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Abstract

Information asymmetries and trading costs, in a financial market with dynamic infor-
mation, generate a self-exciting equilibrium price process with stochastic volatility, even
if news have constant volatility. Intuitively, new information is released to the market
at trading times that, due to traders’ strategic choices, differ from calendar times. This
generates an endogenous stochastic time change between trading and calendar times,
and stochastic volatility of the price process in calendar time. In equilibrium: price
volatility is autocorrelated and is a non-linear function of number and volume of trades;
the relative informativeness of number and volume of trades depends on the data sam-
pling frequency; volatility, price quotes, tightness, depth, resilience, and trading activity,
are jointly determined by information asymmetries and trading costs. Our closed form
solutions rationalize a large set of empirical evidence and provide a natural laboratory
for analyzing the equilibrium effects of a financial transaction tax.
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1 Introduction

The recent financial turmoil has renewed the academic interest in understanding whether, and

how, financial risk is endogenously generated in the marketplace. Moreover, policies intended

to reduce financial market volatility, and possibly increase market liquidity, have come to the

forefront of the economic and political discourse. In particular, in the form of a financial

transaction tax – aka a Tobin tax – as a device for “throwing sand in the wheels” of the

financial market. We contribute to this discourse by developing a (dynamic) equilibrium theory

of financial market volatility, liquidity, and trading activity, in which stochastic volatility is

endogenously generated (even if economic fundamentals and information flows have constant

variance) by the strategic interaction of agents endowed with different information about the

fundamental value of a financial asset.

In the (noisy rational expectation) equilibrium setting we consider, volatility, liquidity (in

terms of tightness, depth, and resilience), trading activity (in terms of both volume and time

duration between transactions), and price quotes, are all jointly determined by the degree

of asymmetric information and trading frictions on the market. Moreover, the equilibrium

price process of the traded risky assets is characterised by self-exciting dynamics even though

fundamental values are not.

Our model provides micro foundations for a large set of financial markets empirical regu-

larities such as: a) the presence of time varying, and clustering, volatility for the price of risky

assets; b) a large set of stylised facts on the link between return volatility and market volume,

as well as between volatility and number of trades; c) the evidence that market volatility is

increasing, and liquidity decreasing, in the degree of trading costs and adverse selection; d)

the contemporaneous occurrence of volatility spikes and liquidity dry-ups; e) the empirical

link between frequency of trading activity, price impact of trades, and the dynamics of price

adjustments to new information releases.1

The above results are obtained by analysing the market dynamics on different time-scales:

from the tick-by-tick one to the low frequency (e.g. yearly) one. We show that, as in the

data, the dynamics of volatility are different at different frequencies. To derive these results

we start from an equilibrium bid and ask price schedule at the tick-by-tick frequency. We then

characterise lower frequencies as the time scales at which the market is continuously observed

(but trade is not yet continuous) and as the number of trades per time interval approaches

infinity (i.e. the trading activity becomes continuous). As a working example, we consider an

asymmetric information sequential trading model à la Glosten and Milgrom (1985) (see also

e.g. Easley and O’Hara (1987), Glosten (1989), Brunnermeier and Pedersen (2009)), with

several additional novel, and salient, features. The advantage of this framework is that it

allows us to both disentangle the role of number and volume of trade in driving equilibrium

dynamics, and link our results to the batch order literature.2 However, our multi-frequency

1See e.g. Gallant, Rossi, and Tauchen (1992), Jones, Kaul, and Lipson (1994), Ané and Geman (2000),
Benston and Hagerman (1974), Amihud and Mendelson (1989), Keim and Madhavan (1996), Loeb (1983),
Kavajecz (1999), Umlauf (1993), Hiemstra and Jones (1994), Andersen (1996), Chan and Fong (2000), Haus-
man, Lo, and MacKinlay (1992), Farmer and Lillo (2004), Dufour and Engle (2000), Jones and Seguin (1997).

2Çetin and Xing (2013) prove that, as the intensity of trades goes to infinity (i.e. as we move to lower
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approach is not limited to this particular framework, and can be applied to equilibrium bid

and ask price schedules arising from different market designs as e.g. limit order formulations

à la Glosten (1994).

Our model generalises the dynamic sequential trading paradigm of Glosten and Milgrom

(1985) along several realistic (and non trivial) dimensions. First, we allow for the endogenous

determination of the volume of trade by considering a (competitive) market maker that can

post a complete price schedule as a function of the order size of each trader’s demand. Second,

we let (informed, and less informed – aka “noisy”) traders choose whether and how much

to trade with the market maker. Third, we consider both dynamic information and trade

frictions (the latter in the form of a proportional trading cost i.e. analogous to a financial

transaction tax and/or an order processing cost). Fourth, we relax the canonical sequential

trading assumption of financial markets being observed at discrete exogenous intervals. We

do so by considering a limiting market in which the potential traders arrival rate goes to

infinity. This delivers a continuously observed financial market, but with trading activity still

happening at discrete – endogenously determined, yet stochastic – points in time, as in real

world markets. Fifth, we obtain the equilibrium dynamics of the price process in both trade

and calendar time scales, and at several other frequencies, by developing a novel approach

that relies on the asymptotic characterisation of the equilibrium market sampled at different

time intervals and scales. Our remaining modelling assumptions, including the market maker’s

learning and price setting, are identical to the ones of Glosten and Milgrom (1985) and are

standard in the literature.

In the market we consider, two assets are traded: a riskless security, and a risky one with

final payoff determined by the terminal value of a continuous stochastic process. The market

is populated by three types of agents. First a (risk neutral) specialist dealer (market maker)

that, at any point in time, can post a complete price schedule (for any order size) at which she

stands ready to trade the risky security. The specialist does not observe directly the stochastic

process driving the fundamental value of the assets, and has to infer it from the history of

prices, numbers, and volume of trade. Second, there is a continuum of (market order) potential

traders that sequentially arrive to the market according to an exogenous stochastic counting

process (characterised by an arrival intensity parameter that we will be sending to infinity

in order to obtain a continuously observed market). The (risk neutral) potential traders are

of two types. A fraction q of them is of the uninformed (noisy trader) type, while 1 − q of

them observe directly the continuous stochastic process determining the fundamental value

of the risky asset.3 Note that, albeit the fraction of types of potential traders is exogenous,

frequency), the sequential trade equilibrium converges to the batch arrival equilibrium of Kyle (1985) and
Back (1992). For a review of these types of models see e.g. Biais, Glosten, and Spatt (2005) and for recent
contributions see e.g. Boulatov, Hendershott, and Livdan (2013), Biais, Foucault, and Moinas (2015) Boulatov,
Kyle, and Livdan (2018) and Taub (2018).

3Note that the assumption that informed traders perfectly observe the fundamental is imposed only to
simplify exposition, and bears no consequences on our main results. Indeed, if informed were to observe a
(suitably modeled) noisy signal, we could replace the fundamental value process with the informed traders
best estimate and our results would remain unchanged. That is, in our setting the fundamental process can
be equivalently interpreted as the best estimate of the fundamental by the informed traders.
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both number and proportion of informed and uninformed trades is endogenously determined

in equilibrium (and stochastic). The share of uninformed potential traders, as well as agents’

preferences and all the past history of trade price, time, and volume, are common knowledge.

Upon arrival, a trader observes the price schedule posted by the market maker and, based

on her valuation of the asset, decides whether to trade, and how much, at the posted prices. If

a trade occurs, the market maker updates her valuation of the asset based on the information

inferred from the order posted by the last trader and consequently updates her price schedule.

Like in real world markets, the market maker observes the trader’s arrival if and only if the

trader decides to trade (i.e. she does not observe directly the arrival process) and does not

know whether a trader is of the informed or noisy type (hence she has to form posterior beliefs

about the trader’s type).

In order to introduce a trading friction in this market, we assume that a (small) propor-

tional trading cost is associated with each trade (as e.g. in Stambaugh (2014)). Without loss

of generality, we assume that this trading cost is incurred by the market maker. Alternatively,

we could have modelled the friction in the form of a minimum order size, and this would have

preserved all the key equilibrium mechanics we uncover. However, the proportional trade cost

formulation has two important advantages. First, it is analogous to a Tobin Tax for financial

transactions, hence it allows us to study the equilibrium effect of such a levy. Second, it

makes the theoretical predictions of our model comparable with the empirical literature that

has extensively modelled and estimated transaction cost specifications of this form.

This friction generates an equilibrium bid-ask spread4 that is, as one would expect, increas-

ing in the degree of adverse selection faced by the market maker. In turn, the bid-ask spread is

crucial for endogenously generating time varying volatility. The reason behind this mechanism

is quite intuitive. Prices are, in equilibrium, a mapping from the market maker’s valuation

process of the asset to the real line. Therefore, for asset returns to exhibit heteroscedastic-

ity, one needs the conditional and unconditional distributions of information, revealed by the

trading activity, to be different. The bid-ask spread delivers this by generating an inertia

region for an informed trader since, whenever her valuation is within the bid-ask spread, she

optimally decides not to trade. As a consequence, the pool of information incorporated into

prices changes depending of whether informed agents are in the inertia region or not.

The above implies that by changing the bid and ask price schedules the market maker

changes the distribution of information incorporated into prices. Moreover, since the market

maker, upon receiving an order, never knows for certainty whether the trader is informed or

uninformed, her evaluation of the asset evolves gradually (and stochastically, since it is “noised

up” by both the noisy traders’ activity and the continuous processes driving the fundamental

value). This in turn generates an equilibrium price process that is autocorrelated and that

shows stochastic clustering of volatility.

A natural way of forming intuition about the equilibrium dynamics of the model is to

4The bid-ask spread could also be generated by fixing the order size, as in Glosten and Milgrom (1985), or
by introducing an electronic limit order book characterized by a certain zero-profit condition, as in Glosten
(1994).
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Figure 1: Market time scales.

consider the three different time scales underlying our market. These are depicted in Figure

1. The first (uppermost) time scale is the arrival time one, on which potential traders arrive to

the market and observe the price schedule posted by the market maker. Upon arrival, based

on their valuation and the current available price schedules, traders decide whether to trade

or not. Trades then occur sequentially on the trade time scale (the middle one in the figure).

If they decide to trade, agents reveal their own valuation of the asset via the order size they

post, and this information gets incorporated into prices and into the updated bid and ask

price schedules that the market maker posts. Note that, on the trade time scale, prices are

adapted to overall information process in the market. Therefore, if there is no stochastic and

clustering volatility in the fundamental information process, there won’t be stochastic and

clustering volatility on the trade time scale. Nevertheless, on the calendar time scale, due to

the traders’ endogenous decision of whether to trade or not upon arrival, the price process

will be a time change of the process on the trade by trade time scale – i.e. price movements

on the calendar time scale are characterised by stochastic volatility, due to the clustering of

information revealed by the trading process.5

We show that, at the tick-by-tick (high) frequency, price movements and volatility are

driven (in a non-linear fashion) by the (equilibrium) volume of trade process. This result is

quite intuitive since, at very high frequency (i.e. trade by trade) the market maker’s valuation

update (hence the information that is incorporated into prices) is driven by the order size

posted by traders. Moreover, the link between price movements and volume, as well as

the closed form relationship between these quantities that we obtain, are qualitatively (and

potentially quantitatively) consistent with the empirical findings of a large body of literature.6

5For the representation of a price process with stochastic volatility via time change (aka time deformation)
see e.g. Mandelbrot and Taylor (1967), Clark (1973), Tauchen and Pitts (1983), Yor, Madan, and Geman
(2002), Andersen, Bollerslev, and Dobrev (2007).

6See e.g. Gallant, Rossi, and Tauchen (1992) that, using a non linear specification, find a strong link
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Considering the sequence of market equilibria as the (possibly time varying) intensity of

traders’ arrival approaches infinity, we identify what we refer to as the medium frequency equi-

librium price process. This is the frequency at which the market is close to being continuously

observed by potential traders. Obviously, in the real world, this frequency will be asset specific

(e.g., in a given calendar time interval, blue chip stocks are closer to being continuously ob-

served by traders than a stock at the bottom of the NYSE market capitalisation distribution),

and will be driven by the stock specific characteristic business time. More precisely, financial

assets with the same level of transaction costs, asymmetric information, fundamental volatil-

ity and drift will have the same equilibrium price process distributions at medium frequency.

Nevertheless, what this frequency will correspond to in calendar time (hours, days, months,

etc.) will be asset specific and will depend upon the level of market attention dedicated to

the assets.

At this medium frequency the trade by trade volatility is increasing in both the level of

transaction costs and the degree of adverse selection faced by the market maker. This is due

to the fact that, as these market frictions increase, market tightness and resilience reduce. The

first effect reduces the amount of trading (via reduced liquidity and increased no trade region)

while the second makes large departures from fundamental values more likely and persistent.

These effects imply that, when informed traders choose to trade, price corrections are more

severe. From a Tobin Tax perspective, this result implies that such a tax: a) increases trade

by trade variance overall, and its effect is more severe in markets with a high level of adverse

selection; b) reduces volatility in periods of small shocks to the fundamental value (i.e. in

tranquil times), since conditional on small shocks the market will be more often in the no

trade region; c) substantially increases volatility in hectic periods i.e. when large shocks to

fundamental values occur.

Even though, as our sequential framework approaches a continuously observed market, the

trade by trade volatility becomes constant, the calendar time scale volatility is time varying

in a stochastic manner. Intuitively, this is due to the fact that, as depicted in Figure 1,

trades in the calendar time scale are endogenously clustered. This intuition is confirmed by

our (asymptotic) closed form solution: we show that, at low frequency (i.e. the frequency

characterised by a large number of trades per time interval), the stochastic volatility of the

price process is driven by the number of trades process, and this dependency is exactly of the

type identified empirically by Ané and Geman (2000).

Our framework also delivers a (closed form) equilibrium characterisation of the drivers of

market liquidity in terms of tightness, deepness, and resilience. In particular, we find that,

as the degree of adverse selection increases, tightness is reduced, market impact increases (for

small order sizes), and departures of the price from the fundamental value are expected to

last longer. Moreover, since volatility (on all time scales), increases with adverse selection,

between volume of trade and price movements, as well as Farmer and Lillo (2004) and Farmer, Lillo, and
Mantegna (2003), that identify a log-linear relationship between gross price growth and changes in volume,
and Potters and Bouchaud (2003), that identify a log-log relationship between gross price growth and volume
changes. We show that in our framework all these relationships between price growth and volume can arise
in equilibrium depending on the market’s fundamental characteristics.
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our framework can rationalise the joint occurrence of liquidity dry-ups and volatility spikes

(as e.g. during the subprime crises).

Given the ability of our model to explain several salient features of asset price dynamics –

such as the empirical link between volatility and volume and number of trades, the common

dynamics of volatility and liquidity, as well as the relationship between market frictions and

trading activity – it constitutes a natural laboratory for analysing the equilibrium effects of

the introduction of a Tobin Tax. On this front, we show that the introduction of a Tobin

tax has strong effects on both volatility and liquidity. In particular our model predicts, as

found in the empirical literature,7 that such a levy substantially reduces liquidity (in terms of

tightness and resilience), increases volatility, and slows down the business clock of the market.

Furthermore, these effects are stronger in markets characterised by a high degree of adverse

selection – i.e. the effect of a Tobin Tax is more dramatic in already illiquid and highly volatile

markets. Moreover, we show that such a tax reduces volatility in “good times” (i.e. when

only small shocks to fundamental are realised) and increases volatility in “hectic times” (i.e.

when large fundamental shocks happen to occur).

More broadly, our work is also related to the large literature on information aggregation in

financial market and noisy rational expectation equilibria.8 In particular, given our focus on

the endogenous determinants of financial market volatility, liquidity and volume of trade, our

work is closely related to Atmaz and Basak (2015) that, via belief dispersion, endogenously

generate excess volatility and a positive relationship between stock returns and volume of

trade. Given our equilibrium results for business time price dynamics, our work is also con-

nected to Kyle and Obizhaeva (2014), that identify a set of invariant relationships for asset

prices when measured in business time. Furthermore, given our focus on the role of financial

frictions and transaction taxes, our work is closely connected, respectively, to Vayanos and

Wang (2012), and Subrahmanyam (1998) and Buss, Uppal, and Vilkov (2014).

The reminder of the paper is organised as follows. Section 2 introduces the trading and

information structure of the market, as well as the agents’ optimisation problems. Section

3 solves for the market equilibrium and characterises the resulting properties of the price

schedule, the optimal trading behaviours, and the prices process on different time scales and

at various frequencies. In Section 4 we analyse the equilibrium properties of market liquidity,

volatility, and trading activity, while Section 5 concludes. For the reader’s convenience, a list

of notations and a glossary are provided in Appendix A, while additional proofs and technical

results are reported in the reminder of the Appendix.

2 Model Primitives

All random variables are defined on a filtered probability space
(
Ω,F , (Fs)s≤T ,P

)
satisfying

the usual conditions. A remark about the notation used throughout the paper is worth making

7See e.g. Umlauf (1993), Jones, Kaul, and Lipson (1994), Jones and Seguin (1997), and Hau (2006).
8See e.g. Grossman and Stiglitz (1980), Hellwig (1980), Admati (1985), Kyle (1985), and Wang (1993,

1994), Easley and O’Hara (1987, 2004).
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at this point. Since we are dealing with three different time scales – calendar time, number

of arrival time, and number of trade time – processes need to be defined accordingly. For

all processes we follow the convention that: i) upper case Latin letters, such as Xt, denote

processes considered on the calendar time scale; ii) lower case Latin letters, such as xi, denote

processes considered on the number of arrivals time scale, that is xi = Xθi , where θi denotes

the stopping time of the arrival process (i.e. the i-th arrival time); iii) lower case Latin letters

with˜superscript, such as x̃i, denote processes considered on the number of trade time scale,

that is x̃i = Xτi , where τi denotes the stopping time of the trade process (i.e. the i-th trade

time).

2.1 Market Structure

We consider a finite trading horizon T . There are two assets: a riskless bond that yields the

instantaneous return normalized to zero, and a risky asset – a stock – with final value given

by eDT where D is the continuous log profit process of the firm and follows the diffusion

dDt = µdt+ σdWD
t , D0 = const, (1)

where WD is a Brownian Motion with respect to (Ft), and µ and σ are, respectively, the drift

and volatility parameters. Note that the framework considered in this paper can be easily

extended to allow for time varying µ and σ, and/or allow D to represent a best estimate,9

rather than the true process.

The risky asset is traded in a competitive specialist (“market maker”) market. The trading

structure is a sequential one as in Glosten and Milgrom (1985). Traders arrive to the market

and meet the specialist according to a stochastic counting process, N , with associated stopping

times θi = inf {t ≥ 0 : Nt = i} where θi is the time of the i-th arrival. We assume that the

total number of arrivals is finite, and that future arrivals are independent from past events.10

We will refer to this assumption as:

A1. NT <∞ a.s. and σ {Nθi+t −Nθi , t ≥ 0} ⊥ Fθi for all i.

When the trader arrives to the market at time θi, she observes bid, Bθi (·), and ask, Aθi (·),
prices per share posted by the specialist. We allow the bid and ask prices per share to depend

on the order size (v). The specialist is allowed to change bid prices, Bt (v−) (where v− ∈ R+

is the sell order size) and ask prices, At (v+) (where v+ ∈ R+ is the buy order size), at any

point except at the time at which the trader arrives. That is, as in real markets, the ask and

bid quotes posted by the market maker constitute a non renegotiable trading commitment at

the time at which traders decide to trade.

We assume that the market maker has to incur a (small) proportional order processing

cost for each transaction, δ. That is, if at time t the trader submitted the order to buy v+ (or

9Note that if D is meant to represent a best estimate, rather than the true process, one should set µt =
−σ2

t /2 so that eD is a martingale.
10Additional assumptions on the Nt process will be outlined later. For instance, a Poisson process (with

constant or time varying intensity) would satisfy these assumptions.
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order to sell v−) then the market maker would receive v+At (v+) (1− δ) (or spend the amount

v−Bt (v−) (1 + δ)).

After observing the posted menu of bid and ask prices, the trader that arrived at time θi

has to decide her order size, vi. Obviously, the trader can choose an order size of zero – in

which case no trade occurs, and the specialist does not observe the i-th arrival. That is, as in

the real world, the market maker will observe only the trades and not the arrivals of traders

per se. The cumulative number of realised trades by time t defines the stochastic counting

process

Lt =
∞∑
i=1

1{θi≤t}∩{vi 6=0}

where 1{.} is the indicator function defined over a set. We define the stopping time associated

with the number of trade process, L, as τi = inf {t ≥ 0 : Lt = i} – that is, τi is the time of the

i-th trade. Similarly, we define the cumulative volume of trade by time t as

Vt =
∞∑
i=1

vi1{θi≤t}. (2)

Let ṽi indicate the order size of the i-th trade that is:11 ṽi =
∑∞

j=1 vj1{θj=τi}. Since trades

always have to happen either at the bid price, Bτi (·), or at the ask price, Aτi (·), the price at

which the i-th trade is executed is given by12

p̃i = Aτi
(
ṽ+
i

)
1{ṽi>0} +Bτi

(
ṽ−i
)
1{ṽi<0}, (3)

since the trade has to occur either at the ask or at the bid price, and the price at time t is

given by

Pt = p̃max{i≥1: τi≤t}1{τ1≤t} + p̃01{τ1>t}. (4)

Note that the above formulation of Pt is needed to accommodate the case of no trades before

time t, and p̃0 is an equilibrium price that we will derive below.

2.2 Information Structure

Beside the specialist “market maker”there are two types of traders: informed ones and unin-

formed noisy traders. Jointly, informed and noisy traders constitute a continuum with unit

mass, and are assumed to act competitively. The informational advantage of the first group

is that it observes directly the D process.

To characterise the different information sets we introduce the following notation: for any

given process X, we denote by FXt = σ {Xs, s ≤ t} ∨ N , where σ {.} is the sigma algebra

generated by its argument, N is the set of P-null sets, and X ∨Y indicates the sigma algebra

generated by the union of X and Y .

At time t all the agents observe: a) all the past history of market prices (that is the

11Note that Vt =
∑∞
i=1 ṽi1{τi≤t}.

12Recall that, by definition, ṽi 6= 0.
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filtration FPt generated by the price process P up to time t), and b) all the past history of

the cumulative volume (that is the filtration FVt generated by the volume process V ). This

implies that the cumulated number of trade at time t, Lt, is also known to all the market

participant since it is equal to the number of jumps of {Vs}s≤t. We denote this common

knowledge filtration as GMt = FPt ∨ FVt , where we use the superscript M to denote the fact

that GMt is also the information set of the specialist market maker.

