Money Illusion and Housing Frenzies

Markus K. Brunnermeier* and Christian Julliard[&]

*Department of Economics Princeton University

^oDepartment of Economics London School of Economics

NYU Stern, March 8th, 2006

イロト (母) (ヨト (ヨト ヨヨ ののの

House prices in different countries

- dramatic boom-to-bust episodes, forecastable (Case-Shiller)
- Focus: Role of inflation

Brunnermeier and Julliard (2005) Money Illusio

Money Illusion and Housing Frenzies

イロト (母) (ヨト (ヨト ヨヨ ののの

Decision: Monthly rent versus monthly mortgage payments

 $\Rightarrow Example \text{ of money/inflation illusion}$ decline in inflation \Rightarrow decline in nominal interest rate *i*

- ⇒ monthly payments decline
- \Rightarrow larger mortgage \Rightarrow higher house prices

《曰》《問》《曰》《曰》 [1] [1]

BUT future mortgage payments are larger in real terms (mortgage is not inflated away.

Decision: Monthly rent versus monthly mortgage payments

⇒ Example of money/inflation illusion

decline in inflation \Rightarrow decline in nominal interest rate *i*

- ⇒ monthly payments decline
- \Rightarrow larger mortgage \Rightarrow higher house prices

《曰》《問》《曰》《曰》 [1] [1]

BUT future mortgage payments are larger in real terms (mortgage is not inflated away.

Decision: Monthly rent versus monthly mortgage payments

⇒ Example of money/inflation illusion

decline in inflation \Rightarrow decline in nominal interest rate *i*

 \Rightarrow monthly payments decline

 \Rightarrow larger mortgage \Rightarrow higher house prices

イロト (母) (ヨト (ヨト)ヨヨ ののの

BUT future mortgage payments are larger in real terms (mortgage is not inflated away.)

Decision: Monthly rent versus monthly mortgage payments

⇒ Example of money/inflation illusion

decline in inflation \Rightarrow decline in nominal interest rate *i*

- \Rightarrow monthly payments decline
- $\Rightarrow \quad \mathsf{larger} \ \mathsf{mortgage} \Rightarrow \mathsf{higher} \ \mathsf{house} \ \mathsf{prices}$

- 4 同 ト 4 ヨ ト 4 ヨ ト ク 0 0

⇒ BUT future mortgage payments are larger in real terms (mortgage is not inflated away.)

Outline

1 Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions
- Cross-country evidence
 U.S. evidence

4 Conclusion

(日) (冊) (日) (日) (日)

Outline

Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions
- Cross-country evidence
 U.S. evidence

4 Conclusion

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ へ ()

Outline

Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions
- Cross-country evidenceU.S. evidence

4 Conclusion

Outline

Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions
- Cross-country evidence
 U.S. evidence

4 Conclusion

제품에 제품에 도망된

Money illusion - Related literature

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

• Money Illusion:

Patinkin (1965), Leontief (1936), Fisher (1928)

"That shirt I sold you will cost me just as much to replace as I am charging you [...] But I have made a profit on that shirt because I bought it for less."

- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases: Shafir, Diamond, Tversky (1997), Genesove-Mayer (2001), ...
- Stock market:

Modigliani-Cohn (1979), Asness (2000, 2003), Ritter-Warr (2002), Campbell-Vuolteenaho (2004), Cohen et al. (2005)

Money illusion - Related literature

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

• Money Illusion:

Patinkin (1965), Leontief (1936), Fisher (1928)

"That shirt I sold you will cost me just as much to replace as I am charging you [...] But I have made a profit on that shirt because I bought it for less."

ヨヨー わすゆ

- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases: Shafir, Diamond, Tversky (1997), Genesove-Mayer (2001), ...

 Stock market: Modigliani-Cohn (1979), Asness (2000, 2003), Ritt (2002), Campbell-Vuolteenaho (2004), Cohen et al

Money illusion - Related literature

"An economic theorist can, of course, commit no greater crime than to assume money illusion." Tobin (1972)

• Money Illusion:

Patinkin (1965), Leontief (1936), Fisher (1928)

"That shirt I sold you will cost me just as much to replace as I am charging you [...] But I have made a profit on that shirt because I bought it for less."

- Recent survey evidence: Shiller (1997a), (1997b)
- Related Psychological Biases: Shafir, Diamond, Tversky (1997), Genesove-Mayer (2001), ...
- Stock market:

Modigliani-Cohn (1979), Asness (2000, 2003), Ritter-Warr (2002), Campbell-Vuolteenaho (2004), Cohen et al. (2005)

Real versus nominal Decomposing inflation effects Financial frictions

Decomposing price movements

Stage 1: Focus on price-rent ratio (P_t/L_t)

- abstracts from movements of fundamentals that affect prices and rents symmetrically (demographics, land cost etc.)
- not perfect substitutes: pride of ownership, ...

