do government bonds pay-off in these states? Calibration:
 60% of the time ⇒ stock excess return during disaster: -40.7%.
- But: in the data, during these events stocks outperform bonds by an average 4.51% (Source: Barro (2006))
 - In the data, it is only during the "smaller" 86% of disasters that bonds outperform stocks.
- But: using only these "smaller" disasters the model cannot match the equity premium (too small contractions).

- Independence assumption clearly rejected
- \Rightarrow but small impact on key results
 - Results driven entirely by events in the largest 14% of disasters (e.g. 9 disaster 0.25% sample frequency)
- \Rightarrow dropping all other disasters reduces the equity premium by a mere 0.4%

- most extreme WWII events: invasions, nuclear/fire-bombings, civil wars. Do government bonds pay-off in these states? Calibration:
 60% of the time ⇒ stock excess return during disaster: -40.7%.
- But: in the data, during these events stocks outperform bonds by an average 4.51% (Source: Barro (2006))
 - In the data, it is only during the "smaller" 86% of disasters that bonds outperform stocks.
- But: using only these "smaller" disasters the model cannot match the equity premium (too small contractions).

- Independence assumption clearly rejected
- \Rightarrow but small impact on key results
 - Results driven entirely by events in the largest 14% of disasters (e.g. 9 disaster 0.25% sample frequency)
- \Rightarrow dropping all other disasters reduces the equity premium by a mere 0.4%

- most extreme WWII events: invasions, nuclear/fire-bombings, civil wars. Do government bonds pay-off in these states? Calibration:
 60% of the time ⇒ stock excess return during disaster: -40.7%.
- But: in the data, during these events stocks outperform bonds by an average 4.51% (Source: Barro (2006))
 - In the data, it is only during the "smaller" 86% of disasters that bonds outperform stocks.
- But: using only these "smaller" disasters the model cannot match the equity premium (too small contractions).

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Market Returns and the Probability of Extreme Disasters

 Moreover, if time variation in the probability of <u>extreme</u> disasters is driving the volatility of returns, returns and risk premia should comove with the likelihood of these events.

A toy exercise: the "Doomsday Clock" (measures proximity to WWIII, biosecurity and climate change disasters. Source: *Bulletin of Atomic Scientists*, U-Chicago)

・ロト ・同ト ・ヨト ・ヨト

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Market Returns and the Probability of Extreme Disasters

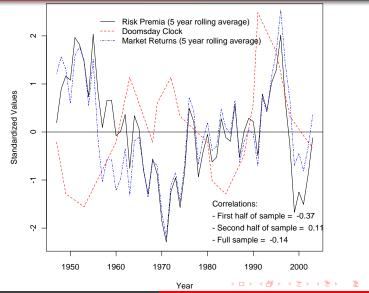
- Moreover, if time variation in the probability of <u>extreme</u> disasters is driving the volatility of returns, returns and risk premia should comove with the likelihood of these events.
- \Rightarrow Need evidence on this link.

A toy exercise: the "Doomsday Clock" (measures proximity to WWIII, biosecurity and climate change disasters. Source: *Bulletin of Atomic Scientists*, U-Chicago)

・ロト ・同ト ・ヨト ・ヨト

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Market Returns and the Probability of Extreme Disasters


- Moreover, if time variation in the probability of <u>extreme</u> disasters is driving the volatility of returns, returns and risk premia should comove with the likelihood of these events.
- \Rightarrow Need evidence on this link.

