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Abstract

Using a structural model, we estimate the liquidity multiplier of an interbank

network and banks’ contributions to systemic risk. To provide payment services,

banks hold reserves. Their equilibrium holdings can be strategic complements or

substitutes. The former arises when payment velocity and multiplier are high.

The latter prevails when the opportunity cost of liquidity is large, incentivising

banks to borrow neighbors’ reserves instead of holding their own. Consequently,

the network can amplify or dampen shocks to individual banks. Empirically,

network topology explains cross-sectional heterogeneity in banks’ systemic-risk

contributions while changes in the equilibrium type drive time-series variation.
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1. Introduction

At the core of the financial infrastructure is the payment system operated

by banks. The colossal volume of payment inflows and outflows can result in

intraday imbalances of enormous magnitude. Banks hold reserves as buffers,

and to overcome individual banks’ liquidity shocks, they may borrow reserves

from and lend reserves to each other through the interbank network. The aggre-

gate amount of liquidity is crucial in supporting the functioning of the payment

system. In this paper, we study the role of the interbank network in transmit-

ting individual banks’ liquidity shocks and its implications for the efficiency of

aggregate liquidity provision in the payment system.

An interbank network amplifies shocks when banks’ decisions to hold re-

serves are strategic complements. In this case, a shock that depletes one bank’s

reserves negatively affects other banks, resulting in a large reduction in the

aggregate liquidity. When banks’ reserve holding decisions are strategic sub-

stitutes, the interbank network dampens shocks, so the decline of one bank’s

reserves triggers the accumulation of reserves at neighboring banks, stabilizing

aggregate liquidity. We build a model where the type of strategic interaction

on the interbank network depends on the payment system velocity, bank cus-

tomers’ demand for payment services, and the (opportunity) costs of holding

reserves. We identify the network effects via structural estimation using data

from the U.K. payment system between January 2006 and September 2010.

We find that the network multiplier is procyclical. Before the financial crisis,

the interbank network amplified shocks. A £1 shock equally spread across banks

would result in a £5.37 shock to the aggregate liquidity. It declined to £1.43

during the crisis. After the introduction of quantitative easing (QE) in the

U.K., the network became a buffer, generating a shock of £0.85 to the aggregate

liquidity. Such a shift from strategic complementarity to substitution coincided

with a decline of payment velocity in the sample period, as predicted by our

theory.

Our model decomposes the network-generated systemic risk into contribu-
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tions of individual banks, and thereby identifies the key players. We find that

while the network topology determines banks’ relative importance in the trans-

mission and aggregation of shocks, the type of equilibrium strategic interactions

on the interbank network (i.e., strategic complementarity or substitution) deter-

mines whether banks serve as shock amplifiers or absorbers. We also characterize

the wedge between decentralized equilibrium and social optimum. The cyclical-

ity of network externality suggests the need for macroprudential regulation of

banks’ liquidity choices.

Next we summarize our model, the estimation strategy, and the main find-

ings. In our theoretical model, banks choose the size of reserve holdings based

on a cost-benefit analysis. Two opposing forces drive the strategic interactions

among banks on the network. First, holding reserves incurs the opportunity

costs of forgoing other investments. When the opportunity cost of liquidity

increases, banks hold less reserves and rely on neighbors’ liquidity via inter-

bank borrowings. The strength of such strategic substitution is captured by the

parameter ψ.

The second force at play is about the benefits of holding reserves, and it

leads to strategic complementarity. Banks use reserves to provide payment ser-

vices to depositors, e.g., to cover payment flow imbalances.1 In reality, banks’

revenues from payment services take the form of reductions of deposit rates

(money premium), depending on two parameters.2 The first one is the velocity

of the payment system, i.e., the volume of payments that can be supported by

one unit of reserves. The second parameter, which we call the “payment multi-

1Our empirical setting is the U.K. sterling large payment system, the Clearing House Auto-
mated Payments System (CHAPS), which features real-time gross settlement (RTGS). RTGS
requires reserves to settle payments in real time without netting the inflows and outflows.
Major economies have adopted RTGS, such as Fedwire in the U.S. and TARGET2 in the Eu-
rozone. When a bank’s depositors instruct payments, the bank has to disperse reserves to the
payees’ other banks, incurring reserve outflows; when a bank’s depositors receive payments
from other banks’ customers, the bank receives reserve inflows. Banks have to hold reserves
to buffer reserve flow imbalances.

2Our setup is inspired by the recent literature on bank debts as means of payment enjoying
a money premium, i.e., a spread between the prevailing safe return and the lower deposit rate
(Bianchi and Bigio, 2014; Hart and Zingales, 2014; Li, 2017; Piazzesi and Schneider, 2017)
and the literature on deposit market power (Drechsler et al., 2017; Wang et al., 2019).
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plier,” captures the fact that payments beget payments – when depositors make

more payments, they trigger more economic activities and the new activities

require more payments.3

The payment velocity and payment multiplier generate strategic complemen-

tarity in banks’ reserve holdings. When neighbors hold more liquidity, a bank

can borrow to support more payments, especially so when the payment velocity

is high. More payments in turn trigger more economic activities and payment

needs, especially so when the payment multiplier is high. The stronger needs

for payment services imply a higher marginal revenue from using the bank’s

own reserves to support payments. Therefore, being able to borrow from neigh-

bors incentivizes a bank to hold more reserves if the payment velocity and/or

the payment multiplier are high. Once we solve the model, we obtain a sin-

gle parameter (δ) that summarizes the impacts of both payment multiplier and

payment velocity.

We show that at the (unique interior) Nash equilibrium, the overall impact

of the interbank network on banks’ reserves depends on a key parameter, the

network attenuation factor, φ. This single parameter captures the net effect

of the two opposing economic forces. It is negative if strategic substitution

dominates (δ < ψ), and positive if strategic complementarity dominates (δ > ψ).

In our model, each bank receives shocks to the marginal cost of holding

reserves. A crisis shock increases the cost and depletes banks’ reserves, as it

becomes more difficult to raise funds.4 The depletion of reserves compromises

banks’ ability to support payments and posits a significant threat to the financial

infrastructure of the economy. Our framework allows us to examine how the

interbank network propagates such shocks.

The network shock propagation mechanism depends crucially on its attenu-

3One motivation of the payment-begetting-payment mechanism is the input-output link-
ages in the production sector (Carvalho and Tahbaz-Salehi, 2019). For example, when down-
stream customers pay upstream suppliers for their products, upstream suppliers may in turn
pay their own suppliers along the logistic chains.

4Reserves may also be depleted when used to repay short-term debts that cannot be rolled
over in crises.
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ation factor φ. In equilibrium, a bank’s reserves depend upon its own shocks,

the shocks of its neighbors, of the neighbors of its neighbors, etc., with distant

shocks becoming increasingly less important as they are weighted by φk where

k measures the distance. While the network topology determines the routes of

shock propagation, whether shocks are amplified (φ > 0) or dampened (φ < 0)

depends on the type of strategic interaction on the interbank network. The

parameter φ and the size of shocks to individual banks are the key structural

parameters in our empirical analysis.

Our estimation uses data from the sterling large payment system (CHAPS)

in the period from 2006 to 2010. Member banks of this network conduct trans-

actions for their own purposes and on behalf of their clients and hundreds of

other nonmember banks. Their reserve holdings ensure the functioning of the

payment system, which is crucial for supporting real economic activities. For

example, in March 2020, CHAPS processed 4.1 million payments daily worth

£8.7 trillion (almost four times the 2019 GDP of the U.K.). CHAPS banks reg-

ularly face intraday payment imbalances in excess of £1 billion, and use reserves

to cover such exposures.5

In our model, the strength of interbank connections determines the amount

of accessible credit. Therefore, we measure interbank connections using overnight

borrowing and lending data. Specifically, a link between two banks is quantified

by the fraction of borrowing by one bank from another in the recent past, so the

network is directional and its adjacency matrix is weighted (and right stochas-

tic). These interbank links can be interpreted as (frequentist) probabilities of

receiving credit.

In the estimation, we utilize the fact that the equilibrium conditions of our

model map exactly to a spatial error model (SEM), which allows us to incor-

porate the entire network structure, banks’ characteristics, and macroeconomic

5The U.K. monetary framework leaves reserves management largely at individual banks’
discretion (both before and after quantitative easing). In the Online Appendix, we provide
background information on the policy framework (reserve regimes), including details on the
payment system and the interbank markets.
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variables into the joint likelihood of banks’ reserve holdings.6 The structural

parameters are estimated via quasi-maximum likelihood. Specifically, the key

parameter φ and the sizes of individual banks’ shocks are identified from the

covariance of spatial errors. Our approach stands in contrast with the regression

models that project variables of interest onto particular network statistics. The

structural estimation allows us to identify the type of strategic interaction on

the network, to characterize shock propagation, and to conduct counterfactual

analysis.

We conduct four empirical exercises. First, we show that φ is procyclical.

In the period before the global financial crisis, the network equilibrium exhibits

strategic complementarity. With a positive and large value of φ, the interbank

network strongly amplifies shocks. To quantify the network effect, we com-

pute the ratio of aggregate liquidity volatility to counterfactual volatility when

there is no network externality (i.e., the attenuation factor φ is zero) and obtain

5.59. As the crisis unfolded, strategic complementarity weakens and strategic

substitution strengthens, resulting in a smaller volatility ratio of 1.25. After

the introduction of quantitative easing in early 2009, the network equilibrium

demonstrates the effect of strategic substitution. The interbank network be-

comes a shock buffer that stabilizes the aggregate liquidity provision in the

payment system, and the volatility ratio falls to 0.89 (i.e., an 11% reduction of

aggregate reserve volatility due to network connections).

In our theoretical model, strategic complementarity becomes stronger when

the payment system velocity is higher. To further investigate the dynamics of

network effects, we calculate the velocity in the data, i.e., the ratio of payment

volume to reserves in the system. We find that it has an 89% correlation with

our rolling estimate of φ. This finding lends support to our model and reveals

6SEM is a conservative approach, leaving only the residual variation in reserve holdings
(orthogonal to bank characteristics and macroeconomic variables) to be driven by the network.
We also estimate a spatial Durbin model (SDM), where the network plays a larger role since
banks’ reserves in this case depend not only on shocks to other banks but also on other banks’
characteristics (e.g., balance sheet conditions). Since SEM and SDM are nested models, the
SDM estimation also provides a specification test for our framework.
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an important driver of the type of strategic interaction on the network.

Second, we empirically characterize the shock propagation mechanism and

quantify individual banks’ contributions to aggregate liquidity risk in the pay-

ment system. Using the model’s equilibrium conditions, we define and estimate

banks’ network impulse response functions (NIRFs) that naturally decompose

the volatility of aggregate reserves into each bank’s risk contribution. We find

that in any given period, two or three banks are the risk key players (with rela-

tively large NIRFs), and each bank’s risk contribution varies substantially over

time. Moreover, the risk key player is typically not the largest net borrower

– even net lenders can generate substantial risk in the system. These findings

are relevant for monitoring and regulating the banking system, as well as policy

interventions during crisis.

Third, we conduct two counterfactual analyses. The first one focuses on the

role of network topology in generating the cross-sectional variation in banks’

contributions to systemic risk. We consider a hypothetical network where all

banks are connected to each other and the strength of connection is the same for

each pair. We find that, on such a network, banks’ risk contributions are largely

the same. Therefore, the cross-sectional difference between banks’ risk contri-

butions depends crucially on the heterogeneity of network connections. Our

second counterfactual exercise examines the time variation of banks’ NIRFs.

We decompose the variations into the changes due to variation in φ (the type of

strategic interaction on the network) and the changes due to variation of net-

work topology. We find that the former is clearly the main driver. Therefore,

while network topology drives the cross-sectional variation in banks’ contribu-

tions to systemic risk, it is the type of equilibrium strategic interaction (i.e.,

complementarity or substitution) that drives the time-series variation.7

Finally, we compare the decentralized equilibrium with the planner’s opti-

mum using our model and estimates of the structural parameters. The dis-

7A corollary of our finding is that in our setting, the endogenous formation and evolution
of the network over time plays a limited role in determining the time-variation in the network
effects.
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crepancies across the boom and crisis periods offer guidance on potential policy

interventions. For example, we find that during the boom period the amount

of aggregate liquidity held by banks is not too far from the planner’s optimum,

but the network generates too much volatility through the systemic propaga-

tion of shock through the network. During the crisis period, the decentralized

equilibrium generates an amount of reserve buffer in the payment system that is

below the planner’s optimum, and the systemic risk is still too high. After the

introduction of quantitative easing, the systemic risk generated by the network

subdued.

The remainder of this paper is organized as follows. In Section 2, we review

the related literature. In Section 3, we present and solve the network game.

Section 4 casts the model equilibrium into the spatial econometric framework,

outlines the estimation methodology and identification conditions, and defines

risk key players. In Section 5, we describe and summarize the data. In Section

6, we present and discuss the estimation results. Section 7 concludes. In the

Appendix, we explain the U.K. monetary policy framework, discuss details of

the data construction and estimation method, and provide additional results.

2. Related literature

This paper contributes to the literature on bank liquidity management.

Banks in payment systems are at the most fundamental layer of economic trans-

actions. Every transaction ultimately goes through these payment system mem-

bers. Member banks’ decisions have profound influence on the whole economy

(Piazzesi and Schneider, 2017). We provide the first evidence on how the liq-

uidity choices of payment system banks depend on the interbank network. Our

findings can be embedded in the broad discussion of banks’ portfolio choices over

an economic cycle (e.g. Cornett et al., 2011). Importantly, our finding that the

equilibrium type on the network flips with the start of QE contributes to the

literature on bank liquidity management and monetary policy (e.g., Bernanke

and Blinder, 1988; Kashyap and Stein, 2000; Bianchi and Bigio, 2014; Drechsler
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et al., 2014).

We contribute to the literature on bank liquidity regulation by providing

an empirical framework to attribute systemic risk to individual banks and by

characterizing the wedge between decentralized outcome and the planner’s so-

lution. Liquidity regulation has attracted considerable attention since the fi-

nancial crisis. Stein (2012) argues that reserve requirements may serve as a

tool for financial stability regulation. Diamond and Kashyap (2016) study bank

liquidity regulation in the setting of Diamond and Dybvig (1983). Allen and

Gale (2017) review earlier theories that may provide foundations (i.e., sources of

market failures) for bank liquidity regulations, such as liquidity coverage ratio

and net stable funding ratio in Basel III. Our findings of procyclical network ex-

ternality, and banks’ time-varying contributions to systemic risk, lend support

to a macroprudential perspective on liquidity regulation.

Our work also advances the literature on interbank market, payment system,

and banks’ liquidity demand. In our model, banks hold liquidity to support

depositors’ payments (Bech and Garratt, 2003). Ashcraft et al. (2010) find

that banks hold excess reserves in response to heightened payment uncertainty.

Relatedly, Acharya and Merrouche (2010) document evidence of precautionary

liquidity demands of U.K. banks during the subprime crisis. Banks’ profits from

offering payment services often take the form of deposit rate reductions in reality,

which in turn depend on banks’ deposit market power (e.g., Drechsler et al.,

2017; Wang et al., 2019). Depositors’ demand for payment services increases in

the level of local economic activities in our model. Such positive spillover effects

are motivated by input-output linkages (Carvalho and Tahbaz-Salehi, 2019) and

agents’ liquidity risk management (Shin, 2019), and echo the spillover effects in

the models of economic growth (e.g., Frankel, 1962; Lucas, 1988; Romer, 1986).

Finally, we also incorporate banks’ free-riding incentives in liquidity choices,

motivated by the pioneer work of Bhattacharya and Gale (1987) on interbank

markets.

Recent theoretical works on interbank markets highlight the various forms

of externalities and inefficiencies (e.g., Freixas et al., 2000; Allen et al., 2008;
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Freixas et al., 2011; Moore, 2012; Castiglionesi et al., 2017). Fecht et al. (2010)

find that the prices of liquidity depend on counterparties’ liquidity levels. Our

paper differs by modeling banks’ liquidity holdings as an outcome of a network

game and estimating time-varying network externality. We are not the first to

emphasize that shock propagation depends on complementarity versus substi-

tution (e.g., Jovanovic, 1987). However, to the best of our knowledge, we are

the first to estimate such interdependence of players using a network structure

and to provide evidence of time-varying network externalities.

Networks have proven to be a useful analytical tool for studying financial

contagion and systemic risk from both theoretical and empirical perspectives.

Starting from Allen and Gale (2000), recent theories feature increasingly so-

phisticated networks and shock transmission mechanisms. See Babus and Allen

(2009) for a comprehensive review. Recent works include, but are not limited

to, Afonso and Shin (2011), Zawadowski (2012), Acemoglu et al. (2012), Her-

skovic, and Eisfeldt et al. (2020). Recent empirical works also cover a wide

range of economic networks (see Diebold and Yılmaz, 2009, 2014; Billio et al.,

2012; Kelly et al., 2013; Duarte and Eisenbach, 2013; Greenwood et al., 2015,

and Gofman, 2017). We differ from these papers by using the linear-quadratic

approach of Ballester et al. (2006) to analyze how economic agents’ liquidity

holding decisions in a network game generate systemic risk and by structurally

estimating network externalities. Herskovic et al. (2017) embed a similar spatial

autoregressive structure in firms’ growth rates to study the comovement of firm

volatilities.

Our result that the interbank network contributes significantly to systemic

risk might explain the puzzling finding in the literature where interbank net-

works, when calibrated to the data, have only limited impact on systemic risk.

For example, simulation studies based on reasonably realistic networks show

little impact of linkage variation (summarized in Upper, 2011). Using a unique

dataset of all Austrian banks, Elsinger et al. (2006) find that contagion happens

rarely and that the funds required to prevent contagion are surprisingly small.

By applying an Eisenberg and Noe (2001) style model to German banks, Chen
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et al. (2016) find that the lack of bank capital, rather than the network conta-

gion, is the key contributor to bank failure. We find that instead of variation

of the network topology, the change in the type of equilibrium on the network

is the main driver of systemic risk. Therefore, it is important to model and

estimate time-varying network externalities in order to understand the role of a

network in systemic risk formation. Finally, studies on broker-dealer networks

often show that trading volume concentrates on a few players (Afonso and La-

gos, 2015; Hugonnier et al., 2014; Chang and Zhang, 2019; Farboodi, 2019).

Instead of volume distribution, this paper studies risk distribution and finds a

similar core-periphery structure – two or three banks contribute most to the

systemic liquidity risk.

3. The network model

In this section, we construct a model of banks’ liquidity holding decisions

that directly guides our empirical analysis of systemic risk in the interbank net-

work. In this setting, given the network structure, a set of banks simultaneously

choose the level of liquidity holdings needed to support their payment services.

