Network Risk and Key Players: A Structural Analysis of Interbank Liquidity

Edward Denbee Christian Julliard Ye Li Kathy Yuan

February 5, 2018

Abstract

We estimate the liquidity multiplier and individual banks’ contribution to systemic risk in an interbank network using a structural model. Banks borrow liquidity from neighbours and update their valuation based on neighbours’ actions. When the former (latter) motive dominates, the equilibrium exhibits strategic substitution (complementarity) of liquidity holdings, and a reduced (increased) liquidity multiplier dampening (amplifying) shocks. Empirically, we find substantial and procyclical network-generated risks driven mostly by changes of equilibrium type rather than network topology. We identify the banks that generate most systemic risk and solve the planner’s problem, providing guidance to macro-prudential policies.

Keywords: financial networks; liquidity; interbank market; key players; systemic risk.

*We thank the late Sudipto Bhattacharya, Yan Bodnya, Douglas Gale, Michael Grady, Charles Khan, Seymon Malamud, Farzad Saïdi, Laura Veldkamp, Mark Watson, David Webb, Anne Wetherilt, Kamil Yılmaz, Peter Zimmerman, and seminar participants at the Bank of England, Cass Business School, Duisenberg School of Finance, Koc University, the LSE, Macro Finance Society annual meeting, the Stockholm School of Economics, and the WFA for helpful comments and discussions. Denbee (edward.denbee@bankofengland.co.uk) is from the Bank of England; Julliard (c.julliard@lse.ac.uk) and Yuan (K.Yuan@lse.ac.uk) are from the London School of Economics, SRC, and CEPR; Li (li.8935@osu.edu) is from the Ohio State University. This research was started when Yuan was a senior Houblon-Norman Fellow at the Bank of England. The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England. The support of the Fondation Banque de France, of ERC, and of the Economic and Social Research Council (ESRC) in funding the Systemic Risk Centre is gratefully acknowledged [grant number ES/K002309/1].
I Introduction

The 2007-09 financial crisis has stimulated strong interest in understanding financial intermediation and its role in creating liquidity\(^1\). As emphasized by Bianchi and Bigio (2014) and Piazzesi and Schneider (2017) among others, intermediaries face their own liquidity management problem, and in particular, banks hold central bank reserves to buffer liquidity shocks. Their choices are crucial for liquidity production, payment activities, and asset prices in the macroeconomy. Another area that has drawn increasing attention is financial networks. The interbank network, where banks borrow and lend reserves, has been at the heart of studies of systemic risk\(^2\). These two themes merge in our paper. We study both theoretically and empirically how the interbank network affects banks’ liquidity holding decisions, and its implications for systemic risk.

This paper structurally estimates a liquidity-holding game where banks obtain credit from an interbank network and their liquidity management objective incorporates different sources of network externality. Applying our framework to U.K. banks, we find that the dominant type of network externality varies over the business cycle. In the boom before 2008, banks’ liquidity holdings exhibit strategic complementarity, and thereby, the network amplifies liquidity shocks. As the financial crisis unfolds, the degree of strategic complementarity declines, and after the introduction of Quantitative Easing (QE) in the U.K., banks’ liquidity holdings exhibit strategic substitution, and the interbank network turns from a shock amplifier to a shock buffer. To the best of our knowledge, we provide the first evidence of a procyclical interbank network externality.

Our framework also offers several novel metrics to guide the monitoring of banks and the design of policy intervention during a crisis. Specifically, we identify banks that contribute the most to the volatility of aggregate liquidity through network domino effects. Banks’ contribution to systemic risk varies significantly over time. We find that such variation is mostly driven by changes of the type of equilibrium on the network (i.e., strategic complementarity or substitution) rather than changes of the network topology. Furthermore, we compare the decentralized equilibrium with the planner’s solution that achieves constrained efficiency.

We model banks’ reserve holding decisions in a linear-quadratic framework (à la Ballester, Calvo-Armengol, and Zenou (2006)), assuming a predetermined but time-varying interbank network where banks borrow and lend reserves. Bank characteristics and macroeconomic

\(^1\)In the recent macro-finance literature, intermediaries play the role of marginal investor in asset markets (Brunnermeier and Sannikov (2014); He and Krishnamurthy (2013)), credit supplier (Gertler and Kiyotaki (2010); Klimenko, Pfeil, Rochet, and Nicolo (2016)), and money issuer (Brunnermeier and Sannikov (2016); Hart and Zingales (2014); Li (2017); Quadrini (2017)).

\(^2\)Recent theories on interbank network and systemic risk include Freixas, Parigi, and Rochet (2000), Allen, Carletti, and Gale (2008), and Freixas, Martin, and Skeie (2011).
conditions affect banks’ decision, but reserve holdings also depend on the network topology, and the nature of network externality captured by structural parameters and identified by our estimation.

The interbank network generates two counteracting effects for the banks’ liquidity management problem. First, since banks can borrow reserves from their neighbours, the marginal benefit of holding reserves on their own decreases when neighbours hold more reserves. This free-riding incentive gives rise to strategic substitution (Bhattacharya and Gale (1987)). Consequently, the network acts as a risk buffer for liquidity shocks since neighbouring banks’ liquidity holdings are negatively correlated. Second, when banks see neighbouring banks holding more reserves, they positively update their belief on the value of liquidity (e.g., DeMarzo, Vayanos, and Zwiebel (2003)). Due to such informational spillover, the marginal benefit of holding liquidity increases in neighbours’ liquidity, which leads to strategic complementarity. In this case, the network amplifies the liquidity shocks originating from individual banks due to the positive correlation among neighbouring banks’ liquidity holdings. Another channel through which banks’ liquidity holdings may increase in their neighbours’ is the leverage stack mechanism in Moore (2012).

In the (unique interior) Nash equilibrium, the overall impact of network on banks’ liquidity holdings depends on a parameter ϕ, the network attenuation factor. If strategic substitution dominates, ϕ is negative. If strategic complementarity dominates, ϕ is positive.

Individual banks’ equilibrium reserve holdings depend upon the magnitude of liquidity shocks to all banks in the network. However, not all shocks are equally important. In particular, the dominant type of network externality, ϕ, and bank i’s indegree Katz-Bonacich centrality (network topology) determine how a bank weights liquidity shocks to itself and other banks in the network in their optimal liquidity holding decisions. The indegree centrality counts the direct and indirect links from other banks towards bank i, weighting connections by ϕ^k, where k is the number of steps needed to reach bank i.

In other words, the liquidity holding decision of a bank is related to its own shocks, the shocks of its neighbours, of the neighbours of its neighbours, etc., with distant shocks becoming increasingly less important as they are weighted by ϕ^k. It is important to emphasize that the network topology (e.g., Katz–Bonacich centrality measures) is not the only determinant of banks’ liquidity holdings. The magnitude of shocks to individual banks and the

3In Moore (2012), by signalling its credit worthiness through a higher liquidity buffer, banks can borrow more from other banks to finance positive NPV projects. So, when neighbours are ready to lend (i.e., holding more reserves), a bank chooses to hold more liquidity.

4This centrality measure takes into account the number of both direct and indirect connections in a network. For more on the Bonacich centrality measure, see Bonacich (1987) and Jackson (2003). For other economic applications, see Ballester, Calvo-Armengol, and Zenou (2006) and Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012). For an excellent review of the literature, see Jackson and Zenou (2012).
attenuation factor \(\phi \) are also crucial, and are key structural parameters in our estimation. For example, banks that receive extremely large liquidity shocks, regardless of their network location, may have a large impact on all banks’ liquidity holdings in equilibrium.

Based on the network equilibrium results, we conduct further welfare analysis for potential policy interventions to remedy any negative impact of network externalities. We characterise the volatility of the aggregate liquidity and identify key banks that contributes the most to the systemic risk – i.e. the risk key players. We find that the contribution by each bank to the network risk is related to 1) the network attenuation factor \(\phi \), 2) the bank specific liquidity risks, and 3) its outdegree Katz–Bonacich centrality measure. The outdegree centrality is similarly defined as the indegree centrality but the connections are outbound from bank \(i \) to measure the impact of bank \(i \) on its neighbours, neighbours of its neighbours, etc. Moreover, we introduce the concept of network impulse response function (NIRF) that naturally decomposes the volatility of aggregate liquidity into each bank’s contribution to it, and we show that the risk key player is precisely the bank with the largest NIRF.

We also solve for the planner’s optimum and compare it with the decentralised equilibrium. The discrepancy in the expected level and volatility of liquidity holdings arises from network externalities, and in particular, the fact that banks do not internalise their impact on each other through the outbound linkages.

Using daily data from the Bank of England, we use our model to study the reserve holding decisions of the member banks of the sterling large payment system, CHAPS, in the period of 2006 to 2010. Member banks conduct transaction for their own purpose and on behalf of their clients and hundreds of other non-member banks. The stability of this system is crucial for supporting real economic activities. On average in 2009, £272 billions of transactions in the U.K. were settled every day in CHAPS (U.K. nominal GDP every 5.5 days). CHAPS banks regularly have intraday liquidity exposures in excess of £1 billion to individual counterparties, and they hold reserves to buffer payment imbalances.\(^5\) Variation in payment imbalances is as close as we can get to a pure liquidity shock, because CHAPS transactions are settled in real time and on gross terms (“RTGS”) to eliminate counterparty credit risks.\(^6\) In addition to banks’ own reserve holdings, banks can borrow reserves from

\(^5\)The U.K. monetary framework leaves reserves management largely at individual banks’ discretion (both before and after the Quantitative Easing). In Appendix A.1 we provide background information on the policy framework (reserve regimes) including details on the payment system, and the interbank markets.