A toy exercise: the "<u>Doomsday Clock</u>" (measures proximity to WWIII, biosecurity and climate change disasters. Source: *Bulletin of Atomic Scientists*, U-Chicago)

(4 同) トイヨト イヨト

Which Disasters Matter? **Time-Varying Probability of Disasters** Calibrating Consumption Disasters

Market Returns and the Probability of Extreme Disasters

Christian Julliard

Discussion of "Rare Disasters and Stock Market Volatility"

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Time-Varying Intensity of Disasters

• The time-varying intensity of (Poisson) disasters is modeled as

$$d\lambda_t = \underbrace{\kappa}_{=.145} \left(\underbrace{\bar{\lambda}}_{=.017} - \lambda_t \right) dt + \underbrace{\sigma_{\lambda}}_{=.07} \sqrt{\lambda_t} dB_t$$

- This is a strong amplifier mechanism of the relevance of disasters since:
 - the process can take unboundedly high values, and large values have non trivial probability endf of λ.
 - 2 when high values are reached, the process will tend to stay there for long (due to small κ) Simulated Time Path
- ⇒ Indeed, modest increases in RRA send the risk premium in the 3 digits range.
 - It would be nice to provide a real world benchmark for the process ⇒ Index Options?

Calibrating Consumption Disasters

Which Disasters Matter? **Time-Varying Probability of Disasters** Calibrating Consumption Disasters

Time-Varying Intensity of Disasters

• The time-varying intensity of (Poisson) disasters is modeled as

$$d\lambda_t = \underbrace{\kappa}_{=.145} \left(\underbrace{\overline{\lambda}}_{=.017} - \lambda_t \right) dt + \underbrace{\sigma_{\lambda}}_{=.07} \sqrt{\lambda_t} dB_t$$

- This is a strong amplifier mechanism of the relevance of disasters since:
 - the process can take unboundedly high values, and large values have non trivial probability cdf of \lambda_t
 - 2 when high values are reached, the process will tend to stay there for long (due to small k) • Simulated Time Path
- ⇒ Indeed, modest increases in RRA send the risk premium in the 3 digits range.
 - It would be nice to provide a real world benchmark for the process ⇒ Index Options?

Calibrating Consumption Disasters

Time-Varying Intensity of Disasters

• The time-varying intensity of (Poisson) disasters is modeled as

$$d\lambda_t = \underbrace{\kappa}_{=.145} \left(\underbrace{\overline{\lambda}}_{=.017} - \lambda_t \right) dt + \underbrace{\sigma_{\lambda}}_{=.07} \sqrt{\lambda_t} dB_t$$

- This is a strong amplifier mechanism of the relevance of disasters since:
 - the process can take unboundedly high values, and large values have non trivial probability $\cdot \operatorname{cdf of } \lambda_t$
 - 2 when high values are reached, the process will tend to stay there for long (due to small κ) Simulated Time Path
- ⇒ Indeed, modest increases in RRA send the risk premium in the 3 digits range.
 - It would be nice to provide a real world benchmark for the process ⇒ Index Options?

Calibrating Consumption Disasters

Time-Varying Intensity of Disasters

• The time-varying intensity of (Poisson) disasters is modeled as

$$d\lambda_t = \underbrace{\kappa}_{=.145} \left(\underbrace{\overline{\lambda}}_{=.017} - \lambda_t \right) dt + \underbrace{\sigma_{\lambda}}_{=.07} \sqrt{\lambda_t} dB_t$$

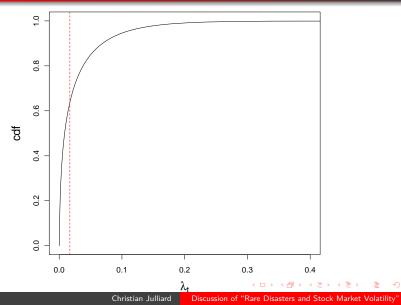
- This is a strong amplifier mechanism of the relevance of disasters since:
 - the process can take unboundedly high values, and large values have non trivial probability red of λ_t
 - When high values are reached, the process will tend to stay there for long (due to small κ) Simulated Time Path
- ⇒ Indeed, modest increases in RRA send the risk premium in the 3 digits range.
 - It would be nice to provide a real world benchmark for the process ⇒ Index Options?