For future convenience, we also define the market maker’s information set at the time

of the i-th trade: H̃M
i = GMτi . Note that through the paper we use the letter G to denote

information sets in calendar time, the letter H̃ to denote information sets in trading time, and

H to denote information sets in the arrival time scale (i.e. Hi = Gθi).
The trader who arrived at time θi is of the (uninformed) noisy type (U) with probability

q and of the informed type (I) with probability 1 − q. We define the cumulative number

of informed and uninformed traders arrival processes (N I and NU) and associated stopping

times as (θIi and θUi ), respectively, as

NU
t =

∞∑
i=1

1{θi≤t}∩{Ui}, θUi = inf
{
t ≥ 0 : NU

t = i
}

and

N I
t = Nt −NU

t =
∞∑
i=1

1{θi≤t}∩{Ii}, θIi = inf
{
t ≥ 0 : N I

t = i
}

where Ui and Ii denote, respectively, the events of the time θi trader being of the uninformed

or informed type.13

Since the informed trader also observes the process D, her information set upon arrival

(time θIi ) is HI
i = GI,i

θIi
, where GI,it = GMt ∨FDt ∨ σ

{
θIi ∧ s, s ≤ t

}
, and ∧ denotes the minimal

element.

The noisy traders demand is parametrized indirectly, through their information set. In

particular, we assume that, in addition to observing the market filtration GMt at time t, noisy

traders receive a private signal St. That is, upon arrival at time θUi , the noisy trader receive

the private signal si = SθUi and has therefore the information set HU
i = GU,i

θUi
∨ σ {si}, where

GU,it = GMt ∨ σ
{
θUi ∧ s, s ≤ t

}
. This indirect modelling of the noisy traders demand simplifies

exposition because: a) since the market maker will, in equilibrium, filter the information of

each trader’s demand, we are defining the noisy traders demand in the relevant domain for

the filtering problem (rather than having to invert what a particular noisy demand schedule

would imply in terms of filtered information from the market maker point of view); b) as we

show below, the requirement of noisy and informed traders’ demands being indistinguishable

given the market maker information set can be easily formulated using this indirect modelling

of the noise traders’ demand.

In what follows, we postulate that the following assumptions are satisfied:

A2. FWD

T ,FNT and Sθi are conditionally independent given Hi−1 for all i, where Hi = Gθi ,
13Obviously Ui ∪ Ii = Ω.
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Gt = FVt ∨ FNt .

A3. Ii is independent of FN,S,DT ∨ σ (Uk)k 6=i.

A4. P (vi ∈ C|Hi−1, Ii, θi) = P (vi ∈ C|Hi−1, Ui, θi) for C ∈ B (R), where B (R) denotes the

Borel σ-algebra.

Remark 1 Note that Hi is the σ-algebra generated by {vj}ij=0 and {θj}ij=0.

Assumption A2 has the following implications. First, that – as typically assumed in

sequential trading models (see O’Hara (1995) for a discussion) – potential trader’s arrival

time is weakly exogenous and independent from movements in the fundamentals. This, as

in Glosten and Milgrom (1985), rules out a strategic timing of agents arrival but, differently

from them, does not rule out all other dimensions of strategic behavior since the traders will

be free to chose whether to trade or not and their order size. Second, A2 implies that the

signal received by noisy traders does not carry more information about the fundamental than

what could be inferred from the current history of past order sizes and arrival times.

Informed traders can potentially benefit from any departures of the stock price from the

fundamental value, and so informed traders could decide to trade as much as possible – but

such a behaviour would quickly reveal the information of the informed to the market maker.

Assumption A3 prevents this from happening by not allowing informed traders to decide when

to arrive to the market. This can be seen as imposing an equilibrium behaviour, as the one

studied in Easley and O’Hara (1987), in which informed agents mimic uninformed agents

behaviour to avoid detection.

Jointly, assumptions A2 and A3 guarantee that the actual population of traders that the

market maker faces is always the same as the potential population of traders, since none of

the traders can endogenously decide when to arrive to the market.

Assumption A4 restricts the signal process received by uninformed traders. It imposes

that the distribution of order size submitted by the investor (conditionally on lagged informa-

tion) is independent of the type of trader, therefore guaranteeing that informed traders are

inconspicuous, in the sense that they cannot be detected by the market maker. This basically

imposes a “pooled” equilibrium, as the one discussed in Easley and O’Hara (1987), in which

informed agents optimally decide to be pooled together with the uninformed ones.14 We will

show later that this is equivalent to the requirement that the uninformed traders valuations

of the assets do not excessively deviate from the fundamental value of the asset.

Note that the above assumptions on the signal received by the uninformed investor do not

imply that these agents can only act in a purely noisy fashion. For example, it is easy to show

that a setting in which noisy traders receive a noisy estimate of Dt would satisfy the above

assumptions.

14It is standard to look for so called inconspicuous equilibria in Kyle-Back type models. See Taub (2018)
for a review and discussion of this modelling feature.
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2.3 Agents’ Preferences

2.3.1 Traders’ Preferences

We assume that all the agents are risk neutral and that their preferences are common knowl-

edge. Since there is a continuum of potential traders and the number of arrivals is finite,

upon arriving the conditional probability of the trader being able to trade again is zero.15

Therefore, an agent that arrives to the market at time θi faces a basically static problem.

Recall that the final payoff of holding v+ shares is simply v+eDT . Assuming that the

traders’ inter-temporal discount factor is equal to the risk-free interest and both are equal to

zero,16 the expected utility from holding v+ shares until time T for an agent of type k ∈ {I, U}
that arrived to the market at time θki is

E
[
v+eDT

∣∣Hk
i

]
=: v+zki (5)

where zki is the expected utility from owning one stock for a type k trader. On the other hand,

the expected utility from investing in the risk free asset the amount needed to buy v+ shares

at time θki is simply

v+Aθki

(
v+
)
. (6)

The expected utilities in equations (5) and (6) can be viewed as the outcome of two

alternative investment strategies – buying v+ stocks or investing v+Aθki (v+) in the risk free

asset. Since a similar expression is associated with sell orders, v−, the optimisation problem

of the agent of type k that arrives at time θki can be expressed as

max
v+,v−

v+
[
zki − Aθki

(
v+
)]

+ v−
[
Bθki

(
v−
)
− zki

]
. (7)

Note that in the above expression the first term refers to buying the stock while the second

refers to selling the stock. As we will show later, in equilibrium it will never be optimal for

the agent to choose both v+ and v− different from zero. That is, the agent will either buy,

sell, or not trade.

For later usage, we define zi as the expected value of holding one share of the asset for the

agent that arrives at time θi:

zi = 1{Ii}z
I
i + 1{Ui}z

U
i . (8)

2.3.2 The Specialist’s Preferences

We complete the model assuming the presence of a specialist market maker. The market

maker faces a small proportional cost, δ, to execute the orders placed by traders. That is, if a

trader at time t submits the buying order v+ at the posted ask price At (v+), the market maker

will receive, upon completion of the transaction, the amount v+At (v+) (1− δ). Similarly, for

15This feature of our model mimics Glosten and Milgrom (1985). For a study of potential price manipulation
via order splitting and repeated trades see e.g. Huberman and Stanzl (2004).

16Generalizing our results to allow the inter-temporal discount and the risk-free rate to be non-zero and
different from each other is straightforward, but we don’t do so in order to simplify the exposition.
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executing a selling order of size v− the specialist would face a cost of17 v−Bt (v−) (1 + δ).

Assuming that it is the specialist that incurs a transaction cost is without loss of generality:

we could have attributed the transaction cost to the traders without changing the equilibrium

dynamics of the model. The presence of a small transaction cost generates interesting dy-

namics since, in equilibrium, this delivers a bid ask spread even in proximity of the zero order

size, i.e. limv↓0At (v)− limv↑0Bt (v) > 0. This implies that the exogenous (and unobservable)

process of arrivals of traders, N , and the endogenous (and observable) counting process of

trades, L, will not necessarily coincide.

This also implies that, in a given time interval, the difference in number of arrivals and

trades will carry relevant information for the market maker. Nevertheless, the market maker

cannot observe Nt nor, generally, infer it from the observed number of trades. For example, if

the exogenous arrival process is characterised by time varying intensity, an observed increase

in the number of trades can be attributed either to a) a change in the intensity of the arrival

process or to b) the fact that the market maker’s estimate of the true value is incorrect and more

informed traders choose to trade at the posted prices. We therefore are in need of specifying

the market marker’s prior beliefs about the connection between Nt and Lt. We adopt the

widely used assumption of Glosten and Milgrom (1985) that the market maker believes that

Nt = Lt.
18 This standard belief makes the problem tractable and has the advantage of

being, from the market maker’s point of view, unfalsifiable given an unobservable time varying

intensity of the arrival process. This has the advantage of focusing the equilibrium market

dynamic on the market maker’s filtering of the agents information rather than on the filtering

of the arrival process. Note also that relaxing this assumption, beside making the problem not

analytically solvable in our general setting, would introduce a drift in the bid and ask quotes,

i.e. the bid-ask spread would be shrinking during times of no trade – a feature not present in

the data.

The market maker is risk neutral, implying that her utility from owning one share of the

stock until time T is

ZM
t = E

[
eDT
∣∣GMt , Nt = Lt

]
. (9)

As in Glosten and Milgrom (1985), the specialist sets up bid and ask prices under a

zero utility gain constraint – that is, the market can be thought of as being populated by a

continuum of competitive (in Bertrand’s sense) market makers. This assumption implies two

restrictions of the market maker’s behaviour. First, as in a competitive market, carrying out

a trade at the posted price will not deliver a utility gain to the specialist (in her filtration).

Second, the specialist should not regret, ex post, having executed the trade at the posted

price. That is, if a trader submits an order of size v, the market maker utility should not

decrease after carrying out the order (i.e. we impose a state by state no regret condition).

17It is straightforward, in our setting, to allow for a different (and time varying) transaction costs for ask
and bid orders. However, we focus on the constant symmetric cost case to simplify exposition.

18Note that normally in the literature this assumption is made only implicitly by having a market maker
that, when setting prices, ignores the time between trades. This leads to equilibria in which ask and bid prices
do not depend on the time since the last trade. To the best of our knowledge, the only framework in which
the market makers condition on the time between trades is the one studied in Çetin and Xing (2013).

12



More precisely, the time t bid and ask prices, as a function of the order size v, must satisfy

the following conditions

At
(
v+
)

(1− δ) =
∞∑
i=1

1{i=1+Lt−} E
[
eDT |H̃M

i , Nτi = Lτi

]∣∣∣
ṽi=v+,τi=t

, (10)

Bt

(
v−
)

(1 + δ) =
∞∑
i=1

1{i=1+Lt−} E
[
eDT |H̃M

i , Nτi = Lτi

]∣∣∣
ṽi=−v−,τi=t

. (11)

Note that in the above summations there is only one non zero value of the index function

for any realisation of history, implying that these expressions are simple certainty equivalence

conditions that bid and ask prices must satisfy: the price (net of transaction costs) at which

the market maker buys or sells the asset is equal to her valuation after the transaction takes

place.

Remark 2 Since the market maker sets ask and bid as a function of the volume, and the price

of a transaction can only be at either the ask or the bid, we have that once the volume, Vt, is

observed, the transaction price has no residual information content. That is GMt = FVt ∨ FLt ,

implying that the market common knowledge history up to the i-th trade is given by H̃M
i =

σ
{
{ṽ}ij=0 , {τj}

i
j=0

}
, i.e. it is determined by the history of order sizes and times of trade.

Additionally, we impose the following regularity conditions on bid and ask functions:

C1. For a fixed v, the processes B (v−) and A (v+) are left continuous with right limits.

C2. For a fixed t, At (v+) : R+ → R̄+\ {0} is continuous, nondecreasing and limv+→∞At(v
+) =

+∞.

C3. For a fixed t, Bt (v−) : R+ → R̄+ is continuous, non increasing and limv−→∞Bt(v
−) = 0.

C4. For a fixed t, At (0) ≥ Bt (0) for all ω ∈ Ω.

C5. For any fixed t, At (·) is continuously differentiable, and Bt (·) is continuously differen-

tiable on the set {v : Bt (v) > 0}

C6. For a fixed t, vAt (v) is strictly convex, and vBt (v) is strictly concave on the set

{v : Bt (v) > 0}

Condition C1 formalises the idea that, as in the real world, the specialist can change the bid

and ask functions at any point in time except at the time at which the trade occurs. Condition

C2 for the ask price implies that: i) the specialist will never dispose of the assets for free;

ii) the price per share at which the specialist will agree to sell will not decrease in the order

size; iii) the specialist will refuse to trade infinite quantities. The first two implications are

meant to match the real world ask price behaviour, while the last one rules out degenerated

cases. Condition C3 for the bid price per share is the analog of condition C2 for the ask

price. Condition C4 is a technical one, and is meant to rule out the degenerate case of ask
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prices being below the bid price, while Condition C5 simply assumes that the bid and ask

functions are sufficiently smooth. Condition C6 ensures that the traders’ demand functions

are uniquely determined by their valuations (i.e. it ensures strict concavity of the traders’

objective function in equation (7)). This is equivalent to imposing a single crossing condition

for the demand and supply functions of the asset.

Also, in order to avoid the degenerate case of no trade ever occurring due to a systematically

too large bid ask spread, we require the transaction cost δ to be sufficiently small. In particular,

we have the following condition.

A5. δ ∈ (0, q).

The connection, in the above condition, between the maximum size of the transaction cost,

δ, and the share of uninformed agents, q, is intuitive. The market maker will make profits, on

average, only when dealing with uninformed agents. Therefore, if the transaction cost that

the market maker faces is too large, relative to the share of uninformed agents in the economy,

it will not be optimal for her to trade and she will choose an infinite bid ask spread.

3 Market Equilibrium

3.1 Existence and uniqueness of the equilibrium

In what follows we prove existence and uniqueness of the equilibrium. We define a market

equilibrium as follows.

Definition 1 (Equilibrium) A market equilibrium is a set of policy functions At (v+), Bt (v−),

vi (Aθi (v+) , Bθi (v−)) such that:

1. Conditions C1-C6 are satisfied;

2. At (v+) and Bt (v−) solve the specialist optimisation problem characterised by equations

(10) and (11) for any v, t;

3. vi (Aθi (v+) , Bθi (v−)) solves the trader’s problem in equation (7).

To prove existence and uniqueness of the market equilibrium, it is first useful to establish

two intermediate results. The first Lemma states the solution of the trader’s optimisation

problem for any ask and bid prices that satisfy conditions C1-C6.

Lemma 1 (Trader’s optimal demand) Suppose ask, At (v+), and bid, Bt (v−), price func-

tions satisfy conditions C1-C6. Consider a trader who arrives on the market at time θi and

observes the posted prices Aθi (v+) and Bθi (v−). Then

• if the trader’s valuation, zi, satisfies zi > Aθi (0), the optimal order size, v∗, is strictly

positive and is the unique solution of

zi = Aθi (v) + vA′θi (v) (12)
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• if zi < Bθi (0), the optimal order size, v∗, is strictly negative and is the unique solution

of

zi = Bθi (−v)− vB′θi (−v) (13)

• if Bθi (0) ≤ zi ≤ Aθi (0), then the optimal order size is v∗ = 0.

Proof of Lemma 1. Follows from the first order conditions of the trader’s problem in

equation (7) and the observation that conditions C2 and C3 ensure existence and finiteness

of the global maximum, while condition C6 ensures uniqueness of the maximum. Moreover,

condition C4 rules out different cases from the ones considered in the Lemma.

Note that equations (12) and (13) have a very intuitive interpretation. An agent buying

v shares pays vA(v) for the whole transaction. Therefore, the right hand side of equation

(12) is just the marginal cost, i.e. (vA(v))′, of buying v shares. Hence equation (12) states

that the agent buys the quantity that equates her valuation to the marginal cost (a similar

interpretation applies for the Bid side in equation (13)). This also implies that the trader’s

valuation of the asset is revealed upon submission of her order. In turn, this allows us to solve

the filtering problem of the market maker.

The above result allows us to make an important remark on Assumption A4.

Remark 3 (Remark on Assumption A4.) Note that the optimality conditions in Lemma

1 identify a one to one correspondence between the order size, vi, and the agent’s valuation,

zi. Denote this invertible map by f : vi → zi. Hence, for C ∈ B (R)

P (zi ∈ C|Hi−1, Ii, θi) = P (f (vi) ∈ C|Hi−1, Ii, θi) = P
(
vi ∈ f−1C|Hi−1, Ii, θi

)
,

P (zi ∈ C|Hi−1, Ui, θi) = P (f (vi) ∈ C|Hi−1, Ui, θi) = P
(
vi ∈ f−1C|Hi−1, Ui, θi

)
.

Therefore, assumption A4 is equivalent to P (zi ∈ C|Hi−1, Ui, θi) = P (zi ∈ C|Hi−1, Ii, θi).

That is, the restriction on the trading behaviour of uninformed (noisy) traders, can be equiv-

alently formulated as a restriction on their valuation process.

The above reformulation makes clear that Assumption A4 is a requirement on the type of

information that the uninformed agents receives. In a nutshell, it requires that the uninformed

traders’ valuations of the asset do not excessively deviate from the fundamental value of the

asset that is observed by the informed agent.

In the next proposition we characterise the optimal ask and bid price functions from the

market maker’s standpoint.

Proposition 4 (Optimal ask and bid functions) Suppose assumptions A1-A5 are satis-

fied. Then there exist optimal ask, At (v+), and bid, Bt (v−) , prices that satisfy conditions

C1-C5 and the market maker’s optimality conditions (10) and (11). Moreover, the optimal
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At (v) and Bt (v) have the following forms:

A∗t (v) =
q

q − δ

(
1 + αv

q−δ
1−q

) ∞∑
i=0

1{i=Lt−+1}Z
M
τi−1

(14)

B∗t (v) =

{
q
q+δ

(
1− βv

q+δ
1−q

)∑∞
i=0 1{i=Lt−+1}Z

M
τi−1

if βv
q+δ
1−q ≤ 1

0 otherwise
(15)

where α and β are strictly positive arbitrary constants, and ZM
t , given in equation (9), denotes

the market maker’s valuation.

Proof. The proof, being technical, is reported in Appendix B. Nevertheless, the steps

of the proof are quite intuitive. First, we show that, in the market maker’s filtration, the

probability of a trader being of the uninformed type is simply q independently from the order

size. Second, from the order size and Lemma 1, the market maker can recover the asset

valuation of the trader. Third, combining the probability of trader types, and the valuations

corresponding to each order size, together with the market maker’s indifference conditions

(10) and (11), give rise to an ordinary differential equation (ODE) for the ask price function,

and one for the bid price function. Each of these ODEs admits one solution reported above.

The equilibrium bid and ask price functions, depicted in Figure 2 for different values of q,

have important implication for market liquidity in terms of depth and tightness. These prop-

erties are discussed in detail in section 4.2. The analytical relation between price schedule and

order size in equations (14)-(15) is entirely captured by the terms before
∑∞

i=0 1{i=Lt−+1}Z
M
τi−1

since this last quantity is just the time t valuation of the asset by the market maker (and does

not depend on v). One thing to notice in the figure is that, overall, as q – the share of noisy

agents – increases, the bid-ask curves become steeper (for large orders), while the bid-ask

spread at zero reduces. This is due to the fact that, when q is high, informed trades happen

less often, hence the price process experiences bigger deviations from the fundamental value.

Hence, the market maker’s potential losses from executing a large order are substantially

larger when q is large.

Note that, in a real world market, the arbitrary constants α and β would be uniquely

identified by the tick size. Note also that ZM
t is always positive, and represents the market

maker’s valuation of owning the stock conditional on all the information available before the

last trade and the fact that a trade is occurring at time t. The next remark defines the

updating mechanism for the market maker’s valuation of the asset at trade times z̃Mi = ZM
τi

.

Remark 5 (Update of Market Maker’s estimation of the asset value) Note that if As-

sumptions A1-A5, as well as Conditions C2-C5, are satisfied, the same steps used in proving

Proposition 4 can be used to show that ZM
t =

∑∞
i=0 1{i=Lt−}z̃

M
i with

z̃Mi = (1− q) z̃i + qz̃Mi−1. (16)

The above equation states that, in updating her valuation, the market maker will assign a
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Figure 2: Ask and Bid equilibrium prices for different shares (q) of uninformed traders.

weight q (the probability of the last trader being uninformed) to her previous valuation, and

weight 1−q (the probability of the trader being informed) to the last trader’s valuation. From

(16) it also follows that the market maker’s valuation will never be equal to the one of the

last trader. Therefore, the trading activity of informed traders will generate autocorrelation

in the valuation process z̃Mi . As we will show below, equilibrium transaction prices will be a

function of this valuation, and will therefore inherit this autocorrelation property.

We can now establish the equilibrium result in the following Theorem

Theorem 6 Suppose Assumptions A1-A5 are satisfied. For strictly positive constants α and

β, there is a unique market equilibrium ask, A∗t (v), and bid, B∗t (v) price schedules, and optimal

order size v∗i . The price schedules A∗t (v) and B∗t (v) are given, respectively, by equations (14)

and (15), and the optimal order size is

v∗i =


[

1−q
α(1−δ)

(
q−δ
q

zi
zMi
− 1
)] 1−q

q−δ
if q

q−δz
M
i < zi,

−
[

1−q
β(1+δ)

(
1− q+δ

q
zi
zMi

)] 1−q
q+δ

if zi <
q
q+δ

zMi ,

0 if q
q+δ

zMi ≤ zi ≤ q
q−δz

M
i

where zMi := ZM
θi

denotes the market maker’s valuation at the i-th arrival.

Proof of Theorem 6. Due to Proposition 4 we know that, for strictly positive constants

α and β, equilibrium ask and bid functions are unique and given by equations (14) and (15).

Using these expressions for A∗t (v) and B∗t (v) in the optimality conditions in Lemma (1) and

solving for v completes the proof.

Note that the above equilibrium solution for the order size, v∗, when δ = 0, implies that

traders will buy (sell) the asset if and only if their valuation, zi, is larger (smaller) than the

market maker’s valuation, zMi . When instead δ > 0, the difference in valuation necessary for

a trade to occur needs to be larger in order to account for the trading cost δ. Therefore, in
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the presence of trading costs, there is an interval of inaction in which no trade occurs even if

the valuations of the market maker and the trader differ.