\(^6\)CHAPS uses RTGS instead of DNS (deferred net settlement). The DNS model is more liquidity efficient but creates credit risk exposure for recipient banks until the end of a clearing cycle. Such risks do not exist under RTGS since all payments are settled individually and on a gross basis. A detailed description of the RTGS in the U.K. is provided by Dent and Dison (2012) at the Bank of England. In this report, the BoE maintains that RTGS improves financial stability by minimizing credit exposures between banks.
each other on an unsecured basis in the overnight market. These interbank connections form
a network – a link between two banks is quantified by the fraction of borrowing by one bank
from another in the recent past, so the network is directional and its adjacency matrix is
weighted (i.e., right stochastic). Note that the links between two banks can be interpreted as
the (frequentist) probabilities of their borrowing-lending relationships per unit of reserves.
We study the impact of this interbank network on banks’ reserve holdings.\footnote{In addition to
central bank reserves, banks may pledge government bonds as collateral to borrow from
the Bank of England. Therefore, in our definition of reserve holdings, we add banks’ holdings of
collateral eligible for repo with the Bank of England. Our results are robust if we use actual reserves only.}

For our empirical analysis, we exploit the fact that the equilibrium of our model maps
exactly into the spatial error framework, which naturally separates the hypothetical liquidity
holdings of a standalone bank and the network-induced component. We allow the non-
network component to load on bank characteristics and macro variables, and confine the
network component only in the spatial error term. This conservative approach leaves a
minimal amount of variation in liquidity holdings to be driven by the interbank network.\footnote{We also estimated a spatial Durbin model, in which the network not only propagates shocks in the error
terms but also from bank characteristics. This more general model also serves as a specification test of our
benchmark framework.}
Yet, we are able to uncover rich, pro-cyclical dynamics of network externality: the network
amplified shocks in the pre-crisis period, but as the crisis unfolded, the amplification effect
decreased, and eventually in the QE period, the network became a shock buffer. Using our
estimates of the structural parameters, we quantity this network effect by computing the
ratio of aggregate liquidity volatility to the counterfactual volatility when there is no network
externality (i.e., the attenuation factor ϕ is zero). We find that this ratio reached 559% in
the boom, and declined to 125% during the crisis, and in the QE period, dropped to 89%.

Our finding of time-varying network externality sheds light on the relative importance
of different economic forces over the business cycle. Because it is costly to hold liquidity at
the expense of forgoing other investments, banks free ride their peers by borrowing reserves
in interbank network in response to liquidity shocks (Bhattacharya and Gale (1987)). This
common wisdom is only part of the story, because strategic complementarity arises from
informational spillovers and/or a “leverage stack” type mechanism as previously discussed.
Our framework accommodates all these facets of network externality, and allows the data to
reveal the dominant force at different points in time.

In addition, we empirically characterize the shock propagation mechanism, quantify the
individual banks’ contribution to aggregate liquidity risk, and identify the risk key players.
We find that most of the volatility of aggregate liquidity in the banking system is driven
by a small group of banks, and that each bank’s contribution varies substantially over time.
Moreover, we find that the risk key player is typically \emph{not} the largest net borrower – even
net lenders can generate substantial risk in the system. These finding is particularly relevant for monitoring and regulating the banking system, and policy interventions during crisis.

Since in our sample the network topology changes over time, we decompose the time variation of banks’ risk contributions into two components: the changes attributed to variation in ϕ, the type of equilibrium on the network, and variation of network topology. We find that the former is clearly the main driver. This suggests that endogenous network formation plays a limited role in the variation of network effect in our context. It is the type of equilibrium (i.e., strategic complementarity or substitution) that matters.

Finally, we compute the planner’s solution based on our estimates of ϕ, the sizes of bank-level structural shocks, and other parameters. We find that during the boom period, the amount of aggregate liquidity held by banks is not too far from the planner’s optimum but the network generates too much systemic risk through shock amplification. During the crisis period, the decentralized equilibrium generates smaller aggregate liquidity than the planner’s optimum, and the systemic liquidity risk is still too high. After the introduction of QE, banks hold too much liquidity and the volatility of aggregate liquidity is below the social optimum level. These findings may guide policy makers in monitoring banks, designing crisis interventions, and assessing the impact of QE.

This paper is related to the literature on bank liquidity management and monetary policy. Bernanke and Blinder (1988) embed bank reserve management in an IS-LM model. Kashyap and Stein (2000) find that the impact of monetary policy on bank lending is stronger for banks with less liquid assets. Bianchi and Bigio (2014) study monetary policy transmission in a dynamic model of banks’ liquidity management. Drechsler, Savov, and Schnabl (2014) link risk premia to monetary policy by highlighting banks holdings reserves to buffer liquidity shocks. Piazzesi and Schneider (2017) provide a model of the interaction between interbank transactions and payment activities of the rest of the economy. The linkages between payment flows, reserves, and interbank credit are crucial elements in banks’ liquidity production that affects asset prices, money and credit supply, and gives roles to monetary policy. Our paper furthers this line of inquiry by providing evidence on such linkages, especially the state-dependent impact of interbank network on banks’ liquidity management.

We contribute to the literature on bank liquidity regulation by providing an empirical framework to attribute systemic risk to individual banks, and by characterizing the wedge.

9Our finding is related to the empirical literature that critically examines the systemic consequence of network linkages. While there is an large theoretical literature on network contagion and formation, simulation studies based on reasonably realistic networks show little impact of linkage variation (summarized in Upper (2011)). Using a unique dataset of all Austrian banks, Elsinger, Lehar, and Summer (2006) find that contagion happens rarely and that the necessary funds to prevent contagion are surprisingly small. By applying an Eisenberg and Noe (2001) style model to German banks, Chen, Wang, and Yao (2016) find that the lack of bank capital is the key contributor to bank failure rather than the network contagion.
between decentralised outcome and the planner’s solution. Liquidity regulation has attracted a lot of attention after the financial crisis. Stein (2012) argues that reserves requirement may serve as a tool for financial stability regulation. Diamond and Kashyap (2016) study bank liquidity regulation in the setting of Diamond and Dybvig (1983). Allen and Gale (2017) review earlier theories that may provide foundations (i.e., sources of market failures) for bank liquidity regulations, such as liquidity coverage ratio and net stable funding ratio in Basel III. Our findings of pro-cyclical network externality and banks’ time-varying contribution to systemic risk lend support to a macro-prudential perspective on liquidity regulation.

Our work also advances the literature on interbank market dynamics and banks’ liquidity demand. Fecht, Nyborg, and Rocholl (2010) find that the prices of liquidity depend on counterparties’ liquidity levels. Acharya and Merrouche (2010) document evidence of precautionary liquidity demands of U.K. banks during the subprime crisis. Acharya and Merrouche (2010) find that in response to heightened payment uncertainty, banks hold excess reserves. There is also a related theoretical literature pioneered by Bhattacharya and Gale (1987). Recent theoretical works in this area highlight the externalities in interbank markets and the associated inefficiencies (e.g. Freixas, Parigi, and Rochet (2000); Allen, Carletti, and Gale (2008); Freixas, Martin, and Skeie (2011); Moore (2012); Castiglionesi, Feriozzi, and Lorenzoni (2017) among others). Our paper differs by modeling banks’ liquidity holdings as outcome of a network game, and estimate the time-varying network externality.

Networks have proved to be a useful analytical tool for studying financial contagion and systemic risk from both theoretical and empirical perspectives. Starting from Allen and Gale (2000), recent theories feature increasingly sophisticated networks and shock transmission mechanisms. Recent empirical works also cover a wide range of economic networks. We differ from this literature by studying, rather than network formation, the types of equilibria on a predetermined network. We empirically show that the variation of network externality is driven by the type of equilibrium on the network instead of the changes in network topology.

10 There is another line of research that focuses on the topology and formation of linkages. Afonso and Lagos (2015) use a search theoretical framework to study the interbank market and banks’ trading behavior. The empirical literature on the topology of interbank networks starts with Furfine (2000, 2003). Other earlier empirical studies of the interbank network topology include Upper and Worms (2004); Boss, Elsinger, Summer, and Thurner (2004); Soramaki, Bech, Arnold, Glass, and Beyeler (2007); Becher, Millard, and Soramaki (2008); and Bech and Atalay (2008). Recent works study the impact of the crisis on the structure of these networks, which include (but are not limited to): Gai and Kapadia (2010); Wetherilt, Zimmerman, and Soramaki (2010); Benos, Garrett, and Zimmerman (2010); Ball, Denbee, Manning, and Wetherilt (2011); and Afonso, Kown, and Schoar (2011). We differ from this literature by studying, rather than network formation, the types of equilibria on a predetermined network. We empirically show that the variation of network externality is driven by the type of equilibrium on the network instead of the changes in network topology.

11 This line research includes but is not limited to Leitner (2005); Babus (2009); Babus and Allen (2009) (for a review); Afonso and Shin (2011); Zawadowski (2012); Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015); Elliott, Golub, and Jackson (2015); Atkeson, Eisfeldt, and Weill (2015); Ozdagli and Weber (2015); Glasserman and Young (2015); Cabrales, Gale, and Gottardi (2015); Cabrales, Gottardi, and Vega-Redondo (2016); Herskovic (forthcoming).

12 The recent empirical network literature include but is not limited to Diebold and Yilmaz (2009, 2014); Billioa, Getmanskyb, Lo, and Pelizzona (2012); Hautsch, Schaumburg, and Schienle (2012); Aldasoro and
differ from these papers by taking a linear-quadratic approach of Ballester, Calvo-Armengol, and Zenou (2006) to analyze how economic agents’ liquidity holding decisions in a network game generate systemic risk and by structural estimating network externalities. Eisfeldt, Herskovic, and Siriwardane (2017) also use a similar approach to study the risk allocation in the CDS market.

The remainder of the paper is organised as follows. In Section II we present and solve a liquidity holding game in a network, and define key players in terms of aggregate liquidity level and risk. Section III casts the equilibrium of network game into the spatial econometric framework, and outlines the estimation methodology. In Section IV we describe the data and the features of the network and bank-level and macro control variables. In Section V we present and discuss the estimation results. Section VI concludes.

