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Abstract

Using information in returns we identify the stochastic process of consumption — the
crucial ingredient of most macro-finance models. We find that aggregate consumption
reacts over multiple quarters to innovations spanned by financial markets, and this per-
sistent component accounts for 26% of the consumption variation. These innovations
drive most of the time series variation of equity returns and are priced in the cross-
sections of both bonds and stocks. The data rejects the hypothesis that the stochastic
volatility of consumption is proportional to market volatility, and that either of them
is priced, posing a novel challenge for consumption-based asset pricing models.
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I Introduction

Consumption-based models have contributed to our understanding of financial markets, busi-
ness cycle dynamics, and household decision-making. In these settings, assumptions about
consumption persistence and volatility have a profound impact on both the empirical perfor-
mance and policy implications of models. However, using consumption data alone, it is hard
to identify the underlying stochastic process.! As a result, macro-finance researchers tend to
rely on assumptions that are difficult, if not impossible, to validate outside the frameworks
under consideration: Chen, Dou, and Kogan (2021) refer to this source of model fragility
as “dark matter.” As we show, if the stochastic process of consumption was of the type
commonly postulated in the literature, standard selection procedures would fail to recover
accurately both its degree of persistence and its volatility dynamics — the crucial ingredients
for asset pricing. This paper attempts to fill the gap and shed light on the dark matter of
consumption-based models.

Our identification strategy is rooted in the central insight of the intertemporal Euler
equation of models that have consumption as one of the state variables in the utility function:
most shocks affecting the household force it to adjust both investment and consumption
plans. In fact, asset prices that reveal information about the state variables of the economy
are a feature of almost any consumption-based macro-finance model. Therefore, we use the
cross-section of returns to extract the innovations that are reflected in both consumption
and financial assets. Our approach allows the joint consumption and return data to “speak
for itself” and establishes a new set of facts regarding the dynamics of stocks, bonds, and
consumption growth. Conceptually, the method is simple: we estimate robustly the impulse
response of consumption to shocks, hence we accurately identify its conditional mean and
persistence. This in turn allows us to recover correctly the volatility dynamics, since the

latter, as we show, can be consistently estimated only if the conditional consumption mean

1See, e.g., Beeler and Campbell (2012), Campbell (2017), Cochrane (2007), and also Ludvigson (2012)
for a review of the empirical challenges of consumption-based asset pricing.



and its predictability are properly captured.

Figure 1: Cumulative response function of consumption growth to one standard deviation
shock spanned by asset returns.
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The graph presents posterior means of the cumulative response function of consumption growth (black line
with circles), along with the centered posterior 90% (dashed red lines) and 68% (dotted green lines) coverage
regions. The blue line with triangles denotes the first principal component of cov(r{y, Acyi11+5). These
shocks account for 26% of consumption growth time series variation (quarterly data, 1961:Q3-2017:Q2).

Our first result is summarized in Figure 1, which highlights the slow, economically and
statistically significant, empirical cumulative response of consumption growth to the common
innovations spanned by stock and bond returns. We find that these shocks take about two
to three years to be fully reflected in consumption, thus producing substantial (but not
excessive) predictability. The economic magnitude of this effect is large: One standard
deviation shock implies a cumulated response of consumption of about 1% over the next 2
to 4 years. Most importantly, these shocks generate a clear business cycle pattern in the
conditional expectation of consumption growth that accounts for more than a quarter of
total consumption variance — more than twice what is normally assumed, in the best case

scenario, in leading macro-finance models.? Furthermore, these very same shocks play a

2For instance, the contribution of the conditional mean to the variance of the consumption growth process
is zero in the habit framework of Campbell and Cochrane (1999), in Lucas (1987) calculation of the cost
of business cycle fluctuation, and in the rare disasters model of Barro (2006), 4.5% in the long-run risk
calibration of Bansal and Yaron (2004), and 12% in that of Hansen, Heaton, Lee, and Roussanov (2007).



fundamental role in explaining the time series of financial assets: They account for most of
the variance of equities and drive a significant yet small share of bond returns fluctuations.

All of our findings allow for very general stochastic volatility processes in both con-
sumption and returns. Compared to the previous literature, we rely on general and flexible
specifications, richer asset return data, and much less restrictive priors. As a result, we
uncover a new fundamental challenge for theoretical models that obtain equilibrium time-
varying risk premia by assuming a common stochastic volatility in consumption and returns:
The data not only strongly suggests that these volatilities are distinct stochastic processes
but also that they do not seem to drive time variation in excess returns.

Although our identification approach relies only on the joint time series dynamics of
consumption and asset returns, it also has powerful implications for cross-sectional asset
pricing. In particular, the loadings on the common shocks provide an immediate measure
of the consumption risk in stock and bond returns. We find that this measure can jointly
explain the average term structure of the interest rates and a broad cross-section of equity risk
premia (including industry portfolios). In other words, our identification strategy uncovers
the fundamental link between the consumption process and asset returns, allowing us not
only to accurately capture the former but also to precisely measure its comovement with the
latter. In doing so, our paper also rationalizes the empirical success of cross-sectional asset
pricing models for stock returns that rely on consumption risk measured at low frequencies,?
and establishes a complementary new finding for bonds.

To uncover, identify, and test the stochastic process of consumption growth, we employ
three different empirical strategies. First, we set up a flexible (state-space) model that ex-
tracts the common shocks to consumption and asset returns and estimates their propagation
pattern within the time series of consumption growth. The timing is crucial here. There
is rich empirical evidence suggesting that consumption could be slow to adjust to changing

economic conditions, and multiple theoretical frameworks consistent with it. Therefore, we

3See, e.g., Brainard, Nelson, and Shapiro (1991), Parker and Julliard (2005), Jagannathan and Wang
(2007), and Malloy, Moskowitz, and Vissing-Jorgensen (2009).



allow consumption to react (potentially) with lags to these common shocks. In particular,
we model consumption growth as the sum of two independent processes: a very high-order
moving average that (potentially) co-moves with asset returns and a transitory component
orthogonal to financial assets. Innovations to asset returns are in turn modeled as depending
(potentially) on the shocks to the persistent component of consumption plus an orthogonal
source. To draw the analogy with the Wold’s time series decomposition, we estimate the
moving average representation of consumption (or equivalently, its impulse-response) and
identify its innovations with the help of asset returns. That is, instead of ex ante postulating,
say, an AR(1) persistent component in consumption, we accurately recover its conditional
mean without relying on fragile (and, as we show, untestable within popular macro-finance
models) assumptions.

Importantly, as we show, unlike traditional information criteria for specification selection,
our approach captures correctly the conditional mean and persistence of consumption even
in the type of models that have been postulated in the literature.

The key identifying restriction we rely on is that innovations in consumption spanned
by financial markets should be reflected in returns at the same time as they occur. This
assumption is not only theoretically sound, since equilibrium prices are jump variables, but
is also supported by a rich set of reduced form empirical evidence in the previous literature
(that we further extended in the Appendix).

Our findings have important implications not only for the conditional mean of consump-
tion growth but for its volatility as well. We show that once the slow-moving component of
consumption is properly accounted for, there is no significant evidence of volatility cluster-
ing in its residuals. We further investigate the role of stochastic volatility by estimating a
flexible state-space model that allows for (potentially) distinct and priced volatility shocks
in both consumption and returns. We find very little evidence that the volatility of con-
sumption mean shocks is the same as the volatility of financial markets and that either of

these volatilities affects the time series of excess returns. Our finding is driven by the robust



approach that we use in modeling the conditional expectation of consumption growth, which
uses not only information in past consumption but also asset returns data. We show that
the common practice of disregarding the role of returns in driving the conditional mean of
consumption generates spurious evidence of volatility clustering, as well as a spurious link
between financial returns and consumption volatility.

Our second empirical approach relies on directly assessing the main empirical prediction
of our framework: a particular term structure of the covariances between asset returns and
multi-period consumption growth. We therefore measure the term structure directly in the
data and test whether it implies a similar consumption persistence as in the state-space
setting. Figure 1 confirms that the results of the two approaches are almost identical.

Finally, we confirm our cross-sectional asset pricing findings by also estimating a very
broad class of consumption-based pricing kernels, via Empirical Likelihood (see, e.g., Owen
(2001)), without imposing restrictions on the time series properties of the data. Consistent
with our state-space framework, the future response of consumption growth to current asset
returns accurately captures the level and the spread of the consumption risk for both stocks
and bonds. Compared to standard approaches, this leads not only to sharper inference but
also a remarkably better cross-sectional fit.

To summarize, we find that: a) consumption reacts very slowly (i.e., over a period of two
to four years), but significantly, to the shocks spanned by asset returns, and this slow-moving
component accounts for about 26% of its time series variation; b) accounting for this slow-
moving dynamics, we find no significant evidence of volatility clustering in consumption and
show that misspecification of the consumption mean process leads to spurious evidence of
volatility clustering; c) stock returns significantly load on these common shocks (that capture
36%-95% of their time series variation); d) US Treasury bond returns load significantly on
the same innovations, with loadings increasing with the time to maturity, but these shocks
drive no more than 3% of their time series variation; e) there is very little evidence that

the volatility of consumption shocks is proportional to the volatility of financial markets; f)



none of these volatilities drives excess returns; ¢g) most of the time series variation in bonds
is captured by a single factor, independent from both consumption and stock returns, which
does not command a risk premium (i.e., it is unpriced); h) the total exposure to consumption
risk, captured by the latent factor model and its estimated loadings, accounts for 59%-92%
of the joint cross-section of stocks and bond average returns?; i) low frequency consumption

explains up to 92% of the cross-sectional variation of bond excess returns.

The remainder of the paper is organized as follows. The next section reviews the most
closely related literature. Section III shows that the type of consumption process that are of-
ten used in the macro-finance literature are unlikely to be correctly identified using canonical
model specification selection. Our state-space formulation is introduced in Section IV where
we also show that it can accurately recover the consumption dynamics of popular models.
Our main empirical findings are presented in Section V, and Section VI concludes. Data de-
scription as well as additional methodological details, robustness checks, and supplementary

empirical evidence, are reported in the Appendix.

II Closely Related Literature

Our paper is related to several large strands of literature. At the core of our identification
strategy lies the notion that equilibrium prices of financial assets should be determined by
their risk to households’” marginal utilities and, in particular, current and future marginal
utilities of consumption: Agents are expected to demand a premium for holding assets that
are more likely to yield low returns when the marginal utility of consumption is high, that is,
when consumption (current and expected) is low. Therefore, by its very nature, our paper

is closely linked to consumption-based empirical asset pricing.® Within this literature, the

4In our baseline specification we consider a cross-section of 46 assets given by 12 industry portfolios, 25
size and book-to-market portfolios, and nine bond portfolios, but the results appear robust to alternative
specifications.

°E.g., Breeden, Gibbons, and Litzenberger (1989), Lettau and Ludvigson (2001b), Jagannathan and
Wang (2007), Piazzesi, Schneider, and Tuzel (2007), Hansen, Heaton, Lee, and Roussanov (2007), and
Bansal, Kiku, and Yaron (2012). See also Ludvigson (2012) for an excellent review.



underlying stochastic process of consumption has been the subject of a long-standing debate.

While there is ample empirical evidence suggesting that either shocks to the consumption
mean or its volatility are priced in the cross-section of asset returns, there is much less
agreement on what are the relative contributions of these components, the frequency of the
shocks, and even the sign of their price of risk. Lettau and Ludvigson (2001a), Bansal,
Dittmar, and Lundblad (2005), Malloy, Moskowitz, and Vissing-Jorgensen (2009), Savov
(2011), and Kroencke (2017) focus on shocks to the first moment of consumption growth.
Bansal, Kiku, Shaliastovich, and Yaron (2014) and Campbell, Giglio, Polk, and Turley (2018)
argue that volatility shocks are priced, even conditional on those to the mean. Different
from these, we use a much broader information set, and a more flexible parametrization, for
identifying shocks to the mean before assessing whether volatility is priced, and explicitly
estimate the volatility processes of both consumption and asset returns (instead of proxying
the former with the latter). Jacobs and Wang (2004) and Balduzzi and Yao (2007) use
survey data to estimate the variability of idiosyncratic consumption risk across households
and find that it is priced in the cross-section of portfolios sorted by size and value. Tédongap
(2014) estimates the conditional volatility of consumption through a GARCH model and
finds that the value stocks are more exposed to its innovations, leading to a corresponding
risk premium. We show that a consumption growth mean misspecification leads to spurious
GARCH dynamics and creates an artificial link between consumption volatility and returns.

Bandi and Tamoni (2015) and Boons and Tamoni (2015) decompose the process for
consumption growth into different, frequency specific, components. They find that only the
shock with a half-life of up to four years plays a significant role in explaining the cross-section
of returns, thus supporting the importance of business cycle fluctuations in determining the
risk premium. In contrast, Zviadadze (2021) develops a methodology for testing structural
asset pricing models using the term structure of equity risk, and finds that, among the
models considered in the paper, only the formulation of Drechsler and Yaron (2011), that

has AR(1) consumption mean dynamics and multiple volatility shocks, generates a realistic



term structure of risk. Dew-Becker and Giglio (2016) instead argue that the shocks that are
most important for explaining the joint dynamics of macroeconomic fundamentals and asset
returns are the extremely low frequency ones, and find no significant evidence of time-varying
consumption volatility. They attribute the latter to a lack of testing power within their VAR-
based framework. Instead, i) we uncover the fundamental role of persistent shocks to the
consumption conditional mean, i7) document that asset returns and consumption have very
distinct volatility processes, and iii) present sharp empirical evidence against consumption
volatility driving excess returns.

Chen and Ludvigson (2009), in the consumption habit setting, and Schorfheide, Song,
and Yaron (2018), within the long-run risks framework, share our perspective of studying the
process for consumption through the lens of asset returns. The former treats the functional
form of the habit as unknown, and estimates it with the rest of the model parameters. The
latter proposes a Bayesian strategy for identifying the deep parameters of the model using
a mixed frequency setting. Instead, we do not take an ex ante stand on the preferences nor
on the the speed or the pattern (e.g., an AR(1)) of the consumption dynamic: We work
with the MA representation of the consumption process and relax both functional and prior
restrictions. Furthermore, we explicitly allow past returns to carry information about the
consumption process. This identifies directly the underlying shocks, and the consumption
response to them, through the joint behavior of consumption and asset returns. Hence, we
consistently recover the horizon of the shocks spanned by asset returns and consumption
growth, as well as the speed and patterns of their propagation, for a broader class of possible
stochastic processes.

Our approach, which leverages the information contained in a rich cross-section of finan-
cial assets to provide insights about the underlying state variable, is also similar in spirit
to recent work by Jagannathan and Marakani (2016). They show that the price-dividend

ratios of a cross-section of asset returns can be used to estimate the long-run risk process of



Bansal and Yaron (2004).° Their paper, as ours, acknowledges that since both consumption
and the real risk-free rate are measured with considerable error, it is hard to rely on market-
wide indicators to infer the degree of predictability in the data and, instead, using a broad
cross-section of asset returns could be much more informative. Indeed, Liew and Vassalou
(2000) show that the cross-sectional value and size factors are leading indicators of future
economic growth and that the information content of these portfolios is largely independent
from that of the aggregate stock market. Similarly, Ang, Piazzesi, and Min (2006) confirm
that the yield curve is informative about future GDP growth.” These findings lead us to
include, among other assets, size and value sorted portfolios of stocks and a cross-section of

bond returns in our empirical analysis.