Calibrating Consumption Disasters

Time-Varying Intensity of Disasters

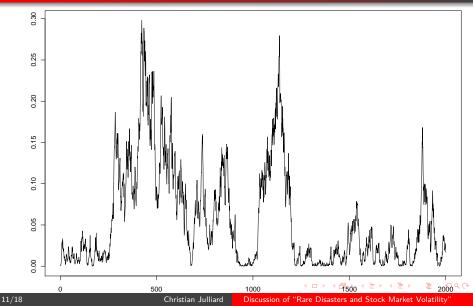
• The time-varying intensity of (Poisson) disasters is modeled as

$$d\lambda_t = \underbrace{\kappa}_{=.145} \left(\underbrace{\overline{\lambda}}_{=.017} - \lambda_t \right) dt + \underbrace{\sigma_{\lambda}}_{=.07} \sqrt{\lambda_t} dB_t$$


- This is a strong amplifier mechanism of the relevance of disasters since:
 - the process can take unboundedly high values, and large values have non trivial probability $\cdot \operatorname{cdf of } \lambda_t$
 - When high values are reached, the process will tend to stay there for long (due to small κ) Simulated Time Path
- ⇒ Indeed, modest increases in RRA send the risk premium in the 3 digits range.
 - It would be nice to provide a real world benchmark for the process ⇒ Index Options?

イロト イポト イヨト イヨト

Calibrating Consumption Disasters


Which Disasters Matter? **Time-Varying Probability of Disasters** Calibrating Consumption Disasters

Cdf of λ_t

Which Disasters Matter? **Time-Varying Probability of Disasters** Calibrating Consumption Disasters

Simulated Time Path of λ_t

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Calibrating Annual Consumption Disasters

This paper (as Barro (2006) and others):

- calibrates disasters in a yearly model using cumulated multi-year contractions (average length of disasters is 3.5-4 years)
 Durations Annualized Disasters
- ⇒ the framework delivers at most a 2.2% risk premium using annualized disasters (risk averse agents fear much more a one year disaster than the same contraction spread over several periods).

Lifetime Equivalent of One Disaster

- assumes that consumption drops by as much as GDP
- ⇒ Mixed evidence: 152 crises for GDP and 95 for C; <u>total</u> C declines proportionately more during wartime crises. (US Great Depression contraction: GDP 31%; non-durable Consumption 17%)

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Calibrating Annual Consumption Disasters

This paper (as Barro (2006) and others):

- calibrates disasters in a yearly model using cumulated multi-year contractions (average length of disasters is 3.5-4 years)
 Durations

 Annualized Disasters
- ⇒ the framework delivers <u>at most a 2.2% risk premium</u> using annualized disasters (risk averse agents fear much more a one year disaster than the same contraction spread over several periods).

Lifetime Equivalent of One Disaster

- assumes that consumption drops by as much as GDP
- ⇒ Mixed evidence: 152 crises for GDP and 95 for C; <u>total</u> C declines proportionately more during wartime crises. (US Great Depression contraction: GDP 31%; non-durable Consumption 17%)

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Calibrating Annual Consumption Disasters

This paper (as Barro (2006) and others):

- calibrates disasters in a yearly model using cumulated multi-year contractions (average length of disasters is 3.5-4 years)
 Durations

 Annualized Disasters
- ⇒ the framework delivers <u>at most a 2.2% risk premium</u> using annualized disasters (risk averse agents fear much more a one year disaster than the same contraction spread over several periods).

Lifetime Equivalent of One Disaster

- assumes that consumption drops by as much as GDP
- ⇒ Mixed evidence: 152 crises for GDP and 95 for C; <u>total</u> C declines proportionately more during wartime crises. (US Great Depression contraction: GDP 31%; non-durable Consumption 17%)

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Calibrating Annual Consumption Disasters

This paper (as Barro (2006) and others):

- calibrates disasters in a yearly model using cumulated multi-year contractions (average length of disasters is 3.5-4 years)
 Durations

 Annualized Disasters
- ⇒ the framework delivers <u>at most a 2.2% risk premium</u> using annualized disasters (risk averse agents fear much more a one year disaster than the same contraction spread over several periods).