In equilibrium, we show that each i bank’s optimal liquidity holding, zi,t, not

only depends on its own characteristics, but also responds to all other banks’

liquidity holding decisions through the network as follows:

z∗i,t = φ
∑
j 6=i

gij,tzj,t + µi,t, (1)

where the subscript t is the time index. Our goal is to empirically estimate this

equation. This equilibrium condition, as discussed later in this section, is robust

in that it could be in principle derived using microfoundations other than the

ones that we postulate. To guide the interpretation of the empirical results, we

model the strategic interactions of banks in a payment system, detailing the

role of this economic channel while recognising that other forces may also be at

play.
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Payment services. Consider the t-th period in a dynamic economy where

there are N banks. At the beginning of period t, banks decide how much

reserves to hold. Banks hold reserves for two reasons: for their own internal

liquidity needs independent from the network (denoted by qi,t), and to support

customers’ payment activities (zi,t).
8 The first component, qi,t, is determined

by banks’ characteristics (xmi,t) and macroeconomic conditions (xpt ):

qi,t = αi +

M∑
m=1

βmx
m
i,t +

P∑
p=1

βpx
p
t , (2)

where αi is a bank fixed effect. The second component, and main focus of our

analysis, zi,t, is the choice of reserves that support payment activities of the

customers (depositors).

Bank i allocates an amount of reserves zi,t at the beginning of period t to

the payment system. Reserves buffer the intraday payment outflows. When a

depositor makes payments, her bank often experiences reserve outflows, because

the payees may hold accounts at different banks and, thus, settlement requires

her bank to send reserves to the payees’ banks while debiting her deposit ac-

count.9 If the depositor pays cash to her payee, she has to withdraw deposits,

which also reduces her bank’s reserves.

During the period, a bank’s reserves are also made available to other banks

via interbank loans, so when one bank exhausts its own reserves, it may borrow

from other banks to cover the payment outflows. Therefore, a bank’s ability to

provide payment services depends on the total accessible liquidity that consists

of its own reserves, zi,t, and interbank borrowing.

Specifically, bank i may expect to borrow up to η
∑
j 6=i gij,tzj,t, which is a

weighted average of other banks’ reserves multiplied by η, a scaling parame-

8Egan et al. (2017) document that the profit from deposit-taking is a key determinant of
bank value because the payment service allows banks to borrow at low deposit rates.

9Our empirical setting, the Clearing House Automated Payment System (CHAPS) trans-
action system in the U.K., features settlement in real time and on gross terms to eliminate
counterparty credit risks. For more details, please refer to the Online Appendix.
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ter. The strength of interbank connection is measured by gij,t (∈ (0, 1)) with∑
j 6=i gij,t = 1. The parameter η captures the overall accessibility of interbank

credit and the network linkages, gij,t, capture the cross-sectional heterogene-

ity. Therefore, the total accessible liquidity at the beginning of the period

is zi,t + η
∑
j 6=i gij,tzj,t, depending on the interbank linkages and neighboring

banks’ reserves committed to the payment system.

The time-t network is predetermined and characterized by an N -square ad-

jacency matrix Gt. If its element gij,t 6= 0, bank i and j are connected. Later,

to construct Gt in the structural estimation we use interbank borrowing and

lending data, which is likely to be most relevant for the daily variation of bank

reserves that we focus on. Specifically, gij,t will be measured by the historical

fraction of borrowing by bank i from bank j in the month up to day t.10 The

network is therefore directed, and Gt is right stochastic.

The amount of accessible liquidity, zi,t+η
∑
j 6=i gij,tzj,t, is an ex ante measure

of available liquidity. It is determined after banks simultaneously choose zi,t at

the beginning of period t. As the period unfolds and payments take place, the

actually used liquidity fluctuates, depending on the outflows from customers

sending out payments and the inflows from customers receiving payments (e.g.,

Bech and Garratt, 2003). Here we do not explicitly model the intra-period

payment flows and the interbank borrowing and lending ex post, but recognize

that when the total accessible liquidity is larger, banks would allow depositors

to conduct more payments throughout the period. Let Si,t denote bank i’s

supply of payment services. It increases in the total accessible liquidity at the

beginning of period:

Si,t = κb

zi,t + η
∑
j 6=i

gij,tzj,t

 , (3)

where κb > 0 (the subscript “b” for “bank”). In reality, banks introduce vari-

10Our estimation results are robust to alternative measurements of interbank relationships,
such as bank i’s lending to j and the gross amount of interbank borrowing and lending.

12



ous restrictions on customers’ payment activities in order to limit the intraday

liquidity used, such as restricting number of transfers from savings to check-

ing accounts and limiting the value of electronic transfers that can be settled

intraday. The parameter κb is the ratio of total payment volume to total acces-

sible liquidity, a measure of liquidity velocity in the payment system. Given the

velocity, holding more liquidity allows a bank to support more payments.

Bank optimization. Let V (Si,t) denote bank i’s revenues from providing

payment services. In Appendix A.1, we provide a microfoundation of the

function V (·) based on depositors’ demand for payment services. Bank i’s

objective is

max
zi,t

ui(zi,t, {zj,t}j 6=i |Gt)

=V (Si,t)−

γ
zi,t + η

∑
j 6=i

gij,tzj,t

+
ψ

2

zi,t + η
∑
j 6=i

gij,tzj,t

2

+ µ̃i,tγ
′zi,t +

ψ′

2
z2
i,t


(4)

where Si,t is given in Eq. (3) and µ̃i,t is a random variable that is independent

across banks and realized before banks decide on zi,t. The objective function

captures the costs of setting aside liquidity to support depositors’ payment,

which depend on the forgone investment opportunities and other usages of liq-

uidity. The first two terms in the liquidity cost form a quadratic cost function,

and the last two terms capture the fact that bank i’s own reserves may cost

differently from interbank borrowings.

We solve a Nash equilibrium where N banks simultaneously choose z, the

reserves in the payment system. Specifically, bank i chooses the best response,

zi,t, to other banks’ decisions, {zj,t}j 6=i. In the spirit of classic linear-quadratic

games, we consider a linear marginal revenue function, in particular, V ′ (Si,t) =

13



δSi,t, so the first-order condition (F.O.C.) for zi,t yields

δ

z∗i,t + η
∑
j 6=i

gij,tzj,t

 = γ + ψ

z∗i,t + η
∑
j 6=i

gij,tzj,t

+ µ̃i,tγ
′ + ψ′z∗i,t, (5)

The parameter δ is decomposed into two economic forces and defined by11

δ ≡ δSκb . (6)

As previously discussed, the parameter κb is the payment velocity – the volume

of payments that one unit of reserves supports. When κb is large, one unit of liq-

uidity can support more payments (i.e., a higher Si,t) as shown in Eq. (3). The

parameter δS determines how the increase of Si,t translates into more revenues.

In Appendix A.1 we show that δS depends on the payment multiplier, i.e., how

depositors’ payments trigger economic activities and subsequent payments.

The main tradeoffs that a bank faces are captured by Eq. (5). The term

on the left-hand side is the marginal revenue, which is a function of the level

of the bank’s supply of payment services (Si,t). That is, as in a monopolist

maximization problem, each bank internalises the effect of its own supply on

marginal revenues. The right-hand side of Eq. (5) features the marginal costs

of internal and external liquidity that are affected, respectively, by ψ + ψ′ and

ψ.

For this problem to have a unique solution, we impose the parameter restric-

tion that guarantees the concavity of bank’s objective function in zi,t:

∂2ui(zi,t, {zj,t}j 6=i |Gt)

∂z2
i,t

= δ − ψ − ψ′ < 0 . (7)

Equilibrium. All banks’ first-order conditions imply a system of linear best

response functions that jointly solve the set of optimal
{
z∗i,t
}N
i=1

. Rearranging

11The microfoundation for these two forces is given in detail in the Online Appendix.
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banks’ F.O.C., we solve

z∗i,t =

(
δ − ψ

ψ′ − (δ − ψ)

)
η
∑
j 6=i

gij,tzj,t +
(−µ̃i,tγ′ − γ)

ψ′ − (δ − ψ)
. (8)

From the condition Eq. (7), ψ′ > (δ − ψ). To further simplify the notation, we

define

µi,t ≡
(−µ̃i,tγ′ − γ)

ψ′ − (δ − ψ)
, (9)

and, importantly, the parameter that captures the nature of network effects:

φ ≡
(

δ − ψ
ψ′ − (δ − ψ)

)
η. (10)

The solution to bank i’s problem can thus be written as

z∗i,t = φ
∑
j 6=i

gij,tzj,t + µi,t. (11)

The bilateral network influences in our model are captured by the following

cross-derivatives for i 6= j:

∂2ui(zi,t, {zj,t}j 6=i |Gt)

∂zi,t∂zj,t
= φgij,t,

where the sign of φ determines whether the Nash equilibrium features strategic

substitution (φ < 0) or complementarity (φ > 0). Note that the parameter

restriction Eq. (7) implies that the denominator of Eq. (10) is always positive.

Hence, the sign of φ and of the above cross-derivative depends on the sign of

δ − ψ. Strategic complementarity arises when δ is large, i.e., when either the

payment velocity or the payment multiplier is large. Strategic substitution arises

when ψ is high – i.e. in the presence of high marginal costs. Moreover, note that

sign(∂φ/∂ψ) = −sign(ψ′). Since internal funds are more flexible, it is natural

to conjecture that they have higher opportunity cost than external ones, hence

ψ′ > 0. In this case φ decreases in ψ: that is, as the overall marginal cost

increases, the bilateral effect is pushed toward strategic substitution. This is
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quite intuitive: when internal liquidity has relatively higher opportunity cost, as

the overall cost of holding liquidity increases, banks substitute internal liquidity

with external one.

Proposition 1. Suppose that |φ| < 1. Then, there is a unique interior solution

for the Nash equilibrium outcome given by

z∗i,t (φ,Gt) = {M (φ,Gt)}i. µt, (12)

where {}i. is the operator that returns the i-th row of its argument, µt ≡

[µ1,t, ..., µn,t]
>

, and

M (φ,Gt) ≡ I + φGt + φ2G2
t + φ3G3

t + ... =

∞∑
k=0

φkGk
t = (I − φGt)

−1
, (13)

where I is the N ×N identity matrix.

Proof. The first-order condition identifies the individual optimal response. Ap-

plying Theorem 1(b) in Calvo-Armengol et al. (2009) , we know the necessary

equilibrium condition is |φλmax (Gt)| < 1 where the function λmax (·) returns

the largest eigenvalue. Since Gt is a right stochastic matrix, its largest eigen-

value is 1. Hence, the condition requires |φ| < 1, and if so, the infinite sum in

Eq. (13) is finite and equal to the stated result (Debreu and Herstein, 1953).

The condition |φ| < 1 states that network externalities must be small enough

in order to prevent the feedback triggered by such externalities to escalate with-

out bounds. In vector form, zt ≡ [z1,t, ..., zN,t]
>

, and in equilibrium,

z∗t = (I − φGt)
−1
µt. (14)

Note that in the Nash equilibrium, the aggregate level of bank reserves that

support payments,
∑N
i=1 zi,t, is not constrained by the supply of the central

bank. It is fully determined by banks’ reserve choices (the demand side). This

16



assumption of perfectly elastic reserve supply is consistent with the empirical

context – under the U.K. monetary policy framework, the Bank of England

accommodates banks’ reserve demand in order to maintain its policy rate.12

Note that Eq. (11), which leads to the equilibrium characterization in Propo-

sition 1, is rather robust in that it could in principle be derived using different

microfoundations other than the payment system dynamics. For instance, Eq.

(11) can arise in an environment in which interbank relationships are driven by

risk sharing motives as in Eisfeldt et al. (2020), or if banks have incentives to

hold similar positions as in a beauty contest game à la Morris and Shin (2002).

What changes across these different microfoundations is the economic interpre-

tation of the network attenuation factor φ.13 As we show in the empirical section

below, the microfoundation of φ that we propose is supported by the data – the

estimated φ has a strong positive correlation with the payment system velocity,

which is part of δ, as postulated by our theory.

Network propagation. The matrix M (φ,Gt) has an important economic

interpretation: it aggregates all direct and indirect links among banks using

an attenuation factor, φ, that penalizes (as in Katz, 1953) the contribution of

links between distant nodes at the rate φk, where k is the length of the path

between nodes. In the infinite sum in Eq. (13), the identity matrix captures

the (implicit) link of each bank with itself, the second term in the sum captures

all the direct links between banks, the third term in the sum captures all the

indirect links corresponding to paths of length two, and so on. The elements of

M(φ,Gt), given by mij(φ,Gt) ≡
∑+∞
k=0 φ

k
{
Gk
t

}
ij

, aggregate all paths from j

to i, where the kth step is weighted by φk.

In equilibrium, the matrix M (φ,Gt) contains information about the cen-

trality of network players.14 Multiplying the rows (columns) of M (φ,Gt) by

12For more details on the institutional background, please refer to the Online Appendix.
13We thank one of the referees for pointing this out.
14This centrality measure takes into account the number of both direct and indirect con-

nections in a network. For more on the Bonacich centrality measure, see Bonacich (1987) and
Jackson (2003). For other economic applications, see Ballester et al. (2006) and Acemoglu
et al. (2012). For an excellent review of the literature, see Jackson and Zenou (2012).

17



a unit vector of conformable dimensions, we recover the indegree (outdegree)

Katz–Bonacich centrality measure.15 The indegree centrality measure provides

the weighted count of the number of ties directed to each node (i.e., inward

paths), while the outdegree centrality measure provides the weighted count of

ties that each node directs to the other nodes (i.e., outward paths). That is,

the i-th row of M (φ,Gt) captures how bank i loads on the network as whole,

while the i-th column of M (φ,Gt) captures how the network as a whole loads

on bank i.

The matrix M (φ,Gt) (which includes the network topology and the network

attenuation factor φ) is not enough to determine the systemic importance of a

bank. It governs the propagation of shocks. At the beginning of period t and

before banks decide on reserve holdings, shocks to individual banks are realized,

observed by banks and their neighbors, and encoded in µi,t. Specifically, we can

decompose µi,t into a time-invariant term, µ̄i, and a shock specific to period t

and bank i, νi,t:

µi,t = µ̄i + νi,t, (15)

where νi,t, the ultimate source of uncertainty, is a shock that is independent

across banks and over time, with zero mean and variance equal to σ2
i . The

shock arrives at the beginning of period t, observed by all banks before the

decision on reserve holdings is made.

To see clearly how the network propagates idiosyncratic shocks, we write

Eq. (12) as

z∗t = M (φ,Gt) µ̄︸ ︷︷ ︸
level effect

+ M (φ,Gt) νt︸ ︷︷ ︸
risk effect

. (16)

Regardless of M (φ,Gt), i.e., how shocks are propagated, banks with large liq-

uidity shocks (i.e., large σ2
i ) have a large influence on other banks’ reserve hold-

ings.

15Newman (2004) shows that weighted networks can in many cases be analyzed using a sim-
ple mapping from a weighted network to an unweighted multigraph. Therefore, the centrality
measures developed for unweighted networks apply also to the weighted cases.
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The planner’s solution. The model captures not only the shock amplifi-

cation mechanism through the network but also the externalities. Individual

banks make their own decisions without internalizing the impact on neighbors.

We proceed to a formal analysis of the planner’s problem in this interconnected

system to highlight the wedge between decentralized equilibrium and social op-

timum. Specifically, we consider a planner that equally weights the utility of

each bank and hence chooses liquidity holdings by solving the following problem:

max
{zi,t}Ni=1

N∑
i=1

ui(zi,t, {zj,t}j 6=i |Gt). (17)

The planner’s first-order condition for bank i’s liquidity yields

δ

zi,t + η
∑
j 6=i

gij,tzj,t

+ η
∑
j 6=i

gji,tδ

zj,t + η
∑
k 6=j

gjk,tzk,t

 (18)

=

γ + ψ

zi,t + η
∑
j 6=i

gij,tzj,t

+ µ̃i,tγ
′ + ψ′zi,t

+ η
∑
j 6=i

gji,t

γ + ψ

zj,t + η
∑
k 6=j

gjk,tzk,t

 .
The first term on the left-hand side and the terms in the first square bracket

on the right-hand side are the same as those in bank i’s first-order condition

in the decentralized equilibrium. The new terms reflect network externalities

that bank i ignores in its own optimization. Specifically, the outdegree link,

gji,t, prominently captures the impact of bank i’s decision of zi,t on neighboring

banks’ decisions through the marginal revenue of payment services (the second

term on the left) and the marginal cost of liquidity (the second term on the

right).

We can write the first-order conditions for {zi,t}Ni=1 in vector form as:

(
I + ηG>t

)
(δzt + δηGtzt) =

(
I + ηG>t

)
(γ1 + ψzt + ψηGtzt) + µ̃tγ

′ + ψ′zt.

(19)
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Thus, we obtain the following planner’s solution:

zpt =
[
ψ′I − (δ − ψ)

(
I + ηG>t

)
(I + ηGt)

]−1 [−µ̃tγ′ − γ (I + ηG>t
)
1
]

=

[
I −

(
φ/η

1 + φ/η

)(
I + ηG>t

)
(I + ηGt)

]−1 [(
1

1 + φ/η

)
µt −

γη

ψ′
G>t 1

]
.

(20)

This allows us to formally state the planner’s solution, which will guide our

empirical analysis, especially the comparison between the decentralized outcome

and the planner’s solution.

Proposition 2. Let Mp (φ, η,Gt) ≡
[
I −

(
φ/η

1+φ/η

) (
I + ηG>t

)
(I + ηGt)

]−1

.

Suppose that the absolute value of the maximum eigenvalue of Mp (φ, η,Gt),

|λmax (Mp (φ, η,Gt))|, is smaller than one. Then, the planner’s optimal solu-

tion is uniquely defined and given by

zpt = Mp (φ, η,Gt)

[(
1

1 + φ/η

)
µt −

γη

ψ′
G>t 1

]
. (21)

Proof. The proof follows the same argument as in the proof of Proposition

1.

4. Empirical method

4.1. From model to data

In our model, banks hold reserves for two purposes: qi,t for reasons unrelated

to interbank network and payment system, and zi,t to support the payment sys-

tem. In the data, we only observe li,t = qi,t+zi,t, i.e., the total reserve holdings.

In other words, unlike the banks in the network game, the econometrician can-

not separately observe qi,t and zi,t. However, we do observe bank characteristics

(xmi,t) and macroeconomic variables (xpt ) that drive qi,t. Therefore, we can write

the observed total reserve holdings as

li,t = αweekt + αbanki +

M∑
m=1

βbankm xmi,t +

P∑
p=1

βmacrop xpt + zi,t, (22)
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where i = 1, ..., n, t = 1, ..., T , and according to our model we have that

zi,t = µ̄i + φ

N∑
j=1

gij,tzj,t + νi,t ∼ iid
(
0, σ2

i

)
. (23)

Note that we also include week fixed effects to control for unobserved macro

factors in qi,t. Eq. (22) and Eq. (23) together constitute a spatial error model

(SEM) (see e.g. Anselin, 1988; Elhorst, 2010b,a). Such models allow the joint

estimation of the fixed effects and β coefficients in the observational Eq. (22),

and µ̄i, φ, and σi in the “error” Eq. (23). Therefore, even though the econo-

metrician does not observe zi,t directly, the parameters of the network game

can still be recovered. In the next subsection, we provide more details on the

identification of these parameters.