III The Challenge of Consumption Persistency

We start by showing that the type of consumption processes assumed in most macro-finance
model is hard to detect, and hence test, in samples of the same size as the historical ones.
Let’s consider as a working example the so-called long run risk process of Bansal and
Yaron (2004). In this formulation log-consumption growth, Ac; .41, contains a persistent
AR(1) component, z;, which is crucial to rationalise unconditional risk premia and other

moments of the historical data. That is:

Aci i1 = p+ Ty + 0y, (1)

Tpp1 = PTt + P01, (2)

where 1, e;, ~ #dN(0,1) and oy, depending on the calibration, is either a constant or a

6This approach is similar to the one in Constantinides and Ghosh (2011), which shows that, in a linearized
long-run risk framework with AR dynamics, the consumption mean and volatility processes can be inverted
from the market price-dividend ratio and the risk-free rate.

"Also, Cochrane and Piazzesi (2005) find that a single factor (a tent-shaped linear combination of forward
rates), predicts excess returns on one- to five-year maturity bonds. This factor tends to be high in recessions,
but forecasts future expansion, i.e., it seems to incorporate good news about future consumption.



Stochastic Volatility (SV) process. How much of the time series variation of consumption is
driven by the predictable component x; varies in the literature. For instance, the conditional
mean generates 4.5% of the consumption variance in Bansal and Yaron (2004) and, in what
is to the best of our knowledge the most extreme example, 12% in the calibration of Hansen,
Heaton, Lee, and Roussanov (2007).

But would a researcher be likely to detect this persistency, and identify its functional
form, in samples of the same size as the historical one? We address this question formally by
using the Hansen, Heaton, Lee, and Roussanov (2007) calibration to generate monthly series
of consumption of the same length as the postwar sample we use in our empirical analysis
(214 quarters), and formally perform ARIMA model selection for the consumption process.
We consider consumption aggregated to the quarterly frequency — as in real world data —
as well as the monthly observations that are normally not available for such long samples.
Details of the simulation design are reported in Appendix A.1.

Table 1 reports the frequency of specification selected according to the Bayesian and
Akaike Information Criteria (BIA and AIC). Strikingly, with both quarterly and monthly
sampling the most often selected specification implies no predictability at all (columns (A)
and (B)). And note that this result arises using the calibration of the long run risk process
that has the largest predictability of consumption. Furthermore, the table shows that even if
a researcher were to observe the conditional mean of consumption growth directly (columns
(C) and (D)), canonical specification selection would fail to identify the true mean process
with more than 92% probability.

Note that misidentifying the conditional mean process has also important consequences
for the recovery of the volatility process. For instance, suppose that the process in equations
(1)-(2) is a constant volatility one, that is, 0y = o V¢. In this case, if a researcher were to con-
clude that there is no predictability in consumption growth (as Table 1 suggests as the most
likely outcome), she would then find evidence of time-varying volatility in consumption, since

its squared forecast errors would be positively autocorrelated (with the j-th autocorrelation
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Table 1: ARIMA model selection of Long Run Risk consumption process
(A) BIC: Act,t+1 (B) AIC: Act,t+1 (C) BIC: Tt41 (D) AIC: Ti41
(

Panel A: Quarterly frequency (214 observations)
p d q freq p d q freq p d q freq p d g freq
0 0 0 53.7% 0 0 0 251% 0 1 0 50.0% 0 1 1 21.5%
0 1 1 24.8% 0 1 1 14.6% 0 1 1 15.6% 0 1 0 13.7%
1 0 1 59% 1 0 1 13.8% 1 0 1 122% 1 0 1 11.6%
11 1 51% 00 1 63% 2 0 0 10.1% 2 0 0 7.6%
1 0 0 39% 1 1 1 53% 1 1 0 51% 11 0 75%

Panel B: Monthly frequency (642 observations)
0 0 0 551% 0 0 0 27.8% 01 0 92.3% 0 1 0 70.0%
0 1 1 31..3% 0 1 1 24.0% 1 0 0 72% 2 1 2 49%
1 0 1 47% 1 0 1 134% 1 1 0 03% 10 0 47%
5 1 0 1.4% 0 0 1 6.5% 11 1 01% 11 0 38%
0 0 1 0 1 2 2 00 1 1 1

0.9% 3.2% 0.1% 3.6%

Empirical frequencies of ARIMA (p,d,q) models selected by Bayesian information criterion (BIC) and Akaike
information criterion (AIC) in 1,000 simulations of the Hansen, Heaton, Lee, and Roussanov (2007) long run
risk specification for the consumption growth process. We only list the top five most frequent models.
proportional to p?). More generally, missing the true degree of predictability in the condi-
tional mean process mechanically delivers spurious (if the true process is homoskedastic) or
biased (if the true process has time varying volatility) evidence of volatility clustering.

If the true process for consumption is similar to what we rely on in macro-finance models,
the above considerations imply three crucial requirements for reliable inference on the data
generating process of consumption.

First, we need an estimator of the conditional mean of consumption that can capture the
true degree of predictability without relying on fragile specification selection. This is crucial
in particular if one wants to make statements about stochastic volatility in consumption (its
existence, magnitude, and properties).

Second, we should not achieve identification via arbitrary (and often non-testable within
a model) parametric restrictions for the consumption process, e.g., an arbitrary AR(1) pro-
cess for its persistent component, or the often employed proportionality restriction between

consumption and return stochastic volatilities. Given their crucial role for model predictions,
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these restrictions should be tested whenever possible.

Third, ideally we would like a method that allows to learn about the consumption process
by leveraging information in other variables that should be adapted to the same type of
shocks that drive consumption (e.g., wealth shocks).

The above three properties are exactly what the empirical formulation that we present

in the next section delivers.

IV A Model of Consumption and Returns Dynamics

In macro finance models the stochastic discount factor is typically a function of consumption
growth and potentially additional variable (such as, e.g., habits, returns or wealth, leisure,
leverage ratios, and aggregation weights in heterogenous agent models). Furthermore, con-
sumption and returns both contributes to the intertemporal budget constraint. This implies
that, with exclusion of knife-edge examples, there is a set of shocks with respect to which
both returns and consumption growth are adapted processes.

The reason for this general feature of equilibrium models is that households react to
shocks (e.g., wealth, income, or beliefs) by adjusting both consumption and investment deci-
sions. Hence in principle one could leverage the information in equilibrium asset returns to
learn about the shocks that drive consumption and the form of its stochastic process. This
simple insight lies at the core of our empirical strategy.

In particular, to model parametrically the reaction of consumption to the same shocks
that are spanned by asset returns, we postulate that the consumption growth process can
be decomposed in two terms: a serially uncorrelated disturbance, w,. with variance o., that
is independent from financial market shocks, and a potentially autocorrelated process — a
persistent component — that (potentially) depends on the current and past stocks to asset re-
turns. For expositional simplicity, we start by focusing on a setting with constant volatilities,
and generalise our framework to incorporate stochastic volatilities in all the shocks.

To avoid taking an ex ante stand on the particular time series structure of the persistent

12



component (or its absence), we work with its (potentially infinite) moving average represen-
tation. Obviously, by virtue of the Wold’s representation theorem, an M A(co) modelling
for the persistent component would capture the true data generating process and avoid the
fallacy of model selection outlined in the previous section. Since the MA coefficients in the
Wold representation are square summable, any finite order covariance stationary ARIMA
can be approximated with a high order MA process, with the accuracy increasing with the

MA order. Therefore, we model the (log) consumption growth process as

s
Aci1p = pe + Z P fi—j +wy, (3)
=0
N
MA(S)

where S is a large positive integer (potentially equal to 4+00), s is the unconditional mean,
the p; coefficients are square summable, and most importantly f; (a white noise process
normalized to have unit variance) is the fundamental innovation upon which all asset returns

load contemporaneously, that is,

vy = p, + pfi+ wy, (4)
Nx1 Nx1 Nx1 Nx1

where r® denotes a vector of log excess returns, p, is a vector of expected values, p" contains
the asset specific loadings on the common risk factor, and wj is a vector of white noise shocks
with diagonal® covariance matrix 3,, which are meant to capture asset specific idiosyncratic
shocks. In the above returns are modelled as reacting contemporaneously and fully to the f
shocks since in equilibrium models prices are “jump” variables.

Note that the joint dynamics of consumption and returns postulated in equations (3)—
(8) is consistent with the extensive preliminary evidence that we report in Appendix A.3.
Therein we show, based on predictive regressions and Structural-VAR estimation, that: 7)

the consumption growth process shows significant predictability over multiple years; i) this

8The diagonality assumption can be relaxed, as explained in Appendix A.4, and later we will allow this
covariance to embed both common and idiosyncratic stochastic volatilities.
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predictability is better captured by lagged returns than lagged consumption; i) this pre-
dictability is generated by a shock common to returns and consumption to which the former
reacts fully contemporaneously, while the latter react little contemporaneously, but substan-
tially in the following quarters.

Obviously, we cannot feasibly use an infinite number of lags in the MA component of
consumption growth. At the same time, since the MA representation of the persistent com-
ponent is meant to only approximate the true latent dynamic, model selection would not be
appropriate and, as outlined in Section III, possibly unreliable. Note also that employing an
excessively high number of lags in the MA does not affect the consistency of the estimation,
but only its efficiency. Consequently in our empirical analysis we rely on a conservative
approach and: i) in the baseline estimation we use up to 3.5 years of lagged quarterly shocks
in the conditional mean of consumption since this is almost twice as much the degree of
persistency that we find in the preliminary evidence in Appendix A.3 and it covers the span
of predictability uncovered in the previous literature (see, e.g., Liew and Vassalou (2000),
Parker and Julliard (2005), Bandi and Tamoni (2015)); i) we show in the simulation in
Section IV.2 that the approach is very robust to the precise number of included MA lags;
i7i) we confirm that all of our empirical results are virtually identical even when including
up to 12.5 years of past quarterly shocks (i.e., 50 lags).”?

The dynamic system in equations (3)—(4) can be reformulated as a state-space model,
and Bayesian posterior inference can be conducted to estimate both the unknown parameters
(tte, por {pj}fzo, p", 02, %) and the time series of the unobservable common factor of
consumption and asset returns ({f,}/_,). This estimation procedure is described below, and
additional details are presented in Appendix A.4.

A crucial point that allows us to achieve identification of the shocks is the lead-lag struc-
ture of the consumption process and its (potential) link to asset returns. Without equation

(3), the shocks would be underidentified, making it difficult to give any particular rotation

9 Additional results for alternative lag lengths are available upon request.
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a structural interpretation. Another interpretation of this estimation approach is that of
uncovering the shocks that drive financial returns through the impulse response function on
consumption, in the spirit of the Uhlig (2005) identification in Structural-VARs. In partic-
ular, our approach is akin to constructing the Generalised Impulse Response Function of
consumption and financial markets building upon the insights of Koop, Pesaran, and Potter
(1996) and Pesaran and Shin (1998).

In fact, it is easy to see that the p; coefficients identify the impulse response function of

multiperiod consumption growth to the shock f; as'®

JE [Actfl t+5] >
SIS N, 5
aft g p] ( )

where p;. g := 0.

Note that equations (3)—(4) rely only on the time series properties of asset returns and
consumption. Therefore, nothing in the formulation of the joint system requires the shocks to
be priced in the cross-section of returns, or equivalently expected asset returns to align with
their exposure to consumption (albeit this is what we would expect in a consumption-based
asset pricing model). However, this becomes a testable implication, since the covariance be-
tween asset returns and consumption growth over one or several periods is fully characterized

by the loadings of the dynamic system on the factor f;, as follows:
S
Cov (Aci_1445;17) = ijpr. (6)
=0

This implies that the time series estimates of the latent factor loadings (p; and p”) can be
used to assess whether the slow consumption adjustment component has explanatory power
for the cross-section of risk premia (via, for instance, simple cross-sectional regressions of

returns on these estimated covariances).

10 . . . . . _ S _
This immediately follows from the observation that, since Aci_144s = >, =0 Aci—14ji+j =

! /

In (Ct+s/ct,1), we have [Actfl,t, ACt,LtJrl, cony ACt,Lths] =T [Actfl,h ACt7t+1, ceey ActflJrS,thS] s where

I' is a lower triangular square matrix of ones (of dimension S).
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The particular one-factor term structure in the exposures of asset returns to consump-
tion growth in equation (6) also provides an alternative method, which does not rely on
the parametric likelihood and directly stems from the empirical covariances, for recovering
moving average component in consumption. We discuss this further in Section V.2.

Finally, note that the formulation in equations (3)-(4) can be generalized to allow for
a bond-specific latent factor (g;) to which consumption potentially reacts slowly over time.

The dynamic system in this case becomes

S S
Acprg=pe+ Y pifig+ ) 0595 +wi; and (7)
=0 =0
/
I‘f _ur+prft+|: 0/b7 OIN_Nb:| gt+W:7 (8)
Nxl1 Nx1 Nx1 Npx1 Nx1

where Nj, is the number of bonds and they are ordered first in the vector r¢, and 8° € R
contains the bond loadings on the factor g; — a white noise process with variance normalized

to one. In this case the implied covariance of consumption and returns becomes

S 1S
Cov (Aci_1448:1%) = ijpr + { 0", 0y_y, } Zej. (9)
J=0 '

Two observations regarding our parametric framework deserve mentioning. First, both
the one-factor (equations (3)—(4)) and two-factor (equations (7)—(8)) models are strongly
overidentified. Second, estimation of the model assuming constant volatility is generally
consistent even in the presence of time-varying volatility in the true processes; hence, our
formulation is robust along this dimension. We address this issue formally in Section V.1.2,
where we show that misspecification of the consumption mean process leads to spurious
evidence of consumption volatility clustering, and in Section V.3, where we generalize our

state-space model to allow for stochastic volatilities affecting all the shocks in the system.
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IV.1 Estimation

We can rewrite the dynamic model in equations (3)—(4) in state-space form, assuming Gaus-

sian innovations, as

2z =Fzi 1 + vy, vp~ N(OSH; v), (10)

yi=p+Hz +wy, wi~N(Oni,Y). (11)

c ey
I

where y; := [Ac,, v¢), 2 := [fi, oo, frgls pi= (e, pl), Vi = [ft,O’S,}I, wy = [wf, W'}

1 0 0: 0 o 0 g

V= o , F:= o EEDIRES © N , H:= o Ps , (12)
05 Osx3 Is O3 Oy %, p" Oy ... Oy
(S+1)x(8+1) (S+1)x(5+1) (N+1)x(N+1) (N+1);r(5‘+1)

and I5 and 0z, 5 denote an identity matrix and a matrix of zeros of dimension S.
Similarly, the dynamic system in equations (7)—(8) can be represented in the state-space

form (10)-(11) with z;, == [fi, ..., fi_g, 9tr s Go—g) s Vi i= [ft,O’g,gt,O’g,}, ~ N (0g,1;%); ¥

and F being block diagonal with blocks repeated twice and given, respectively, by the first

two matrices in equation (12); and with space equation matrix of coefficients given by

po - - pg b .. .. b3
pi 0 0 & 0 0
H:= (13)
Py, O 0 9?\@, 0 0
0 0 0 O 0
Py 0 0 0 0
) (N+1);,2(§+1) i
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The state-space system above implies the following conditional likelihood for the data,
Yt‘ztflauuHa\I“E?Zt NN(N+HZt7E)7 (14)

where Z, 1 denotes the history of the state and space variables until time £ — 1. Hence, under
a diffuse (Jeffreys’) prior and conditional on the history of z, and y;, and given the diagonal
structure of X, we have the standard Normal-inverse-Gamma posterior distribution for the
parameters of the model (see, e.g., Bauwens, Lubrano, and Richard (1999)). Moreover,
the posterior distribution of the unobservable factors z; conditional on the data and the
parameters, can be constructed using a standard Kalman filter and smoother approach (see,
e.g., Primiceri (2005)).