3.2 High frequency (tick-by-tick) equilibrium price process

Given the above equilibrium ask and bid pricing functions and trading strategies, we can now

characterise the equilibrium price process.

Recall from equation (3) that, since the i-th trade has to occur either at the ask or at the

bid price, the price is

p̃i = Aτi
(
ṽ+
i

)
1{ṽi>0} +Bτi

(
ṽ−i
)
1{ṽi<0}

and given the zero utility gain conditions for the market maker (10) and (11) this becomes

p̃i = z̃Mi

[
1{ṽi>0}

(1− δ)
+

1{ṽi<0}

(1 + δ)

]
. (17)

Since, by normalisation, trades start at times after time zero, we need to define the time

zero price – that is the price of the asset before any trade as happened. Since the form of the

log profit process is common knowledge, we normalise p̃0 to be equal to the expected value,

for any agent, of holding the asset at time zero. That is p̃0 = eD0+(µ+ 1
2
σ2)T .

From the solutions for the equilibrium ask and bid (14) and (15) we know that

p̃i = z̃Mi−1

[
q

q − δ

(
1 + αṽ

q−δ
1−q
i

)
1{ṽi>0} +

q

q + δ

(
1− β |ṽi|

q+δ
1−q

)
1{ṽi<0}

]
.

Putting together the last two expressions we have

p̃i = p̃i−1c1,ic2,i−1 (1 + ξi |ṽi|γi) (18)

where

c1,i =

{
q
q−δ if the i-th trade occurs at ask
q
q+δ

if the i-th trade occurs at bid

c2,i =


1− δ if the i-th trade occurs at ask and i > 0

1 + δ if the i-th trade occurs at bid and i > 0

1 if i = 0

γi =

{
q−δ
1−q if the i-th trade occurs at ask
q+δ
1−q if the i-th trade occurs at bid

ξi =

{
α if the i-th trade occurs at ask

−β if the i-th trade occurs at bid

(19)

Moreover, using the relation between order size and cumulated trading volume (2) we have

log
Pt+s
Pt

=

Lt+s∑
i=Lt

{
log
(
1 + ξi

∣∣Vτi − Vτi−1

∣∣γi)+ log c1,i + log c2,i−1

}
. (20)
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That is, there is a direct relationship between price changes and changes in the volume of

trade. In particular, the above equation implies that, at high frequency, the volatility of

log returns is i) stochastic, and ii) a function of trade volume
∣∣Vτi − Vτi−1

∣∣. Moreover, the

relationship in equation (20), discussed in detail in Section 4.2, can rationalize the findings of

a large body of empirical evidence on the joint behaviour of volume, prices, and volatility.19

The characterisations of the high frequency price process provided in equations (18) and

(20) are a function of endogenous variables – respectively of order size, and volume and number

of trades. In the next Lemma we characterise the price process as a function of the exogenous

fundamental value of the asset.

Lemma 2 (price process and trading times as a function of fundamentals) Suppose

that Assumptions A1-A5 are satisfied and that the market is at the equilibrium. We can de-

fine the price process, and the time of trades, as a function of the exogenous traders’ valuation

process Z as follows. First, normalise τ0 and p̃0 as follows

τ0 = 0, P0 = p̃0 = eD0+(µ+ 1
2
σ2)T , c2,0 = 1.

Second, define recursively the trading times

τi = inf {θj > τi−1 : log zj − log p̃i−1 /∈ (b (c2,i−1) , a (c2,i−1))} , (21)

where

a (x) = log

(
qx

q − δ

)
, b (x) = log

(
qx

q + δ

)
, (22)

and prices are given by

p̃i =
1

c2,i

[(1− q) zi + qp̃i−1c2,i−1] , (23)

where c2,i in equation (19) can be redefined as

c2,i =

{
1− δ if log z̃i − log p̃i−1 > a (c2,i−1) and i > 0

1 + δ if log z̃i − log p̃i−1 < b (c2,i−1) and i > 0
(24)

Proof of Lemma 2. Setting τ0 = 0 is an innocuous normalisation of the time scale. The

definition of the equilibrium τi in equation (21), as well as c2,i in equation (24), follow from:

the agent’s optimality conditions in Lemma 1; the form of the equilibrium bid and ask function

in Proposition 4; and equation (17), that allows us to replace the market maker’s valuation,

z̃Mi , with the price, p̃i. The definition of the equilibrium price process, p̃i, in equation (23)

follows from the market maker’s valuation update in Remark 5 and equation (17).

In a nutshell, the above Lemma follows from the observation that, in equilibrium, the trade

will occur at the ask price if and only if the valuation of the agent is sufficiently higher than

the last recorded market price (log zj− log p̃i−1 > a (c2,i−1)), and at the bid price if instead the

agent’s valuation is sufficiently lower than the last recorded price (log zj− log p̃i−1 < b (c2,i−1)).

19See e.g. Gallant, Rossi, and Tauchen (1992), Farmer and Lillo (2004), Farmer, Lillo, and Mantegna (2003),
Potters and Bouchaud (2003).
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This inter-temporal link with the lagged price is due to the fact that the current price is just

a linear function of the current market maker’s valuation, and this valuation is updated

recursively (see Remark 5) due to the presence of uninformed agents. Note that if there were

no trading costs we would have a (.) = b (.) = 0, implying that agents would always decide to

trade either at the ask or bid price.

Since in the above Lemma we have defined the equilibrium trading times and prices as

a function of the log valuation (log z), we now turn to the identification of the distribution

of this quantity. This is a necessary step to be able to characterise the equilibrium volatility

process. In particular, we derive the distribution of log zi conditional on the information set

Hi−1 ∨ σ {θi} – the information set that contains all the past history of prices, volume of

trades, arrivals, and the time of the current arrival. For this task it is convenient to define Dtr
t

as the value of the (trend adjusted) log expected stock payoff – i.e. the log expected profit

from holding the stock – that could be inferred observing the valuation of the last agent that

arrived on the market. That is

dtri =

{
log zi −

(
µ+ σ2

2

)
(T − θi) ∀i ≥ 1

D0 i = 0
, Dtr

t =
∞∑
i=0

1{i=Nt}d
tr
i . (25)

Note that the value of Dtr
τi

can be always inferred from the last occurred trade due to the fact

that agents preferences are common knowledge. The distribution of dtri is characterised in the

following lemma.

Lemma 3 Suppose that Assumptions A1-A5 are satisfied. Then

P
[
dtri ≤ x|Hi−1, θi

]
= P [Dθi ≤ x|Hi−1, θi]

= (1− q)
i−1∑
j=1

qi−1−jP
[
dtrj + εi,j ≤ x|dtrj ,∆i,j

]
+ qi−1P

[
dtr0 + εi,0 ≤ x|dtr0 ,∆i,0

]
where ∆i,j := θi − θj, εi,j := µ∆i,j + σ

√
∆i,jηi,j, and ηi,j ∼ N (0, 1) is independent of dtrj and

∆i,j for all j < i.

The proof of the above Lemma is quite involved, and we therefore report it in Appendix

B. The rationale behind it is nevertheless quite intuitive. At each point in time either an

informed (with probability 1 − q) or an uninformed (with probability q) agent arrives to the

market and, from equation (25), her dtri is simply a (log) linear function of her expected

payoff (zi) from holding the asset. Recall that Hi−1 contains all the past history of arrivals

and volume of trade, and based on this information and the knowledge of the time of the

current arrival (θi) only, informed and uninformed agents are indistinguishable. This implies

that P [dtri ≤ x|Hi−1, θi, Ii] = P [dtri ≤ x|Hi−1, θi, Ui]. Moreover, only the arrival of an informed

agent can add new relevant information about the fundamental. Therefore, the last relevant

information is revealed by the last informed arrival, and the probability of this being the j-th

arrival is simply (1− q) qi−1−j. Moreover, if no informed agent ever arrived to the market
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before the i-th arrival, the only relevant information is the common knowledge dtr0 , and this

event might occur with probability qi−1. Furthermore, since the innovations in D are simple

independent Brownian motion differences, the ε terms appear.

Note that since prices are uniquely determined by Dtr (through Lemma (2) and equation

(25)), Lemma 3 also characterizes the distribution of prices. Therefore, if the Dtr process

were to converge in distribution, this would also imply (by continuos mapping theorem), the

convergence in distribution of the price process. This limiting distribution is the focus of the

next sub section.

3.3 Medium frequency equilibrium price process

Having characterized the price process and the distribution of agents’ valuations on the tick-

by-tick time scale, we now turn to the analysis of the equilibrium price process at lower

frequencies. This is needed in order to establish the equilibrium link between information

based trading and endogenous stochastic volatility.

In this section we make one simplifying assumption regarding the arrival process: we con-

sider a Poisson process. The assumption of a Poisson arrival process is not strictly necessary,

since all that we need to derive our results is that the arrival process satisfies a set of properties

(described in detail in Appendix C) that hold almost surely for a Poisson process. In order

to simplify exposition, we consider a process with constant intensity but we could handle a

process with time varying intensity. This is a very minor restriction since, as we show be-

low, the equilibrium medium and low frequency price and volatility processes, as well as the

number of trades process, will be independent of the arrival process itself. Moreover, a fixed

arrival intensity has the advantage that the only channel through which stochastic volatility

can arise in our setting is the information based trading.

By medium frequency we mean a time interval in which the number of arrivals is very large

i.e. it can be approximated by infinity. To model this mathematically, we send the intensity of

arrivals to infinity. As we show below, this modeling approach has the advantage that, as the

intensity of arrivals goes to infinity, the constraint that a trade can only happen at exogenous

arrival times disappears.

The key result established in this section is summarized in the following Theorem.

Theorem 7 (Limiting Price Process) Suppose that the fundamental value process D is

given by equation (1). Suppose also that Λ is a Poisson process, with intensity parameter λ,

defined on [0,+∞), and FΛ
∞ is independent of FWD

∞ . Then there exists a sequence of Poisson

arrival processes Nn, satisfying P [Nn
t = Λtn, t ∈ [0, T ]] = 1, such that the equilibrium price

process P n resulting from any sequence of marketsMn (Nn, D , Sn, Un) satisfying Assumptions

A2-A6, weakly converges in Skorokhod topology.

Moreover, there exist a standard Brownian Motion, W , independent of the number of arrivals
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process, Λ, such that the limit price process P is:

Pt
d
=

Lpt∏
i=1

φi

(
q

φi−1

+ 1− q
)

= exp

{
σ2

2

(
T − τLpt

)
+ σWLpt

}
(26)

where
d
= denotes equality in distribution and Lpt =

∑∞
j=1 1{τj≤t} is the total number of trades

by time t. Moreover, φ and τ are defined recursively as: τ0 = 0 and for any i ≥ 1 the trading

times τi is

τi = inf

{
t ≥ τi−1 : σ

(
Wt −Wτi−1

)
− σ2

2
(t− τi−1) /∈

[
b

(
q

φi−1

+ 1− q
)
, a

(
q

φi−1

+ 1− q
)]}

;

φ0 = 0 and φi tracks whether the i-th trade occurred at ask or bid and is given by

φi :=


q
q−δ if σ

(
Wτi −Wτi−1

)
− σ2

2
(τi − τi−1) = a

(
q

φi−1
+ 1− q

)
q
q+δ

if σ
(
Wτi −Wτi−1

)
− σ2

2
(τi − τi−1) = b

(
q

φi−1
+ 1− q

)
where a (.) and b(.), defined in equation (22), denote, respectively, the logs of the best ask and

bid quotes.

Before discussing the proof of the above theorem, two remarks about its economic impli-

cations are in order. First, by considering the limiting price process as the arrival intensity

approaches infinity we are, de facto, considering a stock specific time – i.e. the business time

of the stock. This is the (medium) frequency at which the stock is close to being continuously

observed by potential traders (i.e. the frequency at which potential traders arrive almost con-

tinuously). In the real world this occurs at different calendar frequencies for different stocks:

e.g., in a week, blue chip stocks are closer to being continuously observed by traders than a

small cap stock. Hence, what this business time corresponds to in calendar time (hours, days,

months, etc.) is asset specific and depends upon the level of market attention dedicated to

the asset.

Second, note that the medium frequency price process in equation (26) clearly does not

depend on the volume of trade, nor on the traders’ arrival process, but only on the number

of trades, Lpt . Moreover, the theorem implies that the price of financial assets with the same

level of transaction costs, asymmetric information and fundamental volatility, will have the

same equilibrium distribution when sampled at their specific business times.

The proof of the above theorem is extremely involved, and requires establishing several

intermediate technical results. As consequence we dedicate Appendix C to this task. Nev-

ertheless, the result is quite intuitive and is based on the following key observations. First,

Lemma 2 above makes clear that in equilibrium both trading times and the price process are

entirely driven by the (log) shadow valuation process logZ (or equivalently, its trend adjusted

version Dtr). In particular, equations (21) and (23) describe the map from shadow valuation

(logZ) to, respectively, trading times and price process. Second, Lemma 3 above fully char-

acterizes the distribution of the shadow valuation process (trend adjusted and in logs) on the
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arrival time scale.

The above observations imply that if we establish that a) the shadow valuation process

converges in Law and b) that the map from shadow valuation to prices and trading times is

continuous, then a standard application of the Continuous Mapping Theorem implies conver-

gence in Law of the price process – hence yielding the result of the above theorem. Indeed

(subject to technical details outlined in Appendix C), this is exactly the core of our proof

and the price process converges to a continuous functional of a Brownian Motion with drift

as stated in equation (26) of the theorem. In particular, the trade occurs when the Brownian

Motion with drift (that plays the role of log shadow valuation in the limiting market) touches

the bid-ask bounds (a feature that parallels the result in Lemma 2 above). The φ terms in

the theorem track the history of bid and ask trades. That is, the limiting price process can

be viewed as a product of (non-iid) binomial draws tracked by the φ’s.

The binomial interpretation is handy in that it allows us, in the Corollary below, to

characterize the first two moments of the price process in trading time.

Corollary 1 (Volatility of the Limiting Price Process) The distribution of φi is, for

i > 1

φi :=

 q/ (q − δ) w.p. 1{φi−1= q
q−δ}

(q−δ)(1+q)
2q(1−δ) + 1{φi−1= q

q+δ}
(q−δ)(1−q)

2q(1+δ)

q/ (q + δ) w.p. 1{φi−1= q
q−δ}

(q+δ)(1−q)
2q(1−δ) + 1{φi−1= q

q+δ}
(q+δ)(1+q)

2q(1+δ)

.

and for i = 1

φ1 :=

{
q/ (q − δ) w.p. q−δ

2q

q/ (q + δ) w.p. q+δ
2q

.

Implying the ergodic distribution

φi :=

{
q/ (q − δ) w.p. (q−δ)(1−δ)

2(q+δ2)

q/ (q + δ) w.p. (q+δ)(1+δ)
2(q+δ2)

,

and the conditional moments for i > 1

E
[
p̃i
p̃i−1

| FWτi−1

]
= 1, V ar

(
p̃i
p̃i−1

| FWτi−1

)
=
δ2(1− q2)

q2 − δ2
.

Proof. The proof is reported in Appendix B.

The above corollary shows that, on the trade time scale, the price process is characterized

by constant volatility. Since trade and calendar time differ (due to the endogenous choice of

whether to trade or not), this implies that the volatility on the calendar time scale is driven by

the number of trades process and, since this process is stochastic, the calendar time volatility

itself is stochastic. The economic implications of the trade by trade volatility characterized

above are discussed in detail in section 4.2.
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3.4 Low and ultra-low frequency equilibrium price processes

In order to characterize the low frequency price process behavior, we send the number of

trades between time s and t, that is Lpt − Lps, to infinity, and study the volatility of the

limiting distribution of the (appropriately scaled) log return.

This task is complicated by the fact that a) the sequence of φ’s, that drives the price

process, is serially dependent (see Corollary 1), and b) the time between trades is also de-

pendent.20 Note also that, although we have already obtained the limiting trade by trade

price volatility in Corollary 3.3, the volatility on the calendar time scale is also affected by

the average time between consecutive trades and this alters its distribution.

In what follows, we establish that the (centered) calendar time of trades is a mixingale

and that the sample mean of times between consecutive trades (i.e. the inter-arrival time of

trades) converges almost surely to a constant. Based on this result, we construct a (novel)

central limit type argument to characterize the limiting volatility of the price process on the

calendar time scale.

Lemma 4 (Expected Inter-arrival Time of Trades) Consider the endogenous trading times

τn defined in Theorem 7. Then the average time between trades, 1
n

∑n−1
i=0 (τi+1− τi) = τn

n
, con-

verges almost surely, as n→∞, to its population mean µτ given by

µτ :=
2

σ2

[
log

q − δ
q(1− δ)

+
(q + δ)(1 + δ)

2 (q + δ2)
log

(1− δ)(q + δ)

(1 + δ)(q − δ)

]
. (27)

Moreover, for any ω ∈ Ω such that limn→∞
τn(ω)
n

= µτ , we have that the cumulated number of

trades Lpt satisfies
Lpt
t

(ω) −→
t→∞

1

µτ
. (28)

The proof of the above Lemma is technical and we therefore confine it to Appendix B.

Nevertheless, its mechanics is simple since it is based on establishing that the serial dependence

of inter-arrival times decays at a sufficiently fast rate.

The above Lemma allows us to characterize the low frequency distribution of log returns

in the following proposition.

Proposition 8 (Low and Ultra-low Frequency Return Distributions) Consider the pop-

ulation mean of times between trades, µτ , defined in Lemma 4. The asymptotic distributions

of log returns are:
log Pt

Ps
− σ2

2
(s− t)√

Lpt − L
p
s

d−→
t−s→∞

N
(
0, σ2µτ

)
, (29)

log Pt
Ps
− σ2

2
(s− t)

√
t− s

d−→
t−s→∞

N
(
0, σ2

)
, (30)

where Lpt is the cumulated number of trades by time t.

20Since the time between trades depends upon the sequence of φ’s as per Theorem 7.
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Proof. Define τ ′k := inf {n ∈ N : n ≥ τk}. Fix an s ≥ 0 and an ω ∈ C where C :={
ω ∈ Ω : limn→∞,

τn(ω)
n

= µτ

}
, and observe that

τ ′
Lpt

t
(ω) ≡

(
τ ′
Lpt
− τLpt
Lpt

(ω) +
τLpt
Lpt

(ω)

)
Lpt
t

(ω).

By Lemma 4, for any ω ∈ C, we have that limt→∞
Lpt
t

(ω) = 1
µτ

, implying that

0 ≤ lim
t→∞

τ ′
Lpt
− τLpt
Lpt

(ω) ≤ lim
t→∞

1

Lpt
(ω) = 0.

Hence (
τ ′
Lpt
− τLpt
Lpt

Lpt
t

)
(ω) −→

t→∞
0.

Similarly, from Lemma 4 and the definition of C, we have that for ω ∈ C(
τLpt
Lpt

Lpt
t

)
(ω) −→

t→∞
1.

Moreover, since P (C) = 1 by Lemma 4, we have
τ ′
L
p
t

t
−→
t→∞

1 a.s., which implies
τ ′
L
p
t
−τ ′

Lst

t−s −→
t−s→∞

1

a.s.. Thus, it follows from the Anscombe’s Theorem (see e.g. Gut (2009), Theorem 1.3.1) that

Wτ ′
L
p
t

−Wτ ′
L
p
s√

t− s
≡

∑τ ′
L
p
t
−τ ′

L
p
s
−1

i=0

(
Wi+1+τ ′

L
p
s
−Wi+τ ′

L
p
s

)
√
t− s

d−→
t−s→∞

N (0, 1) .

Note that

− W ∗
√
t− s

d∼ inf
u∈

[
τ
L
p
t
,τ
L
p
t

+1
] Wu −Wτ

L
p
t√

t− s
≤
Wτ ′

L
p
t

−Wτ
L
p
t√

t− s
≤ sup

u∈
[
τ
L
p
t
,τ
L
p
t

+1
]
Wu −Wτ

L
p
t√

t− s
d∼ W ∗
√
t− s

,

where the equivalence in distribution follows from the strong Markov property of brownian

motion and W ∗ := supu∈[0,1]Wu. Since P (W ∗ <∞) = 1 we have that
Wτ ′

L
p
t

−Wτ
L
p
t√

t−s −→
t−s→∞

0 a.s..

Similarly,
Wτ ′

L
p
s
−Wτ

L
p
s√

t−s −→
t−s→∞

0 a.s.. Hence, from Slutsky’s theorem (see e.g. Hayashi (2000),

Lemma 2.4), it follows that

Wτ
L
p
t

−Wτ
L
p
s√

t− s
d−→

t−s→∞
N (0, 1) ,

and a further application of Slutsky’s theorem delivers

Wτ
L
p
t

−Wτ
L
p
s√

Lpt − L
p
s

≡
Wτ

L
p
t

−Wτ
L
p
s√

t− s

√
t− s√
Lpt − L

p
s

d−→
t−s→∞

N (0, µτ ) .

Given the form of logPt from equation (26), the conclusion of the proposition follows.
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Equation (29) implies that, at low frequency, the log return process on the calendar time

scale is characterized by stochastic volatility, and that the driver of time variation in volatility

is the number of trades that occur between time t and s. Moreover, the fact that log returns

are Gaussian, after a stochastic time change with respect to number of trades, is exactly the

empirical finding of Ané and Geman (2000).

Last but not least, this result implies that periods of high trading activity will tend to

coincide with periods of increased return volatility and is consistent with the Wall St. wisdom

that “it takes volume to move the price” (since, at low frequency, volume of trade is simply

proportional to the number of trades).

The ultra-low frequency result in equation (30) arises due to the fact that, at this frequency,

the number of trades per time interval converges, hence the stochastic volatility driven by the

number of trades disappears (hence at this frequency fundamental and price volatility coincide

as e.g. in Bernhardt and Taub (2008)). This finding can rationalize the fact that volatility

clustering is, in the data, very evident at high and medium frequency, but typically harder to

detect at extremely low frequency.

4 Equilibrium Determinants of Liquidity and

Volatility

Based on the results of the previous section, we can now analyze how the degree of asymmetric

information and market frictions influence the equilibrium liquidity and volatility, and how

these quantities would be affected by the introduction of a Tobin Tax. For the reader’s

convenience, the key quantities discussed in this section are summarized in Table 1 below.