We estimate the model using daily data. On day t, the network is prede-

termined; gij,t is measured by the fraction of bank i’s borrowing from bank

j (average over the month up to t). As econometricians, we observe banks’

characteristics, i.e., {xmi,t}Mm=1 for bank i, and macro variables, i.e., {xpt }Pp=1,

which help us to separate, qi,t, from the observed total liquidity holding, li,t,

and thereby identify the impact of the network through the residual term, zi,t.

All control variables are lagged by one day for predeterminancy. The estimate

of φ reveals the type of equilibrium on the network, i.e., strategic substitution

or complementarity. To exhibit variation in φ and allow for changes in {σi}Ni=1,

we estimate the model in both subsamples and rolling samples.

4.2. Identification

The identification strategy, the likelihood function, and the estimation al-

gorithm are discussed in detail in the Online Appendix. Nevertheless, to fix

intuition about how the key network parameter, φ, is recovered from the data,

it is useful to consider a simplified version of the spatial error model in Eq. (22)

and Eq. (23). Let Lt ∈ RN denote the vector containing the liquidity holdings

of the individual banks at time t, and to simplify exposition let us disregard at

first the fixed effects in Eq. (22) and Eq. (23) and assume that the spatial net-
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work matrix, G, has constant weights. The spatial model can then be rewritten

as

Lt = Xtβ + zt, zt ∼ iid (0N ,Ω) , (24)

where 0N denotes a vector of zeros, Ω = MΣνM
> with M = (IN − φG)

−1
,

and Σν is a diagonal matrix with elements given by
{
σ2
i

}N
i=1

. In deriving the

covariance Ω, we used Proposition 1, i.e., that in equilibrium we can rewrite zt

(having, for now, removed the fixed effects) as zt = (IN − φG)
−1
νt, where νt

has a normal distribution with zero mean and covariance Σν .

Therefore, the likelihood of the model is given by

lnL ≡ −TN
2

ln (2π)− T

2

N∑
i=1

lnσ2
i −

N∑
i=1

1

2σ2
i

T∑
t=1

ν2
i,t. (25)

The error term, νi,t, contains the parameters and observables

νi,t = {(IN − φG) (Lt −Xtβ)}i. , (26)

where {}i. is the operator that returns the i-th row of its argument. In the

likelihood, all the variables, Lt and Xt, and the network, G, are observed, and

zt disappears because it is substituted out by Lt − Xtβ ≡ zt. We maximize

the likelihood to obtain the parameter estimates using standard optimization

methods.

The reduced form specification in Eq. (24) has the same structure and

properties as the seemingly unrelated regressions (SUR model: see e.g. Zellner,

1962). Hence, one can consistently estimate the mean equation parameter, β

(e.g., via linear projections), and use the fitted residuals to construct a consistent

estimate of the covariance matrix Ω. However, can we recover the structural

parameters φ and
{
σ2
i

}N
i=1

? Being symmetric, the estimated Ω̂ gives N(N+1)/2

equations, while we have to recover N + 1 parameters in MΣνM
> (φ plus

the bank-specific volatilities). Therefore, as long as Ω is full-rank, the system

is over-identified if we have three or more banks (with linearly independent
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links). In a nutshell, the identification of this spatial error formulation works

like that of structural vector autoregressions (see, e.g., Sims and Zha, 1999)

where the contemporaneous propagation of shocks among dependent variables

(captured by φ in our setting) can be recovered from the reduced-form covariance

structure.16

Note that what allows the identification of φ and
{
σ2
i

}N
i=1

are exactly two

key restrictions coming from the theoretical model: (1) the observed liquidity

holdings, li,t, can be decomposed into qi,t, driven by the control variables in Xt,

and zi,t, banks’ liquidity contribution to the payment system; (2) Proposition 1

states how the network component zi,t depends on the bank-specific (structural)

shocks in equilibrium. The first restriction defines the mean equation in Eq.

(24), allowing us to recover zi,t as residuals.17 The second restriction imposes a

structure on the covariance matrix of zi,t, allowing us to recover φ and
{
σ2
i

}N
i=1

.

To sharpen the intuition, let us consider a system of three banks and the

simplest network, a chain: Bank 1 borrows from Bank 2, and 2 from 3, so

G =


0 1 0

0 0 1

0 0 0

 , and MΣνM
> =


σ2

1 + φ2σ2
2 + φ4σ2

3 φσ2
2 + φ3σ2

3 φ2σ2
3

φσ2
2 + φ3σ2

3 σ2
2 + φ2σ2

3 φσ2
3

φ2σ2
3 φσ2

3 σ2
3

 .

The volatility of z1 is σ2
1 + φ2σ2

2 + φ4σ2
3 . The first term is the volatility of

Bank 1’s structural shock, ν1. The second term is the volatility of Bank 2’s

structural shock transmitted by one step to Bank 1, i.e., φz2, and the third

term reflects Bank 3’s shock transmitted by two steps (via Bank 2) to Bank

1, i.e., φ2z3. By the same logic, the volatility of z2 is σ2
2 + φ2σ2

3 , capturing

Bank 2’s exposure to its own shock and Bank 3’s shock, while Bank 3 only

16For an extensive discussion of estimation and identification of spatial models see Anselin
(1988), and chapter 8 in particular for the spatial error model.

17Ideally, if we were to observe qi,t and zi,t separately, we could estimate φ and
{
σ2
i

}N
i=1

only using the data on zi,t. But as econometricians we only observe li,t = qi,t + zi,t and

the control variables that drive qi,t, so we estimate φ and
{
σ2
i

}N
i=1

and the control variables’
coefficients jointly.
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loads on its own shock. The covariance between z1 and z2 is φσ2
2 + φ3σ2

3 ,

reflecting Banks 1’s and 2’s exposure to Banks 2’s and 3’s shocks. The covariance

between z2 and z3 is φσ2
3 as it only arises from the one-step transmission of Bank

3’s shock to Bank 2, i.e., φz3. Such covariances are precisely due to network

connections, and their estimates identify the network effect parameter, φ. Given

σ2
3 = {Ω̂}3,3, we can solve for φ using either the covariance between z1 and z3,

i.e., {Ω̂}1,3 = φ2σ2
3 , or the covariance between z2 and z3, i.e., {Ω̂}2,3 = φσ2

3 , so

the system is clearly over-identified. Moreover, given the estimates of σ2
3 and φ,

either the volatility of z2, i.e., {Ω̂}2,2 = σ2
2 +φ2σ2

3 , or the covariance between z1

and z2, i.e., {Ω̂}1,2 = φσ2
2 + φ3σ2

3 , give a solution for σ2
2 . Finally, given φ, σ2

2 ,

and σ2
3 , {Ω̂}1,1 pins down σ2

1 .

A key identifying assumption is that the structural shocks, νi, are indepen-

dent across banks, and thus, after controlling for the observed bank character-

istics and macro variables, the residuals’ (i.e., zi’s) correlations only arise from

the network linkages. Therefore, the impact of the network, φ, is identified by

such correlations. Accordingly, in the estimation, we saturate the mean equa-

tion by controlling for a rich set of bank characteristics and macro variables, so

the residual correlations are driven by the network linkages instead of missing

variables that induce comovement among banks’ liquidity choices.

Note that, in general, if we knew the parameters φ and
{
σ2
i

}N
i=1

we could

actually premultiply the specification in Eq. (24) by the Cholesky decomposi-

tion of Ω−1, obtaining a transformed system with spherical errors, and therefore

gaining efficiency of the estimates – e.g., we could do the canonical GLS trans-

formation. For this reason, rather than employing a two-step procedure, we

jointly estimate the mean equation and covariance parameters by maximizing

the quasi-maximum likelihood function (as described in detail in the Appendix).

The above identification argument is not affected by time variation in G as

long as we have a well-defined unconditional variance.18 Furthermore, the iden-

18The identification is in this case analogous to that of S-VARs with time varying volatility
as, e.g., in Primiceri (2005).
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tification of φ does not depend on whether we can separately identify network

fixed effects (the µ̄i) from the bank fixed effects (the αbanki ). Adding these fixed

effects, Eq. (24) becomes

Lt = αbank +Xtβ + (IN − φG)
−1
µ̄+ εt, εt ∼ iid (0N ,Ω) , (27)

where αbank is the vector of bank specific fixed effect, µ̄ is the vector of bank

specific µ̄i, εt ≡ (IN − φG)
−1
νt is orthogonal to Xt, and as before, Ω = MVM>

with M = (IN − φG)
−1

. Once again, the above is an SUR; hence, the logic

for the identification of φ stays unchanged, independent from whether we can

separately identify µ̄ and αbank.

It is clear that in the above equation, αbank and µ̄ are in general not sep-

arately identified, even with time variation in the network matrix – i.e., if we

replace G with Gt in the above equation. This is because IN (the identity

matrix and regressor associated with αbank) and (IN − φGt)
−1

(the regressor

associated with µ̄ in Eq. (24)) are not linearly independent when Gt1N = 1N

for all t, i.e., when Gt is always a right stochastic matrix.19 Fortunately, our

sample has an interesting feature: banks 7 and 11 were not connected with other

banks in 14 and 145 days, respectively. These 159 days do not overlap. They

cover 13.5% of the time and spread across our subsamples. On such days, one

row of Gt has all elements equal to zero, and thus, Gt1N 6= 1N . Therefore, we

can separately identify µ̄ and αbank using the time variation in Gt.

4.3. Systemic risk

The empirical model in Eq. (22) and Eq. (23) highlights that the network

is a shock propagation mechanism: a shock to bank j is transmitted to bank i

through φgij,t, so if φ > 0 (strategic complementarity), the network amplifies

shocks, and if φ < 0 (strategic substitution), the network buffers shocks.

19To see this, note that (IN − φGt)
−1 1N =

∑∞
k=0 φ

kGk
t 1N =

(
1

1−φ

)
1N =(

1
1−φ

)∑N
i=1 {IN}i, i.e., a linear combination of the columns of (IN − φGt)

−1 is equal to

a linear combination of the columns of IN .
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The ultimate impact of shocks to all banks is

εt = (I − φGt)
−1
νt = M (φ,Gt) νt, (28)

where νt = [ν1,t, ..., νn,t]
>

denotes the structural bank shocks and, as shown

by Eq. (13), M (φ,Gt) records the routes that propagate νt with the direction

governed by φ. We can define (1− φ)
−1

as the “average network multiplier”.

If Gt is a right stochastic matrix (i.e., Gt1N = 1N ), then a unit shock to the

system equally spread across banks (i.e., νt = (1/n) 1N ) has an ultimate impact

on aggregate liquidity equal to (1− φ)
−1

.20

With the estimated parameters at hand, we identify the key contributors of

systemic risk (the “risk key players”). First, we can decompose the aggregate

network-induced liquidity, Zt ≡
∑
i zi,t, as

Z∗t = 1>M (φ,Gt) µ̄︸ ︷︷ ︸
level effect

+ 1>M (φ,Gt) νt︸ ︷︷ ︸
risk effect

, (29)

where µ̄ ≡ [µ̄1, ..., µ̄n]
>

. The first term captures the network level effect, and

the second captures the risk effect by aggregating idiosyncratic shocks. Note

that even when N is large, idiosyncratic shocks may not vanish in aggregation

because of the network effects in M (φ,Gt) (similar to Acemoglu et al., 2012).

We measure risk by the conditional volatility of the aggregate liquidity, so

we simply work with the demeaned liquidity:

V art (Z∗) = 1>M (φ,Gt) ΣνM (φ,Gt)
>

1, (30)

where Σν is the covariance matrix of νt, a diagonal matrix whose i-th diagonal

element is σ2
i . Here we have used the fact that Gt is predetermined with respect

to time-t information. To identify risk key players, we define the network impulse

response function as follows.

20From 1N= (IN − φGt)
−1 (IN − φGt)1N = (IN − φGt)

−1 1N (1− φ), we have
M (φ,Gt)1N = (1− φ)−1 1N .

26



Definition 1 (Network Impulse Response Function). The network impulse

response function of aggregate liquidity, Z∗t , to a one standard deviation shock

to a bank i, is given by

NIRFi (φ, σi,Gt) ≡
∂Z∗t
∂νi,t

σi = 1> {M (φ,Gt)}.i σi, (31)

where the operator {}.i returns the i-th column of its argument.

The network impulse response is the shock-size weighted outdegree centrality

of bank i. As a reminder, for |φ| < 1,

1> {M (φ,Gt)}.i = 1>
{
I + φGt + φ2G2

t + ...
}
.i

= 1>

{ ∞∑
k=0

φkGk
t

}
.i

,

where the initial element in the series captures direct effects of a unit shock

to bank i, the next element is the sum of first-order outbound links, the third

element is the sum of second-order outbound links, and so on. NIRFi (φ, σi,Gt)

measures a bank’s contribution to the volatility of aggregate liquidity and thus

identifies the risk key player by providing a clear ranking of the riskiness of each

bank from a systemic perspective.

Definition 2 (Risk Key Player). The risk key player i∗t , given by the solu-

tion of

i∗t = arg max
i=1,...,N

NIRFi (φ, σi,Gt) , (32)

is the one that contributes the most to the conditional volatility of aggregate

network liquidity.

A bank’s risk contribution depends on the size of its own shock σi, the

network attenuation factor, φ, and all the direct and indirect network links. The

network impulse response functions offer a natural decomposition of volatility,

since

V art (Z∗) ≡ vec
(
{NIRFi (φ, σi,Gt)}Ni=1

)>
vec

(
{NIRFi (φ, σi,Gt)}Ni=1

)
,

(33)
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where “vec” is the vectorization operator.

We can isolate the purely network-driven part of the impulse response, that

is, the impact beyond direct effects of bank-level shocks, which we call the

“excess NIRF”:

NIRF ei (φ, σi,Gt) ≡ NIRFi (φ, σi,Gt)− σi. (34)

The sign of NIRF ei (φ, σi,Gt) depends on the type of equilibrium (strategic

substitution or complementarity), i.e., the sign of φ. Note that it is straight-

forward to compute confidence bands for the estimated NIRF s using the delta

method, since they are functions of φ̂ and {σ̂i}Ni=1 that have canonical asymp-

totic Gaussian distribution (see the Online Appendix).

After we obtain the estimates of φ and {σi}Ni=1, we compare the volatility

of aggregate liquidity from the decentralized equilibrium, i.e., V art (Z∗) defined

in Eq. (30), and the volatility of aggregate liquidity from the planner’s solution

given by

V art (Zp) =

(
1

1 + φ/η

)2

1>Mp (φ, η,Gt) ΣνM
p (φ, η,Gt)

>
1, (35)

where Zp ≡
∑
i z
p
i,t and Mp (φ, η,Gt) is defined in Proposition 2.

Finally, we also identify the “systemic level key player”, whose removal from

the system causes the largest reduction of aggregate liquidity level in expecta-

tion.21 A key input is the average liquidity valuation, i.e., µ̄. Since our empirical

analysis focuses on shock propagation through the network instead of the sam-

ple average of liquidity level, we present the theoretical results on the level key

players in Appendix A.3.

21This definition is in the same spirit as the concept of the key player in the crime network
literature, e.g., Ballester et al. (2006), where targeting key players is important for crime
reduction.
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4.4. Alternative specification

As a specification test of our model, we consider a more general formulation

that allows for richer network interactions. That is, we model the liquidity

holding game as a spatial Durbin model (SDM – see, e.g. LeSage and Pace,

2009) where a bank’s liquidity depends directly on other banks’ liquidity and

pairwise control variables

li,t = φ
∑
j 6=i

gij,tlj,t+

M∑
m=1

βbankm xmi,t+

P∑
p=1

χpx
p
t+

N∑
j=1

gij,t

M∑
m=1

θmx
m
j,t+µ̄i+νi,t ∼ iid

(
0, σ2

i

)
.

In Appendix A.2, we show that the above formulation is the equilibrium

outcome of a network game in which banks can borrow both the neighbors’

liquidity held for their depositors’ payments (i.e., zi,t) and, up to a fraction ρ,

the neighbors’ liquidity held for their own payments (i.e., qi,t). The coefficients

χp and θm are related to the main model as follows: χp ≡ [1− φ (1− ρ)]βmacrop

and θm ≡ −φ (1− ρ)βbankm . Therefore, this formulation nests the main model

as a special case: when ρ = 0, i.e., banks can only access neighbors’ zi,t, we can

rearrange the equation and get back to the main model,

li,t −
M∑
m=1

βbankm xmi,t −
P∑
p=1

βmacrop xpt︸ ︷︷ ︸
zi,t

= φ
∑
j 6=i

gij,t

[
lj,t −

M∑
m=1

βbankm xmj,t −
P∑
p=1

βmacrop xpt

]
︸ ︷︷ ︸

zj,t

+ µ̄i + νi,t.

Note that our baseline SEM is a conservative approach, leaving a minimal

amount of variation in liquidity holdings to be driven by the network. In con-

trast, the SDM allows the network to play a larger role since banks’ reserve

holdings in this case depend not only on shocks to other banks but also on

other banks’ characteristics. In Section 6, we compare the estimates of SDM

with those of our benchmark model (SEM) in rolling windows. Given that the

SDM nests the SEM, the comparison can be viewed as a specification test of the

main model. In the Online Appendix, we discuss identification and estimation

of the SDM parameters.
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5. Data description

We study the liquidity holdings of banks that are members of CHAPS, the

U.K. large-value payment system. These eleven banks are at the core of the

U.K. banking system, conducting transactions for their own purpose and on

behalf of their clients and hundreds of nonmember banks.22 Their liquidity

holdings serve the critical purpose of buffering intraday flow imbalances, en-

suring the functioning of the transaction system for the whole economy. Our

sample covers the period from January 2006 to September 2010, which allows

us to estimate the network effect in the pre-crisis period, during the financial

crisis, and later in the era of quantitative easing. We focus on the daily vari-

ation of liquidity holdings, so the model is estimated at daily frequency while

incorporating variables constructed from higher frequency data.

Liquidity holdings. To measure the dependent variable li,t, that is, the liq-

uidity holdings of each bank, we use central bank reserve holdings (logarithm).

We supplement this with the collateral assets that are posted at the Bank of

England and allow banks to access intraday liquidity from the Bank of England

(these repos are unwound at the end of each day).