II The Network Model

In this section, we construct a model of banks’ liquidity holding decisions to study how interbank network generates systemic liquidity risk. The network is given by borrowing and lending relationships. Structural estimation of the model is presented in the following sections.

The network. There are n banks. The time t network, denoted by g_t, is characterized by an n-square adjacency matrix G_t where its element $g_{ii,t} = 0$ and $g_{ij \neq i,t}$ is the fraction of borrowing by bank i from bank j. The network g_t is therefore weighted and directed. Banks i and j are directly connected (i.e., have a direct lending or borrowing relationship) if $g_{ij,t}$ or $g_{ji,t} \neq 0$. The coefficient $g_{ij,t}$ can be interpreted as the frequentist estimate of the probability of bank i’s receiving one pound from bank j via direct borrowing.

The matrix G_t is a (right) stochastic (hollow) matrix by construction, is not symmetric, and keeps track of all direct connections – links of order one – between network players. That is, it summarises all the paths of length one between any pair of banks in the network. Similarly, the matrix G_t^k, for any positive integer k, encodes all links of order k between banks, that is, the paths of length k between any pair of banks in the network. For example,

13We also explore other definitions of the adjacency matrix, where $g_{ij,t}$ is either the sterling amount of borrowing by bank i from bank j, or 1 (0) if there is (no) borrowing or lending between Bank i and j. Note that, in this latter case, the adjacency matrix is unweighted and undirected. In the theoretical model, we provide results and intuitions for the case where $g_{ij \neq i,t}$ is the fraction of borrowing by bank i from bank j, thus, G_t is a right stochastic matrix. However, the results can be easily extended to other forms of adjacency matrices with some restrictions on the parameter values.

the coefficient in the \((i, j)\)th cell of \(G^k_t\) – i.e. \(\{ G^k_t \}_{ij}\) – gives the amount of exposure of bank \(i\) to bank \(j\) in \(k\) steps. Since, in our baseline construction, \(G_t\) is a right stochastic matrix, \(G_t\) can also be interpreted as a Markov chain transition kernel, implying that \(G^k_t\) can be thought of as the \(k\)-step transition probability matrix, i.e. the matrix with elements given by the probabilities of reaching bank \(j\) from bank \(i\) in \(k\) steps. Simply put, the matrix \(G_t\) measures how liquidity travels in the interbank network.

Banks and their liquidity preference. We study the amount of liquidity (reserves) banks choose to hold at the beginning of day \(t\) when they have access to an interbank borrowing and lending network. Let \(l_{i,t}\) denote the total liquidity held by bank \(i\). We model \(l_{i,t}\) as the sum of two components: \(q_{i,t}\), liquidity holdings absent of any bilateral effects (i.e., the level of liquidity that the bank would hold if it were not part of the network), and \(z_{i,t}\), a network-dependent component. So, \(l_{i,t} = q_{i,t} + z_{i,t}\). As later in the structural estimation, we assume that bank-level variables \((x^m_{i,t}, \text{such as leverage, lending and borrowing rates, stock return, CDS spread etc.})\) and macroeconomic variables \((x^p_t, \text{such as aggregate payment activities, monetary policy etc.})\) enter into liquidity decisions through \(q_{i,t}\):

\[
q_{i,t} = \alpha_i + \sum_{m=1}^{M} \beta_m x^m_{i,t} + \sum_{p=1}^{P} \beta_p x^p_t,
\]

where \(\alpha_i\) is a fixed effect. Thus, \(z_{i,t}\) is a residual term. This is a conservative approach to model network effects since, empirically, we only allow network to affect residual variation of \(l_{i,t}\) after controlling for bank-level and macro variables. In the Appendix A.2, we analyze a more general model where the network effects are not confined in residual liquidity holdings.

Given the predetermined network \(G_t\), bank \(i\) chooses \(z_{i,t}\) in response to other banks’ choices, \(\{z_{j,t} : j \neq i\}\). Banks make decisions simultaneously. The network allows banks to borrow and lend reserves, and may also transmit information relevant for liquidity management (more on this later). The vector \(z_t\) records all banks’ choices.

Bank \(i\) derives utility from an accessible stock of liquidity, which is the sum of its own holdings, \(z_{i,t}\), and what can be borrowed from other banks through the interbank network, \(\psi \sum_j g_{ij,t} z_{j,t}\). The interbank component is proportional to neighbours’ own holdings, \(z_{j,t}\), weighted by the network linkage, \(g_{ij,t}\), and a parameter \(\psi\). The benefit of accessible liquidity is \(\tilde{\mu}_{i,t}\) per unit. Banks’ objective for choosing \(z_{i,t}\) is represented by the following linear

\[\text{14} \text{The optimality conditions of this general model map into a spatial Durbin model. Those of our main model map into a spatial error model. Empirically, the former serves as a specification test for the latter that we report in the empirical section.}\]

\[\text{15} \text{Since we model banks’ daily liquidity holdings, we take the interbank network as predetermined at the beginning of a day. It is unlikely that interbank relationships change significantly on daily basis.}\]
quadratic function:

\[u_i(z_i|g_t) = \tilde{\mu}_{i,t} \left(z_{i,t} + \psi \sum_{j \neq i} g_{ij,t} z_{j,t} \right) - \frac{1}{2} \gamma \left(z_{i,t} + \psi \sum_{j \neq i} g_{ij,t} z_{j,t} \right)^2, \tag{2} \]

where the second-order term introduces concavity (decreasing marginal utility of liquidity). The curvature is governed by the parameter \(\gamma \), which is akin to a risk aversion parameter. Next, we decompose \(\tilde{\mu}_{i,t} \) into a bank-specific stochastic component \(\hat{\mu}_{i,t} \), and a network component, so

\[\tilde{\mu}_{i,t} := \hat{\mu}_{i,t} + \delta \sum_{j \neq i} g_{ij,t} z_{j,t}, \]

where

\[\hat{\mu}_{i,t} / \gamma := \mu_{i,t} = \bar{\mu}_i + \nu_{i,t}, \tag{3} \]

\(\bar{\mu}_i \) is the mean of \(\mu_{i,t} \), standalone liquidity valuation scaled by \(\gamma \). \(\nu_{i,t} \), the ultimate source of uncertainty, is a shock that is independent across banks and over time with variance \(\sigma_i^2 \).

The valuation of liquidity reflects the net benefit of liquidity holdings. A liquidity buffer cushions payment imbalances and prepares banks for future investment opportunities. But, to hoard liquidity, banks may have to forgo other investments or raise funds at high costs outside the interbank system. Therefore, \(\nu_{i,t} \) can be an idiosyncratic shock to either the benefits or costs. Ideally, everything is explicitly characterized in a model of liquidity management where banks face a budget constraint and certain financial frictions. We opt for the more parsimonious linear-quadratic setup, because our optimality conditions map perfectly into a spatial error model whose econometric properties are well understood.

The network component of \(\hat{\mu}_{i,t} \) is motivated by potential informational spillover. Even though banks may value liquidity differently (due to private value), neighbours’ liquidity holdings can be informative about the common value of reserves. We assume bank \(i \) follows a simple updating rule that adds \(\delta \sum_{j} g_{ij,t} z_{j,t} \) to the standalone valuation \(\hat{\mu}_{i,t} \). This updating rule is in the spirit of the boundedly-rational model of opinion formation in DeMarzo, Vayanos and Zwiebel (2003) (see also DeGroot (1974))\(^{16}\). Therefore, a smaller coefficient \(\delta \) reflects a larger informational discount on neighbouring banks’ holdings, and the network linkages direct information flows via the interbank network.

\(^{16}\)This updating rule is not Bayesian. We choose it for expositional clarity in capturing two opposing network bilateral effects, as shown later. There is a growing literature that studies the role of information aggregation in network settings (DeMarzo, Vayanos, and Zwiebel (2003); Babus and Kondor (2013)).
The bilateral network influences are captured by the following cross derivatives for \(i \neq j \):

\[
\frac{\partial^2 u_i(z_t|g_t)}{\partial z_{i,t} \partial z_{j,t}} = (\delta - \gamma \psi) g_{ij,t}.
\]

When the cross derivative is negative, i.e. when \(\delta < \gamma \psi \), banks’ liquidity holdings exhibit strategic substitution. That is, an individual bank sets aside a smaller amount of liquid assets when its neighbouring banks hold more liquidity, which it can draw upon. This reflects the typical free-riding incentive as in Bhattacharya and Gale (1987).\(^{17}\) In our model, strategic substitutability arises from the fact that banks dislike volatility in their accessible liquidity, and therefore prefer to hold buffer stocks of liquidity that are less correlated with the ones of the neighbouring banks. Since the degree of accessibility of neighbours’ liquidity increase in \(\psi \), and the marginal utility of liquidity decreases faster when \(\gamma \) is larger, the degree of strategic substitutability increases in these two parameters.

Strategic complementarity arises when \(\delta > \gamma \psi \). Through our interbank network not only flows liquidity (via borrowing and lending) but also the information on the common value of reserves. Strategic complementarity arises precisely from the informational spillover. We would expect a higher \(\delta \), and stronger strategic complementarity, when the common value of reserves is more prominent than the private value among banks.