Stage 2: Decompose price-rent ratio in

- expected return (incl. risk premium)
- expected rent growth rate
- "mispricing"

Inflation effect on each part

(日) (冊) (日) (日) (日)

Real versus nominal Decomposing inflation effects Financial frictions

Decomposing price movements

Stage 1: Focus on price-rent ratio (P_t/L_t)

- abstracts from movements of fundamentals that affect prices and rents symmetrically (demographics, land cost etc.)
- not perfect substitutes: pride of ownership, ...
- Stage 2: Decompose price-rent ratio in
 - expected return (incl. risk premium)
 - expected rent growth rate
 - "mispricing"

Inflation effect on each part

イロト (母) (ヨト (ヨト)ヨヨ ののの

Real versus nominal Decomposing inflation effects Financial frictions

Outline

Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions
- Cross-country evidence
 U.S. evidence

4 Conclusion

イロト (母) (ヨト (ヨト ヨヨ ののの

Money illusion U.K. evidence ross-country evidence Notest Decomposing inflation Financial frictions

A first cut

PV of permanent service flow =
$$L + \frac{L}{1+r} + \frac{L}{(1+r)^2} + \dots$$

$$rac{P_t}{L_t} = E_t \left[\sum_{ au=t+1}^\infty rac{1}{\left(1+r_ au
ight)^{ au-t-1}}
ight] \simeq rac{1}{r_t}$$

with money illusion

$$\frac{P_t}{L_t} = \tilde{E}_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{\left(1+r_{\tau}\right)^{\tau-t-1}} \right] \simeq E_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{\left(1+i_{\tau}\right)^{\tau-t-1}} \right] \simeq \frac{1}{i_t}$$

• Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .

Money illusion U.K. evidence ross-country evidence Decomposing inflation Financial frictions

A first cut

PV of permanent service flow =
$$L + \frac{L}{1+r} + \frac{L}{(1+r)^2} + \dots$$

$$\frac{P_t}{L_t} = E_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+r_{\tau})^{\tau-t-1}} \right] \simeq \frac{1}{r_t}$$

with money illusion

$$\frac{P_t}{L_t} = \tilde{E}_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+r_{\tau})^{\tau-t-1}} \right] \simeq E_t \left[\sum_{\tau=t+1}^{\infty} \frac{1}{(1+i_{\tau})^{\tau-t-1}} \right] \simeq \frac{1}{i_t}$$

• Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .

Real versus nominal Decomposing inflation effects Financial frictions

Forecasting regressions

- Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .
- Persistence of P_t/L_t and regressors might lead to spurious results.
- Regress forecasts error on 1/r, 1/i, and π .

$$\hat{\delta}_{t+1,t+1-s} = \begin{cases} P_{t+1}/L_{t+1} & \text{for } s = 0\\ P_{t+1}/L_{t+1} - \hat{E}_{t-s} \left[P_{t+1}/L_{t+1} \right] & \text{for } s > 0 \end{cases}$$

where $\hat{E}_{t-s}[P_t/L_t]$ reduced form VAR for P_t/L_t , log gross return, $r_{h,t}$, the rent growth rate ΔI_t and the log real interest rate, r_t .

Real versus nominal Decomposing inflation effects Financial frictions

Forecasting regressions

- Regress P_t/L_t separately on $1/r_t$, $1/i_t$, and π_t .
- Persistence of P_t/L_t and regressors might lead to spurious results.
- Regress forecasts error on 1/r, 1/i, and π .

$$\hat{\delta}_{t+1,t+1-s} = \begin{cases} P_{t+1}/L_{t+1} & \text{for } s = 0\\ P_{t+1}/L_{t+1} - \hat{E}_{t-s} \left[P_{t+1}/L_{t+1} \right] & \text{for } s > 0 \end{cases}$$

where $\hat{E}_{t-s}[P_t/L_t]$ reduced form VAR for P_t/L_t , log gross return, $r_{h,t}$, the rent growth rate ΔI_t and the log real interest rate, r_t .

イロト (母) (ヨト (ヨト ヨヨ ののの

Real versus nominal Decomposing inflation effects Financial frictions

Forecasting regressions

Figure 3: t-statistics and R^2 of univariate regressions of the forecast error $\hat{\delta}_{t+1,t+1-\tau}$ on interest rates and interest rate reciprocals (both nominal and real) as well as inflation.