When combined with a log-linearized consumption Euler equation for a very broad class
of asset pricing models,!! the specification above for the dynamics of consumption and asset
returns implies, in the presence of only one latent factor (f;) common to both assets and

consumption,

E[R{]=a+ (Z pjpr> A, (15)

=0

where R¢ € RY denotes the vector of returns in excess of the risk-free rate, A\; is a posi-
tive scalar variable that captures the price of risk associated with the exposure to the slow
consumption adjustment risk, and o € RY is the vector of average mispricings. If consump-
tion fully captures the risk of asset returns, the expression above should hold with @ = Oy,
otherwise o should capture the covariance between the omitted risk factors and asset returns.
Similarly, if we allow for a bond-specific latent factor (g;), as in equations (7)—(8), the

implied cross-sectional model of returns is

S r S
E[R{] =a+ (ijpr> A+ { 0", Oy_n, } 29])\9, (16)

J=0

with the additional testable restriction Ay = A,.

"See equation (28) and discussion therein.
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Equation (15) (and similarly equation (16)), conditional on the data and the parameters
of the state-space model, defines a conventional cross-sectional regression; hence, the param-
eters a, Ay and A, can be estimated via the standard Fama and MacBeth (1973) procedure.
Therefore, not only can we compute posterior means and confidence bands for both the coef-
ficients of the state space model and for the unobservable factor’s time series, but we can also
compute means and confidence bands for the Fama and MacBeth (1973) estimates. That is,
we can jointly assess the ability of the slow consumption adjustment risk of explaining both
the time series and the cross-section of asset returns with a simple Gibbs sampling approach
described in detail in Appendix A .4.

Furthermore, we confirm the main empirical results obtained with the above state-space
framework, for both the impulse response function of consumption and the cross-sectional
pricing patterns, using a principal component based approach and an Empirical Likelihood-
type estimation. The details of these nonparametric procedures are discussed in Sections

V.2 and A.5, respectively.

IV.2 The challenge of consumption persistency redux

A natural question is whether our state-space representation of consumption and returns
in equation (3)—(4) is able to recover the consumption process when, as shown in Section
ITI, standard methods fail. For doing so, we use once more the simulated Hansen, Heaton,
Lee, and Roussanov (2007) long run risk consumption process of Section III, calibrate the
asset loadings on f to the values observed in the historical data, and apply our state-space
estimation to it. The results are summarized in Figure 2.

As shown in panel (a) of Figure 2, our state-space model with a long consumption MA
does an outstanding job in capturing the effect of time t shocks on subsequent consumption
growth: the difference between the mean estimate (across simulated time series) and the
true is extremely small, and the variability across simulated samples is also quite small. If

anything, we observe a small attenuation bias in the long run, implying that our approach is
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Figure 2: Cumulative response function of consumption growth to one standard deviation
shock to the conditional mean of consumption growth in 1,000 simulations
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Panel (a) plots the mean, 5th, 14th, 84th, 95th_percentiles of cumulative IRF in 1,000 simulations. The
model is estimated under the assumption that S = 14. Panel (b) plots the average cumulative impulse
response function (IRF) of consumption growth to one standard deviation shock to the conditional mean

of consumption growth, in 1,000 simulations, using MA representation with different maximum number of
lags: S =6, 10, 14, 18.

in fact conservative in estimating the true extent of consumption predictability. That is, the
conditional mean of consumption is accurately captured by the state-space representation
method. In addition, Figure A5 in Appendix A.7 shows that our estimation recovers very
precisely the loading of asset returns on the shocks to the conditional mean of consumption.

Furthermore, as shown in panel (b) of Figure 2, the IRF estimates are almost identical
using different orders for the MA component. The only difference is that with longer MA
we can trace the effect further in the future. Hence, a finite order MA gives a conservative
measure of the long run effect of time t shocks.

Recall also that there is a one-to-one mapping between IRFs (or equivalently, MA repre-
sentation) and variance decomposition. Hence, our accurate IRF estimates imply that we can
perform, as we do in later sections, accurate variance decomposition for both consumption

and returns.
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V  Empirical Evidence

Our empirical analysis is based on both parametric and nonparametric inference, and both
Bayesian and frequentist inference, therefore ensuring that the results presented are robust
to the methodology employed. The main approach, in Section V.1, combines the state-
space system implied by equations (3)—(4) (as well as equations (7)—(8)) with standard
Bayesian filtering techniques to recover the unobservable latent consumption factor (f;) and
the other model parameters. We analyze loading patterns, variance decompositions, and
impulse response functions. Furthermore, since our framework parametrizes the time series
dynamics without imposing cross-sectional asset pricing restrictions a priori, we separately
test the latter using Fama and MacBeth (1973) cross-sectional regressions.

In Section V.2 we examine the term structure implications of asset exposure to consump-
tion growth at different horizons to recover the moving average parameters of the consump-
tion process. Finally, in Section A.5 we rely on a standard nonparametric technique, Empir-
ical Likelihood,'? to document that a) the slow-moving component of consumption growth is
priced in the cross-section of bond returns, b) this slow-moving component provides substan-
tially better identification of the assets’ exposure to consumption growth, revealing precise
estimates of both the level and the spread of the co-movement, and c¢) these patterns are

uniform across different cross-sections of the assets.

V.1 Evidence from the state-space model

While our model in equations (3)—(4) allows for a potentially infinite number of lags for the
consumption process, in order to proceed with the actual estimation, one has to choose a
particular value of S. For the rest of the section we use S = 14 quarters for a number of
reasons.

First, equation (3) implies a certain autocorrelation structure of the nondurable con-

12For an excellent review and comparison with other moment-based estimation approaches, see Kitamura
(2006).
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sumption growth through the combination of the common factor lags and loadings. Hence,
the value of S should be high enough to capture most of the time series autocorrelation in the
consumption growth. Figures A1-A3 of Appendix A.3 shows that most of the dependence
is conservatively captured by the first 14 lags; hence, this value is a natural choice for the
lag truncation. Second, an extensive literature (see, e.g., Liew and Vassalou (2000), Parker
and Julliard (2005), Bandi and Tamoni (2015)) shows that such lag length more than covers
the predictability in consumption. Third, our results remain robust to including many more
lags. For robustness, we have experimented with up to S = 50, and the results (available
upon request) remain virtually identical. And finally, note that using more lags than poten-
tially needed does not affect the consistency of our estimates but only their efficiency (this
is confirmed by the fact that using many more lags our point estimates are identical, yet
with larger confidence bands). Hence, instead of trying to select a lower dimensional MA
specification, we take a robust stance and use a long lag window.'® This in turn allows us,
in Section V.3, to compare classes of macro-finance models rather than specific standalone

specifications.

V.1.1 The consumption mean process

The consumption growth representation in equations (3) and (7) is similar to the moving
average decomposition and allows us to infer the dynamics of multi-period consumption
growth (Acts1145) in response to a common and/or a bond-specific shock. Figure 1 in the
Introduction depicts the (cumulated) loadings of consumption on the latent factor f as a
function of the horizon S. At S = 0, the case of a standard consumption-based asset pricing
model, the moving average component of consumption virtually does not load on the common

factor. Instead, as S increases, the impact of the common factor becomes more and more

13 An alternative robust approach would be to compute Bayesian posterior probabilities for a wide range of
lag lengths and then perform a Bayesian Model Averaging estimate (see, e.g., Raftery, Madigan, and Hoeting
(1997), and Hoeting, Madigan, Raftery, and Volinsky (1999)) of the conditional mean of consumption,
therefore obtaining estimates that are statistically optimal along several dimensions (see the discussion in
Bryzgalova, Huang, and Julliard (2021)).
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pronounced, leveling off at around S = 10. At this horizon, the effect is economically very
large: The cumulative response of consumption growth to a one standard deviation shock is
about 1%.

Note that allowing for a bond-specific latent factor (equations (7)—(8)) leaves the con-
sumption loadings on f shocks virtually unchanged, and consumption does not load sig-
nificantly on the bond-specific factor g (see, respectively, Figures A6 and A7 in Appendix

AT).

Figure 3: Moving average component of consumption growth
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Figure 3 shows the (posterior mean of the) MA component of consumption, based on our
filtered f; innovations. The slow-moving component within consumption aptly captures the
business cycle fluctuations and has a pronounced exposure to recession risk. Furthermore,
this component generates economically large swings in quarterly consumption growth, with
contractions and expansions of about 1% being not uncommon.

But how much of the total consumption volatility can this slow-moving component ex-
plain? More than a quarter — which is very large (and sharply estimated) compared to the
leading asset pricing frameworks: For example, this is five to six times larger than in long-run

risk framework of Bansal and Yaron (2004), while this quantity should actually be equal to
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zero in the the rare disasters models (e.g., Barro (2006)) and in the habit setting of Camp-
bell and Cochrane (1999). Figure 4 demonstrates that the common factor is responsible for
roughly 26% of the variation in the one-period nondurable consumption growth, 33% of the
two-period consumption growth, and so on, followed by a slow decline toward just above 5%
for the 15-period growth. Interestingly, the model retains significant predictive power (albeit
much lower) even for the one-period consumption that will occur three to four years from
now. As shown in Figure A7 of the Appendix, adding a bond-specific factor has a minimum
impact on the explanatory power of the model for future consumption growth.

Figure 4: Share of consumption growth variance driven by its moving average component.
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explained by the MA component. Left panel: Cumulated consumption growth Ac;+1+g. Right panel: One
period consumption growth Ac;_q4;¢4;-

V.1.2 Clustering and predictability of consumption volatility

Note that the estimation of the conditional mean of consumption growth in equations (3)
and (7) is generally consistent even in the presence of time-varying consumption volatil-
ity. Therefore, the presence of volatility clustering can be assessed by analyzing the serial
correlation of the squared one-step-ahead forecast errors (see, e.g., Engle (1982)) of the con-
sumption growth process. That is, by examining the autocorrelation and predictability of
@t (Aciy1) == (Act’tﬂ — ]Et [ACMH])Q, where the conditional mean is computed at each

t using the estimated p; and 6; coefficients and latent state variables f,<; and g,<;.*

14 That is, ]Et [Act 141] is the posterior mean of . + Zle pjfry1—; + Zle 0;9:1+1—; at each t.
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Figure 5: Autocorrelation structure of consumption growth squared forecast errors.
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Left panel: Autocorrelation function of Var, (Act,i41) with 95% and 99% confidence bands. Right panel:
p-values of Ljung and Box (1978) (red triangles) and Box and Pierce (1970) (black circles) tests.

Figure 5 reports the autocorrelation function (left panel) as well as the p-values of the
Ljung and Box (1978) and Box and Pierce (1970) tests (right panel) of joint significance of
the autocorrelations of @“t (Actt41) and shows no evidence of volatility clustering in the
consumption growth process. Nevertheless, conditional consumption volatility might still,
in principle, be correlated with financial asset returns. We test this hypothesis by running
linear predictive regressions of @ﬂh (Actinttnt1), at several horizons h, on the time ¢
first eight principal components of stock and bond returns. Note that this is the same test
used to establish, in line with the previous literature (see, e.g., Liew and Vassalou (2000)),
predictability of the first conditional moment of consumption growth in Appendix A.3. The
p-values of the F-tests for these predictability regressions are depicted by the dashed red
line with triangles in Figure 6. The p-values (which range from 0.2826 to 0.922) show that
asset returns are not significant predictors of future consumption volatility. For this feature
of the data to be revealed, it is key to properly account for the conditional mean of the
consumption process.

Indeed, given our finding of a common latent factor driving both asset returns and con-

sumption, if one were to erroneously model the conditional mean of consumption growth, one
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Figure 6: Predictability of consumption squared forecast errors.
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would be likely to find spurious evidence of volatility clustering. For instance, erroneously
modeling the conditional mean of consumption as being constant, the autocorrelation of
@“t (Acyi41) would be mechanically different from zero. For instance, the k-th autocorre-

lation of (Acyiy1 — uc)2, for k < S, is proportional to

3 2 3 2
Cov [ (D pifii+ 0505 | | D pinfioj+0irgi; 7# 0. (17)
j=k Jj=k

To verify that a misspecification of the consumption mean process leads to spurious
evidence of time varying volatility we perform two exercises.

First, we run again predictability regressions of @’Hh (Actint+ns1) on the first eight
principal components of asset returns (the same predictive variables as in Section A.3) but,
as a misspecification benchmark, we construct this measures assuming a constant conditional
mean for consumption growth. Summary statistics for these regressions are depicted by the
black continuous line with circles in Figure 6. The figure shows that the misspecification of
the mean process generates spurious predictability of consumption volatility in 50% of the

horizons considered. That is, modeling the mean of consumption growth without exploiting
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the information in asset returns and the flexibility of the MA representation, leads to spurious
evidence of time-varying volatility of consumption growth. Instead, with the robust MA
specification of the mean process, there is no evidence of predictability in the volatility

proxy of consumption growth (dashed red line with triangles of Figure 6).1

Table 2: Estimates of GARCH (1,1) for the innovations of different models

Acip1 =y + €41

2 _ 2 2
o = w+ ae; + Boy

w Q 15}
Panel A: p; = po + p{Ac
Estimate 7.279 x 1079 0.141 0.719
t-stat [1.912] [1.664] [8.928]

Panel B: 1 = o + p§Acy + Y0, e,
Estimate 4.019 x 107 0.136 6.845 x 1073
t-stat [2.424] [1.297] [0.022]
Panel C: p = po + Zf:l pifiri—i
Estimate 3.502 x 107> 7.678 x 1072 3.421 x 1072
t-stat [1.363] [0.957] [0.053]

The table presents GARCH estimates for consumption growth volatility with different models for the con-
ditional mean. Models are estimated using QMLE, and robust t-statistics are constructed using Newey and
West (1987) standard errors.

Second, in Table 2 we estimate a GARCH(1,1) for consumption volatility under different
assumptions about the mean process. Panel A considers the common AR(1) specification
for consumption growth. This formulation (AR(1)-GARCH(1,1)), is exactly the one that
has been often used in the literature (see, e.g., Bansal, Khatchatrian, and Yaron (2005)
and Tédongap (2014)) to provide evidence of time varying volatility in consumption.'® In
this case, there is statistically significant evidence of volatility clustering (with a half-life of
about 5-6 quarters). However, as shown in Appendix A.3, lagged consumption alone does

not capture the full extent of consumption predictability. Therefore, in Panel B we add

15This is in line with the evidence of Dew-Becker and Giglio (2016, Appendix D) who, proxying consump-
tion volatility with the realized vol of the S&P500 index (as often assumed in the prior literature), find no
predictability.