Lifetime Equivalent of One Disaster

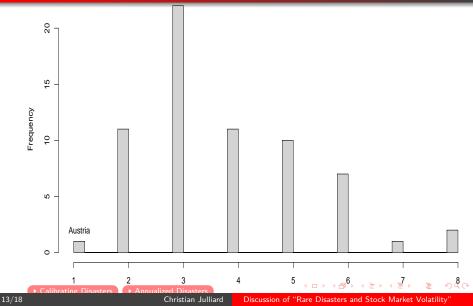
- assumes that consumption drops by as much as GDP
- ⇒ Mixed evidence: 152 crises for GDP and 95 for C; total C declines proportionately more during wartime crises. (US Great Depression contraction: GDP 31%; non-durable Consumption 17%)

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Calibrating Annual Consumption Disasters

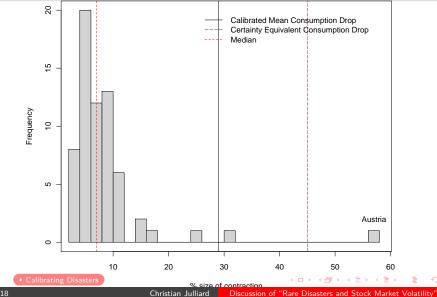
This paper (as Barro (2006) and others):

- calibrates disasters in a yearly model using cumulated multi-year contractions (average length of disasters is 3.5-4 years)
 Durations


 Annualized Disasters
- $\Rightarrow \text{ the framework delivers } \underbrace{\text{at most a } 2.2\% \text{ risk premium using}}_{\text{annualized disasters (risk averse agents fear much more a one year disaster than the same contraction spread over several periods).}$

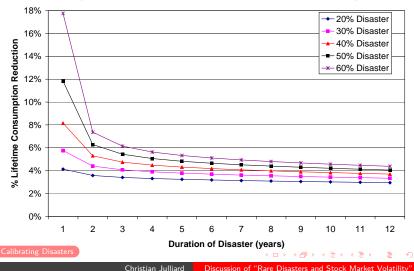
Lifetime Equivalent of One Disaster

- assumes that consumption drops by as much as GDP
- ⇒ Mixed evidence: 152 crises for GDP and 95 for C; total C declines proportionately more during wartime crises. (US Great Depression contraction: GDP 31%; non-durable Consumption 17%)


Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Duration of Disasters (in years)

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters


Annualized GDP Disasters

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Consumption Reduction Equivalent of One Disaster

Lifetime Consumption Reduction Equivalent of One Disaster (as a function of total disaster size and duration, CRRA=3)

15/18

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

Discussion of "Rare Disasters and Stock Market Volatility"

A Counterfactual U.S. History

Consider:

- replacing the <u>four consumption data points</u> of the Great Depression period, with <u>one</u> calibrated disaster equal to the <u>cumulated GDP contraction</u> during the same period;
- applying the methodology of Julliard and Ghosh (2008) to this counterfactual 1929-2006 sample
- Note: in the true sample $\hat{\gamma} \ge 32$, the CCAPM is rejected, and under the rare events hypothesis the observed equity premium puzzle would be very unlikely to arise.

 Table 4: Estimation and Counterfactual EPP with Calibrated Disaster

Christian Julliard

			DLL	DLILL	
Panel B. U.S. Gr	eat Depres	sion Cumu	lated GDP [Drop.	
	0.07		11 [6.3, 19.8]	11 [6.4, 19.7]	
$Pr\left(\gamma \leq 10 data ight)$			29.13%	28.71%	
$Pr\left(epp_{i}^{T}\left(\gamma ight) \geqepp^{T}\left(\gamma ight) ight)$	43.60%	43.30%	< • • • 7		≣ • ੧ <∂

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

A Counterfactual U.S. History

- replacing the <u>four consumption data points</u> of the Great Depression period, with <u>one</u> calibrated disaster equal to the <u>cumulated GDP contraction</u> during the same period;
- applying the methodology of Julliard and Ghosh (2008) to this counterfactual 1929-2006 sample
- Note: in the true sample $\hat{\gamma} \ge 32$, the CCAPM is rejected, and under the rare events hypothesis the observed equity premium puzzle would be very unlikely to arise.