Real versus nominal Decomposing inflation effects Financial frictions

Price-rent ratio and TIPS implied real interest rates

(standardized series)

Brunnermeier and Julliard (2005) Money Illusion and Housing Frenzies

イロト (母) (ヨト (ヨト ヨヨ ののの

Inflation and predictable component

- Case-Shiller (1989) house price *changes* are predictable ⇒ inefficiency?
- What explains variation of changes in price-rent ratio?
 - lagged inflation and nominal interest rates explains 6 to 10 percent
 - (significant regressors, consistent with money illusion)
 - real interest rate has no predictive power
- Is inflation in pricing kernel/rent growth predictions for other reasons?

(risk-premium, growth prediction, frictions)

イロト イポト イヨト イヨト ヨ

Inflation and predictable component

- Case-Shiller (1989) house price *changes* are predictable ⇒ inefficiency?
- What explains variation of changes in price-rent ratio?
 - lagged inflation and nominal interest rates explains 6 to 10 percent
 - (significant regressors, consistent with money illusion)
 - real interest rate has no predictive power
- Is inflation in pricing kernel/rent growth predictions for other reasons?

(risk-premium, growth prediction, frictions)

《曰》《御》《曰》《曰》 되는

Inflation and predictable component

- Case-Shiller (1989) house price *changes* are predictable ⇒ inefficiency?
- What explains variation of changes in price-rent ratio?
 - lagged inflation and nominal interest rates explains 6 to 10 percent
 - (significant regressors, consistent with money illusion)
 - real interest rate has no predictive power
- Is inflation in pricing kernel/rent growth predictions for other reasons?

(risk-premium, growth prediction, frictions)

イロト (母) (ヨト (ヨト ヨヨ ののの

Real versus nominal Decomposing inflation effects Financial frictions

Outline

1 Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions
- Cross-country evidenceU.S. evidence

4 Conclusion

イロト (母) (ヨト (ヨト ヨヨ ののの

Real versus nominal Decomposing inflation effects Financial frictions

Decomposing inflation effects

$$R_{h,t+1} = \frac{P_{t+1} + L_{t+1}}{P_t}$$

• Log-linearize around steady state and iterate

$$p_{t}-l_{t} = \lim_{T \to \infty} \left[\sum_{\tau=1}^{T-1} \rho^{\tau-1} \left(\Delta l_{t+\tau} - r_{h,t+\tau} \right) + \rho^{T} \left(p_{t+T} - l_{t+T} \right) \right]$$

- Note if p_t is distorted, then so are all realized $r_{h,t+\tau}$
- Subtract r^{f} to obtain excess ΔI^{e} and excess returns r^{e}
- Take expectations: E (objective), \tilde{E} (subjective)

《曰》《問》《曰》《曰》 [1] [1]

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

• Taking expectations and assuming that TVCs hold

$$\begin{split} \rho_t - l_t &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] & \text{rational traders} \\ &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right] & \text{irrational traders} \end{split}$$

Hence,

$$p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right] + \left(\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e \right] \right)$$

ψ_t -Mispricing measure

$$\psi_t := \sum_{\tau=1}^{\infty} \rho^{\tau-1} \left(\tilde{E}_t - E_t \right) \left[\Delta l_{t+\tau}^e \right]$$

Money illusion U.K. evidence

Decomposing inflation effects

Construction of ψ -Mispricing

• Taking expectations and assuming that TVCs hold

$$\begin{aligned} p_t - l_t &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] & \text{rational traders} \\ &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right] & \text{irrational traders} \end{aligned}$$

rs

Hence.

$$p_{t} - l_{t} = \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_{t} \left[\Delta l_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_{t} \left[r_{h,t+\tau}^{e} \right] + \left(\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_{t} \left[\Delta l_{t+\tau}^{e} \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_{t} \left[\Delta l_{t+\tau}^{e} \right] \right)$$

$$\psi_t := \sum_{\tau=1}^{\infty} \rho^{\tau-1} \left(\tilde{E}_t - E_t \right) \left[\Delta l_{t+\tau}^e \right]$$

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

• Taking expectations and assuming that TVCs hold

$$\begin{aligned} p_t - l_t &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] & \text{rational traders} \\ &= \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right] & \text{irrational traders} \end{aligned}$$

Hence,

$$p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_t \left[r_{h,t+\tau}^e \right] + \left(\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\Delta l_{t+\tau}^e \right] \right)$$

ψ_t -Mispricing measure

$$\psi_t := \sum_{\tau=1}^{\infty} \rho^{\tau-1} \left(\tilde{E}_t - E_t \right) \left[\Delta I_{t+\tau}^e \right]$$

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

Example Money Illusion: $\tilde{E}_t [\Delta I_{t+\tau}] = E_t [\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi})]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

•
$$p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right] + \psi_t$$

• Problem: How to construct a proxy for $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$

⇒ use linear subjective risk factor λ_t What is the correct risk factor λ_t ?