The last column of the table states the frequency at which the given equilibrium quantity

is obtained. Recall that: the high frequency is the tick-by-tick, or trade-by-trade, sampling

frequency; medium frequency is the stock specific business time i.e. the calendar frequency

at which the stock is close to being continuously observed; the low frequency is the calendar

frequency at which there is a very large (but not constant) number of trades per calendar time

interval; the ultra-low frequency is the calendar time such that the number of trades per time

interval is (approximately) equal to its expected value i.e. the frequency at which the trading

can be viewed as continuous.

4.1 Equilibrium liquidity

Kyle (1985) defines a liquid market as one in which: a) the costs of trading small amounts are

themselves small (bid-ask spreads are small) i.e. the market is tight ; b) the costs of trading

large amounts are small (big trades don’t cause large price movements) i.e. the market is

deep; c) discrepancies between prices and true values of assets are small and are corrected

quickly i.e. the market is resilient.

In our model, tightness, depth, and resilience are all determined in equilibrium, and they

are all functions (that can be expressed in closed form) of adverse selection in the market
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Table 1: Key Equilibrium Quantities

Row Quantity Expression Frequency

(1) Market tightness 2qδ
q2−δ2 all

(2) Kyle’s λ at ask q
1−qα(v+)

2q−δ−1
1−q all

(3) Kyle’s λ at bid q
1−qβ(v−)

2q+δ−1
1−q all

(4)
Expected time
between trades (µτ )

2
σ2

[
log q−δ

q(1−δ) + (q+δ)(1+δ)
2(q+δ2)

log (1−δ)(q+δ)
(1+δ)(q−δ)

]
≤medium

(5)
Calendar time
half-life of shocks

log 1/2
log q

µτ ≤medium

(6) Log Return (log Pt+s
Pt

)
∑Lt+s

i=Lt
log
[
c1,ic2,i−1

(
1 + ξi

∣∣Vτi − Vτi−1

∣∣γi)] high

(7)
Trade-by-trade
returns variance

δ2(1−q2)
q2−δ2 ≤medium

(8)
Calendar time
log returns variance

σ2µτ (Lpt − Lps) low

(9)
Calendar time
log returns variance

σ2 (t− s) ultra-low

Note on frequencies: high = trade by trade; medium = the stock specific business time i.e. calendar frequency
at which the stock is approximately continuously observed; low = calendar frequency with a very large number
of trades per time interval; ultra-low = calendar frequency at which the number of trades per time interval is
approximately its expected value.

(captured by the parameter 1 − q) and the magnitude of market frictions (embodied by the

parameter δ). Moreover, an increase of the parameter δ can be interpreted as analogous to

the introduction of a proportional financial transaction tax – aka a Tobin Tax of the type

implemented in several countries, and currently being under discussion within the European

Union.

The tightness of the market (reported in Row (1) of Table 1) can be obtained from the

ask and bid price schedules in equations (14) and (15) of Proposition 4 as the order size

approaches zero. The resulting percentage bid-ask spread (as a percentage of the market

maker’s estimate of the fundamental value) is equal to 2qδ
q2−δ2 and is depicted in Figure 3. Note

that, in our setting, the bid-ask spread is a function of only the degree of adverse selection,

1 − q, and the order processing cost δ. This is quantitatively consistent with the empirical

literature that finds that about 86-100% of the spread is generated by these two forces (see e.g.

Stoll (1989), George, Kaul, and Nimalendran (1991), and Huang and Stoll (1996)), with the

remaining fraction (if any) being driven by inventory costs. Panel A of Figure 3 shows that,

as the degree of market friction δ increases, the bid-ask spread becomes wider, hence market

tightness is decreasing in δ. This is due to the fact that an increase in δ makes the trading

cost incurred by the market maker larger. Hence, to compensate for this, the mark-up on the
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Figure 3: Market tightness. Bid-ask spread as a percentage of the market maker’s estimate of the fundamental
value as the order size approaches zero, i.e. 2qδ

q2−δ2 , as a function of δ (Panel A) and q (Panel B).

market maker’s valuation that allows her to break even is higher. More interestingly, the rate

at which market tightness decreases in δ is higher when there are more informed traders (q

is small) i.e. when the adverse selection faced by the market maker is more severe. Panel B

shows that the tightness increases as the share of uninformed agents increases, since the degree

of adverse selection in the market is reduced. These results imply that the introduction of

a Tobin Tax would: a) reduce market tightness; b) exacerbate the adverse selection problem

from the market maker perspective; and c) have more severe effects in markets with a high

degree of adverse selection i.e. markets already characterized by low tightness.

The market depth can be elicited from the first derivative with respect to the order size of

the ask and bid price schedules in equations (14) and (15) of Proposition 4, and is summarised

in Figure 4. These derivatives (normalized by the market maker’s valuation) are reported in

Rows (2) and (3) of Table 1, and are analogous to Kyle’s lambda i.e. they represent the

sensitivity of prices to order flows, and are thus inversely related to market depth. The first

important thing to notice is that, in our setting, market depth is generally not constant – it

is instead a function of the order size.21 This rationalizes the empirical finding of Keim and

Madhavan (1996) that the price impact per unit trade is itself a function of the order size (see

also Loeb (1983) and Kavajecz (1999)).

Panels A and C show that there is a q∗ threshold such that the market depth is increasing

in the order size for q < q∗ and decreasing in the order size for q > q∗.22 This is due to the

fact that when q is high most of the traders are of the uninformed type. Hence, in this case,

the price is more likely to deviate substantially from the fundamental value. Therefore, the

potential loss that the market maker incurs executing a large informed order is high. On the

21The derivative of the ask price with respect to the order size is constant if and only if q = .5 (1 + δ), and
the one of the bid price is constant if and only if q = .5 (1− δ).

22The q∗ threshold is equal to .5(1 + δ) at ask and .5(1− δ) at bid.
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Figure 4: Inverse market depth i.e. Kyle’s λ. Panels A and B depict the slope of the ask price schedule,

normalized by the market maker valuation, i.e. q
1−qα(v+)

2q−δ−1
1−q as a function of the order size for different

q, and different q and δ, respectively (Panel B considers the same values for q as in Panel A but adds
perturbations to the value of δ). Panels C and D depict the analogous quantities for the bid price schedule

i.e. q
1−qβ(v−)

2q+δ−1
1−q . In all panels the constants α and β are fixed to the same value equal to 0.01.

contrary, when q is low, most traders are of the informed type, and the price is unlikely to

deviate substantially from the fundamental value. Hence, the market maker’s potential losses

from executing a large order are substantially smaller. Given these considerations, the market

maker chooses a decreasing or increasing market depth depending on the value of q.

Panels B and D show that, in the empirically relevant parameter range,23 variations in δ

have a very small effect on market depth. Hence, the introduction of a Tobin Tax is not likely

to affect this dimension of liquidity. This result is intuitive given that the concept of market

depth is about the relative willingness of executing small vs. large orders, and this willingness

is unlikely to be substantially affected by a proportional, and small, trade tax. Moreover, this

result, taken together with the observation that trading costs have a large impact on market

tightness, suggests that the degree of asymmetric information in the market could be better

inferred empirically from its depth rather than the tightness.

The degree of market resilience can be inferred combining the trade-by-trade market

maker’s valuation update function in equation (16), with the limiting number of trades per

unit of time, limt→∞ L
p
t/t ≡ 1/µτ , in equation (28). The former has an half-life24 of deviations

from the fundamental value – on the trade-by-trade time scale – equal to log .5/ log q i.e. it is

decreasing in q and unaffected by δ.25 Scaling this quantity by the number of trades per unit

23See e.g. Stambaugh (2014) AFA presidential address.
24The half-life is the time required for the effect of a shock to a process to decrease by half.
25Rewriting equation (16) in deviation from the fundamental value, one obtains an AR(1) process for the
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Figure 5: Expected inter-arrival time of trades (µτ , defined in equation (27)) as a function of δ (Panel A)
and q (Panel B).

of time, we obtain the half-life of deviations from the fundamental value on the calendar time

scale i.e.
log 1/2

log q
µτ (31)

where µτ is the (limiting) expected inter-arrival time of trades defined in equation (27). Since

µτ is itself a function of q and δ, and resilience inherits some of its properties (in particular

with respect to δ), it is useful to first analyze how the former varies when parameters change.

Figure 5 depicts the expected inter-arrival time of trades (reported in Row (4) of Table 1)

as a function of δ (Panel A) and q (Panel B).26 As one would intuit, the inter-arrival time

is increasing in the transaction friction δ (Panel A). This is due to the fact that the bid-ask

spread is widening in this quantity, hence reducing the fraction of potential traders that,

upon arrival, decide to trade (i.e. an increase in δ widens the no trade region of informed

and uninformed traders). This rationalizes the empirical finding of Umlauf (1993) that the

introduction of a Tobin Tax in the Swedish stock market in the 80’s induced a reduction in

turnover i.e. in the average number of trades per unit time, 1/µτ .

More interestingly, the marginal effect of an increase in δ is larger when q is lower, that is

when the market maker faces a higher degree of adverse selection. This is due to the fact that,

as outlined before, the rate at which market tightness decreases in δ is higher when there are

more informed traders (q is small). Panel B makes also clear that the expected inter-arrival

time is decreasing in q. The reason being that, as the degree of adverse selection is reduced,

the market maker is more willing to trade, hence she increases market tightness (see Panel B

of Figure 3), therefore increasing the share of potential traders that, upon arrival, choose to

deviation of the market maker’s valuation from the fundamental value, with autoregressive coefficient q and
shock proportional to the deviation of the i-th trader’s valuation from the fundamental one. Hence, the h-
period ahead impulse response function of a valuation shock is equal to qh times the shock, delivering the
half-life on the trade-by-trade time scale reported above.

26Note that a second order approximation of µτ with respect of δ around δ = 0 gives µτ ≈ δ2(1−q2)
2q2 .
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Figure 6: Market resilience. Half-life of the market maker’s valuation update in calendar time (i.e. inverse
market resilience) defined in equation (31).

trade.

Since the half-life of deviations of the specialist’s valuation from the fundamental value

in equation (31) depends on δ only through µτ , the behaviour of resilience as a function of δ

mimics the one of the expected inter-arrival time. Hence, as depicted in Panel A of Figure 6,

resilience is decreasing in the degree of market friction δ, and this effect is more pronounced

when the degree of adverse selection in the market is high (i.e. q is low).

The effect of a change in q on market resilience results from two counteracting forces. On

one hand, the speed of the trade-by-trade valuation update of the market maker in equation

(16) is accelerated as the share of informed agents increase (i.e. when q decreases). Hence, on

the trade time scale, half-life reduces and resilience increases. On the other hand, in response

to an increase in the degree of adverse selection, the specialist dealer reduces market tightness

(see Panel B of Figure 3). This in turn increases the average time between trades µτ (see

Panel B of Figure 5), hence it increases the calendar time half-life in equation (31), therefore

reducing resilience. The net effect of these two opposing mechanisms, depicted in Panel B of

Figure 6, is dominated by the adverse selection motive. That is, as q increases, the calendar

time half-life decreases and market resilience increases.

4.2 Equilibrium price and volatility on different time scales

We have already shown in equation (20), reported below for the reader’s convenience, that, at

very high frequency, there is an equilibrium relationship between log returns and movements

in volume:

log
Pt+s
Pt

=

Lt+s∑
i=Lt

{
log
(
1 + ξi

∣∣Vτi − Vτi−1

∣∣γi)+ log c1,i + log c2,i−1

}
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where c, γ and ξ are defined in equation (19). This equation implies that, at high frequency,

the volatility of log returns is stochastic and is a function of
∣∣Vτi − Vτi−1

∣∣.
The above equilibrium result is qualitatively (and potentially quantitatively) consistent

with the seminal works of Epps and Epps (1976) and Tauchen and Pitts (1983) on the price-

volume relationship, and provides microfoundations for the empirical findings of (among oth-

ers) Gallant, Rossi, and Tauchen (1992), Andersen (1996), and Chan and Fong (2000), that

document a strong (often non-linear) link between volume of trade and price movements

and between volume and price volatility.27 Furthermore, the above equation implies that if

|ξi|
∣∣Vτi − Vτi−1

∣∣γi is small (i.e. if the typical transaction size is small), than a Taylor expansion

yields a power law relationship between order size and price growth rates. This is coherent

with the empirical findings of Farmer and Lillo (2004) and Farmer, Lillo, and Mantegna (2003)

that identify a log-linear relationship between gross price growth and changes in volume. On

the other hand, if the typical transaction size is large (i.e. if |ξi|
∣∣Vτi − Vτi−1

∣∣γi is large), a

log-log relationship between gross price growth and volume changes holds, which is precisely

the empirical finding of Potters and Bouchaud (2003).28

As the intensity of arrivals approaches infinity – i.e. at the medium time frequency – the

equilibrium price process is characterised in Theorem 7 and Corollary 1. In particular, the

limiting trade-by-trade variance of gross returns is δ2(1−q2)
q2−δ2 . This quantity is depicted in Panels

A and B of Figure 7 as a function, respectively, of δ and q. The figure shows that this trade-

by-trade volatility is increasing in the degree of trading friction δ, and that the marginal effect

of an increase in δ is stronger when the degree of adverse selection is high (i.e. when q is low).

This behaviour rationalizes the findings of Jones and Seguin (1997) that document a decline

in stock market volatility as a result of the 1975 reduction of the negotiated commission on the

U.S. national stock exchange. Moreover, Panel B shows that this variance is also decreasing

in q. These behaviours are quite intuitive: as δ (q) increases (decreases) the market maker

reduces market tightness (and resilience), and this in turn increases volatility of trade prices.

Note that the constant trade-by-trade volatility does not imply constant volatility on the

calendar time scale, since: a) trade times – hence number of trades in a given time period –

are stochastic and endogenous, and b) prices (from equation (26) and Corollary 1) are serially

correlated. Indeed, equation (29) in Proposition 8 shows that at low frequency the variance

(between time s and t) is stochastic and given by (Lpt − Lps)σ2µτ – that is, the number of

trades is the driver of stochastic volatility at this frequency as found in the empirical analysis

of Jones, Kaul, and Lipson (1994) (see also Dufour and Engle (2000)). More precisely, in

our setting the low frequency log returns follow a Brownian motion time changed by the

number of trades process – as stated in equation (29) of Proposition 8. This is exactly the

empirical finding of Ané and Geman (2000) that documents that the distribution of log returns

conditional on the number of trades is Gaussian and has constant volatility. Our theoretical

low frequency (constant) volatility on the trade time scale (µτσ
2) is depicted in Panels C and

27See also Hausman, Lo, and MacKinlay (1992) and Karpoff (1987).
28Note that the so-called “Barra model” (see e.g. Gabaix, Gopikrishnan, Plerou, and Stanley (2006))

corresponds to q ≈ 1/3 and small δ.
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Figure 7: Limiting Variances. Variance on the trade by trade (upper panels) and number of trades (lower
panels) time scales as a function of δ (left panels) and q (right panels). In Panels C and D σ is set to 0.15.

D of Figure 7. The two Panels show that the volatility of the price process, scaled by the

(square root of) the number of trades, has an almost identical behaviour to the trade-by-trade

volatility in Panels A and B. Moreover, the rationale of this behaviour is analogous to the one

described above for Panels A and B. One thing worth stressing is that the variances in the

upper and lower panels of the figure, although very similar, are not identical – this discrepancy

is due to the equilibrium autocorrelation of log returns.

Note that the above results on the equilibrium volatility are obtained in a setting in which

the fundamental is assumed to have constant volatility. This suggests that, if the fundamental

volatility where to be time varying, the endogenous stochastic volatility mechanism outlined

in our model would amplify this time variation.

4.3 Liquidity and volatility comovements

We have seen above that the deep parameters of the model – namely, the degree of adverse

selection on the market (measured by 1 − q) and the degree of other transaction frictions

(captured by the parameter δ) – have first order effects on both the equilibrium liquidity and

volatility of the market, and these effects rationalize a large set of empirical stylized facts.

Therefore, a natural question is whether changes in these market fundamental characteristics

can also explain the comovements of liquidity and volatility documented in the empirical

literature.

Indeed, the equilibrium characterizations discussed in Sections 4.1 and 4.2 can explain

(qualitatively at least) the joint dynamics of different liquidity measures and trading activity

found in the data. For instance, Dufour and Engle (2000) find empirically that “as the time
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duration between transactions decreases, the price impact of [large] trades, the speed of price

adjustment to trade-related information [...] all increase.” Exactly this joint behaviour arises

in our setting in response to an increase in q. Moreover, Dufour and Engle (2000) interpret

times of reduced liquidity as times with an increased presence of informed traders, and in our

setting an increase in the degree of adverse selection in the market manifests itself exactly via

a reduction of all the equilibrium measures of liquidity.

Furthermore, in our model, an increase in adverse selection causes an increase in volatility

on both the trade-by-trade and number of trades time scale as illustrated in Figure 7. That

is, our model is capable of generating joint liquidity dry-ups and volatility spikes in response

to an increase in the degree of adverse selection as, for instance, during the subprime crises.

Moreover, in our equilibrium characterisation, an increase in trading costs – as e.g. the

introduction of a Tobin Tax or an increase in trading fees – reduces both market tightness and

resilience, and increases volatility on the various time scales, as documented in the empirical

literature (see, e.g., Jones and Seguin (1997), Jones, Kaul, and Lipson (1994) and Umlauf

(1993)). And this effect, as outlined in previous sections, is stronger in markets characterised

by a higher degree of adverse selection.

5 Conclusion

This paper develops a tractable, asymmetric information based, equilibrium trading model in

which the distribution of the price process, its volatility, the complete price schedule (as a

function of the order size), the trading activity, as well as the various dimensions of market

liquidity, are all characterised as functions of fundamental (trading and informational) fric-

tions. The results derived provide micro-foundations for, and a rationalisation of, a large set

of empirical findings including the presence of (stochastic) volatility clustering and a price

volatility, volume, and trading activity link. Moreover, our framework constitutes a natural

laboratory for the analysis of the equilibrium impact of a Tobin tax, delivers a rationalization

of the empirical evidence on this topic, and provides novel insights.

Methodologically, the multiple time scales and the limiting characterisation approach of

the corresponding market equilibria, developed in this paper, could also be extended (with

appropriate modifications) to study very different economic problems: e.g. from the effect

of high frequency trading in financial markets, to the modelling of time and state contingent

price setting in sticky prices, wages, and information, macroeconomic models. Moreover, our

methodology could also be applied to different dynamic market settings as e.g. limit order

book markets.

Furthermore, our characterisation of the equilibrium price process, liquidity, trading ac-

tivity, and volatility, at different frequencies and as a function of the fundamental trading and

informational frictions, naturally opens two important directions for future research.

First, our asymptotic characterisations raise a natural question: at what (calendar time)

speed do the equilibrium processes converge (on the different time scales considered) to the

equilibria that we have derived? These speeds of convergence should be functions of the
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fundamental trading (δ) and informational (q) frictions on the market. Hence these frictions

should, also through this channel, influence the (calendar) time series of market dynamics and

risk. The task of analysing these speeds of convergence is complicated by the fact that an

obvious metric for quantifying the speed of convergence between distributions is not readily

available. Nevertheless, a potentially promising metric is the relative entropy, as a function of

the fundamental frictions, between the equilibrium price distributions at any given frequency

and the next, lower frequency, distribution. For instance, the half-life of the relative entropy

discrepancy would be a relevant statistic to construct in order to understand how financial

risk is generated.29

Second, our closed form characterisations of the price process, liquidity, trading activity,

price schedule, and volatility, as a function of the fundamental frictions, offer a natural ap-

proach for the investigation of the empirical relevance of these channels in driving financial

market dynamics, and for the estimation of the fundamental market characteristics that gen-

erate them. Moreover, for a richer empirical analysis, the framework derived in this paper

could be generalized to accommodate time varying fundamental volatility, time varying degree

of adverse selection, and time varying trading costs (as e.g. the time varying margins – aka

“haircuts” – studied in Brunnermeier and Pedersen (2009)).

Both of the above extensions are promising, although demanding, tasks, and we defer them

to future work.
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Appendices

A Notation and Glossary

Notation:

i) Upper case Latin letters, such as Xt, denote processes considered on the calendar time
scale; lower case Latin letters, such as xi, denote processes considered on the number of
arrivals time scale, that is xi = Xθi , where θi denotes the stopping time of the arrival
process (i.e. the i-th arrival time); lower case Latin letters with˜superscript, such as x̃i,
denote processes considered on the number of trade time scale, that is x̃i = Xτi , where τi
denotes the stopping time of the trade process (i.e. the i-th trade time).

ii) The letter G denotes information sets in calendar time, the letter H̃ denotes information
sets in trading time, and H denotes information sets in the arrival time scale.

iii) The superscripts I, U , and M , denote, respectively informed agents, uninformed agents,
and the market maker.

iv) x ∨ y indicates the minimum sigma algebra generated by the union of x and y;

v) x ∧ y ≡ min {x, y};

vi) For any given process X, we denote by FXt = σ {Xs, s ≤ t}∨N , where σ {.} is the sigma
algebra generated by its argument, N is the set of P-null sets.

vii) x∗ denotes the value of any variable x at the optimum.

viii) x
d
= y denotes that the random variables x and y have the same distribution.

Glossary:

a(.): function defined in equation (22).
A (v+): ask price where v+ ∈ R+ is the buy order size.
b(.): function defined in equation (22).
B (v−): bid price, where v− ∈ R+ is the sell order size.
cj,i: binomial random variables defined in equation (19).
Dt: log profit process (follows a diffusion).
dtr, Dtr: (trend adjusted) log expected profit from holding the stock (defined in equation

(25)) on, respectively, arrival and calendar time scales.
Gt = FVt ∨ FNt ,∀i: filtration generated by the history of volume and arrival processes.
GI,it = GMt ∨ FDt ∨ σ

{
θIi ∧ s, s ≤ t

}
: informed trader filtration.

GMt = FPt ∨ FVt : common knowledge filtration i.e. history of volumes and prices (see also
Remark 2).
GU,it = GMt ∨ σ

{
θUi ∧ s, s ≤ t

}
: noisy/uninformed trader filtration.

Hi = Gθi : filtration generated by the history of volume and arrival processes.
HI
i = GI,i

θIi
: information set of an informed agent upon arrival.

H̃M
i = GMτi : the market maker information set at the time ot the i-th trade.

HU
i = GU,i

θIi
∨ σ {si}: information set of an uninformed agent upon arrival.