Even if we restrict the network to be only relevant for fund flows rather than information flow, strategic complementary may still arise from leverage stack as in Moore (2012). Moore (2012) models a chain of borrowing/lending relationships that starts from the bank who borrows from households and ends at the bank with investment project. Interbank loans can be pledged to upstream lenders as collateral, so \(\delta \) is lower if the collateral haircut is higher. Under this alternative formulation, we may posit bank \(i \)'s objective function as follows:

\[
u_i(z_t|g_t) = \hat{\mu}_{i,t} \left(z_{i,t} + \psi \sum_{j \neq i} g_{ij,t} z_{j,t} \right) - \frac{1}{2} \gamma \left(z_{i,t} + \psi \sum_{j \neq i} g_{ij,t} z_{j,t} \right)^2 + z_{i,t} \delta \sum_{j \neq i} g_{ij,t} z_{j,t} , \tag{4}
\]

The “collateralised” liquidity term, \(z_{i,t} \delta \sum_{j} g_{ij,t} z_{j,t} \), has two parts: the available reserves that could be borrowed from neighbours, \(\sum_{j} g_{ij,t} z_{j,t} \), and the multiplication factor \(z_{i,t} \delta \), which can be thought of as collateral posted by bank \(i \) with parameter \(\delta \) reflecting a haircut. Since in the empirical context banks borrow and lend reserves on an unsecured basis, we may also interpret the multiplication factor as “information collateral,” i.e., by holding liquidity \(z_{i,t} \),

\(^{17}\)Bhattacharya and Gale (1987) show that banks’ liquidity holdings are strategic substitutes, because liquidity holdings come at a cost of forgoing higher return from long-term investments. Banks would like to free-ride their neighbours rather than conducting precautionary savings themselves.
bank \(i \) signals its creditworthiness to neighbouring banks in the interbank network. Note that whether banks’ objective is from equation (2) or (4) does not change the equilibrium outcome (i.e., their first-order conditions, or best response functions, stay the same).

Equilibrium. Now, we solve banks’ optimal reserve holdings in the Nash equilibrium. Banks choose their liquidity level \(z_{i,t} \) simultaneously. A representative bank \(i \) maximises (2), and we obtain the following best response function for each bank:

\[
z_{i,t}^* = \frac{\hat{\mu}_{i,t}}{\gamma} + \left(\frac{\delta}{\gamma} - \psi \right) \sum_{j \neq i} g_{ij,t} z_{j,t} + \phi \sum_{j} g_{ij,t} z_{j \neq i, t},
\]

where \(\phi := \delta/\gamma - \psi \) and \(\mu_{i,t} = \tilde{\mu}_i + \nu_{i,t} \) is defined earlier in equation (3). The “network attenuation factor” \(\phi \) is the key parameter that determines the type of equilibrium on network: i.e., strategic substitution if \(\phi < 0 \) or complementarity if \(\phi > 0 \). In our paper, we are agnostic about the sign of \(\phi \) and we instead estimate it empirically. Note that the aggregate level of reserves held by banks is fully determined by banks’ choices in the model, without being constrained by the central bank’s supply. This assumption of perfectly elastic reserve supply is consistent with the empirical context. The Bank of England accommodates banks’ reserve demand under the UK monetary policy framework (Appendix A.1).

Proposition 1 Suppose that \(|\phi| < 1\). Then, there is a unique interior solution for the individual equilibrium outcome given by

\[
z_{i,t}^* (\phi, g) = \{M(\phi, G_t)\}_i \mu_t,
\]

where \(\{\} \) is the operator that returns the \(i \)-th row of its argument, \(\mu_t := [\mu_{1,t}, ..., \mu_{n,t}]' \), \(z_{i,t} \) denotes the network-dependent liquidity holdings of bank \(i \), and

\[
M(\phi, G_t) := I + \phi G_t + \phi^2 G_t^2 + \phi^3 G_t^3 + ... = \sum_{k=0}^{\infty} \phi^k G_t^k = (I - \phi G_t)^{-1}.
\]

where \(I \) is the \(n \times n \) identity matrix.

Proof. Since \(\gamma > 0 \), the first order condition identifies the individual optimal response. Applying Theorem 1, part b, in Calvo-Armengol, Patacchini, and Zenou (2009) to our problem, the necessary equilibrium condition becomes \(|\phi \lambda_{\text{max}}(G_t)| < 1\) where the function

18The only difference between these two objective functions is that equation (2) has an additional second-order term \(\left(\delta \sum_{j \neq i} g_{ij,t} z_{j,t} \right) \left(\psi \sum_{j \neq i} g_{ij,t} z_{j,t} \right) \), but it only contains other banks’ choice of liquidity holdings, not bank \(i \)’s, so this additional term does not affect bank \(i \)’s first-order condition. In the planner’s problem that we discuss later, since the planner internalizes any spillover effect, the solutions differ slightly depending on whether we take equation (2) or equation (4) as banks’ objective function.
\(\lambda_{\text{max}}(\cdot)\) returns the largest eigenvalue. Since \(G_t\) is a stochastic matrix, its largest eigenvalue is 1. Hence, the equilibrium condition requires \(|\phi| < 1\), and in this case the infinite sum in equation (7) is finite and equal to the stated result (Debreu and Herstein (1953)).

To gain intuition about the above result, note that a Nash equilibrium in pure strategies \(z^*_t \in \mathbb{R}^n\), where \(z^*_t := [z_{1,t}, ..., z_{n,t}]'\), is such that equation (5) holds for all \(i = 1, 2, ..., n\). Hence, if such an equilibrium exists, it solves \((I - \phi G_t)z_t = \mu_t\). If the matrix is invertible, we obtain \(z^*_t = (I - \phi G_t)^{-1} \mu_t\). The rest follows by simple algebra. The condition \(|\phi| < 1\) states that network externalities must be small enough in order to prevent the feedback triggered by such externalities to escalate without bounds.

The matrix \(M(\phi, G_t)\) has an important economic interpretation: it aggregates all direct and indirect links among banks using an attenuation factor, \(\phi\), that penalises (as in Katz (1953)) the contribution of links between distant nodes at the rate \(\phi^k\), where \(k\) is the length of the path between nodes. In the infinite sum in equation (7), the identity matrix captures the (implicit) link of each bank with itself, the second term in the sum captures all the direct links between banks, the third term in the sum captures all the indirect links corresponding to paths of length two, and so on. The elements of \(M(\phi, G_t)\), given by \(m_{ij}(\phi, G_t) := \sum_{k=0}^{+\infty} \phi^k \{G^k_t\}_{ij}\), aggregates all paths from \(j\) to \(i\), where the \(k\)th step is weighted by \(\phi^k\).

In equilibrium, the matrix \(M(\phi, G_t)\) contains information about the centrality of network players. Multiplying the rows (columns) of \(M(\phi, G_t)\) by a unit vector of conformable dimensions, we recover the indegree (outdegree) Katz–Bonacich centrality measure\(^{19}\). The indegree centrality measure provides the weighted count of the number of ties directed to each node, while the outdegree centrality measure provides the weighted count of ties that each node directs to the other nodes. That is, the \(i\)-th row of \(M(\phi, G_t)\) captures how bank \(i\) loads on the network as whole, while the \(i\)-th column of \(M(\phi, G_t)\) captures how the network as a whole loads on bank \(i\).

However, as equation (6) shows, the matrix \(M(\phi, G_t)\) (which includes the network topology and the network attenuation factor \(\phi\)) is not enough to determines the systemic importance of a bank. Banks’ equilibrium reserve holdings depend on both \(M(\phi, G_t)\) and \(\mu_t\), and \(\mu_t\) load on bank-specific shocks \(\nu_t\). \(M(\phi, G_t)\) governs the propagation – banks weight its own shock, and through \(M(\phi, G_t)\), the shocks to neighbouring and centrally located bank more heavily. But, regardless of how shocks are propagated, banks with large liquidity shocks (i.e., large \(\sigma^2_t\)) have a large influence on the other banks’ liquidity holdings.

Aggregate liquidity. We can decompose the network contribution to total liquidity into

\(^{19}\) Newmann (2004) shows that weighted networks can in many cases be analysed using a simple mapping from a weighted network to an unweighted multigraph. Therefore, the centrality measures developed for unweighted networks apply also to the weighted cases.
a level effect and a risk effect. To see this, note that the total network generated liquidity, \(Z_t = \sum_i z_{i,t} \), can be written at equilibrium as

\[
Z_t^* = \underbrace{1'M(\phi, G_t)}_{\text{level effect}} \bar{\mu} + \underbrace{1'M(\phi, G_t)}_{\text{risk effect}} \nu_t
\]

where \(\bar{\mu} := [\bar{\mu}_1, \ldots, \bar{\mu}_n]' \), \(\nu_t := [\nu_{1,t}, \ldots, \nu_{n,t}]' \). The first term captures the network level effect, and the second captures the risk effect by aggregating idiosyncratic shocks. Note that even when \(N \) is large, idiosyncratic shocks may not vanish in aggregation because of the network effects in \(M(\phi, G_t) \) (similar to Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)).

The equilibrium solution in equation (8) implies that bank \(i \)'s marginal contribution to the volatility of aggregate liquidity can be summarised as

\[
\frac{\partial Z_t^*}{\partial \nu_{i,t}} \sigma_i = 1' \{ M(\phi, G_t) \}_{i} \cdot \sigma_i = b_{i}^{\text{out}}(\phi, G_t).
\]

This is the outdegree centrality for bank \(i \) weighted by the standard deviation of its own shocks. It naturally decomposes the conditional volatility of aggregate liquidity,

\[
Var_t(Z_t^*(\phi, G_t)) = vec \left(\left\{ b_{i}^{\text{out}}(\phi, G_t) \right\}_{i=1}^n \right) vec \left(\left\{ b_{i}^{\text{out}}(\phi, G_t) \right\}_{i=1}^n \right)' = 1'M(\phi, G_t) \text{diag}(\{\sigma_i^2\}_{i=1}^n)M(\phi, G_t)'1.
\]

Therefore, equation (9) provides a clear ranking of the riskiness of each bank from a systemic perspective. Three inputs are important: the network \(G_t \), the type of equilibrium (i.e., strategic substitution or complementarity) encoded in \(\phi \), and the size of bank-specific shocks \(\{\sigma_i^2\}_{i=1}^n \). This allows us to define the concept of “systemic risk key player”.

Definition 1 (Risk key player) The risk key player \(i_t^* \), given by the solution of

\[
i_t^* = \arg \max_{i=1,...,n} b_{i}^{\text{out}}(\phi, G_t),
\]

is the one that contributes the most to the volatility of the overall network liquidity.