GARCH-estimate of cond. volatility of long housing short r^f

- 2 Housing is like inflation-linked bond, but
 - probability of moving (migration, job creation/destruction data)
 - cross-sectional variation of house prices

《曰》《問》《曰》《曰》 ([])]

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

Example Money Illusion: $\tilde{E}_t [\Delta I_{t+\tau}] = E_t [\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi})]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

• $p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right] + \psi_t$

• Problem: How to construct a proxy for $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$ \Rightarrow use linear subjective risk factor λ_t

What is the correct risk factor λ_t ?

GARCH-estimate of cond. volatility of long housing short r^f

- 2 Housing is like inflation-linked bond, but
 - probability of moving (migration, job creation/destruction data)
 - cross-sectional variation of house prices

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

Example Money Illusion: $\tilde{E}_t [\Delta I_{t+\tau}] = E_t [\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi})]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

•
$$p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_t \left[r_{h,t+\tau}^e \right] + \psi_t$$

• Problem: How to construct a proxy for $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$ \Rightarrow use linear subjective risk factor λ_t What is the correct risk factor λ_t ?

GARCH-estimate of cond. volatility of long housing short *r^f*

- probability of moving (migration, job creation/destruction data)
- cross-sectional variation of house prices

イロト (母) (ヨト (ヨト)ヨヨ ののの

Decomposing inflation effects

Construction of ψ -Mispricing

Example Money Illusion: $\tilde{E}_t [\Delta I_{t+\tau}] = E_t [\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi})]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

•
$$p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_t \left[r_{h,t+\tau}^e \right] + \psi_t$$

• Problem: How to construct a proxy for $\tilde{E}_t |r_{h,t+\tau}^e|$ \Rightarrow use linear subjective risk factor λ_t What is the correct risk factor λ_t ?

GARCH-estimate of cond. volatility of long housing short r^f

イロト (母) (ヨト (ヨト)ヨヨ ののの

- probability of moving
- cross-sectional variation of house prices

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

Example Money Illusion: $\tilde{E}_t [\Delta I_{t+\tau}] = E_t [\Delta I_{t+\tau} - (\pi_{t+\tau} - \bar{\pi})]$

$$\psi_t = -\sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\pi_{t+\tau} - \bar{\pi} \right]$$

•
$$p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[\Delta l_{t+\tau}^e \right] - \sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_t \left[r_{h,t+\tau}^e \right] + \psi_t$$

• Problem: How to construct a proxy for $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$ \Rightarrow use linear subjective risk factor λ_t What is the correct risk factor λ_t ?

GARCH-estimate of cond. volatility of long housing short r^f

- Pousing is like inflation-linked bond, but
 - probability of moving (migration, job creation/destruction data)
 - cross-sectional variation of house prices

・ロト ・同ト ・ヨト ・ヨト ショー シック

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

• Problem: How to construct a proxy for $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$

• Model
$$\tilde{E}_t \left[r_{h,t+\tau}^e \right]$$
 as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

- \Rightarrow obtain estimate for coefficients and $\hat{\psi}_t$.
- Empirical strategy:
 - **()** Obtain $\hat{E}\left[\Delta I_{t+\tau}^{e}\right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^{e}\right]$
 - 2 Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]
Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

• Problem: How to construct a proxy for $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$

• Model
$$\tilde{E}_t \left[r_{h,t+\tau}^e \right]$$
 as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} \mathcal{E}_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{\mathcal{E}}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

- \Rightarrow obtain estimate for coefficients and $\hat{\psi}_t$.
- Empirical strategy:
 - **()** Obtain $\hat{E}\left[\Delta I_{t+\tau}^{e}\right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^{e}\right]$
 - 2 Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]

Real versus nominal Decomposing inflation effects Financial frictions

Construction of ψ -Mispricing

• Problem: How to construct a proxy for $\tilde{E}_t \left[r_{h,t+\tau}^e \right]$

• Model
$$\tilde{E}_t \left[r_{h,t+\tau}^e \right]$$
 as (and run OLS):

$$\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^e \right] = \underbrace{\alpha + \beta \lambda_t + \xi_t}_{=:\sum_{\tau=1}^{\infty} \rho^{\tau-1} \tilde{E}_t \left[r_{h,t+\tau}^e \right]} + \psi_t$$

• \Rightarrow obtain estimate for coefficients and $\hat{\psi}_t$.