Ii: the event corresponding to the informed type agent arrival.
Lt: cumulative number of realized trades by time t.
LPt : cumulative number of realized trades by time t in the market with infinite arrival

intensity.
Nt: stochastic counting process of arrivals.
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Nk
t , k ∈ {I, U}: stochastic counting process of informed/uninformed traders arrivals.

p̃i, Pt: the unit price on, respectively, trade and calendar time scales.
q: probability of an arrival being of the uninformed type.
s, S: private signal of agents of the uninformed type on, respectively, arrival and calendar

time scales, i.e. si ≡ SθUi .
T : final time.
Ui: the event corresponding to the uninformed type agent arrival.
vi, ṽi, Vt: denote, respectively order size of an agent in the arrival and trade time scales,

and the cumulated order size (i.e. volume) up to time t.
WD
t : Brownian Motion component of Dt.

Y n: technical process that has, by construction, the same distribution as Dtr as the
intensity of arrivals goes to infinity.

zi = 1{Ii}z
I
i + 1{Ui}z

U
i : is the expected utility from owning one stock for the agent that

arrives at time θi.
zki , z̃

k
i , Z

k
t , k ∈ {I,M,U}: is the expected utility from owning one stock for a type k agent

on, respectively, arrival, trade and calendar time scales.

γj,i: binomial random variables defined in equation (19).
δ: order processing cost.
∆i,j = θj − θj.
εi,j = µ∆i,j + σ

√
∆i,jηi,j.

ηi,j : standard Gaussian random variable independent of dtrj and ∆i,j for all j < i.
θi: stopping time associated with Nt, that is the i-th arrival of an agent to the market.
θki , k ∈ {I, U}: stopping time associated with Nk

t , that is the i-th arrival of an agent of
type k to the market.

µ: drift of Dt.
ξj,i: binomial random variables defined in equation (19).
σ: volatility of Dt.
τi: stopping time associated with Lt, that is the time of the i-th trade.
φ: binomial random variable defined in Theorem 7 (see also Corollary 1).

B Additional Proofs and Lemmas

Proof of Proposition 4. Given the market maker’s indifference conditions (10) and (11)
and Lemma 1, it follows from Bayes rule that

At
(
v+
)

(1− δ) =
∞∑
i=1

1{i=1+Lt−}

{
P
[
Ĩi|H̃M

i , Nτi = Lτi

]
E
[
eDT |H̃M

i , Nτi = Lτi , Ĩi

]
+

P
[
Ũi|H̃M

i , Nτi = Lτi

]
E
[
eDT |H̃M

i , Nτi = Lτi , Ũi

]}∣∣∣
ṽi=v+,τi=t

,

=
(
1− qt

(
v+
)) [

At
(
v+
)

+ vA′t
(
v+
)]

+ qt
(
v+
)
Xt

(
v+
)

(32)

Bt

(
v−
)

(1 + δ) =
∞∑
i=1

1{i=1+Lt−}

{
P
[
Ĩi|H̃M

i , Nτi = Lτi

]
E
[
eDT |H̃M

i , Nτi = Lτi , Ĩi

]
+

P
[
Ũi|H̃M

i , Nτi = Lτi

]
E
[
eDT |H̃M

i , Nτi = Lτi , Ũi

]}∣∣∣
ṽi=v−,τi=t

=
(
1− qt

(
−v−

)) [
Bt

(
v−
)

+ vB′t
(
v−
)]

+ qt
(
−v−

)
Xt

(
−v−

)
(33)
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where Ĩi (Ũi) denotes the event of the i-th trader being informed (uninformed) and

qt (v) =
∞∑
i=1

1{i=1+Lt−} P
[
Ũi|H̃M

i , Nτi = Lτi

]∣∣∣
ṽi=v,τi=t

Xt (v) =
∞∑
i=1

1{i=1+Lt−} E
[
eDT |H̃M

i , Nτi = Lτi , Ũi

]∣∣∣
ṽi=v,τi=t

where qt (v) is the probability of the time t trader being uninformed and Xt (v) is the time t
market maker valuation given that the current trader is uninformed. Note that in the above
equation the market maker uses the trader’s valuation of the asset (from Lemma 1) only in
the case of the trader being informed.

Recall that, from Remarks 1 and 2, we have H̃M
i = σ

{
{ṽ}ij=0 , {τj}

i
j=0

}
and Hi =

σ
{
{v}ij=0 , {θj}

i
j=0

}
. Hence we can rewrite the marker maker’s probability of the trader

being uninformed as P
[
Ũi|H̃M

i , Nτi = Lτi

]
= P

[
Ũi|H̃M

i−1, ṽi, τi, Nτi = Lτi

]
.

Note that from Bayes rule, for any C ∈ B (R) we have

P
[
Ũi|H̃M

i−1, ṽi ∈ C, τi, Nτi = Lτi

]
=

P
[
Ũi|H̃M

i−1, τi, Nτi = Lτi

]
P[ṽi∈C|H̃Mi−1,τi,Nτi=Lτi ]

P[ṽi∈C|H̃Mi−1,τi,Nτi=Lτi ,Ũi]

. (34)

From A4 and the fact that{
H̃M
i−1 ∨ σ

{
τi, Ũi

}}
∩ {Nτi = Lτi} = {Hi−1 ∨ σ {θi, Ui}} ∩ {Nτi = Lτi} (35)

it follows that equation (34) simplifies to

P
[
Ũi|H̃M

i−1, ṽi ∈ C, τi, Nτi = Lτi

]
= P

[
Ũi|H̃M

i−1, τi, Nτi = Lτi

]
since P

[
ṽi ∈ C|H̃M

i−1, τi, Nτi = Lτi

]
= P

[
ṽi ∈ C|H̃M

i−1, τi, Nτi = Lτi , Ũi

]
.

Finally, from Assumption A3 and the equality (35), we have that the arrival of an unin-
formed agent, Ũi, is independent from H̃i−1 and τi, therefore

qt (v) := P
[
Ũi|H̃i−1, τi, Nτi = Lτi

]
= q.

Using equality (35), and the fact that the signal received by the uninformed trader is
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conditionally independent (A2), we have that Xt (v) = ZM
t since

Xt (v) =
∞∑
i=1

1{i=1+Lt−} E
[
eDT |H̃M

i , Nτi = Lτi , Ũi

]∣∣∣
ṽi=v,τi=t

=
∞∑
i=1

1{i=1+Lt−} E
[
eDT |H̃M

i−1, ṽi, τi, Nτi = Lτi , Ũi

]∣∣∣
ṽi=v,τi=t

=
∞∑
i=1

1{i=1+Lt−} E
[
E
[
eDT |H̃M

i−1, Sτi , τi, Nτi = Lτi , Ũi

]
|H̃M

i−1, ṽi, τi, Nτi = Lτi , Ũi

]∣∣∣
ṽi=v,τi=t

=
∞∑
i=1

1{i=1+Lt−}E
[
eDT |H̃M

i−1, Nt = Lt

]
=
∞∑
i=0

1{i=Lt−+1}E
[
eDT
∣∣GMτi−1

, Nt = Lt

]
=
∞∑
i=0

1{i=Lt−+1}Z
M
τi−1

Therefore equations (32) and (33) simplify to the following ordinary differential equations

At (v) (1− δ) = (1− q) [At (v) + vA′t (v)] + q

∞∑
i=0

1{i=Lt−+1}Z
M
τi−1

,

Bt (v) (1 + δ) = (1− q) [Bt (v) + vB′t (v)] + q
∞∑
i=0

1{i=Lt−+1}Z
M

τi−1 .

These first order ODEs, up to a generic constant, have one solutions each (since A and B
have to be positive and are defined on a positive real line). These solutions are the ones in
equations (14) and (15), they clearly satisfy conditions C2-C5, and C1 is satisfied because∑∞

i=0 1{i=Lt−+1}Z
M
τi−1

is a cádlág process.
Proof of Lemma 3. The proof is by induction on i.

I. i = 1. Then

P
[
dtr1 ≤ x|H0, θ1

]
= qP

[
dtr1 ≤ x|H0, θ1, U1

]
+ (1− q)P

[
dtr1 ≤ x|H0, θ1, I1

]
since, due to A3, P [U1|H0, θ1] = q. From equation (25) and Remark 3 it follows that
P [dtr1 ≤ x|H0, θ1, U1] = P [dtr1 ≤ x|H0, θ1, I1]. Therefore

P
[
dtr1 ≤ x|H0, θ1

]
= P

[
dtr1 ≤ x|H0, θ1, I1

]
. (36)

On the other hand, we have

P
[
dtr1 ≤ x|H0, θ1, I1

]
= P [D0 + (Dθ1 −D0) ≤ x|H0, θ1, I1]

= P [D0 + (Dθ1 −D0) ≤ x|H0, θ1] (37)

= P
[
dtr0 + ε1,0 ≤ x|dtr0 ,∆1,0

]
sinceDθ1−D0 is a Brownian motion increment and, due to assumption A3, this Brownian
motion is independent of θ and I. Note also that equations (36) and (37) imply

P
[
dtr1 ≤ x|H0, θ1

]
= P [Dθ1 ≤ x|H0, θ1] .
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II. Suppose the statement is true for i = n. Consider i = n+ 1, then

P
[
dtrn+1 ≤ x|Hn, θn+1

]
= qP

[
dtrn+1 ≤ x|Hn, θn+1, Un+1

]
+ (1− q)P

[
dtrn+1 ≤ x|Hn, θn+1, In+1

]
= P

[
dtrn+1 ≤ x|Hn, θn+1, In+1

]
. (38)

Since, due to A3, P [Un+1|Hn, θn+1] = q, and from Remark 3 we know that

P
[
dtrn+1 ≤ x|Hn, θn+1, In+1

]
= P

[
dtrn+1 ≤ x|Hn, θn+1, Un+1

]
.

we also have

P
[
dtrn+1 ≤ x|Hn, θn+1, In+1

]
= P

[
Dθn+1 ≤ x|Hn, θn+1, In+1

]
= P

[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, In+1

]
.

Note that from assumption A3 In+1 ⊥ FN,D,ST ∨ (Uj)j 6=n+1 ∀n. Since Hn ∨ σ {θn+1} ∨
σ
{
Dθn+1 −Dθn

}
∨ σ {Dθn} ⊂ F

N,D,S
T ∨ (Uj)j 6=n+1 we have

In+1 ⊥ Hn ∨ σ {θn+1} ∨ σ
{
Dθn+1 −Dθn

}
∨ σ {Dθn} ∀n.

Therefore, from Proposition 6.8 of Kallenberg (2002), we have that, ∀n,

In+1 ⊥
Hn∨σ{θn+1}

σ
{
Dθn+1 −Dθn

}
∨ σ {Dθn} ,

and from Proposition 6.6. of Kallenberg (2002) it follows that

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, In+1

]
= P

[
Dθn+1 ≤ x|Hn, θn+1

]
.

The above and equation (38) imply P
[
dtrn+1 ≤ x|Hn, θn+1

]
= P

[
Dθn+1 ≤ x|Hn, θn+1

]
.

Moreover

P
[
dtrn+1 ≤ x|Hn, θn+1, In+1

]
= P

[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1

]
= (1− q)P

[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, In

]
+qP

[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
(39)

where the last equality follows from Bayes rule, and the fact that Assumption A3 and
Hn ∨ σ {θn+1} ⊂ FN,D,ST ∨ (Uj)j 6=n+1 imply that P [Un|Hn, θn+1] = q.
Note that the In agent knows Dθn , therefore

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, In

]
= P

[
dtr
n

+Dθn+1 −Dθn ≤ x|Hn, θn+1, In
]

= P
[
dtr
n

+ σ
(
WD
θn+1
−WD

θn

)
+ µ∆n+1,n ≤ x|Hn, θn+1, In

]
= P

[
dtr
n

+ σ
(
WD
θn+1
−WD

θn

)
+ µ∆n+1,n ≤ x|Hn, θn+1

]
.

where the last equality follows from assumption A3 and the fact that Hn ∨ σ {θn+1} ∨
σ
{
WD
θn+1
−WD

θn

}
⊂ FN,D,ST ∨(Uj)j 6=n+1, and hence we can use use once more Proposition

6.6 and 6.8 of Kallenberg (2002).
Let define W̃ n

t := WD
θn+t − WD

θn
and Ñn

t := Nθn+t − Nθn . From Assumption A2, and

the fact that WD is a Brownian motion with respect to (Ft)t≥0, we have FW̃n ⊥
Hn
F Ñn

,

and FW̃n ⊥ Hn. Therefore, from Proposition 6.8 of Kallenberg (2002) the above is

equivalent to FW̃n ⊥ F Ñn ∨ Hn. Since from Assumption A1 F Ñn ⊥ Hn, it follows
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from the definition of independence that F Ñn ∨ FW̃n ⊥ Hn. Since σ
{
WD
θn+1
−WD

θn

}
∨

σ {∆n+1,n} ⊂ F Ñ
n ∨ FW̃n

, the above independence and Proposition 6.8 of Kallenberg

(2002) implies σ
{
WD
θn+1
−WD

θn

}
⊥

σ{∆n+1,n}
Hn. Thus, we have by Proposition 6.6 of

Kallenberg (2002) that

P
[
dtr
n

+ σ
(
WD
θn+1
−WD

θn

)
+ µ∆n+1,n ≤ x|Hn, θn+1

]
= P

[
dtr
n

+ εn+1,n ≤ x|dtr
n
,∆n+1,n

]
where εn+1,n := µ∆n+1,n + σ

√
∆n+1,nηn+1,n and ηn+1,n ∼ N (0, 1) is independent of dtrn

and ∆n+1,n for all n. Therefore

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, In

]
= P

[
dtr
n

+ εn+1,n ≤ x|dtr
n
,∆n+1,n

]
. (40)

To complete the characterisation of equation (38) we now simplify the expression for
P
[
dtrn+1 ≤ x|Hn, θn+1, Un+1

]
. Observe that

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
= E

[
P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn−1, θn+1, θn, Un, Sn

]
|Hn, θn+1, Un

]
= P

[
Dθn +Dθn+1 −Dθn ≤ x|Hn−1, θn+1, θn

]
where the last equality is due to Assumptions A2 and A3. Using Propositions 6.6 and
6.8 of Kallenberg (2002) in the same fashion as above, we have

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
= P [Dθn + εn+1,n ≤ x|Hn−1, θn+1, θn] (41)

where εn+1,n := µ∆n+1,n + σ
√

∆n+1,nηn+1,n and ηn+1,n ∼ N (0, 1) is independent of
Hn−1, θn+1, θn and FDθn .

To complete the induction recall Assumption A2 implies FWD

T ⊥
Hi−1

FNT . Since σ {θn} ∨

σ {θn+1} ⊂ FNT we have FWD

T ⊥
Hi−1

σ {θn} ∨ σ {θn+1} . Thus, from Proposition 6.8 and

Corollary 6.7 of Kallenberg (2002) we have that

FWD

T ∨ σ {θn} ⊥
Hi−1,σ{θn}

σ {θn+1} ,

and since σ {Dθn} ⊂ FW
D

T ∨ σ {θn}, we have σ {Dθn} ⊥
Hi−1,σ{θn}

σ {θn+1}. Therefore, for

any χ

P [Dθn ≤ χ|Hn−1, θn+1, θn] = P [Dθn ≤ χ|Hn−1, θn] = P
[
dtrn ≤ χ|Hn−1, θn

]
= (1− q)

n−1∑
j=1

qn−1−jP
[
dtrj + εn,j ≤ x|dtrj ,∆n,j

]
+

+ qn−1P
[
dtr0 + εn,0 ≤ x|dtr0 ,∆n,0

]
where the last two equalities are due to the induction assumption that also imply εn,j :=
µ∆n,j + σ

√
∆n,jηn,j, and ηn,j ∼ N (0, 1) is independent of dtrj and ∆n,j for all j < n.
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Thus equation (41) becomes

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
= (1− q)

n−1∑
j=1

qn−1−jP
[
dtrj + εn,j + εn+1,n ≤ x|dtrj ,∆n,j,∆n+1,n

]
+

+ qn−1P
[
dtr0 + εn,0 + εn+1,n ≤ x|dtr0 ,∆n,0,∆n+1,n

]
= (1− q)

n−1∑
j=1

qn−1−jP
[
dtrj + εn+1,j ≤ x|dtrj ,∆n+1,j

]
+ qn−1P

[
dtr0 + εn+1,0 ≤ x|dtr0 ,∆n+1,0

]
since all the ε’s are independent Gaussians.
Combining the above equation with equations (40), (39), and (38) yields

P
[
dtrn+1 ≤ x|Hn, θn+1

]
= (1− q)

n∑
j=1

qn−jP
[
dtrj + εn+1,j ≤ x|dtrj ,∆n+1,j

]
+

+ qnP
[
dtr0 + εn+1,0 ≤ x|dtr0 ,∆n+1,0

]
.

By the principle of mathematical induction the proof is complete.

Proof of Corollary 1. To prove the corollary we need to compute the probability that,
given that a trade occurred, it is at ask or bid. Let

(
FWt

)
be the natural filtration of W

augmented in the usual way. Since W is a Brownian motion with respect to a (potentially)
larger filtration, it is also a Brownian motion with respect to

(
FWt

)
. Then,

P
[
σ
(
Wτi −Wτi−1

)
− σ2

2
(τi − τi−1) = a

(
q

φi−1

+ 1− q
)
|FWτi−1

]
= P

[
σWτ −

σ2

2
τ = a (x)

]
x= q

φi−1
+1−q

where the equality follows from the strong Markov property of Brownian motion, and where

τ := inf

{
t ≥ 0 : σWt −

σ2

2
t /∈ [b (x) , a (x)]

}
.

Note that Mt := exp
{
σWt − σ2

2
t
}

is a martingale and τ ∧ s is a bounded stopping time for

every fixed s. Thus, EMτ∧s = 1 by Doob’s optional sampling theorem (see Revuz and Yor
(1999) Th. 3.2 Ch. II). Since Mτ∧s is bounded for all s, we can use the dominated convergence
theorem to obtain that EMτ = 1. Thus we have

P
[
σWτ −

σ2

2
τ = a (x)

]
=

1− eb(x)

ea(x) − eb(x)
=
q2 − δ2 − q (q − δ)x

2qδx

since Mτ can take only value exp {a (x)} or exp {b (x)} . Hence φi has the stated distribution
and the conditional moments, as well as the ergodic distribution, follow from simple direct
calculations.

Proof of Lemma 4. We first derive the conditional expectation of time between two
consecutive trades. In particular we will prove that the following conjecture holds for all
i > j ≥ 1

E
[
τi − τi−1 − µτ | FWτi−j

]
=

 S(q + δ)(1 + δ)
(

q2−δ2

q(1−δ2)

)j−1

, if φi−j = q
q−δ

−S(q − δ)(1− δ)
(

q2−δ2

q(1−δ2)

)j−1

, if φi−j = q
q+δ
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where µτ is defined in Lemma 4 and

S :=
1

σ2(q + δ2)

[
q2 − δ2

q(1− δ2)
log

q − δ
q + δ

+ log
1 + δ

1− δ

]
.

The proof is by induction on j. First, consider j = 1. By Theorem 7.29 Kallenberg (2002)
we have, for any t ∈ R+,

E
[
τi ∧ t− τi−1 ∧ t | FWτi−1

]
= − 2

σ
E
[
Wτi∧t −Wτi−1∧t −

σ

2
(τi ∧ t− τi−1 ∧ t) | FWτi−1

]
.

Observe that the left hand side is monotonically increasing in t and the right hand side takes

values in the interval
[
− 2
σ2a
(

q
φi−1

+ 1− q
)
, − 2

σ2 b
(

q
φi−1

+ 1− q
)]

and is therefore bounded.

Thus, taking the limit as t → ∞ and applying the Monotone Convergence Theorem (to the
left hand side) and the Dominated Convergence Theorem (to the right hand side) yields:

E
[
τi − τi−1 | FWτi−1

]
= − 2

σ
E
[
Wτi −Wτi−1

− σ
2

(τi − τi−1) | FWτi−1

]
= − 2

σ2E
[
a
(

q
φi−1

+ 1− q
)

1{φi= q
q−δ} + b

(
q

φi−1
+ 1− q

)
1{φi= q

q+δ} | F
W
τi−1

]
= − 2

σ2

[
a
(

q
φi−1

+ 1− q
)
P
[
φi = q

q−δ | φi−1

]
+ b
(

q
φi−1

+ 1− q
)
P
[
φi = q

q+δ
| φi−1

]]
= µτ +

{
S(q + δ)(1 + δ), if φi−1 = q

q−δ
−S(q − δ)(1− δ), if φi−1 = q

q+δ

,

where the second equality is due to the definition of τi in Theorem 7, the third one is due to
the fact that φ is Markov, and the last one is obtained via direct calculations by employing
the conditional probabilities of Corollary 1.

Next, suppose that the statement of the induction is true for j = n. Let j = n + 1 and
observe that for any i > j we have

E
[
τi − τi−1 | FWτi−(n+1)

]
= E

[
E
[
τi − τi−1 | FWτi−n

]
| FWτi−n−1

]
= µτ + S

(
q2−δ2

q(1−δ2)

)n−1

E
[
(q + δ)(1 + δ)1{φi−n= q

q−δ} − (q − δ)(1− δ)1{φi−n= q
q+δ} | φi−n−1

]
,

where the last equality is due to the assumption of the induction and the fact that φ is
Markov. Using the conditional probabilities given in Corollary 1, direct calculation proves
that the conjecture holds.

Next, note that τn − τn−1 − µτ is a L2 mixingale since30∥∥∥E [τi − τi−1 − µτ | FWτi−n
]∥∥∥

2
= S

(
q2−δ2

q(1−δ2)

)n−1 [
E
(

(q + δ)(1 + δ)1{φi−n= q
q−δ}

−(q − δ)(1− δ)1{φi−n= q
q+δ}

)2
] 1

2

≤ S
√

2(q + δ)(1 + δ)
(

q2−δ2

q(1−δ2)

)n−1

,

where the first equality is due to the result above and the inequality is due the fact that

(a+ b)2 ≤ 2(a2 + b2). Moreover, let cn = c = S
√

2(q+ δ)(1 + δ) and Ψ(n) =
(

q2−δ2

q(1−δ2)

)n−1

and

observe that Ψ(n) = o(log−2(n)). Hence, by Corollary 1 of de Jong (1995), we have that

τn
n
−→
n→∞

µτ a.s.

30For a definition of mixingales see e.g. de Jong (1995).
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The second statement of the Lemma is proved by contradiction. Fix an ω ∈ {ω ∈
Ω : limn→∞

τn(ω)
n

= µτ}. Suppose that for this ω there exists a sequence {ti}∞i=1 such that

limi→∞ ti =∞ and limi→∞
Lpti

(ω)

ti
= K 6= 1

µτ
, where K can take infinity as a value.