Similarly, we can identify “systemic level key player”, whose removal from the system causes the largest aggregate liquidity reduction in expectation.\(^{20}\)

\(^{20}\)This definition is in the same spirit as the concept of key player in the crime network literature, e.g., Ballester, Calvo-Armengol, and Zenou (2006), where targeting key players is important for crime reduction. Here, it is useful to consider the ripple effect on the aggregate liquidity when a bank fails and exits from the system. Bailing out key level players might be necessary to avoid major disruptions to the whole system.
Definition 2 (Level key player) The level key player \(\tau_t^* \) is the player that, when removed, causes the maximum expected reduction in the overall level of total liquidity. We use \(G_{\setminus 	au,t} \) to denote the new adjacency matrix obtained by setting to zero all of \(G_t \)'s \(\tau \)-th row and column coefficients. The resulting network is \(g_{\setminus 	au,t} \). The level key player \(\tau_t^* \) is found by solving

\[
\tau_t^* = \arg \max_{\tau=1,\ldots,n} E \left[\sum_i z_i^*(\phi, g_t) - \sum_{i \neq \tau} z_i^*(\phi, g_{\setminus 	au,t}) \right] \tag{13}
\]

where \(E \) is the expectation operator.

We define level key player under the assumption that the removal of banks does not trigger immediately the formation of new links. Hence, we capture the short-run effects of a bank’s sudden failure. Since we do not observe bank failure in our sample, we cannot provide a precise time frame for link formation after removal. Yet, our definition can be operational from a policy perspective, especially during a crisis when banks shun each other and link formation becomes less likely. Using Proposition 1, we have the following corollary.

Corollary 1 A player \(\tau_t^* \) is the level key player that solves (13) if and only if

\[
\tau_t^* = \arg \max_{\tau=1,\ldots,n} \left\{ \mathbf{M}(\phi, G_t) \right\}_{\tau} + 1' \left\{ \mathbf{M}(\phi, G_t) \right\}_{\tau} \bar{\mu}_\tau - \mathbf{m}_{\tau\tau}(\phi, G_t) \bar{\mu}_\tau , \tag{14}
\]

where \(\mathbf{m}_{\tau\tau}(\phi, G_t) \) is the \(\tau \)-th element of the diagonal of \(\mathbf{M}(\phi, G_t) \).

When bank \(\tau \) is removed, its liquidity disappears from the system. This is the first component, the indegree effect, which depends on neighbors’ \(\bar{\mu} \) through \(\left\{ \mathbf{M}(\phi, G_t) \right\}_{\tau} \), the routes from neighbors to \(\tau \). The second component reflects bank \(\tau \)'s impact on other banks, so its own \(\bar{\mu}_\tau \) is multiplied by the sum of routes from \(\tau \) to neighbors, i.e., \(1' \left\{ \mathbf{M}(\phi, G_t) \right\}_{\tau} \). This outdegree effect captures network externality. The level key player metric is particularly relevant for a central planner who decides on which bank to bail out to sustain the aggregate liquidity buffer. Such a decision depends on a bank’s own contribution to aggregate liquidity and the spillover effects through network linkages. As in the risk key player metric, focusing on network alone is not enough. Both the attenuation factor \(\phi \) and bank-specific characteristics, now captured by \(\bar{\mu}_i \), are important inputs in computing key players.

The planner’s solution. This discussion leads us to analyse formally a planner’s problem in this interconnected system. A planner that equally weights the utility of each bank (in
equation (2) chooses the network liquidity holdings by solving the following problem:

\[
\max_{\{z_{i,t}\}_{i=1}^n} \sum_{i=1}^n u_i(z_i|g_i)
\]

(15)

where \(u_i(z_i|g_i)\) is bank’s \(i\) utility from holding liquidity in the network defined in equation (2). The first order condition for the liquidity holding of the \(i\)-th bank \((z_{i,t})\) yields

\[
z_{i,t} = \mu_{i,t} + \phi \sum_{j \neq i} g_{ij,t} z_{j,t} + \psi \sum_{j \neq i} g_{ji,t} \mu_{j,t} + \phi \sum_{j \neq i} g_{ji,t} z_{j,t} - \psi \left(\psi - \frac{2\delta}{\gamma} \right) \sum_{j \neq i, m \neq j} g_{ji,t} g_{jm,t} z_{m,t}
\]

(16)

The first two (indegree) terms are the same as in the decentralised case, while the last three (outdegree) terms reflect that the planner internalises banks’ impact on their neighbours’ utilities. The third term arises from the fact that for one unit of liquidity held by bank \(i\), neighbour \(j\) can draw \(\psi g_{ji,t}\) units. Here, neighbour \(j\) values this liquidity at \(\mu_{j,t}\), the standalone valuation absent of network impact. The fourth term reflects bank \(i\)’s impact on the network-dependent part of \(j\)’s liquidity valuation. When \(i\) holds more liquidity, the informational spillover increases \(j\)’s valuation of liquidity, but because \(j\) can borrow more from \(i\), \(j\)’s marginal value of liquidity holdings changes. The overall impact is summarized by \(\phi\) and weighted by the outbound link \(g_{ji,t}\). The fifth term captures the interaction effect of these forces.

Rewriting equation (16) in matrix form, we obtain

\[
z_t = (I + \psi G_t') \mu_t + P(\phi, \psi, \delta, G_t) z_t
\]

where \(P(\phi, \psi, \delta, G_t) := \phi (G_t + G_t') - \psi (\psi - 2\delta/\gamma) G'_t G_t\). This allows us to formally state the planner’s solution.

Proposition 2 Suppose \(|\lambda_{\text{max}}(P(\phi, \psi, \delta, G_t))| < 1\). Then, the planner’s optimal solution is uniquely defined and given by

\[
z^*_t(\phi, \psi, \delta, g_t) = \{M^p(\phi, \psi, \delta, G_t)\}_i \mu_t,
\]

(17)

where \(M^p(\phi, \psi, \delta, G_t) := [I - P(\phi, \psi, \delta, G_t)]^{-1} (I + \psi G'_t)\).

Proof. The proof follows the same argument as in the proof of Proposition 1.

As in the decentralised solution, one can solve for the aggregate network liquidity level
and risk in the planner’s problem. We can write the level and volatility as follows.

\[Z^p_t = 1'M^p(\phi, \psi, \delta, G_t) \bar{\mu} + 1'M^p(\phi, \psi, \delta, G_t) \nu_t \tag{18} \]

\[\text{Var}_t(Z^p(\phi, \psi, \delta, G_t)) = 1'M^p(\phi, \psi, \delta, G_t) \text{diag}(\sigma_i^2)_{i=1}^n)M^p(\phi, \psi, \delta, G_t)'1. \tag{19} \]

To see what drives the difference between the network liquidity in the decentralized equilibrium \((z^*)\) and in the planner’s solution \((z^p)\), one can rewrite the planner’s first order condition at the equilibrium as:

\[z^p_t = z^*_t + M(\phi, G_t) \left[\psi G'_t \mu_t + \left(\phi G'_t - \psi \left(\psi - \frac{2\delta}{\gamma} \right) G'_t G_t \right) z^p_t \right]. \tag{20} \]

The extra terms (in the square brackets) of the planner’s solution arise from the banks’ failure, in the decentralized equilibrium, to internalize the network externalities they generate. The intuition is similar to that of equation (16), the planner’s first-order conditions. The first term arises from a bank’s contribution to neighbours’ liquidity available through the interbank lending network (valued at \(\mu_t\) absent of network effects). The second term reflects a bank’s impact on neighbours’ network-dependent part of liquidity valuation. The last term reflects the interaction effect.\(^{21}\)

The following corollary offers a closed-form characterisation of the wedge between the planner’s solution and the decentralized outcome.

Corollary 2 Let \(H_t := \phi G'_t - \psi \left(\psi - \frac{2\delta}{\gamma} \right) G'_t G_t\). Then, the aggregate network liquidity in the planner’s solution can be expressed as

\[Z^p_t = Z^*_t + 1' \left[\psi M_t G'_t + M_t H_t M_t (I - H_t M_t)^{-1} (I + \psi G'_t) \right] \mu_t \tag{21} \]

where \(Z^*_t\) denotes the aggregate bilateral liquidity in the decentralized equilibrium in equation \[8\] and \(M_t := M(\phi, G_t)\). Moreover, if \(H_t\) is invertible, we have

\[Z^p_t = Z^*_t + 1' \left[\psi M_t G'_t + M_t \left(H_t^{-1} - M_t \right)^{-1} M_t (I + \psi G'_t) \right] \mu_t. \tag{22} \]

Proof. If \(H_t\) is invertible, observing that

\[M^p(\phi, \psi, \delta, G_t) \equiv \left[M(\phi, G_t)^{-1} - \phi G'_t + \psi \left(\psi - \frac{2\delta}{\gamma} \right) G'_t G_t \right]^{-1} (I + \psi G'_t) \]

\(^{21}\)\(\phi G'_t - \psi \left(\psi - \frac{2\delta}{\gamma} \right) G'_t G_t\) vanishes only in the unlikely case of \(\frac{\phi}{\psi(\psi - \frac{2\delta}{\gamma})}\) being an eigenvalue of \(G_t\).
and using the Woodbury matrix identity (see, e.g. Henderson and Searle (1981)) gives

$$M^p(\phi, \psi, \delta, G_t) = M_t + M_t (H_t^{-1} - M_t)^{-1} M_t,$$

hence the result is immediate. If H_t is not invertible, using equation (26) in Henderson and Searle (1981), we obtain

$$M^p(\phi, \psi, \delta, G_t) = M_t + M_t H_t M_t (I - H_t M_t)^{-1}$$

and the result follows.

The above implies that the discrepancy between the planner solution and the decentralised solution can be positive or negative depending on the parameters and topology of the network (the eigenvalues of the canonical operator of G_t).