- Empirical strategy:
 - **0** Obtain $\hat{E} \left[\Delta I_{t+\tau}^{e} \right]$ from VAR and $\sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[r_{h,t+\tau}^{e} \right]$ **2** Add controls to remove ξ_t [from OLS-residual $(\xi_t + \psi_t)$]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

Real versus nominal Decomposing inflation effects Financial frictions

The different measures of mispricing

ψ-mispricing measure depends on added controls for ξ.
 ψ with controls (quarterly dummies, VAR(1)-forecast)
 ψ' without controls

《曰》《御》《曰》《曰》 되는

Real versus nominal Decomposing inflation effects Financial frictions

ε -Mispricing

ε_t -Mispricing measure (very conservative)

$$\varepsilon_{t} := \sum_{\tau=1}^{\infty} \rho^{\tau-1} \left(\tilde{E}_{t} - E_{t} \right) \left[\Delta l_{t+\tau}^{e} - r_{h,t+\tau}^{e} \right] \\ + \tilde{E}_{t} \left[\lim_{T \to \infty} \rho^{T} \left(p_{t+T} - l_{t+T} \right) \right]$$

$$p_t - l_t = \sum_{\tau=1}^{\infty} \rho^{\tau-1} E_t \left[\Delta l_{t+\tau}^e - r_{h,t+\tau}^e \right] + \underbrace{E_t \left[\lim_{T \to \infty} \rho^T \left(p_{t+\tau} - l_{t+\tau} \right) \right]}_{=:\varepsilon_t}$$

• violation of the TVC under the objective measure

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

EL OQO

Real versus nominal Decomposing inflation effects Financial frictions

ε -Mispricing

- ε -Mispricing measure ($H_1: \varepsilon = 0$)
 - non-neglectable
 - martingale property cannot be rejected
 - analysis holds in first differences

(日) (冊) (日) (日) (日)

Real versus nominal Decomposing inflation effects Financial frictions

Empirical evidence

Dependent Variables:			Regress	ors:		
	π_t		i _t		log (1	(i_t)
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-4.09 (13.479)	.83	-6.80 (11.765)	.74	.136 (8.020)	.69
$\sum_{ au=1}^{\infty} ho^{ au-1} \hat{E}_t \Delta I^e_{t+ au}$	-2.58 (2.390)	.12	-3.96 (1.938)	.09	.093 (2.083)	.12
$-\sum\limits_{ au=1}^{\infty} ho^{ au-1} ilde{ extsf{E}}_{t}r^{ extsf{e}}_{ extsf{h},t+ au}$	1.92 (1.066)	.03	3.581 (1.050)	.03	050 (.595)	.02
Panel B						
$\hat{\psi}_t'$	-6.15 (2.48)	.17	-10.85 (2.66)	.17	.241 (2.82)	.19
$\hat{\varepsilon}_t$	— 3.90 (7.946)	.65	-6.3 (6.927)	.55	.129 (5.991)	.52

Table 1: Univariate Regressions, Newey-West (1987) corrected t-statistics in brackets.

▲□▶▲□▶▲目▶▲目▶ ●目目 のへで

Real versus nominal Decomposing inflation effects Financial frictions

Empirical evidence

Dependent Variables:			Regress	ors:		
	π_t		i _t		log (1,	$/i_t$)
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-4.09 (13.479)	.83	-6.80 (11.765)	.74	.136 (8.020)	.69
$\sum_{ au=1}^{\infty} ho^{ au-1} \hat{E}_t \Delta I^e_{t+ au}$	-2.58 (2.390)	.12	-3.96 (1.938)	.09	.093 (2.083)	.12
$-\sum_{ au=1}^{\infty} ho^{ au-1} ilde{E}_t r^{e}_{h,t+ au}$	1.92 (1.066)	.03	3.581 (1.050)	.03	050 (.595)	.02
Panel B						
$\hat{\psi}'_t$	-6.15 (2.48)	.17	-10.85 (2.66)	.17	.241 (2.82)	.19
$\hat{\varepsilon}_t$	—3.90 (7.946)	.65	-6.3 (6.927)	.55	.129 (5.991)	.52

Table 1: Univariate Regressions, Newey-West (1987) corrected t-statistics in brackets.

Real versus nominal Decomposing inflation effects Financial frictions

Empirical evidence

Dependent Variables:			Regress	ors:		
	π_t		i _t		log (1	(i_t)
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-4.09 (13.479)	.83	-6.80 (11.765)	.74	.136 (8.020)	.69
$\sum_{ au=1}^{\infty} ho^{ au-1} \hat{E}_t \Delta I^e_{t+ au}$	-2.58 (2.390)	.12	-3.96 (1.938)	.09	.093 (2.083)	.12
$-\sum_{ au=1}^{\infty} ho^{ au-1} ilde{\mathcal{E}}_t r^e_{h,t+ au}$	1.92 (1.066)	.03	3.581 (1.050)	.03	050 (.595)	.02
Panel B						
$\hat{\psi}'_t$	-6.15 (2.48)	.17	-10.85 (2.66)	.17	.241 (2.82)	.19
$\hat{\varepsilon}_t$	-3.90 (7.946)	.65	-6.3 (6.927)	.55	.129 (5.991)	.52

Table 1: Univariate Regressions, Newey-West (1987) corrected t-statistics in brackets.