The weekly average of aggregate liquidity in the system (the sum of banks’

holdings) is reported in Fig. 1. The figure shows a substantial upward trend

in the period after the U.S. subprime mortgage crisis that saw several mar-

ket disruptions. This trend is consistent with the evidence that banks hoard

liquidity in crisis (e.g., Acharya and Merrouche, 2010), but this upward trend

22The banks are Halifax Bank of Scotland (owned by Lloyds Banking Group), Barclays,
Citibank, Clydesdale (owned by National Australia Bank), Co-operative Bank (owned by The
Co-operative Group), Deutsche Bank, HSBC (which acquired Midland Bank – one of the
historical “big four” sterling clearing banks, in 1999), Lloyds TSB, Royal Bank of Scotland
(including NatWest), Santander (formerly Abbey, Alliance & Leicester and Bradford & Bin-
gley, owned by Banco Santander of Spain), and Standard Chartered. For most of the 20th
century, the phrase “the Big Four” referred to the four largest sterling banks, which acted as
clearing houses for bankers’ cheques. These were Barclays Bank, Midland Bank (now part
of HSBC), Lloyds Bank (now Lloyds TSB Bank and part of Lloyds Banking Group), and
National Westminster Bank (“NatWest”, now part of The Royal Bank of Scotland Group).
Currently, the largest four U.K. banks are Barclays, HSBC, Lloyds Banking Group, and The
Royal Bank of Scotland Group, closely followed by Standard Chartered – and all of these
banks are in our sample.
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Fig. 1. Weekly rolling average of aggregate liquidity holdings of eleven CHAPS
member banks at the beginning of the day (Unit: £1).

is dwarfed by the steep run-up in response to the Asset Purchase Programme

(also known as quantitative easing) that almost tripled the aggregate liquidity.

Note that since we include week fixed effects and macro control variables, this

trend is unlikely to affect our estimate of φ, and in particular, induce a posi-

tive bias in φ̂ that is due to trend-induced comovement (i.e., spurious strategic

complementarity in banks’ liquidity holdings).

Interbank network. We construct the interbank network Gt using interbank

borrowing data that we extract from overnight interbank payments using the

Furfine (2000) algorithm. This algorithm is a common approach in the liter-

ature on the interbank money market, identifying pairs of payments between

two banks where the outgoing payments are loans and the incoming payments

are repayments (equal to the outgoing payment plus an interest rate). It has
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been tested thoroughly and accurately tracks the LIBOR rate.23 Furfine (2000)

showed that when applied to Fedwire data, the algorithm accurately identifies

the Fed Funds rate.24

The loan data are compiled to form an interbank lending and borrowing

network. In particular, the element gij,t of the adjacency matrix Gt is given

by the average fraction of bank’s i overnight loans from bank j in the previous

month ending on day t− 1.

By construction, Gt is a square right stochastic matrix. Its largest eigenvalue

is therefore equal to one. This implies that the strength of shock propagation

on the network depends on the second largest eigenvalue of Gt, which is plotted

in Fig. 2.25 There was a substantial increase in the crisis period, but what is

striking is the large variation of network topology after QE. The variation of Gt

is critical for us to empirically identify the network parameters.

Another way to exhibit the variation of Gt is to plot a measure of network

cohesiveness, for which we use the average clustering coefficient (ACC – see

Watts and Strogatz, 1998)

ACCt =
1

N

N∑
i=1

CLi(Gt), CLi,t =
#{jk ∈ Gt | k 6= j, j ∈ ni(Gt), k ∈ ni(Gt)}

#{jk | k 6= j, j ∈ ni(Gt), k ∈ ni(Gt)}

23The data are only available for CHAPS banks. Thus, some loans may be attributed to a
settlement bank when in fact the payments are made on behalf of its customers. Moreover,
where a loan is made between one customer of a settlement bank and another, this transaction
will not be settled through the payment system but rather across the books of the settlement
bank (internalization). Internalized payments are invisible to the BoE, so they are a part of
the overnight money market that is not captured here.

24 As documented in Armantier and Copeland (2012), Furfine’s algorithm can be affected
by Type I and, to a lesser extent, Type II, errors. Nevertheless, this is less of a concern in
our application because of the following: first, as documented in Kovner and Skeie (2013),
at the overnight frequency that we focus on, interbank exposures measured by the algorithm
are highly correlated with the Fed funds borrowing and lending reported in bank quarterly
regulatory filings; second, and more importantly, instead of using the daily borrowing and
lending data, we smooth these exposures by computing rolling monthly averages, therefore
greatly reducing the relevance of false positives and negatives in the identification of interbank
relationships. Furthermore, we apply several robustness checks on our measure of interbank
linkages (results available upon request).

25This is because Gk can be rewritten in Jordan normal form as PJkP−1, where J is the
(almost) diagonal matrix with eigenvalues (or Jordan blocks in case of repeated eigenvalues)
on the main diagonal.
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Fig. 2. Second largest eigenvalue of the matrix Gt with elements gij,t given by the
average share of bank’s i overnight loans from bank j in the previous month ending
on day t− 1.

where ni(Gt) is the set of players that have a direct link with i and #{.} is

the count operator. The numerator is the number of pairs linked to i that are

also linked to each other, while the denominator is simply the number of pairs

linked to i. Therefore, ACC measures the average proportion of banks that are

connected to i and also connected with each other. By construction, it ranges

from 0 to 1. A higher value means that the network is more dense.

The time series of ACC is shown in Fig. 3. At the beginning of our sample,

the network is highly cohesive since, on average, approximately 80% of pairs of

banks connected to any given bank are also connected to each other. The degree

of connectedness appears to have a decreasing trend during 2007–2008, and a

substantial and sudden decrease following the Asset Purchase Programme, when

ACC dropped by approximately one-quarter of its pre-crises average. This is
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Fig. 3. Average clustering coefficient (see Watts and Strogatz, 1998) of the interbank
network.

related to the reduced interbank borrowing needs during the QE period owing

to the availability of additional reserves from the Bank of England (combined

with a move towards increased collateralization of borrowing and an overall

deleveraging; see, e.g., Westwood, 2011). This interpretation is consistent with

dynamics of gross borrowing value in the interbank network.26

Macro control variables. To control for the aggregate liquidity condition, we

use the LIBOR rate as a proxy for funding cost together with the interbank rate

premium (the average overnight borrowing rate of the CHAPS banks minus the

LIBOR rate).27 All control variables are lagged by one day so that they are

26We report the monthly rolling average of daily sterling value of gross borrowing in the
Online Appendix.

27LIBOR is the average of borrowing rates reported by selected banks, not CHAPS banks.
The interbank rate premium can be positively or negatively correlated with banks’ liquidity
holdings. First, when CHAPS banks face more risks, they may hold more liquidity and face
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predetermined with respect to time t shocks.

Since banks’ decisions to hold liquidity are likely to be influenced by the

volatility of their daily payment outflows, we construct a measure of intraday

payment volatility as

V olPayt =

√√√√ 1

88

88∑
τ=1

(
P outt,τ

)2
. (36)

where P out denotes payment outflows and 88 is the number of ten-minute time

intervals (the unit of time for payment recording in our sample) within a day.

The time series is plotted in the Online Appendix. Outflow volatility declined

steadily throughout the crisis, suggesting that banks in aggregate smoothed

intraday outflow.

We also control for the turnover rate in the payment system. This variable

is defined as

TORt =

∑N
i=1

∑88
τ=1 P

out
i,t,τ∑N

i=1 max
{

maxτ∈[1,88] [CNP (τ ; i, t)] , 0
} ,

where the cumulative net debit position (CNP) is defined as the difference be-

tween payment outflows and inflows (see also Benos et al., 2010). The numerator

is the total payments in day t, while the denominator is the sum of maximum

intraday net debt positions of all banks. The time series is plotted in the Online

Appendix. The turnover rate increased during the crisis period and declined

after the introduction of QE.

Since banks have some discretion on the timing of intraday outflows, they

could behave strategically – to preserve liquidity, banks may expedite inflows

and delay outflows. Therefore, we control for the right kurtosis (rKt) of intraday

payment time.28 The time series is plotted in the Online Appendix, showing a

higher borrowing costs. Second, interbank rate premium measures an opportunity cost –
CHAPS banks can borrow to lend at the LIBOR rate rather than hold reserves. So, when
LIBOR is high (interbank rate premium low), banks prefer to hold less liquidity.

28We define right and left kurtosis (denoted, respectively, by rKt and lKt) as the part of

35



substantial increase in the QE period.

Beyond these control variables at daily frequency, we add week fixed effects to

account for potential missing variables that fluctuate at lower frequencies, such

as monetary policy conditions beyond the interbank rates and real economic

activities that drive payment flows.

Bank characteristics. Despite the fact that we control for average interest

rates, we also control for the bank-specific overnight borrowing rate, which is

a daily volume-weighted average. As we report in the Online Appendix, there

was a substantial increase in the cross-sectional dispersion of the overnight bor-

rowing rates during turmoil periods, such as the collapse of Northern Rock and

Lehman Brothers. This cross-sectional dispersion persisted during the QE pe-

riod. Therefore, it is critical to account for the heterogeneity in banks’ overnight

borrowing rates. As macro variables, all bank-level control variables are lagged

by one day.29

We also control for other bank-level variables: the level of intraday payment

outflow (LevPayi,t ≡
∑88
τ=1 P

out
i,t,τ ); the right kurtosis of intraday payment in-

flow time (rKin
i,t) and outflow time (rKout

i,t ); the volatility of intraday payment

outflow (V olPayi,t, constructed as in Eq. (36) using bank-level flows); the liq-

uidity used (LUi,t, as in Benos et al., 2010 and defined in the Appendix); total

assets; the repo liabilities to total assets ratio; the retail deposits to total assets

ratio; the interbank borrowing rate; total interbank lending and borrowing; the

kurtosis generated by payment times, respectively, above and below the average payment time
of the day:

rKt =

∑
τ>ms

( τ−mt
σt

)4∑88
τ=1( τ−mt

σt
)4

, and lKt =

∑
τ<mt

( τ−mt
σt

)4∑88
τ=1( τ−mt

σt
)4

;

where mt and σt are defined as flow-weighted average payment time and standard deviation,
i.e.,

mt =
1

88

88∑
τ=1

τ

(
POUTt,τ∑T
t=1 P

OUT
t,τ

)
, and σ2

t =
1

88− 1

88∑
τ=1

[
τ

(
POUTt,τ∑88
t=1 P

OUT
t,τ

)
−mt

]2
.

29For variables available at lower than daily frequency (monthly), we use the latest lagged
observation. These variables are total assets, the ratio of repo liabilities to assets, and the
ratio of retail deposits to total assets.
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5-year credit default swap (CDS) spread; and daily stock returns.

6. Estimation results

6.1. Subsample estimation

We estimate our model [Eq. (22) and Eq. (23)] in three subsamples of

roughly equal size: the period before the Northern Rock and BNP Paribas

Fund crisis (August 9, 2007), the period after it and before QE (January 19,

2009), and the QE period. These three periods are marked by distinct liquidity

conditions, and as documented in Section 5, different behavior of the network

and other variables. Period 1 was a relatively tranquil period. Period 2 saw

several significant events, such as the subprime mortgage fund crisis (e.g., BNP

Paribas fund freezing on August 9, 2007), the run on Northern Rock (the U.K.’s

first in 150 years), the Federal Reserve intervention in Bear Stearns and its

subsequent sale to JPMorgan Chase, and the bankruptcy of Lehman Brothers.

Period 3 began with a regime switch in monetary policy. The announcement of

the Bank of England on January 19, 2009 marked the beginning of quantitative

easing in the U.K.

The network multiplier. The estimation results for these three subsamples

are reported in Panel A of Table 1, where we report only the estimates of the

spatial dependency parameter φ (first row), the R2 of the regression (second

row), the implied average network multiplier (third row) 1/(1 − φ) that was

discussed in Section 4, as well as the ratio of the volatility of network liquid-

ity to the counterfactual volatility when φ = 0. Omitted from the table are

the coefficient estimates of control variables, which are reported in the Online

Appendix.

Recall that φ > 0 (< 0) implies that banks’ liquidity holding decisions are

strategic complements (substitutes) and that this tends to amplify (reduce)

the impact of bank-level shocks to aggregate liquidity. In the first period, the

estimate of φ is 0.8137 and highly significant, indicating a substantial network
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Table 1
Spatial Error Model Estimation. Estimation results for Eq. (22) and Eq. (23).
Periods 1, 2, and 3 correspond, respectively, to: before the Northern Rock/BNP
Paribas Fund crisis, after it but before the first BoE announcement of Asset Pur-
chase Programme, and the QE period. The t-statistics are reported in parentheses
under the estimated coefficients. Standard errors are QMLE-robust ones, and the
delta method is used for the average network multiplier, 1/(1 − φ̂). In Panel A, the
adjacency matrix is computed using the interbank borrowing data, while in Panels B
and C, we respectively use lending and borrowing plus lending (all row-normalized).

Period 1 Period 2 Period 3
Panel A: Gt based on borrowing

φ̂ 0.8137
(21.47)

0.3031
(1.90)

−0.1794
(−4.96)

R2 66.01% 92.09% 91.53%

1/
(

1− φ̂
)

5.3677
(4.92)

1.4349
(4.37)

0.8479
(32.61)√

V ar(Zt|φ̂)
V ar(Zt|φ=0) 5.59 1.25 0.89

Panel B: Gt based on lending

φ̂ 0.8209
(20.38)

0.2573
(1.23)

−0.3925
(−7.18)

R2 66.02% 91.63% 91.61%

1/
(

1− φ̂
)

5.5835
(4.45)

1.3464
(3.54)

0.7181
(25.49)√

V ar(Zt|φ̂)
V ar(Zt|φ=0) 5.71 1.45 0.85

Panel C: Gt based on borrowing and lending

φ̂ 0.8204
(19.36)

0.3258
(1.89)

−0.2824
(−6.10)

R2 63.98% 92.22% 91.70%

1/
(

1− φ̂
)

5.5679
(4.24)

1.3464
(3.91)

0.7181
(26.74)√

V ar(Zt|φ̂)
V ar(Zt|φ=0) 5.94 1.15 0.74

amplification effect: a £1 shock equally spread across banks would result in a

1/
(

1− φ̂
)

= £5.3677 shock to the aggregate liquidity.

In the second period, the coefficient φ is substantially lower in magnitude

and marginally significant, implying weak strategic complementarity and an

average network multiplier of approximately 1/ (1− 0.3031) = 1.4349. This

finding suggests that in response to the turbulence in financial markets that

have characterized the second period, banks’ marginal cost of holding liquidity

increased significantly (i.e., ψ became large), so strategic substitution gained
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strength.

In the third period, φ̂ becomes negative, −0.1794, and statistically signifi-

cant, implying an average network multiplier of 0.8479. This result is particu-

larly interesting since strategic substitution became the dominant force in banks’

liquidity holding decisions, as in Bhattacharya and Gale (1987). As a result,

the network buffers the impact of shocks from individual banks on aggregate

liquidity. This finding also sheds light on how the massive liquidity injection

by the central bank affects the network effect. Overall, the model fits the data

fairly well in the three subsamples, with R2 in the range of 66%–92%.

The last row of Panel A reports

√
V ar(Zt|φ̂)/V ar(Zt|φ = 0), i.e., the ra-

tio of the volatility of aggregate liquidity implied by our estimate of φ to

the counterfactual volatility if there were no network externalities. In the

first period, the network multiplier generates a 459% increase in volatility.

The excess volatility from network effects dropped to 25% in the crisis period,

and turned negative, -11%, in the QE period. The Online Appendix reports√
V ar(zi,t|φ̂)/V ar(zi,t|φ = 0), the network volatility multiplier for each bank.

For robustness, in Panels B and C, we estimate our network model with two

alternative constructions of the adjacency matrix Gt. In Panel B, we use the

lending flows, while in Panel C, we use the combined borrowing and lending

flows. In both cases, the adjacency matrix is row-normalized (right stochastic).

Such an exercise is meaningful because, as we emphasized when constructing the

theoretical model, network linkages reflect the interbank relationships. Thus, a

linkage is not necessarily just about borrowing. If a bank lends to another bank,

a relationship formed through this transaction may facilitate future borrowing.

Overall, the estimates in Panels B and C are very similar to those in Panel A.

Additionally, we also consider a counterparty-adjusted version of the Gt used

in Panel A. That is, after obtaining the average fraction of bank’s i overnight

loans from bank j in the previous month ending on day t − 1, we divide this

fraction by one plus the number of banks that bank j lends to in that month
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since some banks have zero borrowers in some subsample periods.30 As in the

other specifications, we normalize by rows so that the new adjacency matrix is

still right stochastic. Doing such an adjustment captures the possibility that

if bank j lends to many banks, this might reduce the likelihood of it being

able to lend to bank i. This counterparty-adjusted Gt essentially re-weights

the baseline Gt to deliver an “effective” measure of access to network liquidity.

Such re-weighting is consistent with our theoretical model since therein the

entries of Gt are meant to capture the availability of funds through network

connections. The Online Appendix reports the estimation results obtained with

this adjacency matrix. The point estimates of φ are very similar to the ones

in Panel A of Table 1 and the estimates of coefficients of control variables are

close to the ones obtained from using the baseline Gt (reported in the Online

Appendix).

Network impulse response and key players. Next, using the estimates,

we compute the network impulse response functions to identify risk key players

in each subsample. The results are reported together with banks’ net borrowing

amount and the network graph.

In the upper panel of Fig. 4, we report each bank’s excess network impulse

response to a unit shock, i.e., NIRF ei

(
φ̂, 1, Ḡ1

)
= NIRFi

(
φ̂, 1, Ḡ1

)
− 1, de-

fined in Eq. (34), where Ḡ1 denotes the average Gt in Period 1. It measures

Bank i’s contribution to systemic risk – the network-induced reaction of aggre-

gate liquidity to a unit shock to Bank i. Note that if either φ = 0 or there are

no network linkages (Ḡ1 = 0), a unit shock to Bank i is a unit shock to the

aggregate liquidity, and thus, the excess response is zero. We also plot one and

two standard deviation bands. As a point of reference, we show the average ex-

cess network multiplier,
(

1− φ̂
)−1

− 1 = 4.3677 (Panel A of Table 1), i.e., how

the network as the whole amplifies a unit shock equally spread across banks.