III Empirical Methodology

In order to estimate the network model presented in Section II, we need to map the observed total liquidity holding of a bank at time t, $l_{i,t}$, into its two components: the liquidity holding absent of any bilateral effects (defined in equation (1)) and the network-dependent component (defined in equation (6)). This can be done by reformulating the theoretical model in the fashion of a spatial error model (SEM). That is, we decompose the total bank liquidity holdings into a function of the observables and a latent term that captures the spatial dependence generated by the network:

$$l_{i,t} = \alpha_t^{\text{week}} + \alpha_t^{\text{bank}} + \sum_{m=1}^{M} \beta_m^{\text{bank}} x_{i,t}^m + \sum_{p=1}^{P} \beta_p^{\text{macro}} x_t^p + z_{i,t},$$

$$z_{i,t} = \bar{\mu}_i + \phi \sum_{j=1}^{n} g_{ij,t} z_{j,t} + \nu_{i,t} \sim iid \left(0, \sigma_i^2\right), \ i = 1, ..., n, \ t = 1, ..., T. \quad (23)$$

We estimate the model using daily data, and include week fixed effects to control for unobserved macro factors. Week fixed effects, bank fixed effects, and bank-level and macro control variables together constitute $q_{i,t}$, the part of liquidity holdings absent of any network effects. On day t, network g_t is predetermined, and enters into $z_{i,t}$, the network-dependent component, through the residual equation (24). In our estimation, g_t is calculated from the average interbank borrowing amounts in the previous month. The estimate of ϕ reveals the

\[22\] See, e.g., Gorodentsev (1994) for the definition of canonical operator. The proof of this result is very involved, hence we present it in an appendix available upon request.
Defining $\epsilon_{i,t}$ as the demeaned version of $z_{i,t}$, we have $\sum_{j=1}^{n} g_{ij,t} \epsilon_{j,t}$ as a standard spatial lag term and ϕ being the canonical spatial autoregressive parameter. That is, the model in Equations (23) and (24) is a variation of Anselin (1988) spatial error model (see also Elhorst (2010a, 2010b)). This specification makes clear the nature of network as a shock propagation mechanism: a shock to bank j is transmitted to bank i through $\phi g_{ij,t}$, so if $\phi > 0$ (strategic complementarity), the network amplifies shocks, and if $\phi < 0$ (strategic substitution), the network buffers shocks. The ultimate impact of shocks to all banks is

$$\epsilon_{t} = \left(I - \phi G_{t} \right)^{-1} \nu_{t} \equiv M(\phi, G_{t}) \nu_{t}$$

where $\epsilon_{t} = [\epsilon_{1,t}, ..., \epsilon_{n,t}]'$, and the structural shocks $\nu_{t} = [\nu_{1,t}, ..., \nu_{n,t}]$. As shown by equation (7), $M(\phi, G_{t})$ records the routes that propagates ν_{t} with the direction governed by ϕ.

We can define $(1 - \phi)^{-1}$ as the “average network multiplier”. If G_{t} is a right stochastic matrix (i.e., $G_{t} 1 = 1$), which this is the case here since we model $g_{ij,t}$ as the fraction of borrowing by i from j, then a unit shock to the system equally spread across banks (i.e., $\nu_{t} = (1/n) 1$) would have an ultimate impact on aggregate liquidity equal to $(1 - \phi)^{-1}$.

Variation of G_{t} or changes of the equilibrium type (i.e., ϕ) would lead to variation in the conditional volatility of aggregate liquidity buffer:

$$Var_{t}(1'\epsilon_{t}) = 1'M(\phi, G_{t}) \Sigma_{v} M(\phi, G_{t})' 1.$$

Here we have used the fact that G_{t} is predetermined with respect to time-t information. The covariance matrix of structural shocks, $\Sigma_{v} := E[\nu_{t} \nu'_{t}]$, is a diagonal matrix with the variances, $\{\sigma_{i}^{2}\} i = 1^{n}$, on the main diagonal. As outlined in the Appendix A.3.1, we estimate the model using a quasi-maximum likelihood approach. To exhibit variation in ϕ and allow for changes in $\{\sigma_{i}\}_{i=1}^{n}$, we estimate the model in subsamples and rolling windows.

An estimation issue for network models is the well-known reflection problem (Manski (1993)): the neighbouring banks’ decisions about their liquidity holdings affect each other, so that we cannot distinguish between whether a given bank’s action is the cause or the effect of its neighbouring banks’ actions. To address this problem, Bramoullé, Djebbari and Fortin (2009) have shown that the network effect ϕ can be identified if there are two nodes in the network with different average connectivities of their direct connected nodes. This condition is satisfied in our data.

23 To exhibit potential time variation in ϕ, we perform estimations in subsamples and rolling windows.

24 From $1 = (I - \phi G_{t})^{-1} (I - \phi G_{t}) 1 = (I - \phi G_{t})^{-1} 1 (1 - \phi)$, we have $M(\phi, G_{t}) 1 = (1 - \phi)^{-1} 1$.

25 The separate identification of μ_{i} and α_{i}^{bank} is more complex, and is discussed in Appendix A.3.1. In particular, when G_{t} is a right stochastic matrix, the identification of μ_{i} and α_{i}^{bank} requires at least one bank...
As a specification test of our model, we also consider a more general specification that allows for richer network interactions. That is, we model liquidity holding as a spatial Durbin model (SDM – see, e.g. LeSage and Pace (2009)) where a bank’s liquidity depends directly on other banks’ liquidity and pairwise control variables

\[l_{i,t} = \alpha_{week} + \alpha_i + \sum_{m=1}^{M} \beta_{m}^{\text{bank}} x_{i,t}^{m} + \sum_{p=1}^{P} \gamma_{p}^{\text{macro}} x_{i,t}^{p} + \]
\[+ \rho \sum_{j=1}^{n} g_{i,j,t} l_{j,t} + \sum_{j=1}^{n} g_{i,j,t} x_{i,j,t} \theta + \nu_{i,t} \sim iid \left(0, \sigma_i^2 \right), \]

where \(x_{i,j,t} \) denotes match-specific control variables that may include the characteristics of bank \(j \). The above formulation serves as a specification test of our structural model since, setting \(x_{i,j,t} := vec \left(x_{j
eq i,t} \right) \), and restricting \(\theta = -\phi vec(\beta_{m}^{\text{bank}}) \), \(\gamma_{p}^{\text{macro}} = (1 - \phi) \beta_{p}^{\text{macro}} \forall p \), and most importantly \(\rho = \phi \), we are back to the benchmark specification. These restrictions are tested formally in Section V. Given the close mapping from our theoretical model to the spatial error model, such a test can be viewed as a test of the theoretical model.

With the estimated parameters at hand, we identify the risk key players in the system. To do so, we define “network impulse response functions” as follows.

Definition 3 (Network Impulse-Response Functions) Let \(L_t \equiv 1' l_t = [l_{1t}, ..., l_{Nt}] \) denote the total liquidity in the interbank network. The network impulse response function of total liquidity, \(L_t \), to a one standard deviation shock to a given bank \(i \), is given by

\[NIRF_i(\phi, \sigma_i, G_t) \equiv \frac{\partial L_t}{\partial \nu_{i,t}} \sigma_i = 1' \{ M(\phi, G_t) \} \sigma_i \]

where the operator \(\{ \} \) returns the \(i \)-th column of its argument.

The network impulse response is the shock-size weighted outdegree centrality of bank \(i \) previously defined in equation (9). As its theoretical counterpart, the network impulse response function measures a bank’s contribution to the volatility of aggregate liquidity, and thus, identifies the risk key player. It offers a natural decomposition of volatility, since

\[Var_t (1' \epsilon_t) \equiv vec \left(\{ NIRF_i(\phi, \sigma_i, G_t) \}_{i=1}^{n} \right)' vec \left(\{ NIRF_i(\phi, \sigma_i, G_t) \}_{i=1}^{n} \right). \]

to not borrow from any other bank at some point in the sample (in our data, this happens 13.5% of the time spread over all subsamples and rolling windows we consider). Alternatively, one can normalise one \(\mu_i \) to zero and identify the remaining ones as deviation from it. But note that the separate identification of these fixed effects does not affect the identification of \(\phi \) that is estimated by maximizing the concentrated likelihood.

\[^{26}\text{In Appendix A.2 we show that the above formulation is the equilibrium outcome of a network game.}\]
where \(Var_t \) denotes time-\(t \) variance conditional on \(t - 1 \) information (the predetermined \(G_t \)).

A bank’s risk contribution depends on the size of its own shock \(\sigma_i \), the network attenuation factor, \(\phi \), and all the direct and indirect network links. As reminder, for \(|\phi| < 1 \),

\[
1' \{ M(\phi, G_t) \}_{i} = 1' \{ I + \phi G_t + \phi^2 G_t^2 + \ldots \}_{i} = 1' \left\{ \sum_{k=0}^{\infty} \phi^k G_t^k \right\}_{i}
\]

where the initial element in the series captures direct effects of a unit shock to bank \(i \), the next element is from first-order network links, the third element is from second-order links, and so on. We can isolate the pure network-driven of impulse response, that is, the impact beyond direct effects of bank-level shocks (which we call the “excess NIRF”):

\[
NIRF_c^i (\phi, \sigma_i, G_t) \equiv NIRF_i (\phi, \sigma_i, G_t) - \sigma_i.
\]

The sign of \(NIRF_c^i (\phi, \sigma_i, G_t) \) depends on the type of equilibrium (strategic substitution or complementarity), i.e., the sign of \(\phi \). Note that it is straightforward to compute confidence bands for the estimated \(NIRF_s \)s using the delta method, since they are functions of \(\hat{\phi} \) and \(\{ \hat{\sigma}_i \}_{i=1}^n \) that have canonical asymptotic Gaussian distribution (see the Appendix [A.3.2]).