▲□▶▲□▶▲目▶▲目▶ ●目目 のへで

Robustness analysis - Methodology

Posterior of estimated VAR (under diffuse prior, sample size n and m parameters)

$$\begin{array}{ll} \beta|_{\Sigma} & \sim & N\left(\hat{\beta}, \Sigma \otimes \left(X'X\right)^{-1}\right) \\ \Sigma^{-1} & \sim & \text{Wishart}\left(\left(n\hat{\Sigma}\right)^{-1}, n-m\right) \end{array}$$

Draw covar-matrices Σ from inverse Wishart with Σ̂, n and m
Cond. on Σ draw VAR-coefficients β̂ ~ N (β̂, Σ̂ ⊗ (X'X)⁻¹)
Use β̂ to construct Σ[∞]_τ ρ^{τ-1}Ė_tΔl^e_{t+τ}, Σ[∞]_τ ρ^{τ-1}Ė_tr^e_{h,t+τ}, and ψ̂_t
Regress ψ̂_t, Σ[∞]_τ ρ^{τ-1}Ė_tΔl^e_{t+τ}, Σ[∞]_τ ρ^{τ-1}Ė_tr^e_{h,t+τ} on π_t, i_t, 1/i_t
Iterate and compute confidence intervals for OLS coefficients and R² from their percentiles

イロト (母) (ヨト (ヨト)ヨヨ ののの

Real versus nominal Decomposing inflation effects Financial frictions

Robustness analysis - Results

DepVar:			Regresso	ors:		
	π_t		i _t		log (1	(i_t)
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-3.10 [-7.79,19]	.61 [.03, .92]	-5.28 [-12.63,25]	.57 [.04, .78]	.107 [.01, .25]	.54 [.04, .71
$\Delta I_{ ext{-terms}}$	-2.6 [-11.8, 9.08]	.27 [0, .85]	-4.01 [-18.1, 13.9]	.20 [0, .64]	.095 [303, .392]	.21 [0, .58]
- <i>r</i> -terms	1.81 $[-10.41, 9.61]$.10 [0, .64]	3.44 [-15.34, 15.43]	.09 [0, .59]	048 [328, .286]	.07 [0, .44]
Panel B						
ĉt	— 3.9 [-11.1,19]	.64 [.05, .94]	-6.28 [-17.4,68]	.54 [.05, .75]	.129 [.01, .372]	.52 [.05, .67

Table 2: Median and 95 percent confidence intervals for slope coefficients and R^2 .

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Real versus nominal Decomposing inflation effects Financial frictions

Robustness analysis - Results

DepVar:			Regresso	ors:		
	π_t		i _t		log (1	$/i_t$)
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-3.10 [-7.79,19]	.61 [.03, .92]	-5.28 [-12.63,25]	.57 [.04, .78]	.107 [.01, .25]	.54 [.04, .71
$\Delta I_{ ext{-terms}}$	-2.6 [-11.8, 9.08]	.27 [0, .85]	-4.01 [-18.1, 13.9]	.20 [0, .64]	.095 [303, .392]	.21 [0, .58]
- <i>r</i> -terms	1.81 $[-10.41, 9.61]$.10 [0, .64]	3.44 [-15.34, 15.43]	.09 [0, .59]	048 [328, .286]	.07 [0, .44]
Panel B						
êt	-3.9 [-11.1,19]	.64 [.05, .94]	-6.28 [-17.4,68]	.54 [.05, .75]	.129 [.01, .372]	.52 [.05, .67
					2	

Table 2: Median and 95 percent confidence intervals for slope coefficients and R^2 .

Money illusion U.K. evidence Cross-country evidence Money illusion Decomposing inflation eff Financial frictions

1 Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions

Cross-country evidenceU.S. evidence

イロト (母) (ヨト (ヨト ヨヨ ののの

Real versus nominal Decomposing inflation effects Financial frictions

Tilt effect of inflation

• inflation *tilts* real mortgage repayment scheme

- can't afford initial mortgage payments Lessard-Modigliani + Tucker (1975)
- BUT more flexible mortgage schemes
 - Price level adjusted mortgage (PLAM)
 - Graduate payment mortgage (GPM)
 - Interest only mortgages

are available since 1970's in UK and mortgages became more flexible over the years

PREDICTION OF TILT EFFECT:

Tilt effect - Inflation effect over time

Figure 6: Point estimates and 95 percent Newey and West (1987) corrected confidence bounds of slope coefficients as sample size increases.