 $\hat{\gamma}$ $\hat{11}$ 11

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

A Counterfactual U.S. History

- replacing the <u>four consumption data points</u> of the Great Depression period, with <u>one</u> calibrated disaster equal to the <u>cumulated GDP contraction</u> during the same period;
- applying the methodology of Julliard and Ghosh (2008) to this counterfactual 1929-2006 sample
- Note: in the true sample $\hat{\gamma} \geq$ 32, the CCAPM is rejected, and under the rare events hypothesis the observed equity premium puzzle would be very unlikely to arise.

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

A Counterfactual U.S. History

- replacing the <u>four consumption data points</u> of the Great Depression period, with <u>one</u> calibrated disaster equal to the <u>cumulated GDP contraction</u> during the same period;
- applying the methodology of Julliard and Ghosh (2008) to this counterfactual 1929-2006 sample
- Note: in the true sample $\hat{\gamma} \ge 32$, the CCAPM is rejected, and under the rare events hypothesis the observed equity premium puzzle would be very unlikely to arise.

Table 4: Estimation and Counterfactual EPP with Calibrated Disaster

	EL	ET	BEL	BETEL		
Panel B. U.S. Great Depression Cumulated GDP Drop.						
$\hat{\gamma}$	11 (2.7)	11 (2.7)	11 [6.3, 19.8]	11 [6.4, 19.7]	_	
$\chi^2_{(1)}$	0.07 (.792)	0.07 (.784)				
$Pr\left(\gamma \leq 10 data ight)$			29.13%	28.71%		
$\Pr\left(epp_{i}^{T}\left(\gamma\right)\geq epp^{T}\left(\gamma\right)\right)$	43.60%	43.30%	<□>< ∂)	 < ≣ > < ≣ > 	≣ •0 °	
Christian Julliard Discussion of "Rare Disasters and Stock Market Vo					olatility"	

Which Disasters Matter? Time-Varying Probability of Disasters Calibrating Consumption Disasters

A Counterfactual U.S. History

- replacing the <u>four consumption data points</u> of the Great Depression period, with <u>one</u> calibrated disaster equal to the <u>cumulated GDP contraction</u> during the same period;
- applying the methodology of Julliard and Ghosh (2008) to this counterfactual 1929-2006 sample
- Note: in the true sample $\hat{\gamma} \ge 32$, the CCAPM is rejected, and under the rare events hypothesis, the observed equity premium puzzle would be very unlikely to arise.

Table 4: Estimation and Counterfactual EPP with Calibrated Disaster

	EL	ET	BEL	BETEL		
Panel B. U.S. Great Depression Cumulated GDP Drop.						
$\hat{\gamma}$	11 (2.7)	11 (2.7)	11 [6.3, 19.8]	11 [6.4, 19.7]		
$\chi^2_{(1)}$	0.07	0.07				
$Pr\left(\gamma \leq 10 data ight)$			29.13%	28.71%		
$Pr\left(epp_{i}^{T}\left(\gamma\right)\geqepp^{T}\left(\gamma\right)\right)$	43.60%	43.30%	<□ > <∂	→ = → + = → = =	গৎ	
Chri	Discussion o	f "Rare Disasters a	and Stock Market Volat	ility"		

Baseline:

- Well executed and innovative modeling of rare disasters.
- To accept the results at face value, one has to believe in Barro's calibration of disasters.

- needs some evidence on the link between time varying probability of disasters and market returns;
- extreme calibration of disasters could be avoided by adding learning (e.g. Geweke (2001), Weitzman (2007)). This would also:
 - generate an endogenous time variation in the perceived probability of disasters (e.g. Cogley-Sargent (2007));
 - deliver time-varying volatility and asymmetric volatility reaction to good and bad news (e.g. Veronesi (2004));
 - generate potential for sun-spot equilibria (e.g. Sandroni (1998)).