If K = +∞, then for any M ∈ R+ there exists an N ∈ N such that for any n ≥ N we have

Lptn(ω)

tn
> M ⇔ τbMtnc(ω) < tn ⇔

τbMtnc(ω)

bMtnc
<

tn
bMtnc

where the operator b·c returns the largest integer smaller than its argument. Taking the limit

yields that limn→∞
τbMtnc(ω)

bMtnc ≤ 1
M

for any M ∈ R+ and, therefore, is equal to zero, which
contradicts the choice of ω as, evidently, µτ 6= 0.

If K < +∞, we have two possibilities: either K < 1
µτ

or K > 1
µτ

. We will consider only
the first case as the second one can be dealt with in similar manner.

Fix an ε = 1
4

(
1
µτ
−K

)
. As limi→∞

Lpti
(ω)

ti
= K there exists an N ∈ N such that, for any

n ≥ N , we have
Lptn (ω)

tn
−K < ε. Observe that we have

Lptn(ω) < tn(ε+K)⇔ τbtn(ε+K)c+1(ω) > tn ⇔
τbtn(ε+K)c+1(ω)

btn(ε+K)c+ 1
>

tn
btn(ε+K)c+ 1

.

Taking the limit yields that, due to the choice of ε, limn→∞
τbtn(ε+K)c+1(ω)

btn(ε+K)c+1
≥ 1

ε+K
> µτ , which

contradicts the choice of ω .
Thus, for any ω ∈ {ω ∈ Ω : limn→∞

τn(ω)
n

= µτ} we have limt→∞
Lt(ω)
t

= 1
µτ

.

C Proof of Theorem 7

The first challenge of the proof is that, to establish convergence of the (infinite memory)
process Dtr, we need to show that its serial correlation decays at a fast enough rate to ensure
(mixingale) convergence.31 To do so we first construct a process, Y n, that is identical in
distribution to Dtr (in Lemma 5 below)), and we show that the former converges to a Brownian
Motion with drift as the arrival intensity goes to infinity (in Proposition 9 and Corollary 2
below).

The second challenge is that, instead of establishing the continuity of the map from shadow
valuation to prices, we actually need to split the map into two distinct maps. A first one that
delivers a convergent process when applied to the process Y n. And a second one that is indeed
continuous (Lemma 6 below).

In order to define a sequence of markets as in Theorem 7, we need to define the processes
Nn, Sn, and Un. Given these processes, the price process P n is obtained from Theorem 6 and
equation (18). First, we define the process of traders’ arrival Nn. Consider any given Poisson
process Λ, with intensity λ, and corresponding arrival times γi := inf {t ≥ 0 : Λt ≥ i} that are
independent of FWD

∞ . The arrival intensity of the n-th market is constructed as nλ. For any
of these Λ processes, we introduce regularity conditions by considering the following sets:

Ω1 =

{
ω ∈ Ω : lim

i→+∞

∑bxic
j=1 (γj − γj−1)2∑i
j=1 (γj − γj−1)2 = x for any x ∈ [0, 1]

}
,

Ω2 =

{
ω ∈ Ω : max

i≤k
(γi − γi−1) <∞ for all k ∈ N+

}
,

31Upon establishing convergence, one would expect a limiting Brownian Motion behavior given that the
innovations of Dtr are Gaussian.
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Ω3 = ∪∞k=1 ∩∞i=k {ω ∈ Ω : (γi − γi−1) ≤ 2 log (i)} ,

Ω4 =

{
ω ∈ Ω : lim

n→∞

Λtn

n
= tλ for any t ∈ [0, T ]

}
,

Ω5 =

{
ω ∈ Ω : lim

n→∞

∑Λtn
i=1 (γ̄i − γ̄i−1)

Λtn

= λ−1 for any t ∈ [0, T ]

}
,

where the operator b·c returns the largest integer smaller than its argument. Note that the
above regularity conditions are satisfied by the Poisson process almost surely since: a) from
the strong Law of Large Numbers P (Ωi) = 1 for i = 1, 4; b) P (Ω3) = 1 from the Borel-Cantelli
Lemma; c) P (Ω2) = 1 is a property of the Poisson process; d) condition Ω5 is simply a strong
law of large number requirement; e) P (Ω5) = 1 for a Poisson process. Nevertheless, the
fact that these regularity conditions are satisfied almost surely does not guarantee that they
will be satisfied for every ω ∈ Ω, since on some zero probability sets they could be violated.
Therefore, since we will be conditioning on paths of Λ, we need to modify the Λ process on
the zero probability sets to ensure that these properties will hold for every ω ∈ Ω.

The modification of the Poisson process Λ, denoted Λ̄, that satisfies the above regularity
conditions for each ω ∈ Ω, is given by32

γ̄0 (ω) = 0, γ̄i (ω) =

{
γi (ω) if ω ∈ ∩4

j=1Ωj

γ̄i−1 (ω) + 1
λ

if ω ∈ Ω\
(
∩4
j=1Ωj

) , Λ̄t =
∞∑
i=1

1{γ̄i≤t}.

The corresponding sequence of traders arrival processes can now be defined as

Nn
t = Λ̄tn, (42)

θni =
γ̄i
n
. (43)

Note that the intensity of the counting process Nn is simply λn. So, as n → ∞, the inten-
sity of arrivals goes to infinity. Moreover, note that the arrival process just defined satisfies
Assumption A1.

Second, the Theorem 7 requires us to consider a sequence of markets. We have established
that, in equilibrium, market prices are uniquely determined by Dtr through Lemma (2) and
equation (25), and we have already characterised in Lemma 3 the distribution of Dtr. Thus,
in principle, we can define signals and Dtr for this sequence of markets. However, since we
are aiming to prove only weak convergence of the price process, it is enough to construct a
sequence of processes, Y n, that have the same distribution as the Dtr process that results
from the market equilibrium.

In the following Lemma we construct the Y n process such that L
(
Dtr,n|F Λ̄

∞
)

= L
(
Y n|F Λ̄

∞
)
,

where L
(
·|F Λ̄
∞
)

denotes the finite dimensional distribution and Dtr,n denotes the Dtr process
in the marketMn. Therefore, for any fixed n the process Y n has the same information content
as the value of the log profit that could be inferred observing the valuation of the last agent
that arrived (before time t) on the marketMn. That is, the process Y n can be thought of as
a value process of the log profit at arrival times.

Lemma 5 Fix a process Nn given by equation (42), and any market Mn (Nn, D , Sn, Un)
satisfying Assumptions A1-A6. Let Dtr,n be the resulting value of the log profit from the
agents’ point of view, given in equation (25), and that uniquely determines the equilibrium
price process (through Lemma (2) and equation (25)).

32Note that Λ̄ is an adapted process since the filtration we use satisfies the usual conditions.
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Consider the process Y n, on the interval [0, T ], given by

Y n
t =

∞∑
j=0

1{Nn
t =j}y

n
j , (44)

yn0 = D0, (45)

yni =
i−1∑
j=0

ζi−1,j

(
ynj + εni,j

)
, (46)

where εni,j := µ∆n
i,j + σ

√
∆n
i,jηi,j, ∆n

i,j := θni − θnj , ηi,j is an independent standard Gaussian,

and ζi−1,j is a 0 or 1 random variable such that:
∑i−1

j=0 ζi−1,j = 1;

P (ζi−1,j = 1) =

{
(1− q) qi−1−j for j > 0

qi−1 for j = 0
; (47)

and σ {ζi−1,j}i−1
j=0 ⊥ ∨i′ 6=iσ {ζi′−1,j}i

′

j=0; ∨iσ {ζi−1,j}i−1
j=0 ⊥ F

Λ̄
∞. Then we have

L
(
Y n|F Λ̄

∞

)
= L

(
Y n|FNn

T

)
= L

(
Dtr,n|FNn

T

)
= L

(
Dtr,n|F Λ̄

∞

)
(48)

L
(
PY n|F Λ̄

∞

)
= L

(
PY n|FNn

T

)
= L

(
P n|FNn

T

)
= L

(
P n|F Λ̄

∞

)
(49)

where P is the mapping from the value process of log profits at arrival times to equilibrium
prices (defined in Lemma 2 and equation (25)), and P n is the equilibrium price process of the
Mn market.

Proof. Equation (48) follows from direct comparison of the distribution of Y n and the
one of Dtr in Lemma 3 and the fact that Y n and Dtr are defined on [0, T ]. Equation (49)
follows from the fact that equations (2) and (25) identify a unique mapping between Dtr and
the equilibrium price process, and the fact that prices are defined on [0, T ] .

The above Lemma makes clear that, to establish and characterise the convergence of the
Equilibrium price process, it is enough to establish and characterise the convergence of the
law of Y n and the continuity of the mapping P .

For convenience and clarity of exposition (and to avoid some technical issues arising from
zero probability sets) we define a new (random) probability measure P̄ to remove the con-
ditioning in equations (48) and (49). That is, let P̄ be a measure on F Λ̄

∞ ∨n FY
n

T , given
by the regular version of the kernel P

(
G|F Λ̄

∞
)
, i.e. for any G ⊂ F Λ̄

∞ ∨n FY
n

T we have that

P̄ (G) = P
(
G|F Λ̄

∞
)
. Such a P̄ measure exist and is unique due to Theorem 6.4 of Kallenberg

(2002). Therefore, convergence under P̄ (i.e. L̄ (Y n)→ L̄ (Y )) implies convergence under the
original P measure (i.e. L (Y n)→ L (Y )).

Using the definition of Y n (in Lemma 5) and P̄, we can establish the first convergence
result needed to prove Theorem 7.

Proposition 9 Consider Ȳ n
t :=

∑∞
i=0 1{Nn

t =i} [yni + µ (T − θni )]. Then the sequence of pro-

cesses
(
Ȳ n, eȲ

n
, θ̄n, F̄n)

, where F̄n

t := F Λ̄
∞ ∨ F Ȳ

n

t and θ̄nt := θnNn
t

, weakly converges in Sko-
rokhod topology on D ([0, T ]) (the space of cádlág processes in the [0, T ] interval), as n→∞,
to
(
Ȳ , eȲ , θ̄, F̄

)
, where F̄t := F Λ̄

∞∨F Ȳt , θ̄t = t, and Ȳt = σWt where W is a standard Brownian

motion on its own augmented filtration and it is independent of F Λ̄
∞.

The proof of the above proposition is quite technical, and requires establishing some in-
termediate results, and is therefore reported in Appendix C.1. Nevertheless, its core is quite
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simple to grasp. The Ȳ n process is, by construction, a long memory process. Therefore, to
establish the above limiting results, we show that its serial correlation decays at a fast enough
rate to ensure mixingale convergence. With this result at hand, we then prove that Ȳ is
proportional to a standard Brownian motion by showing that it is a local martingale with
quadratic variation equal to σ2t.

Since, by definition, Y n
t ≡ Ȳ n

t + µ
(
θ̄nt − T

)
, and the above Proposition states the joint

convergence of Ȳ n and θ̄n, we have that a similar convergence result holds for Y n.

Corollary 2 The sequence of processes
(
Y n, eY

n
, θ̄n, F̄n)

, weakly converges in Skorokhod topol-
ogy on D ([0, T ]), as n→∞, to

(
Y, eY , θ̄, F̄

)
, and Yt = µ (t− T )+σWt where W is a standard

Brownian motion on its own augmented filtration and it is independent of F Λ̄
∞

Given the above convergence result for Y n, and since (from Lemma 5) L
(
PY n|F Λ̄

∞
)

=

L
(
P n|F Λ̄

∞
)
, all we need to complete the proof of Theorem 7 is to establish that the sequence

of processes PY n converges – that is, we need to establish the convergence of the sequence of
equilibrium price processes (P n). We do so by i) breaking the map P into two maps, P1 and
P2, ii) establishing the convergence of the processes P1Y

n and iii) proving the continuity of
the map P2.

First, the map P1 : D( [0, T ])→ D( [0, T ]) is given by

(P1f) (t) := f(t) +

(
µ+

σ2

2

)
(T − sup {s ≤ t : f(s−) 6= f(t)}) , ∀f ∈ D [0, T ] .

Note that P1 identifies the arrival times. In particular, the sup component returns the previous
period arrival time, when f is a path of (the piecewise constant) process Y n, and it is equal
to t if f is a path of the (limiting) continuous process Y . Thus we have

(P1Y
n)t = Y n

t +

(
µ+

σ2

2

)(
T − θ̄nt

)
=: Hn

t .

where H is the valuation of the agent that last arrived on the market (note that P1Y
n
t is just

the log of the expectation of eY
n
T ).

It follows from Corollary 2 (and Corollary VI.3.33.b of Jacod and Shiryaev (2003)) that(
Hn, θ̄n, F̄n)

, weakly converges in Skorokhod topology on D ([0, T ]), as n→∞, to
(
H, θ̄, F̄

)
,

and

Ht =
σ2

2
(T − t) + σWt, t ∈ [0, T ] (50)

where W is a standard Brownian motion on its own augmented filtration.
Second, note that the price process can be recovered as P n ≡ P2P1Y

n, where P2 :
D( [0, T ]) → D( [0, T ]) is defined by (P2f) (t) := g(τ f

Lft
) for any f ∈ D [0, T ], where Lft :=∑

i≥0 1{τfi ≤t}, and g (·) and τ f are obtained through the following recursion

τ f0 = 0, g0 = ef(0), cf2,0 = 1,

τ fi = inf
{
t > τ fi−1 : f (t)− ln g

(
τ fi−1

)
/∈
(
b
(
cf2,i−1

)
, a
(
cf2,i−1

))}
, (51)

where a(.) and b(.) are defined in equation (22),

cf2,i =

 1− δ if f
(
τ fi

)
− ln g

(
τ fi−1

)
> a

(
cf2,i−1

)
and i > 0

1 + δ if f
(
τ fi

)
− ln g

(
τ fi−1

)
< b

(
cf2,i−1

)
and i > 0

(52)
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and

g
(
τ fi

)
=

1

cf2,i

[
(1− q) ef(τ

f
i ) + qg

(
τ fi−1

)
cf2,i−1

]
. (53)

Note that the above recursion is analogous to the one defining the price process and trading
times as a function of fundamentals in Lemma 2. In particular, the equation for stopping
times τ fi corresponds to the times of trades in equation (21), and the equation for the update
of the function g(·) is nothing but the price evolution defined in equation (23).

Consider the following set of functions C

C :=
{
f ∈ C [0, T ] : LfT <∞, τ

f
i = τ f+

i , LfT− = LfT , ∀i = 1, . . . , LfT , Kτ > 0, τ f1 6= 0
}

(54)

where
τ f+
i := inf

{
t ≥ τ fi−1 : f (t)− ln g

(
τ fi−1

)
/∈
[
b
(
cf2,i−1

)
, a
(
cf2,i−1

)]}
Kτ := min

{
min

i=1,...,LfT

(
τ fi − τ

f
i−1

)
;T − τ f

LfT

}
that is, the set of continuous functions characterised by spaced apart hitting times, and that
cross the boundaries, defined by a(·) and b(·), upon reaching them. Note that when f belongs

to the set C, we have that (P2f) (t) = exp
{
f
(
τ f
Lft

)}
where Lft :=

∑
i≥0 1{τfi ≤t}, and τ f , are

obtained through the following recursion

τ f0 = 0, cf2,0 = 1,

τ f+
i = τ fi = inf

{
t > τ fi−1 : f (t)− f

(
τ fi−1

)
/∈
(
b
(
cf2,i−1

)
, a
(
cf2,i−1

))}
,

where

cf2,i =

 1− δ if f
(
τ fi

)
− f

(
τ fi−1

)
= a

(
cf2,i−1

)
and i > 0,

1 + δ if f
(
τ fi

)
− f

(
τ fi−1

)
= b

(
cf2,i−1

)
and i > 0.

Note that a path of Brownian motion (with or without a constant drift) belongs to the set C
almost surely (since

∣∣∣b(cf2,i−1

)∣∣∣ , a(cf2,i−1

)
> 0 for all i, i.e. since, at any given hitting time,

the distance between the current value of the function and the next hitting bound is strictly
positive).

To establish the convergence in distribution of the equilibrium price processes (P n), we
need to establish the continuity of the map P2 (on the set C), which is done in Lemma 6 below
(the proof of the Lemma is reported in Appendix C.2).

Lemma 6 For any function f belonging to the set C defined in equation (54), the map P2

defined by equations (51)-(53) is continuous in Skorokhod topology at f .

With the above result at hand, we can complete the proof of Theorem 7.

Proof of Theorem 7. Observe that

lim
n→∞

L
(
P n|F Λ̄

∞

)
= lim

n→∞
L
(
PY n|F Λ̄

∞

)
= lim

n→∞
L
(
P2H

n|F Λ̄
∞

)
= L

(
P2H|F Λ̄

∞

)
where the first equality is due to equation (49), the second equality is due to the definition of
the map P2, and the last equality is due to the convergence of Hn established in Corollary 2
and the continuity of the map P2 proved in Lemma 6.
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The conclusion of the Theorem follows once we observe that H ∈ C. Therefore the limiting
price process, P , exists and is given by

Pt
d

:= (P2H) (t) = exp

{
HτH

LHt

}
=

LHt∏
i=1

cH2,i−1φi,

where

φi :=

{
q/ (q − δ) if HτHi

−HτHi−1
= a

(
cH2,i−1

)
and i > 0

q/ (q + δ) if HτHi
−HτHi−1

= b
(
cH2,i−1

)
and i > 0

.

The statement of the theorem follows upon observing the form of H in equation (50), and
that: cH2,i ≡ q/φi + 1− q, τH ≡ τ , Lp ≡ LH .

C.1 Proof of Proposition 9

To prove Proposition 9 we first need to establish a few auxiliary results.

Definition 2 (Most Recent Common Ancestor) Consider yni defined in equations (44)-
(47). We define the most recent common ancestor of yni and ynj , A

(
yni , y

n
j

)
, recursively as

follows

A (yni , y
n
i ) = i,

A
(
yni , y

n
j

)
= A

(
ynj , y

n
i

)
= 1{i>j}

i−1∑
k=0

ζi−1,kA
(
ynj , y

n
k

)
+ 1{i<j}

j−1∑
k=0

ζj−1,kA (ynk , y
n
i ) .

Lemma 7 Suppose q < 1, then for any i ≥ j ≥ k ≥ 0, and any a ∈
(

max

{
√
q,
√

q4

4
+ 2q − q2

2

}
, 1

)
we have

P̄
(
A
(
yni , y

n
j

)
= k
)
≤ ca2j−i−k.

where c = a−2M > 1, and M is the smallest nonnegative integer m such that qs+qs+(1−2s)m (1− qs+1) <
1,33 with s < 1/2 being the solution of a = qs.

Proof. The proof is by induction on the maximum of i and j.
Suppose that max {i, j} = n ≤ M . Then the assumption of mathematical indiction holds
since

P̄
(
A
(
yni , y

n
j

)
= k
)
≤ 1 ≤ ca2j ≤ ca2j−i−k

due to the definition of c.
Suppose that for max {i, j} = m ≥M the assumption of induction holds. Consider max {i, j} =
i = m+ 1, then we have the following four cases.

33Such M exists since
lim
m→∞

qs + qs+(1−2s)m (1− qs+1
)

= qs < 1.

Moreover, note that for all m ≥M
qs + qs+(1−2s)m (1− qs+1

)
< 1

since the left hand side is monotone in m.
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1. k 6= 0, k 6= j.

P̄
(
A
(
ynm+1, y

n
j

)
= k
)

= P̄

(
m∑
l=0

ζm,lA
(
ynl , y

n
j

)
= k

)
=

m∑
l=0

P̄
(
A
(
ynl , y

n
j

)
= k
)
P̄ (ζm,l = 1)

=
m∑
l=k

P̄
(
A
(
ynl , y

n
j

)
= k
)
P̄ (ζm,l = 1)

=
m∑
l=k

P̄
(
A
(
ynl , y

n
j

)
= k
)

(1− q) qm−l

where the third equality is due to the fact that A
(
ynl , y

n
j

)
≤ min {l, j}, and the fourth

follows from the definition of ζ in equation (47). Then

P̄
(
A
(
ynm+1, y

n
j

)
= k
)

=

j−1∑
l=k

P̄
(
A
(
ynl , y

n
j

)
= k
)

(1− q) qm−l

+
m∑

l=j+1

P̄
(
A
(
ynl , y

n
j

)
= k
)

(1− q) qm−l

≤ (1− q) c

(
j∑
l=k

a2l−j−kqm−l +
m∑

l=j+1

a2j−l−kqm−l

)

=
(1− q) c

(1− aq) (a2 − q)

{
a2j−m−k (a2 − q

)
+ ak−jqm+1−k (aq − 1)

negative for a<1

+
[
qm−jaj−k

(
−aq2 + 2q − a2

)]
negative for a>

√
q4

4
+2q− q2

2


≤ (1− q) c

(1− aq) (a2 − q)
{
a2j−m−k (a2 − q

)}
=

(1− q) c
(1− aq)

a2j−m−k

≤ ca2j−m−k−1

where the first equality comes from k 6= j, the first inequality follows from the principle
of mathematical induction and the last inequality follows from the conditions on a.34

2. k 6= 0, k = j.

P̄
(
A
(
ynm+1, y

n
j

)
= k
)

= P̄

(
m∑
l=0

ζm,lA
(
ynl , y

n
j

)
= k

)
=

m∑
l=0

P̄
(
A
(
ynl , y

n
j

)
= k
)
P̄ (ζm,l = 1)

=
m∑
l=j

P̄
(
A
(
ynl , y

n
j

)
= k
)
P̄ (ζm,l = 1) =

m∑
l=j+1

P̄
(
A
(
ynl , y

n
j

)
= k
)

(1− q) qm−l+(1− q) qm−k

where the last equality is due to P̄ (A (ynk , y
n
k ) = k) = 1. By induction we have

(1− q)

[
m∑

l=j+1

P̄
(
A
(
ynl , y

n
j

)
= k
)
qm−l + qm−k

]
≤ c (1− q)

{
m∑

l=j+1

a2j−l−kqm−l + qm−k

}

34Since
√

q4

4 + 2q − q2

2 < 1 there exists an a satisfying the conditions in Lemma 7.
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= c (1− q) ak−m−1

{
a− a−k+m+2qm−k+1

(1− aq)

}
≤ a (1− q)

(1− aq)
cak−m−1 ≤ cak−m−1

3. k = 0, k 6= j.