30We have also constructed another adjusted adjacency matrix Gt which re-weights gij,t
by dividing the number of bank j’s borrowers except for the banks with zero borrowers. In
the latter case, we leave the entries in Gt unchanged. Estimation results are very similar so
we choose to report only one of the two in the paper.
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Fig. 4. The period before the Northern Rock/Hedge Fund Crisis: Network excess
impulse response functions to a unit shock (upper panel); average net borrowing per
month (central panel; unit: £1); borrowing and lending flows (lower panel) where
the ellipses identifying individual banks are (log) proportional to their average gross
borrowing per month, incoming arrows to a node indicate borrowing flows, outgoing
arrows indicate lending flows, and the thickness of arrows is (log) proportional to the
sterling value of the flows.
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Since (as per Eq. (33)), a large NIRF for a given bank implies a larger

contribution to the volatility of total liquidity, a key message from the upper

panel of Fig. 4 is that a handful of key players (banks 5, 6, and 9) are responsible

for most of the systemic risk. For instance, a shock of £1 to Bank 5, 6, or 9

would generate an excess response of aggregate liquidity equal to £13.9, £8.9,

and £13.8, respectively. A shock to Bank 4 would induce an excess response

similar to the network average, while the remaining seven banks contribute

relatively little to shock amplification.

The comparison between the upper and central panels makes clear that risk

key players are not necessarily large net borrowers – large net borrowers and

lenders are both likely to be key risk contributors. This is intuitive: a negative

shock to a bank that lends to a large part of the network (high outdegree

centrality) can be, for the aggregate liquidity buffer, as bad as a negative shock

to a bank that borrows from many banks (high indegree centrality).

However, even if we consider both borrowing and lending amounts, it is still

not enough to identify key players. For example, the risk contribution of Bank 5

would be underestimated. The reasons behind this can be understood by looking

at the lower panel of Fig. 4, where we present the average network structure in

Period 1. The sizes of ellipses identifying individual banks are (log) proportional

to their average gross borrowing, incoming arrows to a node indicate borrowing

flows, outgoing arrows indicate lending flows, and the thickness of arrows is (log)

proportional to the sterling value. This shows that key risk contributors tend

to be banks with high centrality (e.g., Bank 5), i.e., with thick and numerous

links, especially links to other well-connected banks, but not necessarily the

large players by size.

Fig. 5 reports excess impulse response functions (upper panel), average

net borrowing (central panel), and network flows (lower panel) for Period 2

– the period characterized by a high degree of stress in the financial market.

The first thing to notice is that despite the overall increase in borrowing and

lending activities in the interbank market (reported in the Online Appendix),

there is a drastic reduction in the average network multiplier reported in the
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Fig. 5. The period after the Northern Rock/Hedge Fund Crisis but before QE:
Network excess impulse response functions to a unit shock (upper panel); average net
borrowing per month (central panel; unit: £1); borrowing and lending flows (lower
panel) where the ellipses identifying individual banks are (log) proportional to their
average gross borrowing per month, incoming arrows to a node indicate borrowing
flows, outgoing arrows indicate lending flows, and the thickness of arrows is (log)
proportional to the sterling value of the flows.
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top panel: the network-induced excess reaction to a unit shock is only about

0.44. In a crisis period, banks seem to have radically adjusted their liquidity

management objectives, reflected by the estimate of φ, and they have done so

despite having increased the utilization of the interbank network to transfer

liquidity. Nevertheless, systemic risk, even though substantially reduced, is still

quite high and driven by a couple of key players. In particular, a unit shock to

Bank 5, Bank 9, and Bank 6 triggers an excess reaction of aggregate liquidity

equal to 1.77, 1.36, and 0.85, respectively, while a shock to Bank 4 has an

average effect, and the remaining banks contribute little.

The results for Period 3 – the one starting at the onset of QE – are reported

in Fig. 6 and are radically different from those of the previous two periods.

First, banks’ liquidity holdings exhibit strategic substitution (φ̂ < 0), and as a

result, the network buffers shocks to individual banks, reflected in an average

excess multiplier of −0.15: a unit shock equally spread across banks would result

in a shock of 1 − 0.15 = 0.85 to the aggregate liquidity. However, once again,

there is substantial heterogeneity among the banks in the sense that most banks

(1, 3, 7, 8, 10, and 11) contribute little to shock propagation, while a few key

players (4, 5, 6, and 9) are responsible for the network buffering effect.

This behavior arises in a period in which the degree of connectedness of

the network was substantially reduced (see Fig. 3 and the lower panel of Fig.

6), most banks held net borrowing positions close to zero (central panel of

Fig. 6), and the total borrowing had been substantially reduced (see the On-

line Appendix), but at the same time, the overall liquidity in the system had

substantially increased, which is likely due to QE (Fig. 1).

What is also interesting to notice is that the same banks that were the

riskiest players in the previous two periods (Banks 5, 6, and 9) are now the

least risky ones for the system. Owing to their network centrality, and more

importantly, the overall strategic substitution behavior on the network, these

banks become the biggest shock absorbers.

A natural question is whether we can explain the large heterogeneity of

individual banks’ contribution to systemic risk using banks’ characteristics, and
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Fig. 6. The QE period: Network excess impulse response functions to a unit shock
(upper panel); average net borrowing per month (central panel; unit: £1); borrowing
and lending flows (lower panel) where the ellipses identifying individual banks are (log)
proportional to their average gross borrowing per month, incoming arrows to a node
indicate borrowing flows, outgoing arrows indicate lending flows, and the thickness of
arrows is (log) proportional to the sterling value of the flows.
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Table 2
Bank Characteristics and Network Impulse-Respose Functions. The table
reports the rank correlations between Network excess impulse response (NIRF ei ) of
banks and their characteristics. Periods 1, 2 and 3 correspond, respectively, to: be-
fore the Northern Rock/BNP Paribas Fund Crisis, after it but before the first BoE
announcement of Asset Purchase Programme, and the QE period. * represents 10%
significance, ** 5% significance, and *** 1% significance.

Period 1 Period 2 Period 3
Interbank Rate 20.91% 37.27% −64.55%

lnLevPayi,t−1 82.73%∗∗∗ 95.45%∗∗∗ −85.45%∗∗∗

rKin
i,t−1 20.00% −34.55% 10.91%

rKout
i,t−1 −45.45% −89.09%∗∗∗ 73.64%∗∗

lnV olPayi,t−1 48.18% 56.36%∗ −54.55%∗

lnLUi,t−1 21.82% 35.45% −23.64%

Total Assets (log) 12.73% 25.45% 4.55%
Repo Liability

Assets 39.45% 48.18% −37.27%
Deposits
Assets 12.73% −50% 68.18%∗∗

CDS Spread 38.18% 18.18% −40.00%

Stock Return 13.64% −17.27% −56.36%∗

Total Lending and Borrowing (log) 86.36%∗∗∗ 95.45%∗∗∗ −89.09%∗∗∗

Total Lending (log) 97.27%∗∗∗ 99.09%∗∗∗ −89.09%∗∗∗

Total Borrowing (log) 66.36%∗∗ 91.82%∗∗∗ −76.36%∗∗∗

Net Borrowing (log) −17.27% 10.91% 54.55%∗

perhaps find some proper indicators. Table 2 reports the rank correlations of

individual bank characteristics with banks’ network impulse response functions

in the subsamples. Only a few characteristics appear to correlate significantly

with the magnitude of NIRF ei . Several observations are in order.

For the total payments channeled by a bank, in periods 1 and 2, the rank

correlations for this variable are, respectively, 82.73% and 95.45%, while in

period 3, we have -85.45%, suggesting that banks that channel a larger amount

of payments are likely to be central in the interbank credit network but that the

implications of its centrality depend on the type of equilibrium, i.e., strategy
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complementarity (φ > 0) or substitution (φ < 0). In the first two periods, when

φ > 0, banks with large payment flows contribute to the volatility of aggregate

liquidity, while in the third period, when φ < 0, they dampen the effect of

shocks.

The last row of Table 2 shows that net borrowing has no significant rank

correlation with banks’ NIRF ei , consistent with Fig. 4–6. Nevertheless, gross

lending and gross borrowing, and their sum, are all highly correlated with banks’

NIRF ei . That is, banks that borrow and/or lend substantially (in gross terms)

tend to be key players in our network. Once again, the sign of correlation

depends on the sign of φ: large banks, in terms of gross borrowing or lending,

can be key risk contributors or absorbers depending on the type of equilibrium

on the network. How to measure bank size is important. For example, size

measured by total assets is only weakly correlated with NIRF ei – instead, the

total level of payment activity intermediated by a bank (lnLevPayi) seems to

be a more salient metric to identify risk key players, as it strongly correlates

with the NIRF ei . Interestingly, the rank correlations are, in absolute terms,

marginally larger for total lending than for total borrowing, suggesting outdegree

links are more important for shock propagations. As we have shown in the

theoretical model, outbound routes are responsible for the discrepancy between

the planner’s solution and decentralized equilibrium outcome. Next, we use our

estimates to quantify this discrepancy.

6.2. Planner’s solution vs. decentralized equilibrium

Using the estimated structural parameters, we assess the difference between

the aggregate liquidity in the decentralized equilibrium and the aggregate liq-

uidity that a benevolent planner would have chosen in the payment system.

The difference arises because the planner internalizes the network effects of in-

dividual banks’ liquidity, while in the decentralized equilibrium individual banks

ignore such network externalities.

Specifically, conditional on the network structure, we examine how the de-

centralized equilibrium propagates shocks differently from the planner’s solution
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by computing the percentage difference between V ar
(
Zpt |Gt = Ḡ

)
, the volatil-

ity of aggregate liquidity from the planner’s solution, and V ar
(
Z∗t |Gt = Ḡ

)
,

the volatility in decentralized equilibrium, where Ḡ denote the average of Gt in

a subsample. For each subsample, we compute

√
V ar

(
Zpt |Gt = Ḡ

)
−
√
V ar

(
Z∗t |Gt = Ḡ

)√
V ar

(
Z∗t |Gt = Ḡ

) (37)

where the variances are V ar
(
Z∗t |Gt = Ḡ

)
= 1>M

(
φ, Ḡ

)
ΣνM

(
φ, Ḡ

)>
1 from

Eq. (30) and V ar
(
Zpt |Gt = Ḡ

)
=
(

1
1+φ/η

)2

1>Mp
(
φ, η, Ḡ

)
ΣνM

p
(
φ, η, Ḡ

)>
1

from Eq. (35). The variance operator is taken over the structural shocks νt,

i.e., we condition on the parameter and the network topology.

We also compute the difference in the expected level of aggregate liquidity

(conditional on the network structure) between the planner’s solution [Eq. (21)]

and the decentralized equilibrium [Eq. (14)]:

E
[
Zpt − Z∗t |Gt = Ḡ

]
= 1>

{
Mp

(
φ, η, Ḡ

) [( 1

1 + φ/η

)
µ̄− γη

ψ′
Ḡ>1

]
−M

(
φ, Ḡ

)
µ̄

}
,

(38)

where the expectation is taken over the structural shocks, i.e., νt.

We use the estimates of φ, Σν = diag
({
σ2
i

}N
i=1

)
, and µ̄, and calculate Ḡ

for each subsample. To calculate the percentage volatility wedge in Eq. (37),

we also need η, and, to calculate the level difference in Eq. (38), we need ψ′, η,

and γ. By inspecting bank i’s objective function given by Eq. (4), we can see

that dividing Eq. (4) by ψ′ does not affect the bank i’s preference. Therefore,

we normalize ψ′ to one. While we cannot estimate η and γ directly, we calibrate

them to natural benchmark values.

First, we calibrate η. In our model, zi,t+η
∑
j 6=i gij,tzj,t gives the maximum

amount of liquidity that bank i can access. The component from interbank

borrowing, η
∑
j 6=i gij,tzj,t, cannot exceed the aggregate liquidity

∑
j 6=i zj,t of

i’s neighbors, i.e., η
∑
j 6=i gij,tzj,t ≤

∑
j 6=i zj,t, which implies an upper bound

for η:
(∑

j 6=i zj,t

)
/
(∑

j 6=i gij,tzj,t

)
. In our sample, this upper bound of η
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Table 3
Planner’s Solution vs. Decentralized Equilibrium. This table reports the per-
centage difference between the volatility of aggregate liquidity of the planner’s solution
and that of the decentralized equilibrium, conditional on the network structure. Peri-
ods 1, 2, and 3 correspond, respectively, to: before the Northern Rock/BNP Paribas
Fund crisis, after it but before the first BoE announcement of Asset Purchase Pro-
gramme, and the QE period.

γ Period 1 Period 2 Period 3

√
V ar(Zp

t |Gt=Ḡ)−
√
V ar(Z∗

t |Gt=Ḡ)√
V ar(Z∗

t |Gt=Ḡ)
−89.6% −35.6% −12.4%

E
[
Zpt − Z∗t |Gt = Ḡ

]
(unit: £billion) −0.36 −60.4 51.6 −100.0

−0.30 −54.0 62.5 −200.0
−0.27 −50.2 68.9 −300.0

varies tightly around 10 over time and across banks, so we set η to 10. In the

Online Appendix, we report our results with η = 9 and 11.

Next, we calibrate γ. Note that to compute the percentage volatility wedge

in Eq. (37), we do not need this parameter, but we do for the level wedge in

Eq. (38). In our third subsample period, the Bank of England supplied around

£125 billion of reserves through the quantitative easing (QE) program, and

then another £50 billion two months later by the end of November 2010. By

the end of 2012, the total QE amount reached £375 billion. Through the lens

of our model, liquidity injection is to address the inefficiencies in the interbank

network, which are in turn due to banks’ not internalizing their impact on

neighboring banks. Without such inefficiencies, liquidity injection via QE would

not be necessary, so the social optimum should feature less liquidity than the

decentralized outcome. Therefore, we consider three values of γ, −0.41, −0.36,

and −0.30, which imply respectively a level wedge of £−100 billion, £−200

billion, and £−300 billion in Period 3, i.e., different levels of liquidity required

in the decentralized equilibrium to correct inefficiencies.

Table 3 reports the results. In Period 1, when the network multiplier is

large, the decentralized equilibrium features excessive risk: the planner would

prefer the volatility of aggregate liquidity to be reduced by 89.6%. Moreover,
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the liquidity level in the system is also excessive. The wedge ranges from £50

billion to £60 billion higher than the planner’s solution depending on the value

of γ. Because the planner and individual banks face the same {µ̄i}Ni=1 and{
σ2
i

}N
i=1

, the discrepancy between the planner’s solution and the decentralized

outcome lies in the fact that individual banks do not internalize their impact

on each other (via the outdegree linkages), as shown by Eq. (18).

In Period 2, the decentralized equilibrium produces less volatility in the ag-

gregate liquidity than in Period 1 relative to the volatility from the planner’s

solution. Nevertheless, the volatility is still too large (by 35.6%) from the plan-

ner’s perspective. In comparison with Period 1, the network is less cohesive (see

Fig. 3), and the network multiplier declines since φ is closer to zero. However,

this does not mean that the network externalities are eliminated. Quite the

opposite, such externalities through the outdegree linkages lead to an expected

level of aggregate liquidity buffer that is lower than the social optimum by the

amount of £52 to £69 billion depending on γ. That is, the crisis period is

characterized by too much risk and too little liquidity.

In the last period, the network multiplier is smaller than 1; hence, overall

the decentralized equilibrium produces a volatility of aggregate liquidity that is

lower than a system without any network connections (i.e., a diagonal G). How-

ever, given the network connections, the decentralized equilibrium still produces

a volatility that is 12.4% higher than the volatility of aggregate liquidity in the

planner’s solution. As previously discussed, the level wedges in this subsample

are set to calibrate γ.

6.3. The role of the network topology

So far our analysis on banks’ contribution to the aggregate liquidity risk

assumes a unit shock to each bank. We examine how shocks of the same size,

originated in different banks, can be propagated differently on the network. In

the following, we feed a shock of σ̂i to bank i. By doing so, we recognize banks

differ in their contributions to the aggregate liquidity risk because (1) their

structural shocks are of different sizes and (2) banks are located differently on

50



Bank 1 Bank 2 Bank 3
Bank 4

Bank 6

Bank 7 Bank 8 Bank 11

Bank 1 Bank 2 Bank 4Bank 3

Bank 5 Bank 6

Bank 7 Bank 8

Bank 9

Bank 10 Bank 11

Bank 5

Bank 10

Bank 9

Bank 2 Bank 3Bank 1

Bank 6

Bank 5

Bank 4

Bank 8Bank 7

Bank 9

Bank 11Bank 10

Fig. 7. The figure plots the excess network impulse response function NIRF ei (long
dashed line with circle markers), defined in Eq. (31), and its two standard error
band (dotted lines) for the period before the Northern Rock/Hedge Fund crisis (upper
panel), the period after the Northern Rock/Hedge Fund crisis but before QE (central
panel), and the QE period (lower panel). A bank i receives a σi shock. The adjacency
matrix of the interbank network is the average in each subsample period. In each panel,
the excess network impulse response function of a uniform network is also plotted for
comparison (dot-dashed line with cross markers).
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the network.

In Fig. 7, we plot the excess network impulse response function, NIRF ei

(
φ̂, σ̂i,Gt

)
=

NIRFi

(
φ̂, σ̂i,Gt

)
−σi, defined in Eq. (34) for each bank (dashed line) and the

two standard error band (dotted lines). In each subsample period, we use the

average Gt. In the pre-crisis period (upper panel), banks 5, 6, and 9 contribute

the most to the risk of aggregate liquidity in the payment system. As the crisis

unfolds, the level of risk declines but these banks remain the key contributors

(central panel). In the QE period, these banks become the main risk absorbers

as φ turns negative and the network becomes a risk buffer under strategic sub-

stitution in banks’ liquidity decisions.

Next, to highlight the role of the network in creating the cross-sectional

variation in banks’ risk contribution, we compare
{
NIRF ei

(
φ̂, σ̂i,Gt

)}N
i=1

with

those generated by a counterfactual network where banks are equally connected,

i.e., :

U =


0 1

N−1 . . . 1
N−1

1
N−1 0

. . .
...

...
. . .

. . . 1
N−1

1
N−1 . . . 1

N−1 0

 , (39)

the “uniform” network. The dashed line marked by crosses shows
{
NIRF ei

(
φ̂, σ̂i,U

)}N
i=1

.

Because banks do not differ in their position on the network, the only source

of cross-sectional difference in NIRF ei is σi, the size of bank-specific structural

shocks. In each subsample period, the counterfactual NIRF ei exhibits a dif-

ferent pattern in the cross section of banks. Therefore, given the nature of

strategic interactions on the network, i.e., φ, a bank’s position on the network

is an important determinant of the risk that it contributes to the whole system.

Indeed, on the real network a couple of banks stand out as the main risk con-

tributors (absorbers) when φ > 0 (< 0), but on the counterfactual network of

equal connections the risk contributions are largely flat in the cross section.
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6.4. Time-varying network effects

The results presented so far indicate a substantial change over time in the role

played by the network interactions in determining aggregate liquidity level and

risk. Specifically, the network impulse response functions depicted in Fig. 4–6

show substantial time variation across periods. This could be caused by either

the time variation in the network topology G or in the network multiplier φ.

To examine the relative contributions, we compute the changes in the network

impulse response functions across the three periods.