IV Data Description

We study the sterling interbank network over the sample period January 2006 to September 2010. The estimation frequency is daily, but we also use higher frequency data to construct several control variables defined below. The network we consider comprises of all the eleven banks in the CHAPS system during the sample period: Halifax Bank of Scotland (owned by Lloyds Banking Group), Barclays, Citibank, Clydesdale (owned by National Australia Bank), Co-operative Bank (owned by The Co-operative Group), Deutsche Bank, HSBC (that acquired Midland Bank in 1999 – one of the historical “big four” sterling clearing banks\(^{27}\)), Lloyds TSB, Royal Bank of Scotland (including Natwest), Santander (formerly Abbey, Alliance & Leicester and Bradford & Bingley, owned by Banco Santander of Spain), and Standard Chartered. These banks play a key role in the sterling large-value payment system, and the banking sector in general, since they make payments both for their purposes and on behalf of their clients, which include banks that are not CHAPS members.

\(^{27}\)For most of the 20th Century, the phrase “the Big Four” referred to the four largest sterling banks, which acted as clearing houses for bankers’ cheques. These were Barclays Bank, Midland Bank (now part of HSBC), Lloyds Bank (now Lloyds TSB Bank and part of Lloyds Banking Group); and National Westminster Bank (“NatWest”, now part of The Royal Bank of Scotland Group). Currently, the largest four U.K. banks are Barclays, HSBC, Lloyds Banking Group, and The Royal Bank of Scotland Group, closely followed by Standard Chartered s– and all of these banks in our sample.
Liquidity holdings. To measure the dependent variable $l_{i,t}$, that is, the liquidity holdings of each bank, we use central bank reserve holdings (logarithm). We supplement this with the collateral that is repo’ed with the Bank of England in return for intraday liquidity (these repos are unwound at the end of each working day). For robustness, we also analyse separately the behaviour of each of these two components.

The weekly average of aggregate liquidity in the system (the sum of banks’ holdings) is reported in Figure 1. The figure shows a substantial upward trend in the period after the U.S. subprime mortgage crisis that saw several market disruptions. This is consistent with the evidence that banks hoard liquidity in crisis (e.g., Acharya and Merrouche (2010)), but this upward trend is dwarfed by the steep run-up in response to the Asset Purchase Programme (aka the Quantitative Easing) that almost tripled the aggregate liquidity. As shown in Figure 10 in the Appendix, this sharp increase in liquidity was associated with a reduction in the velocity, i.e., the ratio of payments to aggregate liquidity. Note that since we include week fixed effects and macro control variables, this trend is unlikely to affect our estimate of ϕ, and in particular, induce a positive bias in $\hat{\phi}$ due to trend-induced comovement (i.e., spurious strategic complementarity in banks’ liquidity holdings).

Interbank network. We construct the interbank network G_t using interbank borrowing data that we extract from overnight interbank payments using the Furfine (2000) algorithm.

These results are reported in an appendix available upon request.
This algorithm is a common approach in the literature on interbank money market. It identifies pairs of payments between two banks where the outgoing payment are loans and the incoming payment are repayments (equal to the outgoing payment plus an interest rate). It has been tested thoroughly, and accurately tracks the LIBOR rate.\footnote{Furfine (2000) showed that when applied to Fedwire data, the algorithm accurately identifies the Fed Funds rate.}

The loan data are compiled to form an interbank lending and borrowing network. In particular, the element $g_{ij,t}$ of the adjacency matrix G_t is given by the average fraction of bank’s i overnight loans from bank j in the previous month ending on day $t - 1$.

By construction, G_t is a square right stochastic matrix. Its largest eigenvalue is therefore equal to one. This implies that the strength of shock propagation on the network depends
the second largest eigenvalue of G_t, which is plotted in Figure 2. There was a substantial increase in the crisis period, but what is striking is the large variation of network topology after QE. The variation of G_t is critical for us to empirically identify the network parameters.

Another way to exhibit the variation of G_t is to plot an measure of network cohesiveness, for which we use the Average Clustering Coefficient (ACC – see Watts and Strogatz (1998))

$$ACC_t = \frac{1}{n} \sum_{i=1}^{n} CL_i(G_t), \quad CL_i = \frac{\#\{jk \in G_t \mid k \neq j, j \in n_i(G_t), k \in n_i(G_t)\}}{\#\{jk \mid k \neq j, j \in n_i(G_t), k \in n_i(G_t)\}}$$

where $n_i(G_t)$ is the set of players that have a direct link with i and $\#\{\cdot\}$ is the count operator. The numerator is the number of pairs linked to i that are also linked to each other, while its denominator is simply the number of pairs linked to i. Therefore, ACC measures the average proportion of banks that are connected to i and also connected with each other. By construction it ranges from 0 to 1. A higher value means that the network is more dense.

The time series of ACC is shown in Figure 3. At the beginning of our sample, the network is highly cohesive since, on average, around 80% of pairs of banks connected to any given bank are also connected to each other. The degree of connectedness seems to have a decreasing trend during 2007–2008, and a substantial and sudden decrease following

31 This is because G^k can be rewritten in Jordan normal form as PJ^kP^{-1} where J is the (almost) diagonal matrix with eigenvalues (or Jordan blocks in case of repeated eigenvalues) on the main diagonal.
the Asset Purchase Programme, when ACC dropped by about one-quarter of its pre-crisis average. This is related to the reduced interbank borrowing needs during the QE period thanks to the availability of additional reserves from the Bank of England (combined with a move towards increased collateralisation of borrowing and an overall deleveraging, see, e.g. Westwood (2011)). This interpretation is consistent with Figure 9 in the Appendix, the monthly rolling average of daily sterling value of gross borrowing in the network.

Macro control variables. To control for aggregate liquidity condition, we use the LIBOR rate as a proxy for funding cost together with the interbank rate premium (average overnight borrowing rate of the CHAPS banks minus the LIBOR rate)\(^{32}\). All control variables are lagged by one day so that they are predetermined with respect to time \(t\) shocks.

Since banks’ decisions to hold liquidity are likely to be influenced by the volatility of their daily payment outflows, we construct a measure of the intraday payments volatility as

\[
VolPay_t = \sqrt{\frac{1}{88} \sum_{\tau=1}^{88} (P_{out}^{t,\tau})^2}
\] (29)

where \(P_{out}\) denotes payment outflows and 88 is the number of ten-minute time intervals (the unit of time for payment recording in our sample) within a day. The time series is plotted in Figure 11 in the Appendix. Outflow volatility declined steadily throughout the crisis, suggesting that banks in aggregate smoothed intraday outflow.

We also control for the turnover rate in the payment system. This variable is defined as

\[
TOR_t = \frac{\sum_{i=1}^{N} \sum_{\tau=1}^{88} P_{out}^{i,t,\tau}}{\sum_{i=1}^{N} \max \{ \max_{\tau \in [1,88]} [CNP(\tau; i, t)], 0 \}}
\]

where the cumulative net debit position (CNP) is defined as the difference between payment outflows and inflows (see also Benos, Garratt, and Zimmerman (2010)). The numerator is the total payments in day \(t\), while the denominator is the sum of maximum intraday net debt positions of all banks. The time series is plotted in Figure 12 in the Appendix. The turnover rate increased during the crisis period, and declined after the introduction of QE.

Since banks have some discretion on the timing of intraday outflows, they could behave strategically – to preserve liquidity, banks may expedite inflows and delay outflows. There-

\(^{32}\)LIBOR is the average of borrowing rates reported by selected banks, not CHAPS banks. Interbank rate premium can be positively correlated with banks’ liquidity holdings. First, when CHAPS banks face more risks, they may hold more liquidity and face higher borrowing costs. Second, interbank rate premium measures an opportunity cost – CHAPS banks can borrow to lend at LIBOR rate rather than hold reserves. So, when LIBOR is high (interbank rate premium low), banks prefer to hold less liquidity.
fore, we control for the right kurtosis \((rK_t) \) of intraday payment time.\(^{33}\) The time series is plotted in Figure 13 in the Appendix, showing a substantial increase in the QE period.

Beyond these control variables at daily frequency, we add week fixed effects to account for potential missing variables that fluctuate at lower frequencies, such as monetary policy conditions beyond the interbank rates and real economic activities that drive payment flows.

Bank characteristics. Despite the fact that we control for average interest rates, we also control for bank-specific overnight borrowing rate, which is a daily volume-weighted average. As shown by Figure 14 in the Appendix, there was a substantial increase in the cross-sectional dispersion of the overnight borrowing rates during turmoil periods, such as the collapses of Northern Rock and Lehman Brothers. This cross-sectional dispersion persisted during the QE period. Therefore, it is critical to account for the heterogeneity in banks’ overnight borrowing rates. As macro variable, all bank-level control variables are lagged by one day.\(^{34}\)

We also control for other bank-level variables: right kurtosis of intraday payment inflow time \((rK_{i,t}^{in}) \) and outflow time \((rK_{i,t}^{out}) \); the level of intraday payment outflow \((\text{LevPay}_{i,t} = \sum_{\tau=1}^{T} P_{i,t,\tau}^{out}) \); the volatility of intraday payment outflow \((\text{VolPay}_{i,t}, \text{constructed as in equation (29) using bank-level flows}) \); the liquidity used \((LU_{i,t}, \text{as in Benos, Garratt, and Zimmerman (2010) and defined in the Appendix}) \); repo liabilities to total assets ratio; the change of retail deposits to total assets ratio; the total interbank lending and borrowing; an index (cumulative change) of 5-year credit default swap (CDS) spread; daily stock return.