P̄
(
A
(
ynm+1, y

n
j

)
= 0
)

= P̄

(
m∑
l=0

ζm,lA
(
ynl , y

n
j

)
= 0

)
=

m∑
l=0

P̄
(
A
(
ynl , y

n
j

)
= 0
)
P̄ (ζm,l = 1)

=

j−1∑
l=1

P̄
(
A
(
ynl , y

n
j

)
= 0
)

(1− q) qm−l +
m∑

l=j+1

P̄
(
A
(
ynl , y

n
j

)
= 0
)

(1− q) qm−l

+ P̄
(
A
(
yn0 , y

n
j

)
= 0
)
qm

where the last equality follows from the definition of ζ in equation (47). By induction

P̄
(
A
(
ynm+1, y

n
j

)
= 0
)
≤ c (1− q)

{
j−1∑
l=1

a2l−jqm−l +
m∑

l=j+1

a2j−lqm−l

}
+ ca−jqm

= c (1− q)

q
m−jaj

qja2−2j (aq − 1)− aq2 − a2 + 2q

(a2 − q) (1− aq)
negative for: 1>a>

√
q4

4
+2q− q2

2

+
a2j−m

1− aq

+ ca−jqm

≤ c

{
(1− q) a

2j−m

1− aq
+ a−jqm

}
= ca2j−m−1

{
(1− q) a

1− aq
+ am−3j+1qm

}
.

The proof of this case will be complete if we show that the last term above is smaller
than 1. This is the case if

a+ am−3j+1qm − am−3j+2qm+1 < 1.

Note that a = qs, for some s < 1/2, hence

a+ am−3j+1qm − am−3j+2qm+1 < qs + qs+(1−2s)m
(
1− qs+1

)
< 1,

where the first inequality is due to m ≥ j, and the second is due to m ≥M .

4. k = j = 0.

P̄
(
A
(
ynm+1, y

n
0

)
= 0
)

= 1 < ca−m−1 = a−2M−m−1.

Hence by the principle of mathematical induction the statement of the Lemma holds for all
m.

Lemma 8 Let ψ denote
ψni = E

[
Ȳ n
T |Hn

i

]
− E

[
Ȳ n
T |Hn

i−1

]
where E denotes expectations taken with respect to the measure P̄ and Hn

i := Fn

θni
with Fn

t :=

σ
{
Ȳ n
s≤t
}

. Denote the variance of ψ with
(
σψn,i

)2

= E
[
(ψni )2]. The following holds for any

t ≥ 0:

1. limn→∞max
i≤Nn

t

σψn,i = 0.
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2. The set

Kψ :=

 (ψni )2(
σψn,i

)2 , n ∈ N, i ≤ Nn
t


is uniformly integrable.

3. For any k > 0

lim
n→∞

P̄
[
max
i≤Nn

t

|ψni | > k

]
= 0

Proof of Lemma 8. We prove the assertions of the Lemma in the same order as stated.

1. Note that from Lemma 5 and the definition of Ȳ we have

E
[
Ȳ n
T |Hn

i

]
= (1− q) [yni + µ (T − θni )] + qE

[
Ȳ n
T |Hn

i−1

]
,

from which it follows that

ψni
1− q

= [yni − µθni −D0]−
i−1∑
j=1

ψnj , (55)

therefore (
σψn,i

)2

(1− q)2 = σ2θni −
i−1∑
j=1

(
σψn,j

)2

.

Thus, by induction (
σψn,i

)2

(1− q)2 = σ2

i∑
j=1

{
[q (2− q)]i−j ∆n

j,j−1

}
(56)

where ∆n
j,j−1 := θnj − θnj−1. Note that q (2− q) < 1 for all q ∈ [0, 1].

Fix any ω ∈ Ω, than since ω ∈ Ω3 it follows that there exists a k (ω) such that n∆n
j,j−1 <

2 log (j) for any j ≥ k. Moreover, since ω ∈ Ω4 we have that limn→∞
Nn
T

n
= λT . There-
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fore from equation (56) we have

(
σψn,i

)2

= (1− q)2 σ2

i∑
j=1

{
[q (2− q)]i−j ∆n

j,j−1

}
< (1− q)2 σ2

{
k−1∑
j=1

{
[q (2− q)]i−j ∆n

j,j−1

}
+

2

n

i∑
j=k

[q (2− q)]i−j log (j)

}

< (1− q)2 σ2

{
k−1∑
j=1

∆n
j,j−1 +

2

n
log (i)

i∑
j=k

[q (2− q)]i−j
}

= (1− q)2 σ2

{
k−1∑
j=1

∆n
j,j−1 +

2

n
log (i)

i∑
j=k

[q (2− q)]i−j
}

= (1− q)2 σ2

{
k−1∑
j=1

∆n
j,j−1 +

2

n
log (i)

1− [q (2− q)]i−k+1

1− [q (2− q)]

}

< (1− q)2 σ2

{
k−1∑
j=1

∆n
j,j−1 +

2

n
log (Nn

T )
1

1− [q (2− q)]

}

= (1− q)2 σ2

{
k−1∑
j=1

∆j,j−1

n
+

2

n
log (Nn

T )
1

1− [q (2− q)]

}

∴
(
σψn,i

)2

= (1− q)2 σ2

i∑
j=1

{
[q (2− q)]i−j ∆n

j,j−1

}
≤ (1− q)2 σ2

{
k−1∑
j=1

∆j,j−1

n
+

2

n
log (Nn

T )
1

1− [q (2− q)]

}

Note that the right hand side does not depend on i and its limit as n→∞ is zero. Thus
limn→∞max

i≤Nn
t

σψn,i = 0.

2. Consider
(
κψn,i

)4

:= E
[
(ψni )4] and note that from equation (55) at arrival i and i− 1, it

follows that (
κψn,i

)4

≤ (1− q)4 E
[(
yni − yni−1 − µ∆n

i,i−1

)4
]
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= σ4 (1− q)4
i−1∑
j=0

P̄
(
A
(
yni , y

n
i−1

)
= j
)
E
[(√

∆n
i,jηi,j −

√
∆n
i−1,jηi−1,j

)4
]

= 3σ4 (1− q)4
i−1∑
j=0

P̄
(
A
(
yni , y

n
i−1

)
= j
) [
θni − θni−1 + 2

i−1∑
k=j+1

(
θnk − θnk−1

)]2

≤ 12σ4 (1− q)4
i−1∑
j=0

P̄
(
A
(
yni , y

n
i−1

)
= j
)

(i− j − 1)
i∑

k=j+1

(
θnk − θnk−1

)2

≤ 12σ4 (1− q)4 c
i−1∑
j=0

i∑
k=j+1

ai−j−2 (i− j)
(
θnk − θnk−1

)2

= 12σ4 (1− q)4 ca−2

i∑
k=1

(
θnk − θnk−1

)2
k−1∑
j=0

ai−j (i− k − (j − k))

≤ 12σ4 (1− q)4 ca−2

i∑
k=1

(
θnk − θnk−1

)2
ai−k

[
(i− k)

k∑
j=0

ak−j −
k∑
j=0

ak−j (j − k)

]

= 12σ4 (1− q)4 ca−2

i∑
k=1

(
θnk − θnk−1

)2
ai−k

[
(i− k)

k∑
l=0

al +
k∑
l=0

all

]

where the first equality follows from the definition of yni , the second equality from the
fact that ηi,j are iid standard normal and the definition of ∆n

i,j, the second inequality

comes for the observation that
(

1
n

∑n
i=1 ai

)2 ≤ 1
n

∑n
i=1 a

2
i , the third inequality follows

from Lemma 7, the third equality is simply a change in the summations order, the fourth
inequality comes from adding one nonnegative element to the sum over j, and the last
equality is obtained by setting l = k − j.
Note that for any b ∈ (a, 1) there exists a constant c1 such that(

x+
a

1− a

)(a
b

)x
≤ c1 ∀x ∈ [0,∞).

Therefore(
κψn,i

)4

≤ 12σ4 (1− q)4 ca−2

1− a

i∑
k=1

(
θnk − θnk−1

)2
ai−k

[
(i− k) +

a

1− a

]

≤ c2

i∑
k=1

(
θnk − θnk−1

)2
bi−k (57)

where c2 := 12σ4 (1− q)4 ca−2c1/ (1− a) .
Now to prove that the set Kψ is almost surely uniformly integrable we need to show

sup
n,i

(
κψn,i

)4

(
σψn,i

)4 <∞.
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From equations (56) and (57) we have(
κψn,i

)4

(
σψn,i

)4 ≤ c3

∑i
j=1

(
θnj − θnj−1

)2
bi−j{∑i

j=1 [q (2− q)]i−j
(
θnj − θnj−1

)}2 ≤ c3

∑i
j=1 b

i−j (θnj − θnj−1

)2∑i
j=1 b

i−j
1

(
θnj − θnj−1

)2

= c3

∑i
j=1 b

i−j (γ̄j − γ̄j−1)2∑i
j=1 b

i−j
1 (γ̄j − γ̄j−1)2 (58)

where c3 := c2/ (1− q)4 σ4 and b1 := [q (2− q)]2 and the last equality follows from
equation (43).
Now consider a random variable Xi with distribution given by

P̄
(
Xi =

i− j
i

)
=

(γ̄j − γ̄j−1)2∑i
j=1 (γ̄j − γ̄j−1)2 .

Then for any s ∈ [0, 1] we have the cumulative distribution function

Fi (s) = P̄ (Xi ≤ s) =

∑bsic
j=1 (γ̄j − γ̄j−1)2∑i
j=1 (γ̄j − γ̄j−1)2

and, given the regularity condition Ω1, this cdf is such that limi→∞ Fi (s) = s. Therefore,
from Theorem III.1.2 of Shiryaev (1996) we have that Xi weakly converges to a uniform
random variable, i.e. Xi

w−→
i→∞

X ∼ U (0, 1), and in particular

lim
i→∞

E
[
e−kXi

]
=

1− e−k

k
∀k > 0.

Now notice that, using the definition of Xi, the ratio in equation (58) can be rewritten
as ∑i

j=1 b
i−j (γ̄j − γ̄j−1)2∑i

j=1 b
i−j
1 (γ̄j − γ̄j−1)2 =

E
[
eiXi ln b

]
E [eiXi ln b1 ]

where ln b and ln b1 are both negative. Therefore, to establish uniform integrability of Kψ

it is sufficient to show uniform convergence of E
[
e−kXi

]
in k. To do so consider the follow-

ing class of equicontinuous, uniformly bounded functions S :=
{
s : R+ → R+ : s (x) = e−kx

k
, k ∈ [1,∞)

}
.

Then, from Theorem III.8.3 of Shiryaev (1996), we have that

lim
i→∞

sup
k∈[1,∞)

∣∣∣∣E [e−kXik

]
−
(
1− e−k

)∣∣∣∣ = 0.

Therefore, for any ε ∈ (0, 1), there exists a ı̄ such that for any i ≥ ı̄∑i
j=1 b

i−j (γ̄j − γ̄j−1)2∑i
j=1 b

i−j
1 (γ̄j − γ̄j−1)2 ≤

ln b

ln b1

(1 + ε) .
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Thus

sup
n,i

(
κψn,i

)4

(
σψn,i

)4 ≤ c3 sup
i

∑i
j=1 b

i−j (γ̄j − γ̄j−1)2∑i
j=1 b

i−j
1 (γ̄j − γ̄j−1)2

≤ c3 max

{
ln b

ln b1

(1 + ε) ,max
i≤ı̄

∑i
j=1 b

i−j (γ̄j − γ̄j−1)2∑i
j=1 b

i−j
1 (γ̄j − γ̄j−1)2

}
<∞,

implying that Kψ is uniformly integrable.

3. To prove that for any k > 0, limn→∞ P̄
[
max
i≤Nn

t

|ψni | > k

]
= 0, first observe that from

equation (57), due to the regularity condition Ω3, there exists an ı̄ <∞ such that

E
[
(ψni )4] ≡ (κψn,i)4

≤ c2

i∑
k=1

(
θnk − θnk−1

)2
bi−k =

c2

n2

i∑
k=1

(γ̄k − γ̄k−1)2 bi−k

≤ c2

n2

[
ı̄∑

k=1

(γ̄k − γ̄k−1)2 bi−k + 4
i∑

k=ı̄+1

(ln k)2 bi−k

]
≤ c2

n2

[
ı̄∑

k=1

(γ̄k − γ̄k−1)2 +
4 (ln i)2

1− b

]
.

(59)

Consider a random variable χ (n) given by χ (n) := arg max
j≤n

∣∣ψnj ∣∣ . Then

P̄
[
max
i≤Nn

t

|ψni | > k

]
=
∑
i≤Nn

t

P̄ [ψni > k|χ (Nn
t ) = i] P̄ (χ (Nn

t ) = i)

≤
∑
i≤Nn

t

E
[
(ψni )2 |χ (Nn

t ) = i
]
P̄ (χ (Nn

t ) = i)

k2
=
∑
i≤Nn

t

E
[
(ψni )2 1{χ(Nn

t )=i}
]

k2

≤
∑
i≤Nn

t

{
E
[
(ψni )4] P̄ (χ (Nn

t ) = i)
}1/2

k2
≤ c

1/2
2

k2

[
1

Nn
t

ı̄∑
k=1

(γ̄k − γ̄k−1)2 +
4 (lnNn

t )2

Nn
t (1− b)

]1/2
Nn
t

n

Where the first inequality is the Chebyshev’s inequality, the second inequality is the
Cauchy-Buniakovsky inequality, the third inequality comes from equation (59) and the

observation that
∑n

i=1 x
1/2
i ≤

√
n (
∑n

i=1 xi)
1/2
.

Hence from Ω2, Ω4 and the fact that limx→∞ (lnx)2 /x = 0, we finally have

lim
n→∞

P̄
[
max
i≤Nn

t

|ψni | > k

]
= 0

as claimed.

Lemma 9 Consider yni defined in defined in equations (44)-(47). Then

P̄
[
yni ≤ y|yni−k, ..., yn0

]
= (1− q)

i−k∑
j=1

qi−k−jP̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−kP̄

[
yn0 + εni,0 ≤ y|yn0

]
.
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Proof. The proof is by the principle of mathematical induction. For k = 1 the statement
is trivially true given the definition of yni . Suppose the statement holds for k = m, that is

P̄
[
yni ≤ y|yni−m, ..., yn0

]
= (1− q)

i−m∑
j=1

qi−m−jP̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−mP̄

[
yn0 + εni,0 ≤ y|yn0

]
.

Then, for k = m+ 1

P̄
[
yni ≤ y|yni−m−1, ..., y

n
0

]
= E

[
E
[
1{yni ≤y}

∣∣∣ yni−m, ..., yn0 ]∣∣∣ yni−m−1, ..., y
n
0

]
= E

[
(1− q)

i−m∑
j=1

qi−m−jP̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−mP̄

[
yn0 + εni,0 ≤ y

∣∣ yn0 ]
∣∣∣∣∣ yni−m−1, ..., y

n
0

]
= (1− q)E

[
E
[
1{yni−m+εni,i−m≤y}

∣∣∣ yni−m]∣∣∣ yni−m−1, ..., y
n
0

]
(60)

+ (1− q)
i−m−1∑
j=1

qi−m−jP̄
[
ynj + εni,j ≤ y

∣∣ ynj ]+ qi−mP̄
[
yn0 + εni,0 ≤ y

∣∣ yn0 ] .
Note that

E
[
E
[
1{yni−m+εni,i−m≤y}

∣∣∣ yni−m]∣∣∣ yni−m−1, ..., y
n
0

]
= E

[
E
[
1{yni−m+εni,i−m≤y}

∣∣∣ yni−m, ..., yn0 ]∣∣∣ yni−m−1, ..., y
n
0

]
= E

[
E
[
1{yni−m≤y−εni,i−m}

∣∣∣ yni−m−1, ..., y
n
0 , ε

n
i,i−m

]∣∣∣ yni−m−1, ..., y
n
0

]
= (1− q)

i−m−1∑
j=1

qi−m−1−jP̄
[
ynj + εni−m,j + εni,i−m ≤ y|ynj

]
+ qi−m−1P̄

[
yn0 + εni,0 ≤ y|yn0

]
= (1− q)

i−m−1∑
j=1

qi−m−1−jP̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−m−1P̄

[
yn0 + εni,0 ≤ y|yn0

]
,

where the first two equalities come from the independence of ε, the third comes from the
statement of the induction with i = i−m, m = 1 and y = y− ε, and the last comes from the
Gaussianity and independence of ε. Combining this result with equation (60) yields

P̄
[
yni ≤ y|yni−m−1, ..., y

n
0

]
= (1− q)

i−m−1∑
j=1

qi−m−1−jP̄
[
ynj + εni,j ≤ y|ynj

]
+qi−m−1P̄

[
yn0 + εni,0 ≤ y|yn0

]
.

We now can establish Proposition 9.
Proof of Proposition 9. The proof of the proposition proceeds as follows. First, we

establish the tightness of Ȳ n in Skorokhod topology, and the fact that the limiting process
is a continuos local martingale. Second, we establish the joint tightness of the processes Ȳ n,
eȲ

n
, and θ̄n, where θ̄nt := θnNn

t
. Third, we identify the limiting processes.

To establish tightness of Ȳ n, consider Mn
t :=

∑Nn
t

i=1 ψ
n
i where ψni is defined in Lemma 8.

Due to Lemma 8 and Theorem 2.4 of McLeish (1977), the sequence of processes (Mn,Fn)
is tight35 in Stone (1963) topology for q ∈ (0, 1). Since by definition Stone’s topology is
equivalent to Skorokhod topology on D ([0, T ]) (the space of cádlág processes in the [0, T ]
interval), (Mn,Fn) is tight in Skorokhod topology as well.

35See page 309 of Kallenberg (2002).
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Moreover, since by Lemma 8

lim
n→∞

P̄
(

max
t≤K
|∆Mn

t | > k

)
= lim

n→∞
P̄
(

max
i≤Nn

k

|ψni | > k

)
= 0, (61)

and the sequence Mn is tight we have that it is C-tight, that is all limit points of the sequence{
L̄ (Mn)

}
are laws of continuos processes (see Proposition VI.3.26 Jacod and Shiryaev (2003)).

Furthermore, consider any convergent subsequence of Mn, Mnk , then by equation (61)
and the Borel-Cantelli Lemma there exist a further subsequence, denoted for simplicity by
n, such that maxt≤Nn

T
|∆Mn

t | → 0 a.s. P̄. Therefore, there exist m and c such that for all
n ≥ m, |∆Mn

t | ≤ c ∀t ∈ [0, T ]. Hence, the limit process of (Mn,Fn) is a local martingale
(see Proposition IX.1.17 Jacod and Shiryaev (2003)). Finally, since the choice of the converg-
ing subsequence was arbitrary, we have that all the limits of (Mn,Fn) are continuos local
martingales.

Note that from Lemma 5 and the definition of Ȳ we have

E
[
Ȳ n
T |Hn

i

]
= (1− q) [yni + µ (T − θni )] + qE

[
Ȳ n
T |Hn

i−1

]
.

Since
Nn
t∑

i=1

ψni = E
[
Ȳ n
T |Hn

Nn
t

]
− E

[
Ȳ n
T |Hn

0

]
= E

[
Ȳ n
T |Hn

Nn
t

]
− µT

it follows that

Ȳ n
t − µT =

Nn
t −1∑
i=1

ψni +
q

1− q
ψnNn

t
= Mn

t +
2q − 1

1− q
ψnNn

t
.

Due to condition (61), and the fact that Mn
t is C-tight and its limit is a continuous local

martingale, we have from Lemma VI.3.31 and Proposition VI.3.17 of Jacod and Shiryaev
(2003), that Ȳ n

t is also C-tight and its limit is a continuous local martingale.
We now turn to the joint tightness of Ȳ n, eȲ

n
and θ̄n. Observe that θ̄n, given the definition

of θn, is such that

θ̄nt =

Nn
t∑

i=1

γ̄i − γ̄i−1

n
→ t for all t ∈ [0, T ] , ω ∈ Ω.

Moreover,
Nn
t∑

i=1

(γ̄i − γ̄i−1)2

n2
→ 0 for all t ∈ [0, T ] , ω ∈ Ω.

Thus, by Theorem VI.2.2.15 of Jacod and Shiryaev (2003) we have that θ̄n → θ̄ in Skorokhod
topology where θ̄t = t.

Consider now any convergent subsequence of Ȳ n. Without loss of generality let it be
denoted by n. It follows from the tightness result that there exists a continuous local mar-
tingale Ȳ such that L

(
Ȳ n
)
→ L

(
Ȳ
)
. Since g : D ([0, T ]) → D ([0, T ]) : g (xt) = ext is a

continuos map for continuos processes in Skorokhod topology,36 by Proposition VI.3.8.II of
Jacod and Shiryaev (2003), we have that L

(
eȲ

n)→ L (eȲ ). By Corollary VI.3.33b of Jacod

and Shiryaev (2003), we then have that the sequence
(
Ȳ n, eȲ

n
, θ̄n
)

is C-tight, and for any

converging subsequence Ȳ n, L
(
Ȳ n, eȲ

n
, θ̄n
)
→ L

(
Ȳ , eȲ , θ̄

)
.

We can finally identify the limiting processes. From the above it is clear that the only part

36Since the Skorohod topology becomes uniform for continuous processes, see e.g. Proposition VI.1.17b of
Jacod and Shiryaev (2003).
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left to identify is Ȳ . Assume, wlog, that Ȳ n is a converging subsequence. Theorem III.8.1
of Shiryaev (1996) states that we can define a probability space, and a sequence of processes
Xn, such that Xn → X almost surely in Skorokhod topology, and such that L

(
Ȳ n
)

= L (Xn)
and L

(
Ȳ
)

= L (X). Therefore, since we are only interested in the distribution of Ȳ we can
assume, wlog, that Ȳ n converges to Ȳ not only in law, but also almost surely in Skorokhod
topology.