16We provide an extensive analysis of Stochastic Volatility processes in consumption and asset returns, of
the type also commonly used in the literature, in Section V.3.
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to the AR(1), as drivers of the conditional mean, the same principal components of asset
returns that predict consumption (see Appendix A.3). The resulting change is striking:
Once we better control for consumption predictability, the evidence in favor of time-varying
volatility vanishes. Finally, in Panel C we use the conditional mean of our moving average
specification (without the contemporaneous shock) evaluated at its posterior mean. Two
observations are in order. First, as in Panel B, there is neither statistical nor economic
evidence of volatility clustering (the implied half-life of the volatility shocks is about one
quarter, i.e., the same as for an i.i.d. process). Second, the sharply different results in Panels
A and C suggest that the AR(1) approximation of the conditional mean is not innocuous
for the identification of the volatility process. Moreover, if the AR(1) were the true process,

our MA(S) specification should closely approximate it (as shown in Section IV.2), and lead

to very similar implications for volatility — something clearly contradicted by the table.

V.1.3 Time series properties of stocks and bonds

We now turn to the time series properties of stocks and bonds implied by our model in
equations (3)—(4) (and (7)—(8)). The loadings of equity portfolios on the latent factor f; are
depicted in Figure 7.

The size and book-to-market sorted portfolios are ordered first (e.g., portfolio 2 is the
smallest decile of size and the second smallest decile of book-to-market ratio), followed by
the 12 industry portfolios (portfolios 26-39 in the graph). All the portfolios have significant
and positive exposures to the common factor. Furthermore, there is an easily recognizable
pattern in the factor loadings, in line with the size and value anomalies. This provides
some preliminary evidence that the f; shocks play an important role in explaining the cross-
sectional dispersion of stock returns. The findings remain unchanged when a bond-specific
factor is added to the model as in equations (7)—(8) (see Figure A8 in the Appendix).

These loadings are not only statistically, but also economically significant as shown in

Figure 8: The common factor f explains on average 79% of the time series variation of stock
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Figure 7: Common factor loadings (p") of the stock portfolios in the one-factor model.

0.06 008 010 0.12 0.14 0.16

0.04

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

portfolios

Posterior means of the stocks factor loadings on f; (black continuous line with circles) and centered pos-
terior 90% (red dashed line) and 68% (green dotted line) coverage regions in the one-latent-factor model.
Ordering of portfolios: 25 Fama and French (1992) size and book-to-market sorted portfolios and 12 industry

portfolios.

Figure 8: Share of stock portfolios’ return variance explained by the f component.
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returns, ranging from 36% to nearly 95% for individual portfolios. Moreover, this explanatory
power in our model is produced by a single consumption-based factor, as opposed to some
of the alternative successful specifications that typically rely on three or more explanatory
variables. As shown in Figure A9 in the Appendix, adding a bond-specific factor leaves the
variance decomposition of stock returns virtually unaffected.

The loadings of the bond portfolios on the common consumption factor f; are reported
in Figures 9a and 9b for, respectively, the one and two latent factor specifications. Both sets
of estimates show an upward-sloping term structure of the loadings, and the point estimates
are very similar in the two specifications, with the main difference being that, allowing for
a bond-specific factor (g;) delivers much sharper estimates of the loadings on the common
factor f;. The magnitude of these loadings is considerably smaller than that of stocks — a
feature that, as shown later, will allow us to price jointly the cross-sections of stocks and
bonds. While these numbers may not seem as impressive as those for the cross-section of
stocks, the pattern is highly persistent and significant, confirming a common factor structure
between nondurable consumption growth and asset returns.

The loadings on the bond-specific factor g; are reported in Figure 10. These loadings
are highly statistically significant and increase steeply and monotonically with maturity,
revealing a very pronounced term structure pattern.

Finally, Figure 11 reports the share of time series variation of bond returns explained
by the f; shocks (left panel), and the f; and g; shocks (right panel), and highlights the
importance of allowing for a bond-specific factor to characterize the time series of bond
returns. The common factor f; accounts for a small (about 1.5%), but statistically significant,
proportion of the time series variation in bond returns. The bond-specific factor, in turn,
manages to capture most of the residual time series variation in returns. While the model
captures just about 55% of the variation in the six-month bond returns, its performance
rapidly improves with maturity and results in a nearly perfect fit for the time horizon of

about five years.
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Figure 9: Bond loadings on common factor f;.
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(b) Bond loadings on f;, two-factor model.

Posterior means of the bonds factor loadings on f; (black continuous line with circles) and centered posterior
90% (red dashed line) and 68% (green dotted line) coverage regions in the one-latent-factor model.

Figure 10:

Bond loadings (6°) on the bond-specific factor (g;).

0.04
|

0.03
|

eb

.85Y iy 2y 3Y a4y

maturities

6Y

7Y

10y

Posterior means (black continuous line with circles) and centered posterior 90% (red dashed line) and 68%
(green dotted line) coverage regions, of bond loadings on the bond specific factor g;.

0.015 0.025 0.03

0.005

Figure 11: Variance decomposition

<
— 9
—
L 2
. 2
v
‘ -
: : @
- LT ; °
o VT = T
I SRR = 5
O [T E
‘
| L FEEE
' A ©
. - = )
S
SRENE

T
.5Y

1y 2y 3y 4y 5Y 6y 7Y 10Y

maturities

box-plots of bond returns.

———

.5Y

T
1y

T
2Y

T T T T T T
3y 4y 5Y 6Y 7Y 10Y

maturities

(a) Percentage of time series variances of bond re- (b) Percentage of time series variances of bond re-

turns explained by f;, one-factor specification.

turns jointly explained by f; and g; components.
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V.1.4 What drives the consumption shocks spanned by financial markets?

Figure 3 revealed a clear business cycle fluctuation within the moving average component
of consumption growth, but what exactly is being captured by those shocks in financial
markets? Figure 13 looks at the (posterior) correlation of the consumption mean process
shocks, f;, with traditional asset pricing factors and principal components of bond returns.
Interestingly, consumption growth is characterized by a complicated mix of exposures to
several popular proxies for risk.

Focusing on equity risk factors, the conditional mean of consumption shows a strong
correlation with both the HML factor (a proxy for the value premium) and the overall
market excess return, while the the correlation with SMB (a proxy for the size premium),
is small (albeit significant), while there is virtually no co-movement with the momentum
factor. The negative co-movement with the market is consistent with a reduction of the
overall risk premium in good consumption states (as, e.g., in habit, and many other, macro-
finance models). The positive correlation with the value factor is in line with the finding of
Liew and Vassalou (2000) which shows that HML forecasts good economic states, and with
equilibrium models with capital irreversibility (as, in e.g. Seru, Papanikolaou, Kogan, and
Stoffman (2017)).

Focusing on bonds, we find that the conditional consumption mean is positively, and
strongly, correlated with the first principal component (PC) of bond excess returns, and
weakly correlated the the second and third PCs. Since the first PC of bond excess returns
corresponds to the second PC of bond returns — that is, the so called slope factor — our
finding supports the large empirical evidence connecting the slope of the term structure of
interest rates to both the consumption process (e.g., Harvey (1988)) and future economic
activity (e.g. Stock and Watson (1989), and Hamilton and Kim (2002)).17

Next, we investigate whether this risk is actually priced in the cross-section of assets.

17 Also, the significant loading on the third PC of excess returns supports the finding of Adrian, Crump,
and Moench (2013) that the fourth PC of yields is one of the significant determinant for the cross-section of
bond returns.

32



Figure 13: Common innovations, popular risk factors, and principal components of bond
returns.
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V.1.5 The price of consumption risk

The latent factor model in equations (7)—(8) naturally measures the covariance between
asset returns and consumption growth at different horizons. We use this implication to test
whether consumption risk, as captured by our framework, is priced in the cross-section of
asset returns.

Following the critique of Lewellen, Nagel, and Shanken (2010), we use a mixed cross-
section of assets to ensure that there is no strong implied factor structure in the returns,
since that could lead to spuriously high significance levels and quality of fit, significantly
complicating the overall model assessment. However, as Figure 13 indicates, the f shocks of
consumption do not heavily load on any of the main principal components of returns. Fur-
thermore, our state-space frameworks allows us to create simultaneous posterior confidence
bands for any cross-sectional asset pricing statistics, including the factor risk premia, pricing
errors, and measures of fit. Note also that since both stocks and bonds have significant
loadings on the common factor (and in the case of bonds, also on the bond-specific one), we
do not face the problem of irrelevant or spurious factors (Kan and Zhang (1999)), which
could also lead to the unjustifiably high significance levels.

Table 3 summarizes the cross-sectional pricing performance of our parametric model of
consumption on a mixed cross-section of nine bond portfolios, 25 Fama-French portfolios
sorted by size and book-to-market, and 12 industry portfolios. For each of the specifications,
we recover the full posterior distribution of the factor loadings and estimate the associated
risk premia using Fama-MacBeth (1973) cross-sectional regressions. Regardless of the spec-
ification, there is strong support in favor of the persistent shocks to consumption being a
priced risk in the cross-section of stocks and bonds: The associated cross-sectional slope
is always positive and highly statistically significant, and the R? varies from 59% to 92%,
depending on whether the intercept is included in the model. While allowing for a common
intercept in the estimation substantially lowers cross-sectional fit, 95% posterior coverage

remains very tight, providing a reliable indication about the model performance.
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Table 3: Cross-Sectional Regressions with State-Space Loadings

Row: « )\f )\g )\f = )\g RQ
One latent factor specification
(1) .0058 16.00 .59
0.0053,.0063]  [9.54, 28.78] [.56,.62]
(2) 22.00 91
[13.12,39.67] [.90,.92]
Two latent factor specification
(3) .0059 15.79 .
[.0051,.0065]  [9.10,29.71] [.56,.62]
(4) 21.75 0.91
[12.52,40.89] [0.90,0.92]
(5) .0065 15.11 37.89 .59
[-243.4,235.1]  [8.64,28.46]  [—243.3,235.1] [0.56,0.61]
(6) 21.73 —37.01 .92
(12.51,40.85]  [—1152,1198] [.91,.92]
(7) .0057 15.95 .59
[.0040, .0071] 9.12,30.57]  [.56,.62]
(8) 21.69 91
[12.52,40.79]  [.89,.92]

The table presents posterior means and centered 95% posterior coverage (in square brackets) of the Fama

and MacBeth (1973) cross-sectional regression of excess returns on Zf:o p;p" (with associated coefficient

As) and [ 0", Oy_y, ]/Z?:O 0; (with associated coefficient ;). The column labeled A\; = A, reports
restricted estimates. Cross-section of assets: 25 Fama and French (1992) size and book-to-market portfolio;
12 industry sorted portfolios, and bond portfolios.

The average pricing error is small, about 60 b.p. per quarter, but statistically significant
in most specifications. Figure 14 summarizes the posterior for the individual pricing errors
for the specification in row (1) of Table 3: They are all individually statistically insignificant
even at the 10% level. The figure further suggests that the cross-sectional pricing could
benefit from a bond-specific intercept — that is, a level factor for bonds.

While the common factor f plays an important role in explaining the cross-section of both
stock and bond returns, the bond only factor g is not priced. This bond-specific factor is also
unspanned by consumption, since the latter does not significantly load on it. This factor is
nevertheless essential for explaining most of the time series variation in bond returns.

In addition, we confirm these cross-sectional findings using the a semiparametric estima-

tion via Empirical Likelihood, as reported in Appendix A.5-A.5.1.
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Figure 14: Posterior distributions of cross-sectional pricing errors.
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pin down the parameters of the joint consumption-returns process with a high degree of
precision. However, this comes at the price of imposing constraints on the data-generating

process, some of which may in principle not hold in the data. In this section we aim to test
the strongest prediction of our parametric setting — the term structure of asset exposure to
consumption risk — while relaxing the ancillary assumptions needed to estimate our state-

Table 3. Portfolios are ordered with bonds first (1 to 9), Fama-French 25 size and book-to-market second
The relatively tight restrictions on the parametric model in equations (3)—(4) allow us to

Box-plots of the posterior distributions of pricing errors for the cross-sectional specification in row (1) of
(10 to 34), and industry portfolios last. Blue dash-dot lines denote centered 90% posterior coverage areas.

V.2 The term structure of consumption exposure

space model.

Equations (3)—(4) imply a very particular pattern in the covariances of asset returns with

36



multi-period consumption growth, that is, for any asset i,

exr _r
COU<Ti,t+17 Acyiv1) = pj po,

cov(riyyy, Aciiy2) = pi(po + p1),
(18)

k
cov(rif+1, Aciiik) = pj (Z pk1> .

J=1

Therefore, the term structure of asset exposures to consumption risk is driven by a single
common component: (po, po+p1,-- -, 2521 pr—1) — that is, the cumulative response function
of consumption to an f; shock. This property is not affected by the potential presence of
cross-sectional correlations between stocks and bonds or additional factors driving stocks
and bonds that are orthogonal to consumption. Therefore, if the time-varying dynamics of
consumption growth in equation (3) describes well the data-generating process, we should
be able to recover the same pattern of loadings by simply extracting the first uncentered
principal component of cov(r{%, |, Acyyx) at different horizons .

Figure 1 in the Introduction illustrates our findings. Remarkably, the loadings on the
first PC almost perfectly match the cumulated response function from the state-space model,
therefore identifying the same persistent time-varying mean for consumption growth.!®

A second testable implication of equation (18) is that, given our state-space results, the
covariance between asset returns and multi-period consumption growth should display an
increase in both its level and cross-sectional dispersion. This conjecture is supported by Fig-
ure 15, which depicts Cov(Acyy145,75,,,) for various assets j and horizons S. As we move
away from the standard case of S = 0, two observations immediately arise. First, there is
a substantial increase in the average exposure of asset returns to consumption growth. Sec-
ond, there is a strong “fanning out” effect, observed for the higher values of the consumption

horizon S. This spread in covariances rationalizes the finding of Parker and Julliard (2005),

18In the figure the level of the first PC is normalized to have the same origin as the pg estimated from the
state-space formulation.
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Figure 15: Cross-sectional spread of exposure to slow consumption adjustment risk
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Panels present the spread of consumption betas measured as Cov(Ac; 1145, TS 41) for different horizon S
(0-15) and asset j: nine bonds (circle), six Fama-French size and book-to-market (triangle), and 12 industry
(cross) portfolios.

which uses Ac; ;4145 to price time ¢ asset returns.

V.3 The role of stochastic volatility

Albeit our state-space model for consumption and returns in equations (3)—(4) delivers con-
sistent estimates of the conditional mean parameters even in the presence of time-varying
volatility for the error terms, the literature has often focused on models with a joint stochastic
volatility process for consumption and asset return process. This approach has been com-
mon since it provides time-varying risk premia for equilibrium asset returns in representative
agent models.

As shown in Section V.1.2, ad hoc specifications for the mean process (e.g., constant or
AR(1)), that miss the true degree of predictability in the consumption process, mechanically
invalidate the identification of the consumption vol process and its predictability. This is
precisely why we rely on a long MA representation, that can correctly captures the con-

ditional mean dynamics irrespectively of its true functional form, and therefore provides a
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robust way to assess the nature and properties of the consumption volatility without taking
a stand on the data generating process of the conditional mean.