• tilt effect is unlikely to explain inflation effect.

Real versus nominal Decomposing inflation effects Financial frictions

Lock-in effect

locked in low fixed nominal rate on existing mortgage
 ⇒ reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_t = \hat{a} + \hat{b}_1 d_t i_t + \hat{b}_2 (1 - d_t) i_t + \hat{e}_t \Rightarrow \hat{b}_1 \neq \hat{b}_2$$

- Corr $[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

Real versus nominal Decomposing inflation effects Financial frictions

Lock-in effect

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- Corr $[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

Real versus nominal Decomposing inflation effects Financial frictions

Lock-in effect

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- Corr $[R^2, d_t] \neq 0$
- Corr $[R^2, \underline{i_t}] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- $\operatorname{Corr}[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- $\operatorname{Corr}[R^2, d_t] \neq 0$
- Corr $[R^2, \underline{i_t}] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

Money illusion U.K. evidence Cross-country evidence Real versus nominal Decomposing inflation effect Financial frictions

Misprincing measures and the business cycle

- During booms (busts) high quality houses appreciate (de-) more than smaller houses
 - house prices reflect all types of dwellings
 - rent index tends to overweigh lower quality dwellings
- \Rightarrow Price-rent ratio might move over business cycle
- Control for business cycle proxy
 - \hat{c}_t Hodrick-Prescott (1997) filter

Real versus nominal Decomposing inflation effects Financial frictions

Misprincing measures and the business cycle

Regressors:								
	Row:	DepVar:	ĉ _t	π_t	i _t	$\log(1/i)$	R^2	
	(1)	$\hat{\psi}_t$	0.81 (1.959)				.07	
	(2)		0.32 (2.135)	-4.00 (13.761)			.85	
	(3)		0.378 (2.168)		-6.64 (11.137)		.76	
	(5)	$\hat{\psi}'_t$	1.11 (0.963)		,		.01	
	(6)		0.36 (0.349)	-5.98 (2.279)			.17	
	(7)		0.41 (0.369)	. ,	-10.5 (2.436)		.17	
	(9)	$\hat{\varepsilon}_t$	0.85 (2.201)				.07	
	(10)		0.41 (2.281)	-3.80 (7.801)			.67	
	(11)		0.49	· · · ·	-6.10		< ₹.57₹ =	

U.S. evidence

Money illusion - Related literature

2 U.K. evidence

- Real versus nominal A first-cut
- Decomposing inflation effects
- Financial frictions

Cross-country evidenceU.S. evidence

4 Conclusion

▲冊 ▶ ▲ ∃ ▶ ▲ ∃ ▶ _ 目 = ♪ ♀ (○

U.S. evidence

U.S. Decomposition of inflation effects

Dependent Variables:			Regress	sors:		
	π_t		i _t		log (1	(i_t)
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-6.65 (4.525)	.45	-6.30 (3.182)	.28	.141 (4.256)	.35
$\sum_{ au=1}^{\infty} ho^{ au-1}\hat{E}_t\Delta I^e_{t+ au}$	-2.87 (6.572)	.65	-3.46 (6.170)	.65	.066 (4.693)	.60
$-\sum_{ au=1}^{\infty} ho^{ au-1} ilde{\mathcal{E}}_t r^e_{h,t+ au}$.76 (.211)	.01	4.65 (1.130)	.05	066 (.734)	.03
Panel B						
$\hat{\varepsilon}_t$	-10.2 (5.148)	.48	-6.86 (2.648)	.15	.159 (3.238)	.21

Table 3: Univariate Regressions, Newey-West (1987) corrected *t*-statistics in brackets.

U.S. evidence

U.S. Robustness analysis

DepVar:			Regressor	rs:		
	π_t		i _t		log (1	(i_t)
	coeff.	R^2	coeff.	R^2	coeff.	R^2
Panel A						
$\hat{\psi}_t$	-6.06 [-7.32, -2.76]	.44 [.06, .66]	-5.84 [-7.12, -2.14]	.27 [.03, .66]	.130 [.070, .155]	.35 [.06, .60]
$\Delta I_{ ext{-terms}}$	-2.86 [-8.17, 1.53]	.59 [.01, .96]	-3.45 [-7.27, -0.53]	.52 [.02, .71]	.066 [.003, .149]	.51 [.01, .70]
- <i>r</i> -terms	.44 [-4.84, 3.21]	.01 [0, .09]	4.23 [1.12, 5.82]	.04 [.01, .12]	023 [097, 0]	.07 [0, .15]
Panel B						
$\hat{arepsilon}_t$	-10.2 [-16.2, -7.25]	.48 [.36, .62]	-6.83 [-10, -4.79]	.15 [.11, .21]	.159 [.115, .25]	.21 [.16, .26]

Table 4: Median and 95 percent confidence intervals for slope coefficients and R^2 .