By Lemma 9, we have that for any t > s > 0

P̄
[
Ȳ n
t ≤ y|F Ȳ ns

]
= P̄

[
ynNn

t
≤ y − µ

(
T − θ̄nt

)∣∣∣ ynNn
s
, ..., yn0

]
= (1− q)

Nn
s∑

j=1

qN
n
s −jP̄

[
ȳnj + σ

√
∆n
Nn
t ,j
ηNn

t ,j
≤ y|ȳnj

]
+ qN

n
s P̄
[
ȳn0 + σ

√
∆n
Nn
t ,0
ηNn

t ,0
≤ y|ȳn0

]

= (1− q)
Nn
s∑

j=1

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

−∞

e−
x2

2

√
2π
dx+ qN

n
s P̄
[
ȳn0 + σ

√
∆n
Nn
t ,0
ηNn

t ,0
≤ y|ȳn0

]

=
(
1− qNn

s
) ∫ y−Ȳ ns

σ
√

∆n
Nnt ,N

n
s

−∞

e−
x2

2

√
2π
dx+ (1− q)

Nn
s −1∑
j=1

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
Nns

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx

+ qN
n
s P̄
[
ȳn0 + σ

√
∆n
Nn
t ,0
ηNn

t ,0
≤ y|ȳn0

]
,

where the second equality comes from the definition of ε and ȳ and the third equality comes
from the fact that η is an independent standard Gaussian. Note that, as n goes to infinity,
the last term vanishes and

(
1− qNn

s
) ∫ y−Ȳ n

s
σ
√

∆n
Nnt ,N

n
s

−∞

e−
x2

2

√
2π
dx −→

n→∞

∫ y−Ȳs
σ
√
t−s

−∞

e−
x2

2

√
2π
dx (62)

due to the almost sure convergence of Ȳ n and Ω4 and Ω5.
Note also that

Nn
s −1∑
j=1

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
Nns

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx

=

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
Nns

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx+

Nn

s− 1√
n

−1∑
j=1

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
Nns

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx

≤
Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
Nns

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx+

qΛ̄sn−
√
n

1− q
,

where the last term goes to zero, as n goes to infinity, due to Ω4 and the first term above can
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be rewritten as

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
Nns

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx

=

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,N

n
s

y−Ȳs
σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx+

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
j

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx. (63)

To show that the above vanishes in the limit, fix an ω and consider any κ1, κ2 > 0. Notice that
by the continuity of Ȳ , there exists a κ3 ∈ (0, s) such that

∣∣Ȳs − Ȳu∣∣ ≤ κ1 for all u ∈ [s− κ3, s].

Observe that, for n big enough and j ∈
[
Nn
s− 1√

n

, Nn
s − 1

]
, we have

ȳnj = Ȳ n
u , u ∈ [s− κ3, s]

and, since Ȳ n converges almost surely in Skorokhod topology to a continuos process Ȳ , it also
converges in uniform topology on compact sets,

sup
u∈[s−κ3,s]

∣∣Ȳ n
u − Ȳu

∣∣ ≤ κ2.

Therefore,

ȳnj ∈
[
Ȳs − κ2 − κ1, Ȳs + κ2 + κ1

]
∀j ∈

[
Nn
s− 1√

n

, Nn
s − 1

]
.

To show that the first term in equation (63) vanishes, notice that the above implies that

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,N

n
s

y−Ȳs
σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx ≤

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j (κ1 + κ2)

σ
√

2π∆n
Nn
t ,N

n
s

−→
n→∞

κ1 + κ2

σ (1− q)
√

2πt

due to Ω4 and Ω5. Since κ1 and κ2 are arbitrary, we have that

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,N

n
s

y−Ȳs
σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx −→

n→∞
0. (64)

To show that the second term in equation (63) vanishes, notice that for the same κ1, κ2

and κ3

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∫ y−ȳnj

σ
√

∆n
Nnt ,j

y−ȳn
j

σ
√

∆n
Nnt ,N

n
s

e−
x2

2

√
2π
dx ≤ 1

σ
√

2π

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j
∣∣y − ȳnj ∣∣

∣∣∣∣∣∣ 1√
∆n
Nn
t ,j

− 1√
∆n
Nn
t ,N

n
s

∣∣∣∣∣∣

≤
|y|+

∣∣Ȳs∣∣+ κ1 + κ2

σ
√

2π∆n
Nn
t ,N

n

s− 1√
n

∆n
Nn
t ,N

n
s

∣∣∣∣∣∆n
Nn
t ,N

n
s
−∆n

Nn
t ,N

n

s− 1√
n

∣∣∣∣∣√
∆n
Nn
t ,N

n

s− 1√
n

+
√

∆n
Nn
t ,N

n
s

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j −→

n→∞
0 (65)
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Since, due to Ω4 and Ω5, ∆n
Nn
t ,N

n
s
→ t − s, ∆n

Nn
t ,N

n

s− 1√
n

→ t − s, and
∑Nn

s −1
j=Nn

s− 1√
n

qN
n
s −j →

1/ (1− q). Collecting the results in equations (62), (64) and (65) we have

P̄
[
Ȳ n
t ≤ y|F Ȳ ns

]
−→
n→∞

∫ y−Ȳs
σ
√
t−s

−∞

e−
x2

2

√
2π
dx = P̄

[
Ȳt ≤ y|F Ȳs

]
.

We also trivially have that

P̄
[
Ȳ n
t ≤ y

]
−→
n→∞

∫ y−Ȳ0
σ
√
t

−∞

e−
x2

2

√
2π
dx = P̄

[
Ȳt ≤ y

]
.

Thus, by direct calculation we have

E
[
eȲt−

σ2

2
t|F Ȳs

]
= eȲ s−

σ2

2
s ∀0 ≤ s ≤ t ≤ T,

hence eȲt−
σ2

2
t is a martingale. By Exercise 3.3.38.ii of Karatzas and Shreve (1991), we have

that
〈
Ȳ
〉
t

= σ2t. Therefore, by the Levy characterization of the Brownian motion (see e.g.

Theorem 3.3.16 of Karatzas and Shreve (1991)), Ȳt = σWt where W is a standard Brown-
ian motion. Since the converging subsequence of Ȳ n was arbitrary, and since W is clearly
independent of the particular realisation of Λ̄, the proof is complete.

C.2 Proof of Lemma 6

Proof. To show the continuity of the map over the set C, we need to show that for any
fn → f ∈ C in Skorokhod topology, we have P2f

n → P2f in Skorokhod topology. Due
to Theorem VI.1.14 of Jacod and Shiryaev (2003), to establish the result it is enough to
demonstrate that there exist a sequence of continuos functions ρn : R+ → R+ that are strictly
increasing with ρn (0) = 0 and limt→∞ ρ

n (t) = ∞, such that: supt∈R+
|ρn (t)− t| → 0, and

supt∈R+
|P2f

n (ρn (t))− P2f (t)| → 0.

Suppose that, for any ε̃ > 0 we can show that there exists N̄ such that, for any n ≥ N̄ ,
we have

LnT := Lf
n

T = LfT , (66)

max
i=0,...,LfT

∣∣∣τni − τ fi ∣∣∣ ≤ ε̃Kτ

4T
(67)

max
i=0,...,LfT

∣∣∣gn (τni )− ef(τ
f
i )
∣∣∣ < ε̃ (68)

where τn := τ f
n
, gn := gf

n
. Under the above conditions, we can define

ρn (t) :=

{
τni −τni−1

τfi −τ
f
i−1

(
t− τ fi−1

)
+ τni−1, for t ∈

[
τ fi−1, τ

f
i

]
, i = 1, ..., LfT + 1,

t, for t ≥ T

with the convention that τn
LfT+1

= τ f
LfT+1

= T . Note that this ρn is continuous and strictly

increasing on [0, T ], ρn (0) = 0, limt→∞ ρ
n (t) =∞,

sup
t∈R+

|ρn (t)− t| = max
i=1,...,LfT+1

∣∣∣∣∣τni − τni−1

τ fi − τ
f
i−1

(
t− τ fi−1

)
+ τni−1 − t

∣∣∣∣∣ ≤ 4T
ε

Kτ

< ε̃
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and
sup
t∈R+

|P2f
n (ρn (t))− P2f (t)| = max

i=0,...,LfT

∣∣∣gn (τni )− ef(τ
f
i )
∣∣∣ < ε̃,

since that both P2f
n and P2f are constant, respectively, on

(
τni−1, τ

n
i

)
and

(
τ fi−1, τ

f
i

)
, as

well as after τn
LfT

and τ f
LfT

. Thus, P2 would satisfy the convergence requirement if conditions

(66)-(68) are fulfilled.
To show that conditions (66)-(68) are indeed satisfied for big enough n, consider

K1 =
1

2
min

{
log

q + δ

q − δ
;− log

q (1− δ)
q + δ

; log
q (1 + δ)

q − δ

}
.

Since the function f is continuos, for any i there exist strictly positive constants εli and εri
such that:

• if i ≥ 1 and f
(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1) (i.e. the bound is crossed at the ask)

min
t∈[τfi −εli, τ

f
i +εri ]

f (t) ≥ f
(
τ fi−1

)
+ a (c2,i−1)−K1

• if i ≥ 1 and f
(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1) (i.e. the bound is crossed at the bid)

max
t∈[τfi −εli, τ

f
i +εri ]

f (t) ≤ f
(
τ fi−1

)
+ a (c2,i−1)−K1

• if i = 0, max
t∈[τf0 ,τ

f
0 +εr0]

|f (t)− f (0)| < K1.

Choose ετ = min

{
min

i∈1,...,LfT

{
εli; ε

r
i

}
; εr0; 1

3
Kτ ;

1
2
ε̃Kτ
4T

}
and define

K2 = min



mini=1,...,LfT
min

 inft∈[τfi−1+ετ , τfi −ετ ]

∣∣∣f(t)− f
(
τ fi−1

)
− a

(
cf2,i−1

)∣∣∣ ;
inft∈[τfi−1+ετ , τfi −ετ ]

∣∣∣f(t)− f
(
τ fi−1

)
− b
(
cf2,i−1

)∣∣∣
 ;

min


inf

t∈
[
τf

L
f
T

+ετ ,T

] ∣∣∣f(t)− f
(
τ f
LfT

)
− a

(
cf

2,LfT

)∣∣∣ ;
inf

t∈
[
τf

L
f
T

+ετ ,T

] ∣∣∣f(t)− f
(
τ f
LfT

)
− b
(
cf

2,LfT

)∣∣∣



,

κi :=

 inft∈[τfi −ετ , τ
f
i +ετ ]

(
f
(
τ fi

)
+ a

(
cf2,i

)
− f(t)

)
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1)

inft∈[τfi −ετ , τ
f
i +ετ ]

(
f(t)− f

(
τ fi

)
− b
(
cf2,i

))
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1)

,

K3 := min
i=1,...,LfT

κi,
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χi :=

 supt∈[τfi , τ
f
i +ετ ]

(
f(t)− f

(
τ fi−1

)
− a

(
cf2,i−1

))
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1)

supt∈[τfi , τ
f
i +ετ ]

(
f
(
τ fi−1

)
+ b
(
cf2,i−1

)
− f(t)

)
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1)

K4 := min
i=1,...,LfT

χi.

Note that Kj > 0, j = 1, .., 4, given our choice of ετ and since f ∈ C.
Define the constants

M := max
[0,T ]

ef(t) 2 (1 + δq)

1− δ
, m := max

{
max
[0,T ]

e−f(t); 1

}
,

K :=
1

4
min

{
K4; K2;

K1

2Mm+ 1
; log 2;

1

Mm
;

K3

2Mm+ 1

}
,

Ci :=
i∑

j=1

max {(2Mm) , 1}j + max
{

(2Mm)i , 1
}

, i = 0, ..., LfT ,

C := CLfT+1

Let εf = 1
4

min {ε̃, 1}min
{

K
C+1

, 1
}

.
Since fn → f ∈ C in Skorokhod topology, therefore in uniform topology over [0, T ], there

exists a N̄ such that, for any n > N̄ , sup
t∈[0,T ]

|fn (t)− f (t)| < εf . For such n, conditions

(66)-(68) are indeed satisfied as we are about to show. To prove this we are left to show by
induction that, for all i, ∣∣∣τ fi − τni ∣∣∣ < ετ , τni > τ fi−1 + ετ , (69)

cf2,i = cn2,i := cf
n

2,i , (70)∣∣∣f (τ fi )− log gn (τni )
∣∣∣ ≤ Ciεf , (71)∣∣∣gn (τni )− ef(τ

f
i )
∣∣∣ < 2MC iεf , (72)

and that LnT = LfT .
Consider i = 0. We have τ f0 = τn0 = 0, cf2,0 = cn2,0 = 1, and∣∣∣f (τ f0 )− log gn (τn0 )

∣∣∣ ≤ C0εf (since log gn (τn0 ) = fn (τn0 ) ),∣∣∣gn (τn0 )− ef(τ
f
0 )
∣∣∣ ≤M

∣∣∣elog gn(τn0 )−f(τf0 ) − 1
∣∣∣ ≤ 2Mεf .

To show that τn1 > τ f0 + ετ note that, for t ∈ [0, ετ ]

a (1) + fn (0)− fn (t) ≥ a (1)− 2εf −K1 ≥ a (1)− 9

8
K1

= log
q

q − δ
− 9

8
K1 ≥

7

8
log

q

q − δ

due to the choice of εf and K1. Similarly

fn (t)− b (1)− fn (0) ≥ 7

8
log

q

q + δ
for t ∈ [0, ετ ] .

66



Thus, τn1 > τ f0 + ετ .
Suppose the assumptions of induction hold for i− 1.

• To show that τni > τ fi − ετ , observe that, for t ∈
[
τ fi−1 + ετ , τ fi − ετ

]
,

a (c2,i−1) + fn
(
τni−1

)
− fn (t) ≥ K2 − 2εf ≥ 7

8
K2

fn (t)− b
(
τni−1

)
− fn

(
τni−1

)
≥ 7

8
K2

due to the choice of εf and K2. Thus τni > τ fi − ετ .

• Next, to show that τni ∈
[
τ fi − ετ , τ

f
i + ετ

]
, we need two observations. First, note that

if f
(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1) (i.e. the bound is crossed at ask), then

inf
t∈[τfi −ετ , τ

f
i +ετ ]

[
a (c2,i−1) + log gn

(
τni−1

)
− fn (t)

]
≤ inf

t∈[τfi −ετ , τ
f
i +ετ ]

[
a (c2,i−1) + f

(
τ fi−1

)
+ Ci−1εf − f (t) + εf

]
≤ Cεf + εf −K4 ≤

1

4
K −K4 ≤ −

15

16
K4 < 0.

Hence fn crosses its upper boundary in this interval whenever f crosses at ask.

Second, note that if f
(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1) (i.e. the bound is crossed at bid), we

have

inf
t∈[τfi −ετ , τ

f
i +ετ ]

[
fn (t)− b (c2,i−1)− log gn

(
τni−1

)]
≤ −15

16
K4 < 0.

Hence, fn crosses its lower boundary in this interval whenever f crosses at bid.

As a consequence, fn crosses one of its bounds over this interval i.e. τni ∈
[
τ fi − ετ , τ

f
i + ετ

]
,

and obviously
∣∣∣τ fi − τni ∣∣∣ < ετ .

• To show that cf2,i = cn2,i i.e. that fn crosses at ask (bid) whenever f does so, we

need two observations. First, note that if f
(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1), then for t ∈[

τ fi − ετ , τ
f
i + ετ

]
fn (t)− b (c2,i−1)− log gn

(
τni−1

)
≥ f (t)− 2εf − b (c2,i−1)− Ci−1εf − f

(
τ fi−1

)
≥ f (t)− 2εf + log

q + δ

q − δ
− a (c2,i−1)− Ci−1εf − f

(
τ fi−1

)
≥ 13

16
K1 > 0.

That is the i-th trade at time τni cannot happen at bid in this case.

Second, note that if f
(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1), then for t ∈

[
τ fi − ετ , τ

f
i + ετ

]
a (c2,i−1) + log gn

(
τni−1

)
− fn (t) ≥ 13

16
K1 > 0,

hence the i-th trade at time τni cannot happen at ask in this case.
Therefore, cf2,i = cn2,i.
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• To verify the induction statements (71) and (72) we need to consider two cases. First,
if fn (τni ) > a (c2,i−1) + log gn

(
τni−1

)
(i.e. fn crossed its bound at ask), then

fn (τni ) > a (c2,i−1) + log gn
(
τni−1

)
≥ f

(
τ fi

)
− 2Ci−1εf .

Moreover, since fn cannot have jumps larger than 2εf (since otherwise its distance from
f would become more than εf ), and since fn should be below its upper bound before
crossing it, we have

fn (τni ) ≤ a (c2,i−1) + log gn
(
τni−1

)
+ 2εf ≤ f

(
τ fi

)
+ 2

(
Ci−1 + 1

)
εf .

Therefore, |fn (τni )− f (τni )| ≤ 2 (Ci−1 + 1) εf . This implies that∣∣∣gn (τni )− ef(τ
f
i )
∣∣∣ =

1

c2,i

∣∣∣[(1− q)(efn(τni ) − ef(τ
f
i )
)

+ q
(
gn
(
τni−1

)
− ef(τ

f
i−1)
)
c2,i−1

]∣∣∣
≤ 1

c2,i

[
(1− q) ef(τ

f
i )
∣∣∣efn(τni )−f(τfi ) − 1

∣∣∣+ qef(τ
f
i )
∣∣∣elog gn(τni−1)−f(τ

f
i−1) − 1

∣∣∣ c2,i−1

]
≤ 2ef(τ

f
i )

c2,i

[
(1− q)

∣∣∣fn (τni )− f
(
τ fi

)∣∣∣+ q
∣∣∣log gn

(
τni−1

)
− f

(
τ fi−1

)∣∣∣ c2,i−1

]
≤ 4ef(τ

f
i )

1− δ
[1 + qδ] εf

(
Ci−1 + 1

)
≤ 2Mεf

(
Ci−1 + 1

)
where the third inequality is due to the fact that |ex − 1| < 2 |x| whenever |x| ≤
εf (Ci−1 + 1) < log 2. Hence

∣∣∣gn (τni )− ef(τ
f
i )
∣∣∣ < 2MCiεf as claimed in the induction.

Furthermore∣∣∣log gn (τni )− f
(
τ fi

)∣∣∣ =

∣∣∣∣∣log

(
1 +

gn (τni )− ef(τ
f
i )

ef(τ
f
i )

)∣∣∣∣∣ ≤ 2

∣∣∣∣∣gn (τni )− ef(τ
f
i )

ef(τ
f
i )

∣∣∣∣∣
≤ 2Mm

(
Ci−1 + 1

)
εf ≤ Ciεf

since |log (1 + x)| ≤ 2 |x| for |x| ≤ 2Mm (Ci−1 + 1) εf ≤ Ciεf < 1/2.
Second, if fn (τni ) < b (c2,i−1) + log gn

(
τni−1

)
(i.e. fn crossed its bound at bid), then

fn (τni ) ≤ f
(
τ fi

)
+2Ci−1εf . Moreover, we have that fn (τni ) ≥ f

(
τ fi

)
−2 (Ci−1 + 1) εf .

Therefore, |fn (τni )− f (τni )| ≤ 2 (Ci−1 + 1) εf . This implies that∣∣∣gn (τni )− ef(τ
f
i )
∣∣∣ ≤ 2Mεf

(
Ci−1 + 1

)
,

therefore
∣∣∣gn (τni )− ef(τ

f
i )
∣∣∣ < 2MC iεf as claimed in the induction. Hence, as before,∣∣∣log gn (τni )− f

(
τ fi

)∣∣∣ ≤ Ciεf .

• To show that fn does not cross more than once one of its boundaries on the interval[
τ fi − ετ , τ

f
i + ετ

]
, i.e. τni+1 > τ fi + ετ , we need the following two observations.

First, if fn (τni ) > a (c2,i−1) + log gn
(
τni−1

)
, then (as shown above) f

(
τ fi

)
= a (c2,i−1) +
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f
(
τ fi−1

)
, therefore for t ∈

[
τ fi − ετ , τ

f
i + ετ

]
fn (t)− b (c2,i)− log gn (τni ) ≥ f (t)− εf − b (c2,i)− f

(
τ fi

)
− Ciεf

≥ f
(
τ fi−1

)
− f

(
τ fi

)
+ a (c2,i−1)− b (c2,i)−K1 −

(
Ci + 1

)
εf

= − log
q (1− δ)
q + δ

−K1 −
(
Ci + 1

)
εf ≥ 15

16
K1 > 0.

Hence, if τni+1 ∈
[
τ fi − ετ , τ

f
i + ετ

]
, it cannot happen at bid. On the other hand,

a (c2,i) + log gn (τni )− fn (t) ≥ a (c2,i) + f
(
τ fi

)
− f (t)− εf − Ciεf

≥ K3 −
(
Ci + 1

)
εf ≥ 15

16
K3 > 0.

Hence, if τni+1 ∈
[
τ fi − ετ , τ

f
i + ετ

]
, it cannot happen at ask either. Thus, τni+1 /∈[

τ fi − ετ , τ
f
i + ετ

]
.

Second, if fn (τni ) < b (c2,i−1)+log gn
(
τni−1

)
, this implies that (as shown above) f

(
τ fi

)
=

b (c2,i−1) + f
(
τ fi−1

)
, therefore for t ∈

[
τ fi − ετ , τ

f
i + ετ

]
a (c2,i) + log gn (τni )− fn (t) ≥ a (c2,i) + f

(
τ fi

)
− f (t)− εf − Ciεf

≥ a (c2,i) + f
(
τ fi−1

)
+ b (c2,i−1)− f (t)−

(
Ci + 1

)
εf

≥ log
q (1 + δ)

q − δ
−K1 −

(
Ci + 1

)
εf ≥ 15

16
K1 > 0.

Also

fn (t)− b (c2,i)− log gn (τni ) ≥ f (t)− b (c2,i)− f
(
τ fi

)
− εf − Ciεf ≥ 15

16
K3 > 0.

Therefore, τni+1 /∈
[
τ fi − ετ , τ

f
i + ετ

]
in this case too.

• Thus, by the principle of mathematical induction, the statements (69)-(70) hold for
i = 1, ..., LfT .

To complete the proof of the Lemma, we need to establish that LfT = LnT for n > N̄ . By
the above we have that Lft = Lnt for any t ≤ τ f

LfT
+ ετ , thus the only thing left to show is that

τn
LfT+1

/∈
[
τ f
LfT

+ ετ , T
)
. Observe that, for t ∈

[
τ f
LfT

+ ετ , T
)
, and i = LfT

a (c2,i) + fn (τni )− fn (t) ≥ K2 − 2εf ≥ 7

8
K2,

fn (t)− b (c2,i)− fn (τni ) ≥ 7

8
K2.

Thus τn
LfT+1

≥ T .
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