In particular, Panel A of Fig. 8 reports the change in NIRFs between Periods

1 and 2 due to the variation of G [NIRFi(φ̂1, 1, Ḡ2)−NIRFi(φ̂1, 1, Ḡ1), dotted

line with triangles], and the change due to the variation of φ [NIRFi(φ̂2, 1, Ḡ1)−

NIRFi(φ̂1, 1, Ḡ1), dash-dotted line with +]. Note that the total change is not

the sum of the ceteris paribus change due to variation in G and the ceteris

paribus change due to variation in φ, but as a point of reference the total

change is also plotted [NIRFi(φ̂2, 1, Ḡ2)−NIRFi(φ̂1, 1, Ḡ1), dashed line with

circles].

A striking feature of the graph is that most of the total change comes from

the reduction in the network multiplier φ for all banks. In fact, ceteris paribus,

the NIRF of Bank 5 would have increased from Period 1 to 2 because of the

change in G. However, this effect is dwarfed by the reduction of its NIRF caused

by the change in φ.

Panel B reports the same decomposition of the change in NIRFs between

Periods 2 and 3. Once again the changes are mostly driven by the change in

the network multiplier rather than the change in network topology. Overall,

Fig. 8 shows that the time variation of the network multiplier, i.e., the type of

equilibrium on the network (strategic complementarity vs. substitution), has a

first-order effect on the network amplification mechanism.

The results in Fig. 8 indicate the importance of variation of φ in determining

the network effects. To capture this time variation, we also estimate the struc-
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Fig. 8. Attribution of the change in NIRFs across periods: the ceteris
paribus change due to variation of G [NIRFi(φ̂1, 1, Ḡ2) − NIRFi(φ̂1, 1, Ḡ1), dot-
ted line with triangle markers]; the ceteris paribus change due to variation of φ
[NIRFi(φ̂2, 1, Ḡ1) − NIRFi(φ̂1, 1, Ḡ1), dashed line with cross markers]; the total
change [NIRFi(φ̂2, 1, Ḡ2) − NIRFi(φ̂1, 1, Ḡ1), dashed line with circle markers]. Pe-
riods 1, 2, and 3 correspond, respectively, to before the Northern Rock/BNP Paribas
Fund crisis, after it but before the first BoE announcement of the Asset Purchase
Programme, and the QE period.
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tural model in Eq. (22) and Eq. (23) using a 6-month rolling window.31 These

rolling estimates of the network coefficient φ are reported (solid line), together

with 95% confidence bands (dotted lines), in Fig. 9. The figure also depicts

the rolling point estimates of the coefficient φ implied by the spatial Durbin

model (dashed line) in Eq. (36) which, as a more general empirical formulation,

serves as a specification test of our benchmark spatial error model. If the two

estimated φ are close to each other, as shown in Fig. 9, this indicates that

our theory-driven spatial error specification of the interbank network cannot be

rejected in favour of a more general specification.32 Specifically, we find that, at

the 5% confidence level, two estimates are statistically different less than 95%

of the time.

At the beginning of the sample, the estimate of φ implies an extremely large

network multiplier, and thus, the interbank system is a powerful shock amplifier.

According to our model, this reflects that the forces behind strategic comple-

mentarity, i.e., the high values of payment multiplier and velocity, dominate

the force of strategic substitution. The estimate has its first sharp reduction

around the 18th of May 2006 when the Bank of England introduced the reserve

averaging system (see details in the Online Appendix). The network multiplier

is relatively stable after that except for a temporary decrease during the 2007

subprime mortgage default, until the Northern Rock bank run when the net-

work multiplier is drastically reduced for several months. After this reduction,

the coefficient goes back to roughly the previous average level but exhibits a

31Recall that when Gt is a right stochastic matrix, separate identifications of the bank
(αbank) and network (µ̄) fixed effects require a subset of banks that do not borrow at least
at one point in time in each subsample (see footnote 25 and the discussion on our emprical
methodology in the Online Appendix). This condition is not satisfied in every rolling window.
However, since the separate identification of these fixed effects does not affect the identification
of φ, we normalize the bank fixed effects to zero. Moreover, given the very short length of
the rolling window, we drop time fixed effects from the specification and heteroskedastic
specification of shocks. Estimates with the full sets of fixed effects and heteroskedasticity
show a very similar behavior, but with somewhat larger confidence intervals, owing to the
increase in the number of parameters. We focus on the more parsimonious specification, but
the results of the full specifications are available upon request.

32The likelihood ratio test cannot reject the spatial error model in most parts of our sample
(i.e., except rolling windows ending from May 2009 to May 2010). Results are available upon
request.

55



Fig. 9. Spatial error (solid line) and Durbin (dashed line) models: Rolling estimates
of φ with a 6-month window. SEM (spatial error model) corresponds to the baseline
specification in Eq. (22) and Eq. (23). Its 95% confidence intervals are marked by
the dotted lines. SDM (spatial Durbin model) corresponds to the specification in Eq.
(36).

declining trend that culminates in a slump following the Bear Stearns collapse.

From this period onward, and until long after the Lehman Brothers bankruptcy,

the coefficient is statistically indistinguishable from zero.

Our estimation suggests that banks’ liquidity management objectives change

in response to market-wide crisis in a way that reduces the domino effect of

shock propagation and amplification on the interbank network. Interestingly,

the coefficient φ̂ becomes negative right before the announcement of the Asset

Purchase Programme and remains negative throughout the QE period. This

result indicates that during the active liquidity injection by the Bank of Eng-

land (and also in expectation of it), banks’ liquidity holding decisions exhibit

strategic substitution. The sign of φ depends on the relative strength of strate-

gic complementarity and substitution forces, while its magnitude depends on

the overall accessibility of interbank credit [captured by η in Eq. (10)]. The

downward trend of magnitude during the crisis can be attributed to the stress in
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the interbank credit market, while the increase in absolute magnitude post-QE

suggests that the policy intervention alleviated such stress and partly restored

interbank credit.

Our results are unlikely to be driven by the direct or mechanical impact

of QE on the interbank market of reserves for the following reasons: a) our

estimation controls for variation in many prices (e.g., interbank rates), quantities

(e.g., payment patterns, repo, deposits), and time (weekly) fixed effects, so our

estimated response functions of individual banks are already conditional on

such information; b) as shown in Fig. 1, overall, banks hold more liquidity after

QE, which favors strategic complementarity (i.e., correlated liquidity holdings)

instead of strategic substitution; c) the drop in φ actually occurred before the

announcement of QE; and d) as previously emphasized, the Bank of England

followed an accommodative reserve supply policy throughout our sample period,

so the impact of QE is not through the alleviation of reserve scarcity. Therefore,

our finding of a strong QE impact on banks’ liquidity management objectives

(i.e., our structural parameters) posits a challenge for theoretical research on

how monetary policy affects the banking system.

The role of payment system velocity. Next we explore the economic forces

driving the dynamics of φ shown in Fig. 9. Defined in Eq. (10), φ depends on

two opposing forces, δ, which leads to strategic complementarity, and ψ, which

generates strategic substitution.

As shown in its definition, Eq. (6), δ increases in δS and κb. The payment

multiplier δS measures the strength of complementarity in the economic activ-

ities underlying agents’ payments. It potentially depends on a great number

of factors, for example, the input-output linkages in the production sector (see

Carvalho and Tahbaz-Salehi, 2019).

Next, we focus on the payment velocity, κb, which has a sharp interpre-

tation and is directly measurable in our sample: the ratio of total payments

to total liquidity [see Eq. (3)]. Fig. 10 plots the 6-month rolling estimate of

φ (spatial error model) together with the 6-month rolling average of payment
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Fig. 10. Rolling estimate of φ (solid line, measured on left axis) using the specification
in Eq. (22) and Eq. (23) and 6-month window, and payment system velocity (dashed
line, measured on right axis).

system velocity (dashed line). The left Y-axis is for φ and the right Y-axis is

for the velocity. A velocity that is equal to ten means that the liquidity in the

payment system churns ten times as agents make payments to each other. The

estimate of φ and the velocity have a correlation of 89.12%. Through δ, the

payment system velocity drives the low-frequency movements of φ. As shown

in our model, a high velocity leads to stronger strategic complementarity (i.e.,

a high δ, and thereby, high φ). Given a high velocity, a bank can support a

large volume of depositors’ payments by borrowing a small amount of liquidity

from its neighboring banks. Through the complementarity among depositors,

these payments in turn increase the overall demand for the bank’s payment ser-

vices, thus raising the marginal profits from holding its own liquidity to support

payments.

In sum, our theoretical model not only guides our estimation of the net effects

of strategic interactions, i.e., φ, among banks on the network. It also allows us

to relate the estimate of φ to the underlying economic forces, and in particular,

the velocity of the payment system, i.e., how fast the liquidity provided by
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banks circulates among depositors through payment activities. The strategic

interactions among banks are not only functions of the characteristics of the

banking system, but also critically depend on how banks’ clients behave. As

shown in Fig. 10, the unfolding of the financial crisis was accompanied by a

decline of payment velocity, which explains the decline of φ – when the payment

system could not churn liquidity as fast as before, the strategic complementarity

in banks’ decision to hold reserves weakened.

7. Conclusion

We develop a network model of banks’ liquidity holding decisions and esti-

mate the model to uncover the structural parameters that determine the type

of equilibrium on the interbank network, i.e., strategic complementarity or sub-

stitution. Using the estimated parameters and the observed network topology,

we construct measures of systemic risk. We find that the network topology is

a main driver of the cross-sectional variation in banks’ contribution to systemic

risks. We propose empirical metrics to identify the banks that contribute the

most to the systemic liquidity risk in the payment system.

We find that the network effects vary significantly through the sample pe-

riod of 2006 to 2010. In the pre-crisis period, banks’ liquidity holding decisions

exhibited strategic complementarity, so shocks were amplified by the network.

In contrast, during the crisis, the network multiplier declined significantly, sug-

gesting that banks adjusted their liquidity management objectives in a way that

reduced network domino effects. Finally, during the QE period, in response to

the large liquidity injection, the equilibrium on the interbank network was char-

acterized by strategic substitution, and accordingly, the network became a shock

buffer.

To the best of our knowledge, we are the first to provide evidence on the

substantial time variation in the nature of equilibrium on a financial network.

Moreover, we show that, from a systemic risk perspective, the change in the

type of equilibrium is the dominant force (rather than the change in network
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topology). This observation could rationalize the empirical puzzle of network

topology changes having little impact on aggregate quantities in the calibra-

tion/simulation studies on interbank networks (e.g., Elsinger et al., 2006).

From a policy perspective, we are able to identify key risk contributors using

our estimates of structural parameters and show that a subset of players are re-

sponsible for most of the systemic risk generated through network connections.

Finally, we solve the choice of a benevolent planner and quantify the discrep-

ancy between the planner’s solution and the decentralized outcome in both the

expected level and the volatility of aggregate liquidity. In particular, we find

that during both the pre-crisis and the 2007–2009 crisis periods, the system was

characterized by excessive risk, and during the crisis, too little liquidity buffer

was held by individual banks relative to the social optimum.
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Appendix A. Model Discussion and Additional Theoretical Results

Appendix A.1. Depositors’ payment demand

In the payment system, each bank serves a unit mass of depositors in a

region which, for example, can be defined geographically by a bank’s branch lo-

cations. We model the depositors’ demand for payment services. Let di,t denote

a representative depositor’s demand for payment services, and Di,t denote the

aggregate demand in region i. A representative depositor solves the following

problem:

max
di,t

F (Di,tdi,t)− di,tPi,t, (A.1)

where F (·) is an increasing function. The complementarity between aggregate

and individual payments, i.e., the product of Di,t and di,t in F (·), captures a

payment multiplier. Payments beget payments: when depositors make more

payments, they trigger more economic activities and the new activities require

more payments. This effect may work through the production input-output

linkages (Carvalho and Tahbaz-Salehi, 2019). When downstream customers pay

upstream suppliers for their products, upstream suppliers may in turn pay their

own suppliers along the logistic chains. Another mechanism is that receiving

payments relaxes agents’ liquidity constraints and allows them to pay others

(Shin, 2019). Such a feedback effect from aggregate activities to individual

agents is also a key ingredient in models of economic growth (e.g., Frankel,

1962; Lucas, 1988; Romer, 1986).

The cost of payment services is Pi, which can be interpreted as a reduction

in the deposit rate, for example, as depositors have to accept low interest rates

on checking accounts for payment convenience. We do not model depositors’

switching to different banks for cheaper payment services. In our empirical

implementation, one period is one day, so the assumption is that depositors

do not switch between banks intraday. Moreover, banks typically have deposit

market power and a sticky customer base, which is well documented in the

literature [e.g., (Drechsler et al., 2017; Wang et al., 2019)].
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A representative depositor’s first-order condition is

F ′ (Di,tdi,t)Di,t = Pi,t. (A.2)

Substituting the equilibrium condition, Di,t = di,t, i.e., the aggregate demand

for payment services from a unit mass of depositors is equal to the individual

demand, we have the aggregate demand for payment services:

Pi,t = F ′
(
D2
i,t

)
Di,t ≡ P (Di,t) . (A.3)

Given the payment service market-clearing condition,

Di,t = Si,t, (A.4)

bank i’s revenues at t from supplying payment services are given by

V (Si,t) ≡ P (Di,t)Di,t = P (Si,t)Si,t = F ′
(
S2
i,t

)
S2
i,t, (A.5)

where the payment service demand curve, P (Di,t) = F ′
(
D2
i,t

)
Di,t, is given

by Eq. (A.3). In the main text, we linearize the marginal revenues, i.e.,

F ′
(
S2
i,t

)
= δS/2. When F (·) is linear, the aggregate demand for payment

services is upward-sloping (at least locally around the linearisation point), as

shown by Eq. (A.3), which suggests that the positive feedback effect from the

aggregate payment activities to individuals’ payment activities is strong.

Appendix A.2. A more general model

In this section, we present a more general model. In our main model, when

bank i exhausts its reserves through payment outflows, it can only borrow from

bank j’s reserves that are committed to the payment system, i.e., zj,t. In the

following, we allow bank j’s total liquidity to be accessible via the network. As a

reminder, the total liquidity is lj,t = qj,t+zj,t, where qj,t = αj +
∑M
m=1 βmx

m
j,t+∑P

p=1 βpx
p
t is bank j’s liquidity held for its own intraday transactions. Let
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ρ ∈ [0, 1] denote the fraction of qj,t that bank j is willing to lend out. When ρ

is restricted to zero, the model is reduced to the main model.

Bank i’s supply of payment services is given by

Si,t = κb

zi,t + η
∑
j 6=i

(zj,t + ρqj,t)

 . (A.6)

Given the same demand for payment services as before, we obtain bank i’s

revenues,

V (Si,t) ≡ F ′
(
S2
i,t

)
S2
i,t . (A.7)

As in Eq. (4) of the main model, the cost of liquidity is now parameterized as

γ

zi,t + η
∑
j 6=i

gij,t (zj,t + ρqj,t)

+
ψ

2

zi,t + η
∑
j 6=i

gij,t (zj,t + ρqj,t)

2

+µ̃i,tγ
′zi,t+

ψ′

2
z2
i,t,

(A.8)

where zj,t is now replaced by zj,t+ρqj,t. As in the main model, we linearize the

system by considering a constant F ′
(
S2
i,t

)
≡ δS/2, and define δ ≡ δSκb. The

first-order condition for zi,t is given by

δ

zi,t + η
∑
j 6=i

gij,t (zj,t + ρqj,t)

 = γ+ψ

zi,t + η
∑
j 6=i

gij,t (zj,t + ρqj,t)

+µ̃i,tγ
′+ψ′zi,t.

(A.9)

The same condition given by Eq. (7) applies for the uniqueness of the optimal

solution.

Bank i’s optimal choice of zi,t is given by

z∗i,t = φ
∑
j 6=i

gij,t (zj,t + ρqj,t) + µi,t, (A.10)

where, as in the main model, we define

φ ≡
(

δ − ψ
ψ′ − (δ − ψ)

)
η (A.11)
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and

µi,t ≡
(−µ̃i,tγ′ − γ)

ψ′ − (δ − ψ)
= µ̄i + νi,t, (A.12)

where νi,t has a normal distribution N
(
0, σ2

i

)
, independent over i and t. The

equilibrium,
{
z∗i,t
}N
i=1

, solves the system of linear equations: i = 1, ..., N ,

z∗i,t = φ
∑
j 6=i

gij,t
(
z∗j,t + ρqj,t

)
+ µi,t. (A.13)

In Eq. (A.10), we can replace z∗i,t and z∗j,t by li,t− qi,t and lj,t− qj,t respectively

to obtain

li,t − qi,t = φ
∑
j 6=i

gij,tlj,t − φ (1− ρ)
∑
j 6=i

gij,tqj,t + µi,t. (A.14)

Rearranging the equation, we have

li,t = φ
∑
j 6=i

gij,tlj,t + µ̆t, (A.15)

where we define

µ̆t ≡qi,t − φ (1− ρ)
∑
j 6=i

gij,tqj,t + µi,t (A.16)

=αi +

M∑
m=1

βmx
m
i,t +

P∑
p=1

βpx
p
t − φ (1− ρ)

∑
j 6=i

gij,t

(
αj +

M∑
m=1

βmx
m
j,t +

P∑
p=1

βpx
p
t

)
+ µi,t.

Note that αi and µ̄i cannot be separately identified, so we drop the bank fixed

effects:

µ̆t =

M∑
m=1

βmx
m
i,t +

P∑
p=1

βpx
p
t − φ (1− ρ)

∑
j 6=i

gij,t

(
M∑
m=1

βmx
m
j,t +

P∑
p=1

βpx
p
t

)
+ µi,t.

(A.17)
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Note that because
∑
j 6=i gij,t = 1, the expression of µ̆t can be simplified:

µ̆t =

M∑
m=1

βmx
m
i,t +

P∑
p=1

χpx
p
t − φ (1− ρ)

∑
j 6=i

gij,t

M∑
m=1

βmx
m
j,t + µi,t, (A.18)

where χp ≡ [1− φ (1− ρ)]βp. Then for m = 1, ...,M + n, we define θm ≡

−φ (1− ρ)βm, and further simplify the expression of µ̆t:

µ̆t =

M∑
m=1

βmx
m
i,t +

P∑
p=1

χpx
p
t +

∑
j 6=i

gij,t

M∑
m=1

θmx
m
j,t + µi,t. (A.19)

Once we impose the restriction ρ = 0, we are back to the main model.

Therefore, estimating this more general formulation serves as a specification

test of the main model. The following result is immediate following the same

steps as in the proof of Proposition 1 in the main text.