That is, our state-space representation provides a reliable framework to tackle inference
on a class of structural models, rather than a particular parametrization.

We generalize our state-space model in equations (3)—(4) to allow for stochastic volatility
in all the error terms. Furthermore, we allow the volatilities to be priced, that is, the process

for log excess returns is now

Ty = e + p" fi + By ‘7}2”,15—1 + B Uz,t—l + wy , (19)
Nx1 Nx1 Nx1 Nx1 Nx1 Nx1

where Uz,tq is is a common market volatility process that affects the volatility of all excess
return shocks (w"), and o7, , is the volatility of the shocks (f) to the conditional mean
of consumption growth (in equation (3)). The above formulation is very general and en-
compasses the standard models from the literature as particular cases. For instance, setting
0ft = 04, One obtains the canonical “long-run risk” formulation of Bansal and Yaron (2004).

We follow the past literature (e.g., Hull and White (1987) and Chesney and Scott (1989))

by assuming the following distributions for wy, f; and w;:

we X N0, exp(har)) (20)
£ N (0, exp(hy), (21)
w: 1/1\c/1 (07 Zrt)a Yot = diag{(ﬁ;m s 70-3,Nt}7 <22)

where o7, is the stochastic volatility of the i-th asset that is driven by both idiosyncratic

volatility shocks (e;,¢) and the common volatility process (o7, = exp(hy¢)), that is,

2

Orit = exp{m(()i) + mﬁi)hrt + €t} (23)

In what follows we refer for simplicity to o7, = exp(hy) as the “market” variance, albeit
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in our formulation of asset return dynamics the total volatility of market returns is a linear
combination of o, and oy;.

In order to identify the model, without loss of generality we normalize hy; and the com-
mon market volatility component h,; to have zero mean and unit variance. The stochastic
volatility processes het, hyt, and h,, are all modeled as independent AR(1) processes in the un-
restricted formulation (see Appendix A.6 for further details including the MCMC algorithm
needed to evaluate this model). Furthermore, we also consider several restricted versions of
the above specification that correspond to the processes employed in the previous literature.

Using this general formulation, the estimated parameters for the consumption ({p; };.9:0)
and asset returns (p") loadings on the common shock f stay virtually unchanged (see figure
A10 in the Appendix). Similarly, the variance decompositions for consumption and returns
as well as the cross-sectional price of risk are almost identical to the ones presented in the
previous sections. While this is not surprising (since the formulation (3)—(4) is consistent for
mean equation parameters independently from the volatility process), this finding is quite
reassuring. In other words, it is clear that the returns significantly load on the shocks to
the consumption mean that drive more than a quarter of the consumption growth variance.
That is, all our results seem robust to the modeling choice of the volatility processes.

What do we learn about the volatility itself for both consumption and returns? Figure 16
reports the estimated volatility processes (posterior median and 95% credible intervals) under
a diffuse prior for the autoregressive coefficients of the processes (see Appendix A.6 for details
and very similar estimation results obtained under alternative priors). Several observations
are in order. First, there is clear evidence of time-varying volatility in stock returns (Panel
C), while there is a whole range of constant volatility levels for the shocks to consumption
(shaded areas in Panels A and B) that are within the posterior confidence bands. Note also
that all our volatilities are quite sharply estimated, even in the case of consumption shocks.
Therefore, the evidence in favor of stochastic volatility in consumption growth is weak at

best. Second, all but two asset volatilities have significant loadings (x}) on the common
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financial market volatility process. Third, the common financial market volatility clearly
increases during recessions and market crashes, while for the other two volatility processes
there is no such a clear pattern. Forth, there seems to be little co-movement between market
and consumption shocks volatilities.

We further explore the correlation between the estimated volatilities and (the square of)
the VXO volatility index (a proxy for the underlying volatility process commonly used in the
literature!) in Table 4. Both financial market vol and the vol of the consumption conditional
mean shocks have non-trivial correlations with the volatility index (.40 for the former and
.48 for the latter, at the median, in Panel A), while being very weakly correlated with each
other (the median correlation is only .15, Panel B).

Under the null of the stochastic process for asset returns that we postulate (equations
(19), (20)-(23) and normalizations therein) these correlations give an estimate of the variance
decomposition for the S&P100 (the index underling the VXO). Hence, Panel A of Table 4
implies that about 40% of the (option-implied) variance of the S&P100 index is generated by
fi+ — the shocks to the conditional mean of consumption. This is a strong external verification
of our (very general) modeling choice for the joint dynamics of consumption and returns.
Note that in the canonical long run risk framework (Bansal and Yaron (2004)), the pairwise
correlations in Panel B (i.e., between the stochastic volatilities of consumption shocks and
market returns) should all be equal to one, and these would be expected to have close to
unit correlation with the VXO?2.

Finally, we check whether the volatility process of asset returns and consumption mean
shocks are significant drivers of excess returns dynamics. Figure 17 reports the posterior
distributions of the loadings in equation (19). Strikingly, none of the excess return series
loads significantly on the volatility of consumption growth shocks, and only a few have
marginally significant loadings on the common financial market vol process. This finding

poses a challenge to the literature that has modeled time-varying risk premia by assuming

19We use the VXO index, instead of VIX, due to the longer time series available for the former.
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Figure 16:

Filtered stochastic volatilities

of consumption and returns
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Panel C: Common log volatility of asset return (h,: of equation (23)).

Estimated stochastic volatilities of the model in equations (3), (19), (20)—(23), and Section A.6 under a
diffuse prior for the autoregressive volatility coefficients. Solid blue lines depict the posterior median of the
log volatility, while dotted red lines denote 2.5% and 97.5% credible intervals. Shaded areas reflect constant
volatility levels that would not be rejected given the credible intervals.
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Figure 17: Loadings of excess returns on consumption and returns volatilities
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Panel A: posterior distribution of excess return loadings (3y) on the variance of shocks to the conditional

consumption growth mean (0%, ;) in equation (19).
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Panel B: posterior distributions of excess return loadings (3,) on the common financial return variance

(07;1) in equation (19).

Box-plots of the posterior distributions of the loadings of portfolio excess returns on the variance of shocks
to the conditional consumption growth and the common financial returns variance. Portfolios are ordered
with bonds first (1 to 9), Fama-French 25 size and book-to-market second (10 to 34), and industry portfolios
last.
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Table 4: Correlations among stochastic volatility processes and VXO index.

Mean 2.5% 5% 50% 95% 97.5%
Panel A: correlations of vol processes with VXO? index
cor(c%,VXO? 015 -0.07 -0.04 0.15 036 0.40
cor(a?t, VXO0?) 040 0.16 020 040 0.58 0.61
cor(o2,,VXO?) 048 032 035 048 0.59 0.61
Panel B: Pairwise correlations of vol processes
cor(o,0%,) 0.06 -0.11 -0.08 0.05 0.24 0.29
cor(c?, o?,) 0.15 -0.02 -0.00 0.13 0.34 0.38
cor(aj%t, a2) 0.16 0.02 0.03 0.15 031 0.35

The table summarises posterior mean, 2.5%, 5%, 50%, 95% and 97.5% quantiles of correlation among o2,
U}%t, 02, and the VXO index under a diffuse prior for the autoregressive coefficients of the vol processes.

Table 5: Model Comparison Using Log Bayes Factors

Models
1 II I11 v \Y% VI VII VIII IX
Log of BF: 0 -24.72 -33.03 -44.4 -75.1 -90.72 -144.11 -160.58 -203.26
Post. Prob.: 100% 0% 0% 0% 0% 0% 0% 0% 0%

Model I: w§, f; and w; follow SV processes, and r§ = p,. + p" fr + wy
Model II: wy, f; and wy follow SV processes, rf = pr + p" fr + wyi, and hyr = hyy

Model III: wy and wy follow SV processes, f: x N(0,1), and 7§ = pp + p" fi + wy

Model IV: f; and w] follow SV processes, w§ s N(0,02%), and r§ = pp + p" f; + wF

Model V: wj follows SV process, w§ s N(0,02), fi s N(0,1), and 7§ = py + p" fr + Wi

Model VI: w¢, f; and wi follow SV processes, r§ = pr + p" fi + ﬂfa}zcyt_l +wy, and hg = hyy
Model VII: w} follows SV process, w§ iiNdJ\/‘(O, a2, fi iiNdJ\/‘(O, 1), and 7§ = pr + p" fr + BroZ, | +w§
Model VIII: wy, f; and wy follow SV processes, and r§ = p, + p" fi + ,Bfait_l + Brof, 1 + wj

Model IX: f; and wy follow SV processes, wy s N(0,02), and 7§ = p+p" f2 —|—,6'f0]2¢7t_1 +Brof,  +wy

The table summarizes the model comparison for restricted and unrestricted versions of the specification
in equations (3), (19), (20)—(23), and Section A.6. We approximate the Bayes Factor using the Schwartz
criterion. We use model I as benchmark and calculate the (log) odds of each model compared to model 1. A
negative number implies that the chosen model is less likely than model I conditional on the observed data.
The model posterior probabilities are computed under the prior of the specifications being all equally likely.
time variation in the common volatility process of consumption and asset returns. We
formally test this mechanism below.

Table 5 reports Bayes factors and posterior probabilities for several restricted and un-

restricted versions of the specification in equations (3), (19), (20)-(23), and Section A.6.
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In particular, we test both commonality in the various volatility processes (for returns and
consumption mean shocks), as well as their impact on excess returns. Note that the poste-
rior model probabilities (and Bayes factors) are particularly appropriate for this type of test
because they yield valid model selection even over the space of misspecified models. That
is, they select the model that has the highest probability of being the true data generating
process (not just the model with the highest likelihood, see, e.g., Schervish (1995)).

The data strongly favors a specification in which 7) volatilities do not affect excess returns
(Models T to V) and i) returns and consumption have distinct volatility processes — the
posterior probability of such a formulation (Model I) is (almost) 100%. This constitutes an
important challenge for a large class of asset pricing models that obtain time-varying risk
premia via stochastic volatility.

The above result is salient because assuming common volatilities (up to a factor of pro-
portionality) in consumption and returns has been customary in the literature. For this
reason, empirical analyses typically proxy this common volatility by using the market re-
alized vol (see, e.g., Bansal, Kiku, Shaliastovich, and Yaron (2014), and Campbell, Giglio,
Polk, and Turley (2018)) as a priced state variable. Instead, similar to Dew-Becker and
Giglio (2016), we do not find evidence that volatility is priced but, different from them, our
result does not seem to be driven by a potential lack of power since we are directly comparing
parametric alternatives and, most importantly, the data overwhelmingly prefers the Model
I specification — a specification with distinct, and unpriced, vol processes for consumption
and returns. That is, our analysis does shed light on the dark matter of consumption based
asset pricing asset pricing models.

To summarize, even allowing for flexible models of time-varying volatility, we confirm
all the results obtained in the previous sections: The conditional mean of the consumption
process reacts over multiple quarters to shocks spanned by financial returns, and this per-
sistent component is economically very large and a significant driver of both the time series

of consumption and returns and the cross-section of risk premia.
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Additionally, we find very little evidence that the volatility of consumption mean shocks
is the same as the volatility of financial markets, and that these volatilities are reflected in
the time series of excess returns. This finding poses a fundamental challenge for theoretical
models that assume such commonality and dynamics in order to generate time-varying risk
premia. Note that our findings have been obtained using a significantly more general mod-
eling of both mean and volatility processes, and much less stringent prior assumptions, than

in the previous empirical literature.

VI Conclusions

We identify the stochastic process of consumption growth using the information contained
in financial returns. Our strategy relies on the central insight of the intertemporal Euler
equation of models that have consumption as one of the state variables entering the util-
ity function: Most shocks affecting the household force it to adjust both investment and
consumption plans.

We show that a flexible parametric model with common factors driving asset dynamics
and consumption identifies the slow-varying conditional mean of consumption growth. This
component is persistent at the business cycle frequency and is economically large, capturing
more than a quarter of the time series variation of consumption growth. This indicates that
the shocks spanned by financial markets are first-order drivers of consumption risk.

Turning to the asset pricing implications, we find that both stocks and bonds load sig-
nificantly on the innovations spanned by consumption growth. This generates sizeable risk
premia and dispersion in stock returns returns, as well as the positive (unconditional) slope
of the term structure of bond excess returns. Our model explains 36%-95% of the time series
variation in stock returns, and 57%-90% of the joint cross-sectional variation in stocks and
bonds.

Furthermore, we uncover a fundamental challenge for theoretical models that obtain equi-

librium time-varying risk premia by assuming a common stochastic volatility in consumption
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and returns. The data strongly suggest that these are not only distinct stochastic processes,
but also that they do not seem to drive time variation in excess returns.

Compared to the previous literature, our findings are obtained using not only more
general and flexible specifications, but also less restrictive priors and much richer asset return
data. We also provide a large set of complementary evidence that does not rely on our
parametric formulation, yet strongly supports all the main time series and cross-sectional
findings.

Our findings have first order implications not only for macro-finance models but also,
and arguably more importantly, for the assessment of the costs of business cycle fluctuations

and optimal fiscal and monetary policies. We defer the study of these effects to future work.
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A Appendix

A.1 Simulation design

We assume the same data generating process of the log consumption growth as in Bansal
and Yaron (2004), with the only exception that we introduce a square-root process for the

variance, as in Hansen, Heaton, Lee, and Roussanov (2007), that is:

Aci i1 = b+ Ty + 04y,

Tpp1 = PTt + P04,

071 = 0*(1 =) + 0107 + 001w 11,
where 7,41, €;, wy SN (0,1). The calibrated monthly parameter values are: p = 0.0015,p =
0.979, ¢, = 0.044, 0 = 0.0078, v; = 0.987, 0, = 0.00029487.

We use this particular LRR calibration because it ensures the non-negativity of the
volatility process and, most importantly, gives the best chance of detecting the predictability
of consumption using the simple ARIMA selection methods commonly used in empirical
work: the contribution of the conditional mean to the variance of the consumption growth
in this calibration is about 12% — the largest share among leading LRR calibrations.

When also simulating return data, we further assume that log excess returns (rg, ;) follow

e _ r r
"'t_|_1 = MUyr + P €t + wt—i—l?
Nx1 Nx1 Nx1 Nx1

where u,. is a vector of average monthly log excess returns, p” is a vector of returns’ loadings
on the contemporaneous shock, e;yq, which drives the conditional mean of Ac;;y1, and
Wy g NN (0,%,). For simplicity, we assume that X, is diagonal and constant over time

T

in the simulations. Values of p,, p” and X, are chosen to be their sample estimates in

the main text.?® After simulating monthly sequences of (Ac, .41, 7§, ), we aggregate them

20More precisely, we obtain the estimates of p,., p” and X, using quarterly data. In the simulation of
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into quarterly sequences by summing all three monthly observations within a quarter. We
simulate 1,000 sample paths with 214 quarterly observations. Since we approximate the log

consumption growth by an MA(14) process, there are 200 effective quarterly observations.

A.2 Data description

Bond holding returns are calculated on a quarterly basis using the zero coupon yield data
constructed by Gurkaynak, Sack, and Wright (2007)2! from fitting the Nelson-Siegel-Svensson
curves daily since June 1961, and excess returns are computed subtracting the return on a
three-month Treasury bill. We consider the set of the following maturities: six months, 1, 2,
3,4,5,6, 7, and 10 years, which gives us a set of nine bond portfolios.