Baseline:

- Well executed and innovative modeling of rare disasters.
- To accept the results at face value, one has to believe in Barro's calibration of disasters.

- needs some evidence on the link between time varying probability of disasters and market returns;
- extreme calibration of disasters could be avoided by adding learning (e.g. Geweke (2001), Weitzman (2007)). This would also:
 - generate an endogenous time variation in the perceived probability of disasters (e.g. Cogley-Sargent (2007));
 - deliver time-varying volatility and asymmetric volatility reaction to good and bad news (e.g. Veronesi (2004));
 - generate potential for sun-spot equilibria (e.g. Sandroni (1998)).

Baseline:

- Well executed and innovative modeling of rare disasters.
- To accept the results at face value, one has to believe in Barro's calibration of disasters.

- needs some evidence on the link between time varying probability of disasters and market returns;
- extreme calibration of disasters could be avoided by adding learning (e.g. Geweke (2001), Weitzman (2007)). This would also:
 - generate an endogenous time variation in the perceived probability of disasters (e.g. Cogley-Sargent (2007));
 - deliver time-varying volatility and asymmetric volatility reaction to good and bad news (e.g. Veronesi (2004));
 - generate potential for sun-spot equilibria (e.g. Sandroni (1998)).

Baseline:

- Well executed and innovative modeling of rare disasters.
- To accept the results at face value, one has to believe in Barro's calibration of disasters.

- needs some evidence on the link between time varying probability of disasters and market returns;
- extreme calibration of disasters could be avoided by adding learning (e.g. Geweke (2001), Weitzman (2007)). This would also:
 - generate an endogenous time variation in the perceived probability of disasters (e.g. Cogley-Sargent (2007));
 - deliver time-varying volatility and asymmetric volatility reaction to good and bad news (e.g. Veronesi (2004));
 - generate potential for sun-spot equilibria (e.g. Sandroni (1998)).

Baseline:

- Well executed and innovative modeling of rare disasters.
- To accept the results at face value, one has to believe in Barro's calibration of disasters.

- needs some evidence on the link between time varying probability of disasters and market returns;
- extreme calibration of disasters could be avoided by adding learning (e.g. Geweke (2001), Weitzman (2007)). This would also:
 - generate an endogenous time variation in the perceived probability of disasters (e.g. Cogley-Sargent (2007));
 - deliver time-varying volatility and asymmetric volatility reaction to good and bad news (e.g. Veronesi (2004));
 - generate potential for sun-spot equilibria (e.g. Sandroni (1998)).

Baseline:

- Well executed and innovative modeling of rare disasters.
- To accept the results at face value, one has to believe in Barro's calibration of disasters.

- needs some evidence on the link between time varying probability of disasters and market returns;
- extreme calibration of disasters could be avoided by adding learning (e.g. Geweke (2001), Weitzman (2007)). This would also:
 - generate an endogenous time variation in the perceived probability of disasters (e.g. Cogley-Sargent (2007));
 - deliver time-varying volatility and asymmetric volatility reaction to good and bad news (e.g. Veronesi (2004));
 - generate potential for sun-spot equilibria (e.g. Sandroni (1998)).

Baseline:

- Well executed and innovative modeling of rare disasters.
- To accept the results at face value, one has to believe in Barro's calibration of disasters.

- needs some evidence on the link between time varying probability of disasters and market returns;
- extreme calibration of disasters could be avoided by adding learning (e.g. Geweke (2001), Weitzman (2007)). This would also:
 - generate an endogenous time variation in the perceived probability of disasters (e.g. Cogley-Sargent (2007));
 - deliver time-varying volatility and asymmetric volatility reaction to good and bad news (e.g. Veronesi (2004));
 - generate potential for sun-spot equilibria (e.g. Sandroni (1998)).