Proposition 3. Suppose that |φ| < 1. Then, there is a unique interior solution

for the equilibrium outcome given by

l∗i,t (φ,Gt) = {M (φ,Gt)}i. µ̆t, (A.20)

where {}i. is the operator that returns the i-th row of its argument, µ̆t ≡

[µ̆1,t, ..., µ̆N,t]
>

, and

M (φ,Gt) ≡ I +φGt +φ2G2
t +φ3G3

t + ... =

∞∑
k=0

φkGk
t = (I − φGt)

−1
, (A.21)

where I is the N ×N identity matrix.

The above result implies that, even in this more general model, the defini-

tions of conditional volatility of liquidity, risk key player, and level key player,

as well as their dependency on the network topology and equilibrium parameter

φ, stay unchanged.33

33In this case, l∗ should replace z∗ in Eq. (A.23).
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In our empirical implementation we can write the observed total reserve

holdings, for i = 1, ..., N , t = 1, ..., T , as

li,t = φ
∑
j 6=i

gij,tlj,t +

M∑
m=1

βmx
m
i,t +

P∑
p=1

χpx
p
t +

∑
j 6=i

gij,t

M∑
m=1

θmx
m
j,t + µ̄t + νi,t.

(A.22)

This empirical counterpart of the more general model is a spatial Durbin model,

i.e., Eq. (36) in the main text. The network effect on banks’ liquidity holding

decisions is no longer confined in the residual term, zi,t, but rather on the total

level of liquidity.

Appendix A.3. Level key player

Similar to the risk key player, we can identify the “systemic level key player”,

whose removal from the system causes the largest aggregate liquidity reduction

in expectation.34

Definition 3 (Level key player). The level key player τ∗t is the player that,

when removed, causes the maximum expected reduction in the overall level of

total liquidity. We use G\τ,t to denote the new adjacency matrix obtained by

setting to zero all of Gt’s τ -th row and column coefficients. The resulting net-

work is g\τ,t. The level key player τ∗t is found by solving

τ∗t = arg max
τ=1,...,N

E

∑
i

z∗i (φ, gt)−
∑
i 6=τ

z∗(φ, g\τ,t)

∣∣∣∣∣∣ gt, τ
 , (A.23)

where E is the expectation operator.

We define the level key player under the assumption that the removal of

banks does not trigger immediately the formation of new links. Hence, we

34This definition is in the same spirit as the concept of key player in the crime network
literature, e.g., Ballester et al. (2006), where targeting key players is important for crime
reduction. Here, it is useful to consider the ripple effect on the aggregate liquidity when a
bank fails and exits from the system. Injecting liquidity to the key level players might be
necessary to avoid major disruptions to the whole system.
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capture the short-run effects of a bank’s sudden failure. Since we do not observe

bank failure in our sample, we cannot provide a precise time frame for link

formation after removal. However, our definition can be operational from a

policy perspective, especially during a crisis when banks shun each other and

link formation becomes less likely. Using Proposition 1, we have the following

corollary.

Corollary 1. A player τ∗t is the level key player that solves Eq. (A.23) if and

only if

τ∗t = arg max
τ=1,...,N

{M(φ,Gt)}τ.µ̄︸ ︷︷ ︸
Indegree effect

+ 1>{M (φ,Gt)}.τ µ̄τ︸ ︷︷ ︸
Outdegree effect

− mττ (φ,Gt)µ̄τ︸ ︷︷ ︸
Double count correction

,

(A.24)

where mττ (φ,Gt) is the τ -th element of the diagonal of M (φ,Gt).

When bank τ is removed, its liquidity disappears from the system. This is

the first component, the indegree effect, which depends on neighbors’ µ̄ through

{M(φ,Gt)}τ., the routes from neighbors to τ . The second component reflects

bank τ ’s impact on other banks, so its own µ̄τ is multiplied by the sum of

the routes from τ to neighbors, i.e., 1>{M(φ,Gt)}τ.. This outdegree effect

captures the network externality. The level key player metric is particularly

relevant for a central planner who decides on which bank to help to sustain the

aggregate liquidity buffer. Such a decision depends on a bank’s own contribution

to aggregate liquidity and the spillover effects through the network linkages. As

in the risk key player metric, focusing on the network alone is not enough. Both

the attenuation factor φ and bank-specific characteristics, now captured by µ̄,

are important inputs in computing key players.
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Abstract

The online appendices provide the institutional background of our empirical

setting, details of our empirical methodology, and additional figures and tables.

In Appendix O.1, we review the institutional setting of banks’ liquidity (reserve)

management, such as U.K. monetary policy framework, the U.K. payment and

settlement systems, and the sterling overnight interbank market. Appendix O.2

provides details on the quasi-maximum likelihood formulation and identification

for both the baseline spatial error model and the more general spatial Durbin

model, the calculation of confidence bands for the network impulse response

functions, and details on variables construction. In Appendix O.3, we provide

time-series plots of several key variables and tables of detailed estimation results

for both the baseline spatial error model (and its robustness checks) and the

more general spatial Durbin model.

O. Appendices

O.1. Reserves schemes, payment systems, and interbank liquidity

Banks in the UK choose the amount of central bank reserves that they hold

to support a range of short-term liquidity needs. Reserves are the ultimate set-
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tlement asset for interbank payments. Whenever payments are made between

the accounts of customers at different commercial banks, they are ultimately

settled by transferring central bank money (reserves) between the reserves ac-

counts of those banks. Reserve balances are used to buffer against intraday

payment imbalances (i.e., cumulative outflows larger than inflows). Addition-

ally, central bank reserves are the most liquid asset that banks can draw upon

in the presence of unexpected outflows of funds. Since 2006, the starting year

of our sample, banks choose their reserve holdings on a discretionary basis, i.e.,

reserve holdings are not mandatory. However, their reserve holding decisions

depend on the policy framework in which they operate.

O.1.1. Monetary policy framework

Since the 1998 Banking Act, the Bank of England (BoE) has had indepen-

dent responsibility for setting interest rates to ensure that inflation, as measured

by the Consumer Price Index (CPI), meets the inflation target of 2%. Each

month, the Monetary Policy Committee (MPC) meets to decide the appropri-

ate level of the Bank rate (the policy interest rate) to meet the inflation target

in the medium term. The Sterling Monetary Framework changed over time.

During our sample period, the Bank of England had three distinct monetary

frameworks: prior to May 18, 2006, the Bank of England operated an unremu-

nerated reserve scheme; this was then replaced by a reserves average scheme;

since March 2009 and the initiation of quantitative easing, the reserves average

scheme has been suspended.

Pre-2006 Reform: Prior to the 2006 reforms, the Sterling Monetary Frame-

work (SMF) was based upon voluntary unremunerated reserves. There were

no reserve requirements and no reserve averaging over a maintenance period.

The only requirement was that banks were obliged to maintain a minimum zero

balance at the end of each day. In practice, due to uncertainties from end of

day cash positions, banks opted for small positive reserve balances.

Reserve Averaging: In May 2006, the Bank of England undertook a major

reform of the Sterling Monetary Framework. The new scheme was voluntary
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remunerated reserves with a period-average maintenance requirement. Each

maintenance period – the period between two meetings of the Monetary Pol-

icy Committee – banks were required to decide upon a reserves target. This

voluntary choice of reserves target is a feature unique to the UK system. Over

the course of each maintenance period, the banks would manage their reserves

so that, on average, their reserves hit the target. Where banks were unable to

hit the target, standing borrowing and deposit facilities were available. Within

a range of ±1% of the target, reserves are remunerated at the Bank Rate.1

Holding an average level of reserves outside the target range attracts a penalty

charge.2 However, a bank can ensure it hits its target by making use of the

Bank’s Operational Standing Facilities (OSFs). These bilateral facilities allow

banks to borrow overnight from the Bank (against high-quality collateral) at

a rate above Bank Rate or to deposit reserves overnight with the Bank at a

rate below Bank Rate. The possibility of arbitrage between interbank market

rates and reserves remunerated at Bank Rate is the main mechanism through

which market rates are kept in line with Bank Rate. In both schemes before

quantitative easing (QE), the BoE would ensure sufficient reserves supply for

banks to meet their reserves target. Banks then use the interbank market to

reallocate reserves from banks in surplus to banks in deficit.

Post-Quantitative Easing: Quantitative easing in UK started in March 2009

when the MPC decided that in order to meet the inflation target in the medium

term, it would need to supplement the use of interest rate (which had hit the

practical lower bound of 0.5%) with the purchase of assets using central bank

reserves. This consisted of the BoE’s boosting the money supply by creating

central bank reserves and using them to purchase assets, predominantly UK

gilts. Furthermore, the BoE suspended the average reserve targeting regime,

and now remunerates all reserves at the Bank rate.

1At various points during the crisis, this ±1% range was increased to give banks more
flexibility.

2Settlement banks also pay a penalty if their reserves account is overdrawn at the end of
any day.
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The effect of reserve targeting: Before the QE period, the average reserve

targeting regime imposes restrictions on banks’ liquidity choice, because miss-

ing the target in a maintenance period can be costly. However, as previously

explained, a bank can ensure it hits its target by making use of the Bank’s Oper-

ational Standing Facilities (OSFs). Our model in the main text does not feature

restrictions associated with the reserve schemes, because data on banks’ reserve

targets is unavailable. However, we may still test the impact of such restrictions

on our results by adding the lagged liquidity holdings into our baseline specifi-

cation. A direct implication of a rigid targeting regime is that banks’ liquidity

holdings exhibits mean-revertion – positive deviations tend to be followed by

negative ones so that, on average, banks can hit the targets. Specifically, this

suggests a negative coefficient on the lagged liquidity. Table O.5 in Section O.3

reports the results. φ̂ does not change much in comparison with the baseline es-

timate. Moreover, the coefficients on the lagged liquidity holdings are positive,

against the hypothesis of a rigid regime reserve targeting regime.

O.1.2. Payment and settlement systems

Banks use central bank reserves to, inter alia, meet their demand for intraday

liquidity in the payment and settlement systems. Reserves act as a buffer to

cover regular timing mismatches between incoming and outgoing payments, for

example, due to exceptionally large payments, operational difficulties, or stresses

that impact upon a counterparty’s ability, or willingness to send payments.

There are two major payment systems in the UK: CHAPS and CREST.3 These

two systems play a vital role in the UK financial system. On average, in 2011,

£700 billion in transactions was settled every day within the two systems. This

amount equates to the UK 2011 nominal GDP being settled every two days.

CHAPS is the UK’s large-value payment system. It is used for real time set-

tlement of payments between its member banks. These banks settle payments

on behalf of hundreds of other banks through correspondent relationships. Typi-

3There are also four retail payment systems (Bacs, the Faster Payments Service (FPS),
Cheque and Credit Clearing (CCC) and LINK) that are operated through the BoE.
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cal payments are business-to-business payments, home purchases, and interbank

transfers. Payments relating to unsecured interbank money markets are settled

in CHAPS. CHAPS opens for settlement at 8 am and closes at 4:20 pm. Pay-

ments made on behalf of customers cannot be made after 4 pm. The system

has throughput guidelines which require members to submit 50% of their pay-

ments by noon and 75% by 14:30. This helps ensure that payments are settled

throughout the day and do not cluster towards the end of the day.

In 2011, CHAPS settled an average of 135,550 payments each day valuing

£254bn. CHAPS is a real-time gross settlement (RTGS) system. This means

that payments are settled finally and irrevocably in real time. To fund these

payments, banks have to access liquidity intraday. If a bank has, at any point

during the day, cumulatively sent more payments than it has received, then it

needs liquidity to cover this difference. This comes either from central bank

reserves or intraday borrowing from the BoE. Furthermore, when a bank sends

funds to another bank in the system, it exposes itself to liquidity risk, that

is, the risk that the bank may not get those fund inflows back during the day

and thus will run down their own liquidity holdings or borrow from the BoE.

Therefore, it is important to choose an appropriate level of liquidity buffer. In

addition to maintaining a liquidity buffer, banks manage liquidity by borrowing

from and lending to each other in the unsecured overnight markets. According

to Bank of England estimates, payments relating to overnight market activity

(advances and repayments) account for approximately 20% of CHAPS values

(Wetherilt et al., 2010).

CREST is a securities settlement system. Its Delivery-vs-Payment (DVP)

mechanism ensures simultaneous transfer of funds and securities. When a liq-

uidity need is identified, the CREST system’s intraday liquidity mechanism with

the BoE works automatically through “Self-Collateralising Repos” (SCRs): if

a CREST settlement bank would otherwise have insufficient funds to settle a

transaction, a secured intraday loan is generated using as eligible collateral ei-

ther the purchased security (if eligible) or other securities.
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O.1.3. The sterling unsecured overnight interbank market

Interbank markets are the markets where banks and other financial institu-

tions borrow and lend assets, typically with maturities of less than one year. At

the shortest maturity, overnight, banks borrow and lend central bank reserves.

Monetary policy aims at influencing the rate at which these markets transact

in order to control inflation in the wider economy. There is limited informa-

tion available about the size and the structure of the sterling money markets.

The Bank of England estimates suggest that the overnight unsecured market

is approximately £20–30 billion per day during our sample period. Wetherilt

et al. (2010) describe the network of the sterling unsecured overnight money

market. They find that the network has a small core of highly connected partic-

ipants, surrounded by a wider periphery of banks loosely connected with each

other, but with connections to the core. It is believed that prior to the recent

financial crisis, the unsecured market was much larger than the secured market.

We identify interbank borrowing and lending transactions in CHAPS settlement

data.

O.2. Details of the empirical methodology

O.2.1. Quasi-maximum likelihood formulation and identification

The main model.. Writing the variables and coefficients of the spatial error

model in Eq. (22) and Eq. (23) in matrix form as4

B := [αtime1 , ..., αtimet , ..., αtimeT , αbank1 , ..., αbanki , ..., αbankN ,

βbank1 , .., βbankm , ..., βbankM , βmacro1 , ..., βmacrop , ..., βmacroP ]>,

L := [l1,1, ..., lN,1, ..., li,t, ..., l1,T , ..., lN,T ]
>
, z := [z1,1, ..., zN,1, ..., zi,t, ..., z1,T , ..., zN,T ]>

ν := [ν1,1, ..., νN,1, ..., νi,t, ..., ν1,T , ..., νN,T ], µ := 1T ⊗ µ̄ = 1T ⊗ [µ̄1, ..., µ̄N ]
>
,

4This is similar to the spatial formulation in Lee and Yu (2010).
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G := diag (Gt)
T
t=1 =


G1 0 ... 0

0 G2 ... ...

... ... ... 0

0 ... 0 GT

 , X :=
[
D,F,Xbank,Xmacro

]
,

where D := IT ⊗ 1N , F := 1T ⊗ IN , and

Xmacro =



x1
1 ... xp1 ... xP1

... ... ... ... ...

x1
t ... xpt ... xPt

... ... ... ... ...

x1
T ... xpT ... xPT


⊗1N , Xbank =



x1
1,1 ... xm1,1 ... xM1,1

... ... ... ... ...

x1
N,1 ... xmN,1 ... xMN,1

... ... ... ... ...

x1
N,T ... xmN,T ... xMN,T


,

we can then rewrite the empirical model as

L = XB + z, z = µ+ φGz + ν, νi,t ∼ iid
(
0, σ2

i

)
. (O.1)

This, in turn, implies that

ν
(
B,µ, φ

)
= (IN×T − φG) (L−XB)− µ. (O.2)

Finally, using the Gaussian distribution to model the exogenous error terms

ν yields the log likelihood

lnL
(
B,φ, µ,

{
σ2
i

}N
i=1

)
≡ −TN

2
ln (2π)−T

2

N∑
i=1

lnσ2
i−

N∑
i=1

1

2σ2
i

T∑
t=1

νi,t
(
B,µ, φ

)2
,

(O.3)

and the above can be estimated using standard optimization methods.

The separate identification of the bank fixed effects, αbank :=
[
αbank1 , ..., αbankN

]>
,

and the network-bank fixed effects, µ̄ := [µ̄1, ..., µ̄N ]
′
, deserve some further re-

marks. Isolating the role of these fixed effects, Eq. (O.2) can be rewritten
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as

ν
(
B,µ, φ

)
= (IN×T − φG)

(
L− X̃B̃ − Fαbank

)
− µ (O.4)

= (IN×T − φG)
(
L− X̃B̃

)
− 1T ⊗

(
µ̄+ αbank

)
+ φGFαbank

where X̃ :=
[
D,Xbank,Xmacro

]
and B̃ is simply the vector B without the αbank

elements.

Several observations are in order. First, the above implies that if φ = 0,

then µ̄ and αbank cannot be separately identified (nevertheless the parameters

B̃ are still identified). Second, if Gt is a right stochastic matrix (i.e., with row

sums equal to one or Gt1N = 1N ) for every t, separate identification of µ̄ and

αbank can be achieved only up to a parameter normalization. To understand

the lack of separate identification, note that Eq. (O.1) can be rewritten as

L = XB + 1T ⊗ INαbank + (IN×T − φG)
−1
µ+ ε. (O.5)

where the last error term, ε := (IN×T − φG)
−1
ν, is orthogonal to X, and

V ar [ε] = (IN×T − φG)
−1

(IT ⊗ Σv)
(
IN×T − φGT

)−1
.

Therefore, separately identifying αbank and µ requires that 1T⊗IN and (IN×T − φG)
−1

are linear independent (see Eq. (O.5)). However, if Gt is right stochastic, i.e.,

Gt1N = 1N for any t, we have

(IN×T − φG)
−1

1N×T =

∞∑
k=0

φkGk1N×T =

(
1

1− φ

)
1N×T =

(
1

1− φ

) N∑
i=1

{1T ⊗ IN}i ,

which is exactly the sum, i.e., a linear combination, of columns in 1T ⊗ IN .

As a result, αbank and µ cannot be separately identified in general, unless we

normalize some of the parameters, for example, by setting one of the µ̄i = 0.

Nevertheless, in our subsample estimation, such normalization is not needed,

as noted in the main text. This is due to a special feature of our data. Note
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that the lack of separate identification for µ̄ and αbank arises because Gt is

always a right stochastic matrix, i.e., G1N×T = 1N×T for any t. However,

in our sample, bank 7 did not have connections with other banks in 14 days,

and bank 11 did not have connections with other banks in 145 days. These

159 days do not overlap. They cover 13.5% of the time and spread across our

three subsamples. In such days, one row of Gt has every element equal to zero,

and thus, G1N×T = 1N×T does not hold (either the sum of row 7 or 11 is

zero). As a result, we can separately identify µ̄ and αbank. In contrast, in our

rolling estimation (Fig. 9), because the rolling windows are smaller than our

subsamples and some do not contain any of the 159 days, we set µ̄11 to zero.

The estimate of φ is robust to setting other µ̄i to zero since φ is recovered from

the covariance matrix of the residuals in Eq. (O.5), and a consistent estimate

of this covariance does not require separate identification of αbank and µ.