We consider several portfolios of stock returns. The baseline specification relies, in ad-
dition to the bond portfolios, on the 25 size and book-to-market Fama-French portfolios
(Fama and French (1992)), and 12 industry portfolios, available from the Kenneth French
data library. We consider monthly returns from July 1961 to July 2017 and accumulate them
to form quarterly returns, matching the frequency of consumption data. Excess returns are
then formed by subtracting the corresponding return on the three-month Treasury bill.

Consumption flow is measured as real (chain-weighted) expenditure on nondurable goods
per capita available from the National Income and Product Accounts (NIPA). As in e.g.
Parker and Julliard (2005), we do not include services in our baseline definition of consump-
tion, since these are likely to mechanically bias both the persistence of the consumption
proxy (due to, e.g., utilities and health care) and the co-movement with market returns (due
to, e.g., financial services and insurance). Our results are robust to the usage of alternative
measures and refinements of the consumption proxy (as, e.g., the exclusion of shoes and
clothing, as in Lettau and Ludvigson (2001a, 2001b), due to their semi-durable nature). We

use the end-of-period timing convention and assume that all of the expenditure occurs at the

monthly returns, we divide all above three parameters by 3.

21The data is regularly updated and available at
http://www.federalreserve.gov/pubs/feds/2006,/200628 /200628abs.html
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end of the period between ¢t and ¢ + 1. We make this (common) choice because under this
convention the entire period covered by time ¢ consumption is part of the information set of
the representative agent before time ¢ + 1 returns are realized. All the returns are made real
using the corresponding consumption deflator.

Overall, this gives us consumption growth and matching real excess quarterly holding
returns on 46 portfolios, from the third quarter of 1961 to the second quarter of 2017.

The VXO volatility index is publicly available since 1986:Q1.

A.3 Preliminary empirical evidence

To motivate the structure of the state-space model for consumption and asset returns, we
first establish a set of empirical facts via model-free reduced-form approaches. We document
that a) consumption growth is autocorrelated, b) not only asset returns predict future levels
of consumption growth but do it better than the past values of consumption itself, and c)
consumption is slow to react to the innovations that it jointly spans with asset returns,
while the latter react to them immediately. A detailed description of the data is reported in
Appendix A.2.

First, Figure A1 plots the autocorrelation function (left panel), and the p-values (right
panel) of the Ljung and Box (1978) and Box and Pierce (1970) tests of joint significance of
the autocorrellations, of the one quarter log consumption growth (Ac;+y1). The figure clearly
shows that the autocorrelations are individually statistically significant up to the one-year
horizon (left panel), and jointly statistically significant (right panel) at the 1% level, even
after about 14 quarters (and significant at lower confidence levels at even longer horizons).
That is, there is substantial persistence in the time series of consumption growth.??

Second, we run multivariate linear predictive regressions of cumulated log consumption

growth Ac;iq14+5, for several values of S, on the first eight principal components of time

22Note that, even in the seminal examination of the random walk hypothesis of Hall (1978), the presence
of predictability in consumption growth could not be rejected.
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Figure A1l: Autocorrelation structure of consumption growth.
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Left panel: Autocorrelation function of consumption growth (Ac; ;41) with 95% and 99% confidence bands.
Right panel: p—values of Ljung and Box (1978) (triangles) and Box and Pierce (1970) (circles) tests.

t asset returns.?® Figure A2 depicts summary statistics for these predictive regressions at
different horizons (S). In particular, the left panel plots the time series adjusted R? of these
regressions, and the right panel the p-value of the F-test of joint significance of the regressors
for this and some additional specifications.

Several observations are in order. At S = 0 the time series adjusted R? is quite large,
being about 6.3%. Moreover, the regressors are jointly statistically significant (the p-value
of the F-test is less than 1%). For S > 0, since Actiy149 = Actrr1 + Aciyr 4145, if asset
returns did not predict the autocorrelated component of future consumption growth, the
adjusted R? should actually decrease monotonically in S, as depicted by the red dashed lines
with triangles in the left panel of Figure A2. Instead, for S > 0, the figure shows no such
decrease in the data (black line with circles) — in fact, predictability increases at intermediate
horizons. Moreover, the regressors are jointly statistically significant for any horizon up to

12 quarters following the returns.?*

23We use the first eight principal components of the 25 size and book-to-market Fama-French portfolios, 12
industry portfolios, and nine bond portfolios, because they explain about 95% of the asset returns variance.
Using fewer, or more, principal components, or even directly the asset returns series, we have obtained very
similar results to the ones reported.

24Liu and Matthies (2018) also document the existence of long-run predictability in consumption using a
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Figure A2: Predictive regressions of Ac;y14+5 on time ¢ asset returns and consumption.
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Could one achieve the same level of predictability by using just consumption data, either
due to a persistent component (independent of returns) propagating through the actual
consumption growth (as, e.g., an AR(1)), or through accumulated non-classical measurement
errors that display a certain degree of persistence?? This is unlikely. The purple lines
in Figure A2 depict the degree of predictability obtained using just lagged consumption
growth, Ac;_;,. While highly significant at the horizon for up to six quarters, using lagged
consumption as a predictor is inferior to extracting information from asset returns: Not only
does this variable fail to capture the long range of true predictability, but even at the short
horizon it is almost always underperforming stock and bond returns.

Measurement errors in consumption are unlikely to yield such a persistent level of pre-

dictability either. While non-classical errors could possibly contribute to a wide range of

statistical artifacts, most of their impact should either disappear within a horizon of about

news-based measure of economic growth prospects.

25Seasonal smoothing of consumption levels often leads to countercyclical measurement errors in the growth
rates.
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one year (should it be related to seasonal smoothing), or be much smaller in magnitude.
In order to test this conjecture, we repeat the same predictive exercise with the unfiltered
consumption data of Kroencke (2017)?® (green dotted lines in Figure A2). Should the pre-
dictability result be an accidental by-product of a countercyclical measurement error due to
smoothing, it must go away when using the unfiltered data. If anything, as the figure shows,
the power of asset returns to forecast consumption becomes even more apparent. Unfortu-
nately, since only yearly data is available for unfiltered consumption, the sample is naturally
shorter, which increases standard errors and leads to the feasible use of only three predictive
horizons within our time window. However, even taking these limitations into account, asset
returns still remain significant predictors of future consumption.

The results above highlight that not only there is substantial predictability in consump-
tion growth, but also it is best captured by asset returns.

Third, the state-space representation of the slow consumption adjustment process that
we use postulates the presence of (potentially) long-run shocks in the consumption growth
process to which asset returns react only contemporaneously. To verify this conjecture, we
recover the long-run impact of common innovations to financial market returns and non-
durable consumption using a simple bivariate structural vector autoregression (S-VAR) for a
broad market excess return index and consumption growth.?” We achieve identification via
long-run restrictions 4 la Blanchard and Quah (1989). That is, we distinguish a fundamen-
tal long-run shock, which can have a long-run impact on both asset prices and consumption
levels, and a transitory shock that is restricted not to have a long-run impact on the latter.
The details of the estimation procedure are presented in Appendix A.3.1.

Figure A3 displays the cumulated impulse response functions to a one standard deviation

long-run S-VAR shock, and highlights fundamentally different responses of asset returns and

26We are grateful to Tim Kroenke for making the data available on his website.

2TWe construct the excess return index as the first principal component of a cross-section that includes
excess returns (with respect to the three-month Treasury bill) of the 25 Fama-French size and book-to-market
portfolios, 12 industry portfolios, and Treasury securities with maturities of six months, 1, 2, 3, 4, 5, 6, 7,
and 10 years.
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Figure A3: Cumulated response functions to a long-run shock.
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The left panel depicts the cumulated response function for the excess return index from the composite cross-
section of stock and bond returns, while the right panel plots the cumulated impulse response function of
consumption growth. The graphs include posterior mean (continuous blue line), mode (black circles), and
centered 90% coverage region (red dashed lines).

consumption growth to this shock. Asset returns (left panel) fully adjust to the shock con-
temporaneously, with no statistically significant additional response in the periods following
the initial shock. Instead, consumption growth (right panel) reacts gradually to the shock
over several quarters, with the cumulated effect reaching its peak only fixe to seven quarters
after the initial shock. These patterns are consistent with the moving average process we
postulate in Section IV. Moreover, as shown by the estimates of the state-space model in the
main text, the above reaction of consumption to the long-run shocks is extremely similar to

the one obtained with our state-space model.

A.3.1 S-VAR Identification via Long-Run Restrictions

Consider a structural vector autoregression of order p for the vector of variables X; (given

by the quarterly consumption growth and market returns),

ToX, +T (L) X,y = c+ey, & ~iidN(0,1),
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where ¢ is a vector of constants, L denotes the lag operator, I'(L) = Iy + I'sL + ... +
[,LP~! and each T, is a two-by-two matrix. In order to identify the S-VAR using long-
run restrictions, we follow Blanchard and Quah (1989) and work with the moving average

representation

X =rk+A(L) (24)

where r is a vector of constants, A (L) = Ag 4+ AL + AyL? + ... A L™ = [Ty + LT (L)),
5" and /" denote, respectively, short- and long-run Gaussian shocks with covariance matrix
normalized to be equal to the identity matrix.

The two types of shocks are identified imposing the restriction > 72 {4;}, , = 0, where
{.}1 returns the (1,2) element of the matrix. That is, the short-run shock has no long-run
effect on at least one of the elements of the variables in levels (i.e., consumption level or
asset prices). This restriction also implies that A(1) = > % A; should be a lower triangular
matrix.

The S-VAR coefficients can be easily recovered from the reduced form VAR
Xt :f)/‘i‘B(L)Xt—l_’_Ut, Ve NN(O,Q),

where B (L) = By + BiL + ... + B,LP and Q = I'j! (Fgl)/ can be estimated via OLS.

Given the restrictions » 22 {A;}, , = 0, it follows that D := [[ — B (1)]7' 5! should be
a lower triangular matrix. Note also that DD’ = [I — B(1)] ' Q[I — B(1)]"". Hence, an
estimate of the DD’ matrix, DD , can be constructed from the reduced form OLS estimates
B (L) and Q, and, imposing the lower triangular structure on D, we can estimate D from
the Choleski decomposition of DD'. Finally, we can recover the S-VAR parameters from
Iyl = [I - B (1)} D, T (L) = —I'yB (L) and ¢ = I'yy. Impulse response functions and their
confidence regions can then be constructed following Sims and Zha (1999).

The reduced form version of the VAR is estimated with five lags, in order to allow for

possible seasonality issues and a potentially rich dynamic. Nevertheless, the shape of the
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estimated impulse response functions remains very stable across lag length specifications.

A.4 State-space estimation and generalizations

Let IT" := [u, H], x} :=[1,2}]. Under a (diffuse) Jeffreys’ prior, the likelihood of the data in

equation (14) implies the posterior distribution

015, {2}y (s ~ N (s B0 (a0)™).

where x contains the stacked regressors, and the posterior distribution of each element on

the main diagonal of ¥ is given by?®

o?| {2}y Ayet, ~ Tov-I ((T —mj — 1) /2, T6%015/2)

where m; is the number of estimated coefficients in the j-th equation. That is, the conditional
posterior has a Normal-inverse-I" structure. Moreover, F and ¥ have a Dirac posterior
distribution at the points defined in equation (12). Therefore, the missing part necessary for

taking draws via MCMC using a Gibbs sampler is the conditional distributions of z;. Since

Q H
v ItfbHa\I&ENN 2 ; )

Zy Fthl H, \\

where  := Var,_; (y;) = HUVH' + ¥, this can be constructed, and values can be drawn,

using a standard Kalman filter and smoother approach. Let

2y = Ez|y”, U, X];  Vy, = Var (z|y", H,V, %),

28Relaxing the diagonality assumption the posterior distribution of ¥~! is a Wishart centered at the OLS
estimates.
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where y” denotes the history of y, until 7. Then, given zyo and Vo, the Kalman filer delivers

Zijt—1 = FZ£—1|t—1; Vi1 =FVi 1 F' + U, Ky =V H (HVt|t—1H, + E)_l ;

Zyr = Zye—1 + Ky (Yt o HZt\t—l) i Ve = Vi1 — KidH V).

The last elements of the recursion, zzr and Vg7, are the mean and variance of the normal
distribution used to draw zy. The draw of z; and the output of the filter can then be used
for the first step of the backward recursion, which delivers the zy_yr and Vy_yr values
necessary to make a draw for zy_; from a Gaussian distribution. The backward recursion
can be continued until time zero, drawing each value of z; in the process, with the following
updating formulae for a generic time ¢ recursion:

Zijt+1 = Zyjt T Vt|tF/Vt_+11|t (Zt+1 - th|t) ) Vt\t+1 = Vt|t - Vt\tF,V;rlHtFVﬂt-

Hence, parameters and states can be drawn via the Gibbs sampler using the following

algorithm:

1. Start with a guess II' and X! (e.g., the frequentist maximum likelihood estimates),
and use it to construct initial draws for g and H. Using also F and ¥, draw the z,

history using the Kalman recursion above with (Kalman step)

2z, ~ N (Zt|t+1; Vt\t+1) .

2. Conditioning on {zt}tT:1 (drawn at the previous step) and {yt}tT:l, run OLS imposing
the zero restrictions and get I, ¢ and Y1, and draw II' and £~ from the Normal-
inverse-I" (N-i-I" step). Use these draws as the initial guess for the previous point of

the algorithm, and repeat.

Computing posterior confidence intervals for the cross-sectional performance of the model,

conditional on the data, is relatively simple since, conditional on a draw of the time series

61



parameters, estimates of the risk premia (\’s in equations (15) and (16)) are just a mapping
obtainable via the linear projection of average returns on the asset loadings in H. Hence, to
compute posterior confidence intervals for the cross-sectional analysis, we repeat the cross-
sectional estimation for each posterior draw of the time series parameters and report the

posterior distribution of the cross-sectional statistics across these draws.

A.5 Semi-parametric inference

Representative agent-based consumption asset pricing models with either CRRA, Epstein
and Zin (1989), or habit-based preferences, as well as several models of complementarity
in the utility function, consumption commitment, and models with either departures from
rational expectations, or robust control, or ambiguity aversion, and even some models with

solvency constraints,?? all imply a consumption Euler equation of the form of
C;”=E, [Ctjﬁqw;t—i-le,t—i—l (25)

for any gross asset return j including the risk-free rate Rf 41, and where [, is the rational
expectation operator conditional on information up to time ¢, C; denotes flow consumption,
’lzt_i_l depends on the particular form of preferences (and expectation formation mechanism)
considered, and the ¢ parameter is a function of the underlying preference parameters.®’

Note that equation (25) above also implies that C; ¢ = E, [C;fﬁl +sUir1+5| where 1 g ==

R{ 144148 H}g:o ﬂtﬂﬂ- is a multiplicative component of a multi-period forward-looking SDF'.

Hence, the Euler equation can be equivalently rewritten as

—¢
Oy =E ) wt+1+SRf+1 =E [Mtil §+1} ) (26)

Ciii+4s
C,

29Gee, e.g., Bansal and Yaron (2004), Abel (1990), Campbell and Cochrane (1999), Constantinides (1990),
Menzly, Santos, and Veronesi (2004), Piazzesi, Schneider, and Tuzel (2007), Yogo (2006), Basak and Yan
(2010), Hansen and Sargent (2010), Chetty and Szeidl (2016), Ulrich (2010), and Lustig and Nieuwerburgh
(2005).