Conclusion

- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do not explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - *Tilt effect* should decline as mortgages became more flexible
 - Lock-in effect does not arise mortgages are portable in UK
- $\bullet \Rightarrow \mathsf{Evidence} \text{ in favor of money illusion}$
- Money illusion and mortgage markets have important implications for monetary economics

Conclusion

- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do not explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - *Tilt effect* should decline as mortgages became more flexible
 - Lock-in effect does not arise mortgages are portable in UK
- $\bullet \Rightarrow \mathsf{Evidence} \text{ in favor of money illusion}$
- Money illusion and mortgage markets have important implications for monetary economics

Conclusion

- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do not explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - *Tilt effect* should decline as mortgages became more flexible
 - Lock-in effect does not arise mortgages are portable in UK
- $\bullet \Rightarrow \mathsf{Evidence} \text{ in favor of money illusion}$
- Money illusion and mortgage markets have important implications for monetary economics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

Conclusion

- Money Illusion arises if e.g. investors simply compare current rent with current mortgage payment
- Inflation affects house prices
- Rational channels alone do not explain inflation effects
 - Low inflation leads to higher expected rent growth
 - Inflation impact on expected housing returns is insignificant
 - Inflation explains substantial part of "mispricing"
- Frictions are unlikely to fully rationalize the empirical findings
 - Tilt effect should decline as mortgages became more flexible
 - Lock-in effect does not arise mortgages are portable in UK
- $\bullet \Rightarrow \mathsf{Evidence} \text{ in favor of money illusion}$
- Money illusion and mortgage markets have important implications for monetary economics

- 4 伊 ト 4 ヨ ト 4 ヨ ト ク 0 0

First difference estimation for ε Friction: Lock-in effect Misprincing and the business cycle

First difference estimation

	Slope coeff.	R^2
U.K	-4.022 (7.459)	.31
U.S.	-3.629 (6.588)	.35
Australia	-26.21 (25.82)	.85

Brunnermeier and Julliard (2005) Money Illusion and Housing Frenzies

locked in low fixed nominal rate on existing mortgage
 ⇒ reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_t = \hat{a} + \hat{b}_1 d_t i_t + \hat{b}_2 \left(1 - d_t\right) i_t + \hat{e}_t \Rightarrow \hat{b}_1 \neq \hat{b}_2$$

- Corr $[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- Corr $[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- $\operatorname{Corr}[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- $\operatorname{Corr}[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

- locked in low fixed nominal rate on existing mortgage
 - \Rightarrow reluctant to buy better house if mortgage is not portable

PREDICTION OF LOCK-IN EFFECT

• for the full sample estimates

$$\psi_{t} = \hat{a} + \hat{b}_{1}d_{t}i_{t} + \hat{b}_{2}\left(1 - d_{t}\right)i_{t} + \hat{e}_{t} \Rightarrow \hat{b}_{1} \neq \hat{b}_{2}$$

- $\operatorname{Corr}[R^2, d_t] \neq 0$
- Corr $[R^2, i_t] \neq 0$
- Corr $\left[R^2, \overline{p_t l_t}\right] \neq 0$
- Can be rejected!
- Surprising? No, since most mortgages in the UK are portable (and flexible interest rate mortgages)

Misprincing measures and the business cycle

- During booms (busts) high quality houses appreciate (de-) more than smaller houses
 - house prices reflect all types of dwellings
 - rent index tends to overweigh lower quality dwellings
- \Rightarrow Price-rent ratio might move over business cycle
- Control for business cycle proxy
 - \hat{c}_t Hodrick-Prescott (1997) filter

Misprincing measures and the business cycle

Regressors:								
	Row:	DepVar:	ĉ _t	π_t	i _t	$\log(1/i)$	R^2	
	(1)	$\hat{\psi}_t$	0.81 (1.959)				.07	
	(2)		0.32 (2.135)	-4.00 (13.761)			.85	
	(3)		0.378 (2.168)		-6.64 (11.137)		.76	
	(5)	$\hat{\psi}'_t$	1.11 (0.963)				.01	
	(6)		0.36 (0.349)	- 5.98 (2.279)			.17	
	(7)		0.41 (0.369)	. ,	-10.5 (2.436)		.17	
	(9)	$\hat{\varepsilon}_t$	0.85 (2.201)				.07	
	(10)		0.41 (2.281)	-3.80 (7.801)			.67	
	(11)		0.49		-6.10 <		< ₹.57₹ =	