Below, we explain the numeric method of likelihood maximization. First, we

estimate B using ordinary least squares (OLS), and use the first-order condition

for σ2
i , i.e.,

σ̂2
i =

1

T

T∑
t=1

νi,t
(
B,µ, φ

)2
,

to substitute out σ2
i in the log likelihood function, forming a concentrated like-

lihood that only depends on φ. By maximizing the concentrated likelihood,

we obtain φ̂, and then, using the aforementioned first-order conditions for σ2
i ,

we obtain σ̂2
i . We then re-estimate B as in feasible generalized least squares

(FGLS), using φ̂ and σ̂2
i to form the heteroskedastic covariance matrix in the

observational equation of L. Next, B̂ is used to form a new concentrated likeli-

hood, which is used to update the estimate of φ. We iterate this process until

convergence.

A more general model.. As discussed in Section 4.4, our main model is nested

by the spatial Durbin model. Define

γbank := [γbank1 , .., γbankm , ..., γbankM ]>, and γmacro = [γmacro1 , ..., γmacrop , ..., γmacroP ]>.
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As in the main text, we simplify the notation by merging bank fixed effects

into bank characteristics and time fixed effects into macro control variables.

Following the previous matrix notation, this model can be written in matrix

form as

L = Xmacroγmacro +Xbankγbank + ρGL+GXbankθ+µ+ ν, νi,t ∼ iid
(
0, σ2

i

)
,

(O.6)

which implies that

ν = (IN×T − φG)
(
L−Xmacroγmacro −Xbankγbank −GXbankθ

)
− µ. (O.7)

Note that as long as G and IN×T are not linear dependent, which is true by the

construction of G, we can separately identify γbank and θ. As in the estimation

of SEM, we can form a log likelihood function and follow an iterating procedure

to estimate the parameters.

O.2.2. Confidence bands for the network impulse response functions

The φ estimator outlined in the previous section has an asymptotic Gaussian

distribution with variance s2
φ (that can be readily estimated from the QMLE

covariance matrix based, as usual, on the Hessian and gradient of the log likeli-

hood in Eq. (O.3)). That is,
√
T
(
φ̂− φ0

)
d→ N

(
0, s2

φ

)
, where φ0 denotes the

true value of φ. Writing

a1 (φ) :=
∂1>

{
(I− φG)

−1
}
.i

∂φ
, a2 (φ) =

∂1>
{

(I− φG)
−1
φG
}
.i

∂φ

we have from Lemma 2.5 of Hayashi (2000) that

√
T
[
NIRFi

(
φ̂, 1
)
−NIRFi (φ0, 1)

]
d→ N

(
0, a1 (φ0)

2
s2
φ

)
,

√
T
[
NIRF ei

(
φ̂, 1
)
−NIRF ei (φ0, 1)

]
d→ N

(
0, a2 (φ0)

2
s2
φ

)
.
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Therefore, since aj

(
φ̂
)

p→ aj (φ0), j = 1, 2, by the continuous mapping theorem,

and by Slutsky’s theorem, aj

(
φ̂
)
ŝ2
φ

p→ aj (φ0)
2
s2
φ, where ŝ2

φ is a consistent

variance estimator, we can construct confidence bands for the network impulse

response functions using the sample estimates of φ and s2
φ.

O.2.3. Details on variables construction

Bank-level variables

• Liquidity holdings (li,t, i.e., the dependent variable): the logarithm of

reserve balances plus collateral posted to the BoE at the beginning at the

day.

• Intraday liquidity available (LA) is the amount of liquidity to meet pay-

ment requirements and is measured as the sum of reserves (SDAB, Start

of Day Account Balance) plus the value of intraday repo available with the

BoE (PC, Posting of Collateral). As time passes, the liquidity available

in CHAPS is calculated by subtracting the money moved to CREST from

the liquidity available in the previous time interval. In this way, we can

trace for bank i the liquidity available at any time t in day s:

LA(t, i, s) = SDABi,s + PCi,s −
∑t

τ=1
CRESTi,s,τ .

This variable is used for the constructions of lnVolPay i,t−1.

• lnVolPay i,t−1: log intraday variance of liquidity available, lagged by one

day.

• lnLU i,t−1: liquidity used is defined as follows,

LU(i, s) = max{max
T

[CNP (T ; i, s)], 0}.

The first (inside) maximum operator picks the highest level of cumulative

net debit position (CNP ) within a day. Regarding the second (outside)

maximum operator, if the highest level is negative, the bank i is always

11



a liquidity contributor on day s, so LU is equal to zero. When used in

estimation, it is lagged by one day and in logarithms.

• lnLevPay i,t−1: total intraday payment level (lagged by one day, in loga-

rithms).

• rK in
i,t−1: right kurtosis of incoming payment time, lagged by one day.

• rK out
i,t−1: right kurtosis of outgoing payment time, lagged by one day.

• Interbank Rate: interbank borrowing rate, lagged by one day.

• Total Lending and Borrowing (log): total lending and borrowing in the

interbank market (lagged by one day, in logarithms).

• Total Assets (log): total asset (lagged, monthly, in logarithms).

• Repo Liability
Assets : repo liability to total asset ratio (lagged, monthly).

• Deposits
Assets : the log cumulative change in retail deposit to asset ratio (lagged,

monthly).

• CDS Spread : an index (log cumulative change) of 5-year senior unsecured

CDS spread.

• Stock Return: gross stock return including dividends (lagged by one day).

Macro variables

• lnVolPayt−1: intraday variance of aggregate liquidity available (lagged by

one day, in logarithms). “Liquidity available” is defined above at the bank

level.

• TORt−1: lagged turnover rate in the payment system. To define the

turnover rate, we need first to define the Cumulative Net (Debit) Position

(CNP):

CNP (T, i, s) =

T∑
t=1

(POUTi,s,t − P INi,s,t),

12



where POUTi,s,t is bank i’s total payment outflow at time t in day s. P INi,s,t is

the payment inflow. The turnover rate (in day s) is defined as

TORs =

∑N
i=1

∑88
t=1 P

OUT
i,s,t∑N

i=1 max{maxT [CNP (T ; i, s)], 0}
(O.8)

The numerator is the total payment made in the system at day s. The

denominator sums the maximum cumulative net debt position of each

bank at day s. Note that in the denominator, if the cumulative net position

of a certain bank is always below zero (that is, this bank’s cumulative

inflow always exceeds its cumulative outflow), this bank actually absorbs

liquidity from the system. If there are banks absorbing liquidity from the

system, there must be banks injecting liquidity into the system. When we

calculate the turnover rate (the ratio between the total amount circulating

and the base), we should only consider one of the two. That is why we take

the first (outside) maximum operator. The reason for the inside operator

goes as follows: any increase in the cumulative net debit position (wherever

positive) incurs an injection of liquidity into the system, so the maximum

of the cumulative net position is the total injection from the outside to

the payment system. Additionally, the sum over different banks gives the

total injection through all the membership banks. A higher turnover rate

means a more frequent reuse of liquidity injected from outside into the

payment system.

• rK t−1: lagged right kurtosis of the intraday time of aggregate payment

outflow:

rKt =

∑
τ>mt

( τ−mt

σt
)4∑88

τ=1( τ−mt

σt
)4

where

mt =
1

88

88∑
τ=1

τ

(
POUTt,τ∑88
τ=1 P

OUT
t,τ

)
, σ2

t =
1

88− 1

88∑
τ=1

(τ−mt)
2

(
POUTt,τ∑88
τ=1 P

OUT
t,τ

)

and POUTt,τ is the aggregate payment outflow at time interval τ . Note that

13



transactions are recorded for 88 10-minute time intervals within each day

(from 5:00 to 19:30). The variable mt is the average of payment time

weighted by the payment outflow.

• LIBOR: daily LIBOR rate, lagged by one day.

• Interbank Rate Premium: average interbank rate minus LIBOR, lagged

by one day.

O.3. Additional figures and tables

Fig. O.1. Daily gross interbank borrowing (rolling monthly average; unit: £1).
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Fig. O.2. Intraday variance of aggregate outflows (Unit: £1).
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Fig. O.3. Turnover rate in the payment system as defined in Eq. (O.8).
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Fig. O.4. Right kurtosis of aggregate payment times, defined as the kurtosis generated
by payment times above the average payment time of the day.
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Fig. O.5. Cross-sectional standard deviation of interbank interest rate rates (weekly
average).
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Table O.1
Spatial Error Model Estimation Results. Estimation results for Eq. (22) and Eq.
(23). Periods 1, 2 and 3 correspond, respectively, to before the Northern Rock/BNP
Paribas Fund Crisis, after it but before the first BoE announcement of Asset Purchase
Programme, and the QE period. The t-statistics are reported in parentheses under
the estimated coefficients, and ∗ denotes statistically significant estimates at a 10% or
higher confidence level. Standard errors are QMLE-robust ones, and for the average
network multiplier, 1/(1 − φ̂), the delta method is employed.

Period 1 Period 2 Period 3

φ̂ 0.8137∗
(21.47)

0.3031∗
(1.90)

−0.1794∗
(−4.96)

1/
(

1− φ̂
)

5.3677∗
(4.92)

1.4349∗
(4.37)

0.8479∗
(32.61)

Macro Control Variables
rKt−1 0.1845

(1.30)
0.0084
(0.55)

−0.0032∗
(−3.88)

lnV olPayt−1 −0.4451
(−1.00)

0.0308
(1.17)

0.0291
(1.72)

TORt−1 0.0166
(1.80)

0.0007
(0.69)

0.0018
(1.75)

LIBOR 0.2378
(0.27)

0.0928
(1.28)

0.5800∗
(2.52)

Interbank Rate Premium 3.8845
(1.61)

−0.0405
(−0.33)

0.6973∗
(3.00)

Bank Characteristics/Micro Control Variables
Interbank Rate −0.2081

(−0.98)
−0.0473
(−1.03)

−0.0880
(−1.92)

lnLevPayi,t−1 −0.0235
(−0.62)

0.0802∗
(3.29)

0.0808∗
(5.09)

rKin
i,t−1 0.0010

(0.14)
−0.0086
(−0.63)

0.0045
(1.03)

rKout
i,t−1 0.0090

(0.92)
0.0320∗

(3.62)
−0.0061
(−1.32)

lnV olPayi,t−1 0.0129∗
(4.59)

0.0039
(1.92)

0.0196∗
(5.96)

lnLUi,t−1 −0.0038∗
(−2.86)

−0.0039∗
(−3.41)

−0.0027∗
(−3.79)

Total Assets (log) 1.2590∗
(5.39)

0.6328∗
(10.31)

1.0170∗
(18.92)

Repo Liability
Assets −5.5625∗

(−3.61)
0.0282
(0.43)

−0.3057
(−1.45)

Deposits
Assets −0.0014

(−0.20)
0.0149∗

(5.15)
0.0481∗
(11.76)

Total Lending and Borrowing (log) −0.1882∗
(−5.57)

0.0612∗
(2.95)

−0.0025
(−1.27)

CDS Spread 0.0051
(0.13)

−0.1212∗
(−6.61)

−0.0383∗
(−4.00)

Stock Return −0.5667
(−0.88)

0.1927
(1.49)

0.2574
(1.88)

R2 66.01% 92.09% 91.53%
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Table O.2

Ratio of network to idiosyncratic volatility. The table reports
√

V ar(ẑi,t)

V ar(v̂i,t)
for

each bank and each period considered. Periods 1, 2 and 3 correspond, respectively, to:
before the Northern Rock/BNP Paribas Fund Crisis, after it but before the first BoE
announcement of Asset Purchase Programme, and the QE period.

Period 1 Period 2 Period 3
Bank 1 2.54 1.05 0.98
Bank 2 2.10 1.04 1.02
Bank 3 1.83 1.06 0.87
Bank 4 2.62 1.06 1.08
Bank 5 2.41 1.10 1.02
Bank 6 1.65 1.09 1.03
Bank 7 1.47 0.97 1.13
Bank 8 1.69 1.09 1.03
Bank 9 2.12 1.09 1.03
Bank 10 1.62 0.99 1.09
Bank 11 2.04 1.14 1.31
Mean 2.01 1.06 1.05
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Table O.3
Spatial Error Model with Counterparty-Adjusted G. Estimation results for
Eq. (22) and Eq. (23). Periods 1, 2 and 3, correspond, respectively, to before the
Northern Rock/BNP Paribas Fund Crisis, after it but before the first BoE announce-
ment of Asset Purchase Programme, and the QE period. The t-statistics are reported
in parentheses under the estimated coefficients, and ∗ denotes statistically significant
estimates at a 10% or higher confidence level. Standard errors are QMLE-robust ones,
and for the average network multiplier, 1/(1 − φ̂), the delta method is employed.

Period 1 Period 2 Period 3

φ̂ 0.8159∗
(21.68)

0.3090∗
(1.92)

−0.1948∗
(−5.05)

1/
(

1− φ̂
)

5.4318∗
(4.89)

1.4472∗
(4.30)

0.8370∗
(30.95)

Macro Control Variables
rKt−1 0.1746

(1.26)
0.0085
(0.55)

−0.0032∗
(−3.87)

lnV olPayt−1 −0.4325
(−0.98)

0.0304
(1.16)

0.0303
(1.78)

TORt−1 0.0164
(1.82)

0.0007
(0.69)

0.0017
(1.70)

LIBOR 0.2404
(0.28)

0.0932
(1.30)

0.5843∗
(2.55)

Interbank Rate Premium 3.7057
(1.59)

−0.0377
(−0.31)

0.7264∗
(3.13)

Bank Characteristics/Micro Control Variables
Interbank Rate −0.2145

(−1.01)
−0.0472
(−1.03)

−0.0949
(−2.05)

lnLevPayi,t−1 −0.0240
(−0.63)

0.0821∗
(3.37)

0.0817∗
(5.07)

rKin
i,t−1 0.0012

(0.17)
−0.0081
(−0.59)

0.0039
(0.88)

rKout
i,t−1 0.0099

(1.01)
0.0310∗

(3.53)
−0.0056
(−1.21)

lnV olPayi,t−1 0.0128∗
(4.57)

0.0041
(2.03)

0.0198∗
(6.00)

lnLUi,t−1 −0.0039∗
(−2.96)

−0.0039∗
(−3.47)

−0.0027∗
(−3.77)

Total Assets (log) 1.2143∗
(5.22)

0.6207∗
(9.98)

1.0000∗
(18.04)

Repo Liability
Assets −5.6703∗

(−3.66)
0.0224
(0.34)

−0.2643
(−1.20)

Deposits
Assets −0.0030

(−0.44)
0.0145∗

(4.98)
0.0492∗
(11.76)

Total Lending and Borrowing (log) −0.1940∗
(−5.70)

0.0645∗
(3.07)

−0.0015
(−0.76)

CDS Spread 0.0076
(0.19)

−0.1203∗
(−6.59)

−0.0382∗
(−3.93)

Stock Return −0.5734
(−0.88)

0.1890
(1.47)

0.2462
(1.82)

R2 67.42% 92.08% 91.61%
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Table O.4
Planner’s Solution vs. Decentralized Equilibrium. This table reports the per-
centage difference between the volatility of aggregate liquidity of the planner’s solution
and that of the decentralized equilibrium, conditional on the network structure. Pe-
riods 1, 2 and 3 correspond, respectively, to before the Northern Rock/BNP Paribas
Fund Crisis, after it but before the first BoE announcement of Asset Purchase Pro-
gramme, and the QE period.

Panel A: η = 9 γ Period 1 Period 2 Period 3

√
V ar(Zp

t |Gt=Ḡ)−
√
V ar(Z∗

t |Gt=Ḡ)√
V ar(Z∗

t |Gt=Ḡ)
−90.3% −36.5% −12.3%

E
[
Zpt − Z∗t |Gt = Ḡ

]
(unit: £billion) −0.59 −89.1 4.1 −100.0

−0.53 −82.5 15.5 −200.0
−0.50 −78.6 22.2 −300.0

Panel A: η = 11 γ Period 1 Period 2 Period 3

√
V ar(Zp

t |Gt=Ḡ)−
√
V ar(Z∗

t |Gt=Ḡ)√
V ar(Z∗

t |Gt=Ḡ)
−88.5% −34.7% −12.4%

E
[
Zpt − Z∗t |Gt = Ḡ

]
(unit: £billion) −0.17 −37.5 88.3 −100.0

−0.12 −31.3 98.8 −200.0
−0.09 −27.7 104.9 −300.0
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Table O.5
Spatial Error Model Estimation with Lagged Liquidity. Estimation results for
Eq. (22) and Eq. (23) with the lagged liquidity holdings as one of the bank charac-
teristics. Periods 1 and 2 correspond, respectively, to before the Northern Rock/BNP
Paribas Fund Crisis, and after it but before the first BoE announcement of Asset Pur-
chase Programme. The t-statistics are reported in parentheses under the estimated
coefficients, and ∗ denotes statistically significant estimates at a 10% or higher con-
fidence level. Standard errors are QMLE-robust ones, and for the average network
multiplier, 1/(1 − φ̂), the delta method is employed.

Period 1 Period 2

φ̂ 0.8230∗
(24.30)

0.4663∗
(5.24)

1/
(

1− φ̂
)

5.6497∗
(5.23)

1.8737∗
(6.00)

Lagged Liquidity Holdings
li,t−1 (Lagged Dependent Variable) 0.2183∗

(4.12)
0.5510∗
(17.80)

Macro Control Variables
rKt−1 0.2099

(1.27)
0.0282
(1.52)

lnV olPayt−1 −0.6076
(−1.08)

0.0599
(1.90)

TORt−1 0.0127
(1.20)

0.0042∗
(3.32)

LIBOR 0.8841
(0.97)

0.0974
(1.66)

Interbank Rate Premium 2.4106
(1.09)

0.0856
(0.77)

Bank Characteristics/Micro Control Variables
Interbank Rate −0.1148

(−0.60)
0.0136
(0.34)

lnLevPayi,t−1 −0.0136
(−0.38)

0.0413∗
(2.19)

rKin
i,t−1 0.0040

(0.57)
0.0197
(1.80)

rKout
i,t−1 0.0058

(0.58)
−0.0005
(−0.07)

lnV olPayi,t−1 0.0108∗
(3.79)

0.0036
(1.91)

lnLUi,t−1 −0.0052∗
(−3.66)

−0.0072∗
(−6.82)

Total Assets (log) 1.0059∗
(4.48)

0.2849∗
(4.78)

Repo Liability
Assets −4.2080∗

(−3.11)
−0.0278
(−0.59)

Deposit
Assets −0.0022

(−0.36)
0.0046
(1.72)

Total Lending and Borrowing (log) −0.1586∗
(−4.84)

0.0081
(0.47)

CDS (log) 0.0098
(0.26)

−0.0624∗
(−4.31)

Stock Return (Inc. Dividend) −0.5334
(−0.84)

0.0404
(0.36)

R2 67.70% 94.48%
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