30E.g., ¢ would denote relative risk aversion in the CRRA framework, while it would be a function of both
risk aversion and elasticity of intertemporal substitution with Epstein and Zin (1989) recursive utility.
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where R® € RY is a vector of excess returns and M2, = (Chi145/Ci) % Yyp14g. Using the
definition of covariance, we can rewrite the above equation as a model of expected returns,

as follows:
Cov (MSA; Rf+1)
E[MZ,]

E (R}, = - (27)

where Mf, = (Chi145/C) "% ys1+s. That is, under the null of the model being correctly
specified, there is an entire family of SDFs that can be equivalently used for asset pricing:
Mtbjrl for every S > 0. Log-linearizing the above expression, we have the linear factor model

E [rfﬂ] = [¢COU (Act,t+1+5§ rf+1) —Cov (log Yiy1ys; rf+1)] As, (28)

where \g is a positive scalar. The above pricing restriction, ignoring the 1 factor, is exactly
the one that we have tested in section V.1.5 under the null of our state-space model. We now
instead want to avoid 1) using linearized relationships, 2) imposing our parametric model
for consumption and asset returns, and 3) ignoring the 1) component of the SDF. That is,
we want to tackle directly the pricing restriction in Euler equation (26).

Since the stochastic discount factor M, | can be decomposed into the product of consump-
tion growth over several periods (Cy;1,5/C;) and an additional, potentially unobservable,
component, we can use an Empirical Likelihood—based approach to assess the ability of low
frequency consumption to price returns without taking a stand on the actual model (i.e. on
the 1), component). The EL-based inference allows to separate the unobservable part of the
SDF from that related to consumption growth, treating v, like a nuisance parameter that is
concentrated out (see Ghosh, Julliard, and Taylor (2016)).3!

Since the relevance of the multi-period consumption for the cross-section of stocks has

31Consider the following transformation of the Euler equation:

s Cris) ¢ Crrs\ ? ol Ciis\7?
0=E[M; Rf]/(CH) z/;t+SR§dP/<C > R{dU =E (C > R/, (29)

t—1 t—1

where P is the unconditional physical probability measure and ¥ is an (absolutely continuous) probability

measure such that % = wtgs, where ¢ = E [tp;1s]. Both ¢ and ¥ can then be recovered via the Empirical

Likelihood approach. Section A.5.1 describes the estimation procedure in detail.
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Table A1l: Cross-section of bond returns and consumption risk

Horizon S Rgdj(%) e o) LR-test
(Quarters) (1) (2) (3) (4)

0 -668 0.0007 105 12.4191
(0.0003) (27.8)  [0.0004]

1 -138 0.0010 88 33.3935
(0.0004). (24.5)  [0.0000]

2 62 0.0024 98 101.9077
(0.0006) (24.7)  [0.0000]

3 81 0.0013 61 47.5635
(0.0004) (17.2)  [0.0000]

4 o1 0.0007 50 29.2312
(0.0003) (13.9)  [0.0000]

5) 4 0.0009 46 32.8188
(0.0003)  (10.6)  [0.0000]

6 10 0.0009 45 29.8647
(0.0003)  (10.0)  [0.0000]

7 o8 0.0006 38 21.6852
(0.0003)  (9.7)  [0.0000]

8 65 0.0008 40 26.2551
(0.0002)  (9.9)  [0.0000]

9 62 0.0008 54 25.6001
(0.0002)  (10.4)  [0.0000]

10 74 0.0008 40 20.9373
(0.0002) (12.1)  [0.1911]

11 74 0.0009 45 25.6532
(0.0002) (14.1)  [0.0000]

12 90 0.0008 7 27.8346
(0.0002) (16.3)  [0.0000]

13 82 0.0007 85 26.9717
(0.0002) (17.4)  [0.0000]

14 92 0.0007 74 25.8651

(0.0002)  (19.7)  [0.0000]

The table reports the pricing of nine excess bond holding returns for various values of the hori-

zon S, allowing for an intercept. Standard errors are reported in parentheses and p-values
in brackets. Estimation is performed using Empirical Likelihood and allowing for a common
pricing error, «, such that 0 = ]E[Mts+1 (Rf+1 —a)] The fit measured as dej = 1 -

Cov ((Ct+1+5/ct)7$1R$+l)
E[(CHHS/CJ*(&]

—2 77 1 ~
»— Var, <TRZ-¢+1 —a—

n—

) / @'C (%Ri,tﬂ) where @"CC) denotes the sample

cross-sectional variance.
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already been highlighted by Parker and Julliard (2005), we first focus on the cross-section
of bonds only. Table A1l summarizes the ability of the consumption component of MtS+1 to
explain the cross-section of bond returns for various values of S. When S = 0, we have the
standard CRRA consumption-CAPM, where the expected returns are driven only by their
contemporaneous correlation with consumption growth. The output reflects the well-known
failure of the classical model to capture the cross-section of bond returns: according to the
LR-test, the model is rejected in the data, the cross-sectional adjusted R-squared is negative
and large, and the curvature parameter is very large and imprecisely estimated. Increasing
the span of consumption growth, S, to 2 or more quarters drastically changes the picture:
The level of cross-sectional fit increases dramatically, up to 92% for S = 14, and the point
estimates of ¢ (which in the case of additively separable CRRA utility corresponds to the
Arrow-Pratt relative risk-aversion coefficient) are drastically reduced (hence more in line
with economic theory).3?

Most importantly, for S >> 0, ¢ is much more precisely estimated. The large standard
error associated with this parameter for the standard consumption-based model (S = 0)
is due to the fact that the level and spread of the contemporaneous correlation between
asset returns and consumption growth is rather low (see Figure 15). This in turn leads to
substantial uncertainty in parameter estimation. As the number of quarters used to measure
consumption risk increases, the link between returns and the slow-moving component of the
consumption becomes more pronounced (as in Figure 15), resulting in lower standard errors
and a better quality of fit. In fact, for large S, as shown in Figure A4, the model-implied
average excess returns are very close to the actual ones, in drastic contrast to the S = 0 case.
The contemporaneous correlation between bond returns and consumption growth (Panel (a),
S = 0) is so low that not only it delivers a very poor fit, but it actually reverses the order
of the portfolios: That is, the fitted average return from holding long-term bonds is smaller

than that of the short term ones. Instead, when the horizon used to measure consumption

32Note that the LR-test indicates for all S, as one would expect, that there is a statistically significant
component ; in the pricing kernel.
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Figure A4: Slow consumption adjustment factor and the cross-section of bond returns
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The figures show average and fitted returns on the cross-section of nine bond portfolios, sorted by maturity.
The model is estimated by Empirical Likelihood for various values of consumption horizon S. .S = 0 corre-
sponds to the standard consumption-based asset pricing model; S = 12 corresponds to the use of ultimate
consumption risk, where the cross-section of returns is driven by their correlation with the consumption
growth over 13 quarters, starting from the contemporaneous one.

risk is increased, the quality of fit substantially improves, leading to an R-squared of 90%
for S = 12 in Panel (b). Note that, in light of our parametric evidence, this improvement
in fit is driven by the fact that the cumulated response of consumption over many quarters
following the returns captures the slow consumption response to time t wealth shocks (to
which asset returns react immediately).

The ability of slow consumption adjustment risk to capture a large proportion of the cross-
sectional variation in returns is not a feature of the bond market alone: It works equally
well on the joint cross-section of stocks and bonds, providing a simple and parsimonious one
factor model for co-pricing securities in both asset classes. Table A2 presents cross-sectional
estimates for various portfolios of stocks and bonds as S varies. Three patterns, common to
also Table A1, are evident. First, cross-sectional fit is generally higher for S >> 0. Second,
the point estimates of ¢ are much smaller as S increases. Finally, cumulated consumption
growth delivers much sharper estimates of the curvature parameter (with standard errors
often an order of magnitude smaller). Again, this is in line with the evidence in Figure 15: as

S increases, both the level and the spread of asset loadings on consumption growth become
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Table A2: Expected excess returns and consumption risk

Cross-sectional estimates

Horizon S Rgdj(%) o o) LR-test RZdj(%) a o) LR-test
(Quarters) (1) () (3 (&) G 6 (D ®

Panel A: 9 Bonds and Panel B: 9 Bonds, Fama-French 6,

Fama-French 6 portfolios and Industry 12 portfolios
0 33 -0.0002 113 6.7888 38 -0.0002 91 9.0198
(0.0003) (27.3) [0.0092] (0.0002) (22.8) [0.0027]
10 76 0.0000 38 28.8862 55 0.0006 16 23.6425
(0.0004) (8.4) [0.0000] (0.0002) (4.1) [0.0000]
11 75 0.0001 53 32.1007 48 0.0005 12 18.9782
(0.0002) (10.8) [0.0000] (0.0002) (3.3) [0.0000]
12 91 0.0005 45 29.4202 50 0.0005 12 17.7822
(0.0003) (13.4) [0.0000] (0.0002) (3.2)  [0.0000]
Panel C: 9 Bonds and Panel D: 9 Bonds, Fama-French 25,

Fama-French 25 portfolios and Industry 12 portfolios
0 66 -0.0002 88 6.3405 39 0.0000 32 4.5356
(0.0002) (19.7) [0.0118] (0.0002) (16.6) [0.0332]
10 79 0.0002 23 11.0360 45 0.0002 10 11.3431
(0.0002) (3.9) [0.0009] (0.0002) (2.6) [0.0007]
11 80 0.0002 22 9.8914 42 0.0002 9 9.5157
(0.0002) (3.7) [0.0017] (0.0002) (2.3) [0.0020]
12 69 0.0002 17 6.7009 38 0.0002 8 8.9695
(0.0002) (3.1) [0.0096] (0.0002) (2.1) [0.0027]

The table reports the pricing of excess returns of stocks and bonds, allowing for no intercept. Standard
errors are reported in parentheses and p-values in brackets. Estimation is done using empirical likelihood.

larger and better identified. This, in turn, delivers a better fit, a lower curvature for the
consumption growth, and a tighter identification of the latter. For robustness, Appendix
A.8 provides similar empirical evidence for the alternative model specifications that include

asset class-specific intercepts.

A.5.1 Empirical Likelihood estimation

Empirical Likelihood provides a natural framework for recovering parameter estimates and

probability measure ¥ defined by equation (29), by minimizing Kullback-Leibler Information
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Criterion (KLIC), as follows

- dP
(¥, ¢) = argmin D(P||¥V) = arg min/ln—dP st. 0=E"
U0 ] A

From Csiszar (1975) duality result we have

~ 1
77th = . _(Z)
T (1 + A0y (6=) Rg)

vt =1.T, (31)

where ¢ and A = A(¢) € R" are the solution to the following dual optimization problem:

HER t—1

T —¢
A(¢) = argmin — Zln <1 + (o) (gi”j) Rf) (33)

AeRn p—

. d A Ciig\ ?
¢ = argmin — Z In (1 + (o) (CHS) Rf) (32)
t=1

The dual problem is usually solved via the combination of internal and external loops:
(Kitamura (2006)): first, for each ¢ find the optimal values of the Lagrange multipliers A, as
in equation (33); then minimize the value of the dual objective function w.r.t. ¢(5\), following
equation (32).

Empirical Likelihood estimator is known not only for its nonparametric likelihood inter-

pretation but also for its convenient asymptotic representation and properties (Newey and

Smith (2004)).

A.6 A generalized model with stochastic volatilities

To complete the specification in equations (3), (19), and (20)—(23) we need to formalize
the autoregressive volatility processes and the prior formulations. We do so in what fol-
lows, and we also provide the sampling algorithm for the generalized state-space model for

consumption, returns, and their volatilities.
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A.6.1 Stochastic Volatility of wy

Let

Yor = log((w))?) = het +log(eZ,),
hct = wc + 5c(hc7t—1 - wc) + Onellcts

where €, - N(0,1) and 1y S N(0,1), and they are independent. Let e, = log(e?%) ~
log(x*(1)). We estimate the model following Kim, Shephard, and Chib (1998). More specif-

ically, we approximate e, using a mixture of Gaussian distributions,
7
e =y q; N (m; — 1.2704,07), (34)
j=1

or, equivalently,

€ct | Set = j ~ N (m; —1.2704,07), (35)

where 237':1 q; = 1 and values of {m;}/_, and {v;}7_; could be found in Table 4 in Kim,
Shephard, and Chib (1998). Below is the algorithm of estimating the unknown parameters
{Pets Sets ey Ocs Tye }

Step 1: initialize {Su}7_ 1, e, Oc, Tpe.

Step 2: sample {hy}i_, from h. | v}, Se, Ve, O¢, 0y (Kalman Smoother step).

Step 3: sample Sy from p(Set | Y, het), where

p(Sct :.] | y:ﬁ hct) X g; X p(yzt | hcta Sct = ])

x qj X fn(yly | het +my — 1.2704,71]2).

) : : : 2 2 (o0 s
Step 4: update ¢, o, 0. We assign an inverse-gamma prior for o, i.e. o, ~ (%, %),

hence:
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p(o—?]c | yZ7SC7,l/)C760’h ) O(p(h |1/JC7 Cy nc) (0’72]0) Ocp(hcﬂ |'Z/)u C? nc Hp c,t+1 ‘ /(/101 (3] nc) ( )
2\-T {_ f:ll[ ct+1 — '(/15—5( 7/)c)]2+(hc,1—1/fc) (1_52)}( 2)—%—16Xp{_ So }

x (07.)" 2 exp o
ne 2 ne 2
207, 207,

Therefore the conditional posterior is

0'7276 ‘ y:, Sc? wcy 50; hc ~Y F_l T + UO SO' + Z,tT:_ll [h67t+1 _ wc _ 6C(h6t _ ZDC)]Q + (hCJ _ wC)Q(l _ 53)) .

2 2
(36)
Let 6. = 2¢ — 1, and ¢ ~ Beta(¢V,¢?). Therefore, the prior distribution of 4, is

7(0e) o< (1+6,)¢"1(1 — 6,)%® 1. The posterior distribution of 4, is

P(Oc | Ve hey o) o< T(8e)p(he | e, Oc, o)

T 1

plhe | Y, dc, nc) x (1— 62)% {_ i1 [Pt —

Y

Ve = So(hes — V)2 + (hey — 10)%(1 — 62) }

2
207,

T— 1 2 2 2
t=1 [ ct+1 — e — C( ct 7/)0)] + (hc,l - Q/}c) (1 — 50) 1 52
202, + 5 log(1 — 07).

logp(h ’¢C7 (&3] 77(;) X =

The above function is concave in d, for all values of ¢ and ¢®. Hence, d, can be

sampled using a reject-accept algorithm. Let

T-1

5 _ t:l[ c,t+1 T 1/)6][ c,t 1/)0] V5 _ Ugc

T her — 002 C S her — 2

We first sample a proposal §* from a normal distribution N/ (56, Vs.) and accept the new value

6 with probability min{1, exp(g(&¥) — g(6:71))}, where

(hc,l - 77Z}c)2(1 _ 502) 1 2
207, + 5 log(1 —97).

9(dc) = log(m(dc)) —
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Finally, we assign a diffuse prior for ..

p(?/fc | hC7 507 01270) (8 p(hc ’ 567 ¢C7 0-7270)
X exp {— Zﬂ=711 [hc,tJrl - wc - 5c<hct - ¢c)]2 + (hC,l — w6)2<1 _ 502) } .

2
205,

Therefore, we obtain the posterior distribution of 1. as follows

2 N 2
wc | hC7 507 Unc ~ N(¢C? qu)a

2 _ o2 o 2 L 0=Dhen | (180) S5 e 1 —ched]
Where 0'1!} == [(T_l)(1_§:)2+(1_55)] and ¢C - 0-1/) { U%c + : 10727c ’

Step 5: go back to step 2 until convergence.

A.6.2 Stochastic Volatility of f;

The consumption mean shock f; follows a normal distribution with the stochastic volatility

process given by

Yo = 1og(f7) = g + log(ef,),

hpr =0fhpi—1+4/1— (5?77]0,5,

where € S N(0,1) and 7 s (0,1), and they are independent. Let ey = log(e7,) ~

log(x?(1)). Note that the above process for hy, is just an AR(1) normalized to have un-
conditional zero mean and unit variance. As before, we approximate e, using a mixture of
Gaussian distributions, that is, ep; = Z;Zl q; N'(mj — 1.2704,v7). The sampling algorithm
is given below.

Step 1: initialize {Sy}7,, d;.

Step 2: sample {h};_, from hy |y}, Sy, 6y (Kalman smoother step).

Step 3: sample Sy, from p(Sy; | y5,, hype)-
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Step 4: update 0y using the Metropolis algorithm. Similar to the prior distribution of d,,

we assume 0y = 2¢ — 1, and ¢ ~ Beta(¢pM), ¢?)). The posterior distribution of O is

p(0s | hy,bp,vp = 0) ocm(85)phy | by, 05,75 = 0)

(1) (2) -1 ET (
o (L )" (= )™ (1= ) o g - HERS T
- Yf

We draw 07 using a Metropolis algorithm:
e Step MI. initialize 07
e Step M2. draw 0% from a normal distribution N((ng_l), 2 )38,

mh

S p(3lhs) .
e Step M3. calculate p(d7,0, ) = min{l, m}’

e Step M4. set 6}” = 5j(ci_1) with probability 1—p(d7, 5}i_1)) and 5;“ = 07 with probability

% (=1

Step 5: go back to Step 2 until convergence.

A.6.3 Stochastic Volatility of asset returns

Let
Yri = Ko + K1 hy + ey,
Nx1 Nx1 Nx1
hye = 5rhr,t—1 +41- 67%777‘15’
where
log(w?,)? €1,rt log(ef;)
. log (w5, )? €20t log(e3;)
y'r‘t = . ) e’l‘t = . = . )
log(why,)? ENt log(e3;)

3

of accepting a new J; is around 50%.
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hye = 6phpa1)* M

2

3¢mn determines the step size in the Metropolis algorithm. We aim at choosing c,,;, such as the frequency

} |



and where the €; shocks are independent across different assets. In the above model, we
assume that one hidden state, h,;, drives the common component of asset-specific stochastic
volatilities. In order to identify the model, we normalize this component h,; to have zero
mean and unit variance. In order to simplify the estimation, we further exclude ko by

demeaning y;, to have the same sample mean as e,;. Therefore, the model is simplified as
Ko = Yry — Ure,

g:t - Kllhrt + €Ert,
hrt = 5rhr,t71 + 1— 57%77%7

fori = 1,2,...,N, e, = 2]7.:1 q; N(mj — 1.2704,v3), or equivalently, e, | Sipe = j ~

N (m; — 1.2704, vf) Therefore, 77, | m&i), Bty Sivt = j %N(/fgi)hrt +m; — 1.2704, 0]2)

Let

g — gy +1.2704 v} Bt
}‘,;*,(i) _ : >Vr(i) — JH, =

gD — mup + 1.2704 v, Dyt

_ 2 .2 .
where m;, = m; and v, = v; if S = 7.

Assuming a Jeffreys (diffuse) prior for /@gi), we have

p(x | YD H, (S0 ) o p(YD | &Y H,, {8 )

| R , N — .
o exp{—5 (%20 — Hon))T(VO) (B0 — Hon))),

£ YO H, 18,07 ~ NG HT (VO -],

where £ = [H (V)™ H,] 7 H (V)7 7,0
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Finally, we also need to update {S;,:}/_, as follows

p(Sire =17 | @:i(i)a o, FGP) X g5 X P@:i(i) | Byt Sigt = 7, /‘Ggi))

o< g; % (@t | 5 hee +my — 1.2704,02)
The posterior draws of h,; and ¢, are then obtained in a similar way as before.

A.6.4 The consumption growth equation coefficients

Since shocks in equation (1) and (2) are uncorrelated, we can sample the unknown parameters

equation by equation. Let’s introduce some notations.

He AC()J 0'31 0 ce 0 1 f1 ‘e f1754

AC 0 0% ... 0 1 N A

pe = Po AC— 12 s > X f2 fas
Ps ACT—LT 0 0 N U?:T 1 fT ce foS

Then the posterior distribution of p¢ under a flat prior is 34

c c c ~ c c \— c -1
p ’Ach 72'w NN(pgls7 [(X )T(Ew) 1X} )7

pais = [(X9)T(35) 71X (X9)(2g)'AC.

34Proof. The likelihood function of the data is

AC | pca Xca Efv ~ N(chc7 Efv) ’
Applying the diffuse prior for p€, the posterior distribution of p€ is
p(p® | AC, X 55) x p(AC | p©, X, 27,)
1
x exp{ 3 (AC — X°p°)(55,)7 (AC — X°p°))

o exp{ 5 (0% — pyta) (X (25) 7 X0 ~ pgts)}-

74



A.6.5 The excess returns equation coefficients

Let
Hori L fi ‘7]220 g 3,0 0’3,1-1 0 0
o — or o xr— 1 fo 0?71 0371 Cand S = 0 03722 . 0
Bri ‘
Bri L fr o5y 0hpy 0 0 ... o

The conditional posterior under a flat prior is then

p; | Ri7 era {0-]2%}?:_017 {Ug,it}?:o ~ N(ﬁ;gls’ [(X:)Tz;i,zX:]_U?

Prgre = [(X]) "8 XTTH(XT) T2 R

wr,t

A.6.6 Drawing the conditional consumption mean shocks

To sample {f;}L,, let

Aci 1y 5 Pe po P1 --- P§
yt - 9 IJ’ == 3 H —
Ty Hr + ﬁf‘j]%,t—l + IBTO—E,t—l p" On ... On
Ji o2 0 ... 0
wy fi—1 0 oy ... O
wy = ~N(ONnt1,2¢), 2t = _ 0 =
'w{ :
fi_g 0 0o ... UEJW

Hence, the joint distribution of observables and f shocks is

5




Y [1 Qt H

| i1, o, H 3y, 05, ~ N , , (37)
2t Fzi 4 H™ ¥,
o7, 0g 05 0
where ‘I’t: ,F:: s Qt:qutHT+Et.
05 Osxs Is 0Og
—_———
(S+1)x(S+1)

We then use the Kalman smoother to draw f;, following the same procedure as in Ap-

pendix A.3.

A.6.7 Model Comparison

The model comparison for the restricted and unrestricted specification in Table 5 of Section
V.3 is performed using Bayes Factors (i.e., the the marginal likelihoods of the various models)
and posterior probabilities. Based on equation (37), the likelihood function of the observed

data {y:}]_, (after integrating out f;) is

T
p(Y | w, H, {Et}?zlﬁ {Uj%t};rzl) = HfN(yt ’ i, Qt)

t=1

T
_T(N+1) _1 1 ~ _ ~
=@n) = [ Ied 5exp{—§(yt—u)mt1(yt—u)}

t=1

T
_ T(N+1) 1 1 B _ B
= @m) " [TIHSHT + 50 exp{—5 (v — )T (H@HT + 307 (3~ )},

t=1

A full Bayesian analysis requires us to specify a proper prior for g, H and the parameters
underlying stochastic volatility processes. The difficulty is that there is no closed-form
solution for the marginal likelihood of data. Furthermore, a flat prior for (u, H, B, 3,) is
improper, hence, the marginal likelihood of the data is unnormalized and there would be an
undetermined constant term in model comparison. And even if we were to assign a proper
prior, the numerical integration would be very imprecise due to the high dimensionality of

the parameter and hidden state spaces. Therefore, we follow the literature and approximate
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the marginal likelihood of the data using the Schwartz criterion (i.e., a Laplace, or particular

second order approximation of the marginal likelihood), as follows

dy — dy

log(BFy ) ~ logp(Y | (M) — log p(Y | §(Ms)) — log(T), (38)

where Y is the observed data, T' is the sample size, M; and M represent model 1 and 2,
é(Ml) and é(Mg) are posterior mean of parameter  under model 1 and 2, and d; and ds are
model dimensions.>® The Bayes Factor in equation (38) ignores the prior distribution, hence
we do not need to change our current improper prior. Note that the model selection based
on the above is analogous to likelihood ratio testing (the LR statistic is proportional to the
first two terms in the equation (38)) or BIC based model selection.

Posterior model probabilities are then computed using the above approximation of the
Bayes Factor and equal prior probability for all specifications; for example, the posterior

BF,

probability of model 1 is computed as S BR where the identity of the reference model 7 is
j N

irrelevant.

35Note that the vector of “parameters” encompasses both the “frequentist” parameters
(te, e Bfs Br, P, P7 e, Oc, O, 0f, Ko, Ko, 0r) and the latent states ({ft,agt,oj%t,aft}?:l).
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A.7 Additional figures

Figure A5: Variance decomposition of asset returns (average of 1,000 simulations)
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Box-plots (95% percentiles) of the percentage of time series variances of individual stock portfolio returns
explained by the f component in the one factor model, as estimated by the state-space model. Red circles
denote true calibrated values.
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Figure A6: Consumption growth response to the latent factors f; and g; shocks.
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Posterior means (continuous line with circles) and centered posterior 90% (dashed line) and 68% (dotted line)
coverage regions. Estimation based on the two-factor model in equations (7) and (8). Left panel: Cumulated
consumption response to common factor, f;, shocks. Right panel: Cumulated consumption response to bond
factor (g:) shocks. Triangles denote a potential AR(1), & la Bansal and Yaron (2004), calibrated to match

our estimates.

Figure A7: Variance of consumption growth explained by the MA components f and g.
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Box-plots (posterior 95% coverage area) of the percentage of time series variances of consumption growth
explained by the MA components f and g. Left panel: Cumulated consumption growth Ac;+414+s. Right

panel: One period consumption growth Actyjryi14 .
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Figure A8: Common factor loadings (p") of the stock portfolios in the two-factor model.

0.08 0.10 0.12 0.14 0.16 0.18

0.06

11 13 15 17

portfolios

19 21 23 25 27 29 31 33 35 37

The graph presents posterior means of the stocks factor loadings on f; (continuous line with circles) and
centered posterior 90% (dashed line) and 68% (dotted line) coverage regions in the two latent factors model.
Ordering of portfolios: 25 Fama and French (1992) size and book-to-market sorted portfolios (e.g., portfolio 2
is the smallest decile of size and the second smaller decile of book-to-market ratio) and 12 industry portfolios.

Figure A9: Share of stock portfolios’ return variance explained by the f component in the

two-factor model.
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Box-plots (posterior 95% coverage area) of the percentage of time series variances of individual stock portfolio
returns explained by the f component in the two-factor model. Ordering of portfolios: 25 Fama and French
(1992) size and book-to-market sorted portfolios (e.g. portfolio 2 is the smallest decile of size and the second
smaller decile of book-to-market ratio) and 12 industry portfolios.
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Figure A10: Cumulated consumption response to, and asset loadings on, f shocks.
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Panel C: Bond loadings on f;.

Posterior means (black line with circles) and centered posterior 90% (dashed red lines) coverage regions
obtained using the one-factor model with unrestricted stochastic volatilities. Quarterly data, 1961:Q3-

2017:Q2.
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A.8 Additional tables

Table A3: Expected Excess Returns and Consumption Risk, 1967:Q3-2017:Q2

No intercept Stocks/bonds-specific intercept
Horizon S R?

aqj(%) ¢ LR-test dej (%) o o ¢  LR-test

(Quarters) (1)  (2) (3) (4) (5) (6) (7) (8)
Panel A: 9 Bonds and Fama-French 6 portfolios

0 -30 114 6.3875 -2 -0.0004 0.0152 80 3.7466
(27.2) [0.0115] (0.0003) (0.0069) (33.6) [0.0529]
10 76 38  29.1022 65 -0.0001 0.0089 29  19.8292
(8.3) [0.0000] (0.0003) (0.0052) (7.4) [0.0000]
11 75 53  32.1557 64 0.0001  0.0036 51  21.6484
(10.7) [0.0000] (0.0002) (0.0047) (11.8) [0.0000]
12 87 55 28.7694 83 0.0005 0.0061 43 19.4720
(12.5) [0.0000] (0.0003) (0.0058) (13.4) [0.0000]
Panel B: 9 Bonds and Fama-French 25 portfolios
0 5 92 5.6714 58 0.0000 0.0220 -40  1.2112
(17.7) [0.0172] (0.0002) (0.0040) (16.0) [0.2711]
10 78 21 10.6559 61 -0.0001 0.0146 21 6.7906
(3.7) [0.00112] (0.0002) (0.0039) (4.1) [0.0092]
11 79 21 9.3890 73 -0.0001 0.0146 17 4.2215
(3.6) [0.0022] (0.0002) (0.0040) (3.6) [0.0399]
12 66 16 6.4810 72 -0.0001 0.0163 10 3.9525
(3.0) [0.0109] (0.0002) (0.0040) (2.9) [0.0468]
Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios
0 43 88  5.1343 -4 -0.0001 0.0141 69  12.2465
(22.6) [0.0235] (0.0002) (0.0046) (25.33) [0.0005]
10 55 16 18.8887 33 0.0003 0.0174 16 23.1406
(3.9) [0.0000] (0.0002) (0.0039) (4.4) [0.0000]
11 50 13 14.5781 40 0.0004 0.0179 14 20.1932
(3.4) [0.0000] (0.0002) (0.0039) (4.1) [0.0000]
12 49 12 13.4594 46 0.0004 0.0174 13 18.0017
(3.2) [0.0000] (0.0002) (0.0040) (3.9) [0.0000]
Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios
0 32 19  3.9034 56 -0.0002 0.0170 20 1.0981
(16.6) [0.0482] (0.0002) (0.0036) (18.2) [0.2947]
10 45 8 10.9676 65 -0.0001 0.0166 7 6.4872
(2.6) [0.0009] (0.0002) (0.0033) (2.6) [0.0109]
11 37 8 9.0100 64 -0.0002 0.0166 6 5.2788
(2.3) [0.0026] (0.0002) (0.0033) (2.3) [0.0216]
12 37 8 8.3904 62 -0.0001 0.0167 5 4.3966
(2.2) [0.0037] (0.0002) (0.0033) (2.1) [0.0361]

The table reports the pricing of excess returns of stocks and bonds, allowing for separate asset class-specific
intercepts. Standard errors are reported in parentheses and p-values in brackets. Estimation is done using
the Empirical Likelihood approach.
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