V Estimation Results

V.1 Subsample estimation

We estimate our model (equations (23) and (24)) in three subsamples of roughly equal size: the period before the Northern Rock and BNP Paribas Fund crisis (9 August 2007), the

\(^{33}\)We define right and left kurtosis (denoted, respectively, by \(rK_t \) and \(lK_t \)) as the fractions of kurtosis of payment times from, respectively, above and below the average payment time of the day:

\[
rK_t = \frac{\sum_{\tau > m_t} (\tau - m_t)^4}{\sum_{\tau = 1}^{T} (\tau - m_t)^4}; \quad lK_t = \frac{\sum_{\tau < m_t} (\tau - m_t)^4}{\sum_{\tau = 1}^{T} (\tau - m_t)^4};
\]

where \(m_t \) and \(\sigma_t \) are defined as flow-weighted average payment time and standard deviation, i.e.,

\[
m_t = \frac{1}{88} \sum_{\tau = 1}^{T} \tau \left(\frac{P_{i,t,\tau}^{OUT}}{\sum_{\tau = 1}^{T} P_{i,t,\tau}^{OUT}} \right), \quad \sigma_t^2 = \frac{1}{88 - 1} \sum_{\tau = 1}^{T} \left[\tau \left(\frac{P_{i,t,\tau}^{OUT}}{\sum_{\tau = 1}^{T} P_{i,t,\tau}^{OUT}} \right) - m_t \right]^2.
\]

\(^{34}\)For variables available at lower than daily frequency (monthly), we use the latest lagged observation. These variables are: repo liabilities to asset ratio, total assets, and the ratio of retail deposits to total assets.
Table 1: Spatial Error Model Estimation

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: (G_t) based on borrowing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.8137</td>
<td>0.3031</td>
<td>-0.1794</td>
</tr>
<tr>
<td>(R^2)</td>
<td>66.01%</td>
<td>92.09%</td>
<td>91.53%</td>
</tr>
<tr>
<td>(\frac{1}{1 - \hat{\phi}})</td>
<td>5.3677</td>
<td>1.4349</td>
<td>0.8479</td>
</tr>
<tr>
<td>(\sqrt{\frac{\text{Var}(Z_t</td>
<td>\phi)}{\text{Var}(Z_t</td>
<td>\phi=0)}})</td>
<td>5.59</td>
</tr>
<tr>
<td>Panel B: (G_t) based on lending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.8209</td>
<td>0.2573</td>
<td>-0.3925</td>
</tr>
<tr>
<td>(R^2)</td>
<td>66.02%</td>
<td>91.63%</td>
<td>91.61%</td>
</tr>
<tr>
<td>(\frac{1}{1 - \hat{\phi}})</td>
<td>5.5835</td>
<td>1.3464</td>
<td>0.7181</td>
</tr>
<tr>
<td>(\sqrt{\frac{\text{Var}(Z_t</td>
<td>\phi)}{\text{Var}(Z_t</td>
<td>\phi=0)}})</td>
<td>5.71</td>
</tr>
<tr>
<td>Panel C: (G_t) based on borrowing and lending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.8204</td>
<td>0.3258</td>
<td>-0.2824</td>
</tr>
<tr>
<td>(R^2)</td>
<td>63.98%</td>
<td>92.22%</td>
<td>91.70%</td>
</tr>
<tr>
<td>(\frac{1}{1 - \hat{\phi}})</td>
<td>5.5679</td>
<td>1.3464</td>
<td>0.7181</td>
</tr>
<tr>
<td>(\sqrt{\frac{\text{Var}(Z_t</td>
<td>\phi)}{\text{Var}(Z_t</td>
<td>\phi=0)}})</td>
<td>5.94</td>
</tr>
</tbody>
</table>

Estimation results for equations (23) and (24). Periods 1, 2 and 3, correspond, respectively, to before the Northern Rock/BNP Paribas Fund Crisis, after it but before the first BoE announcement of Asset Purchase Programme, and the QE period. The \(t \)-statistics are reported in parentheses under the estimated coefficients. Standard errors are QMLE-robust ones, and the delta method is used for for the average network multiplier, \(\frac{1}{1 - \hat{\phi}} \). In Panel A, the adjacency matrix is computed using the interbank borrowing data, while in Panels B and C we use, respectively, lending and borrowing plus lending (all row-normalized).

period after it and before QE (19 January 2009), and the QE period. These three periods are marked by distinct liquidity conditions, and as documented in Section IV different behaviour of the network and other variables. Period 1 is a relatively tranquil period. Period 2 saw several significant events, such as the subprime mortgage fund crisis (e.g., BNP Paribas fund freezing on 9 August 2007), the run on Northern Rock (the UK’s first in 150 years), the Federal Reserve intervention in Bear Stearns and its subsequent sale to JP Morgan Chase, and the bankruptcy of Lehman Brothers. Period 3 began with a regime switch in monetary policy. On 19 January 2009, it was announced that the BoE will purchase up to £50 billion in private assets, which marked the beginning of quantitative easing in the U.K.

The network multiplier. The estimation results for these three subsamples are reported in Panel A of Table 1, where we report only the estimates of the spatial dependency parameter

26
φ (first row), the R^2 of the regression (second row), the implied average network multiplier (third row) $1/(1 - \phi)$ that was discussed in Section \ref{sec:III}, as well as the ratio of the volatility of network liquidity to the counterfactual volatility when $\phi = 0$. Omitted from the table are the coefficient estimates of control variables, which are reported in Table A1 of the Appendix.

Recall that $\phi > 0$ (< 0) implies that banks’ liquidity holding decisions are strategic complements (substitutes) and that this tends to amplify (reduce) the impact of bank-level shocks to aggregate liquidity. In the first period, the estimate of ϕ is 0.8137 and highly significant, indicating a substantial network amplification effect: a £1 shock equally spread across banks would result in a $1/(1 - \hat{\phi}) = 5.3677$ shock to the aggregate liquidity.

In the second period, the coefficient ϕ is substantially lower in magnitude and marginally significant, implying weak strategic complementarity and an average network multiplier of about $1/(1 - 0.3031) = 1.4349$. This finding suggests that in response to the turbulence in financial markets that have characterised the second period, banks’ liquidity management objective increasingly tilted away from responding to informational spillover and towards free riding neighbours, i.e., a shift from strategic complementarity to substitution.

In the third period, $\hat{\phi}$ becomes negative, -0.1794, and statistically significant, implying an average network multiplier of 0.8479. This is particularly interesting since strategic substitution became the dominant force in banks’ liquidity holding decisions, as in Bhattacharya and Gale (1987). As a result, the network buffers the impact of shocks from individual banks on the aggregate liquidity. This finding also sheds light on how massive liquidity injection by the central bank affects the network effect. Overall, the model fits data fairly well in the three subsamples, with R^2 in the range of 66% – 92%.

The last row of Panel A reports $\sqrt{Var(Z_t|\hat{\phi})/Var(Z_t|\phi = 0)}$, i.e., the ratio of the volatility of aggregate liquidity implied by our estimate of ϕ to the counterfactual volatility if there were no network externalities. In the first period, the network multiplier generates a 459% increase in volatility. The excess volatility from network effects dropped to 25% in the crisis period, and turned negative, -11%, in the QE period. Table A2 of the Appendix reports $\sqrt{Var(z_{i,t}|\hat{\phi})/Var(z_{i,t}|\phi = 0)}$, the network volatility multiplier for each bank.

For robustness, in Panels B and C, we estimate our network model with two alternative constructions of the adjacency matrix G_t. In Panel B, we use the lending flows, while in Panel C, we use the combined borrowing and lending flows. In both cases, the adjacency matrix is row-normalized (right stochastic). Such an exercise is meaningful because, as we emphasized when constructing the theoretical model, network linkages reflect the interbank relationships, which may transmit information and/or liquidity. Thus, a linkage is not neces-

\footnote{Total liquidity injected from the Quantitative Easing program of the BoE was about £435 billion as of December 2017. See \url{https://www.bankofengland.co.uk/monetary-policy/quantitative-easing}.}
arily just about borrowing. If a bank lends to another bank, a relationship formed through this transaction may facilitates future borrowing or information transmission. Overall, the estimates in Panels B and C are very similar to those in Panel A.

Network impulse response and key players. Using the estimates, we compute the network impulse response functions to identify risk key players in each subsample. Results are reported together with banks’ net borrowing amount and the network graph.

In the upper panel of Figure 4, we report each bank’s excess network impulse response to a unit shock, i.e., \(\text{NIRF}^e_i(\hat{\phi}, 1, \bar{G}_1) = \text{NIRF}_i(\hat{\phi}, 1, G_1) - 1 \), defined in equation (28), where \(\bar{G}_1 \) denotes the average \(G_t \) in Period 1. It measures Bank \(i \)’s contribution to systemic risk – the network-induced reaction of aggregate liquidity to a unit shock to Bank \(i \). Note that if either \(\phi = 0 \) or there is no network linkages (\(\bar{G}_1 = 0 \)), a unit shock to Bank \(i \) is a unit shock to the aggregate liquidity, and thus, the excess response is zero. We also plot one and two standard deviation bands. As a point of reference, we show the average excess network multiplier, \((1 - \phi)^{-1} - 1 = 4.3677 \) (Panel A of Table 1), i.e., how network as whole amplifies a unit shock equally spread across banks.

A key message from Figure 4 is that a small set of key players are responsible for systemic risk, i.e., the large network multiplier. A shock of \(£1 \) to Bank 5, 6 or 9 would generate an excess response of aggregate liquidity equal to \(£13.9, £8.9, \) and \(£13.8 \) respectively. A shock to Bank 4 would induce an excess response similar to the network average, while the remaining seven banks contribute relatively little to shock amplification.

The comparison between the upper and central panels makes clear that risk key players are not necessarily large net borrowers – large net borrowers and lenders are both likely to be key risk contributors. This is intuitive: a negative shock to a bank that lends to a large part of the network (high outdegree centrality) can be, for the aggregate liquidity buffer, as bad as a negative shock to a bank that borrows from many banks (high indegree centrality).

However, even if we consider both borrowing and lending amounts, it is still not enough to identify key players. For example, the risk contribution of Bank 5 would be underestimated. The reasons behind can be understood by looking at the lower panel of Figure 4 where we present the average network structure in Period 1. The size of ellipses identifying individual banks are (log) proportional to their average gross borrowing, incoming arrows to a node indicate borrowing flows while outgoing arrows indicate lending flows, and the thickness of arrows is (log) proportional to the sterling value. It shows that key risk contributors tend to be banks with high centrality (e.g., Bank 5), i.e., with thick and many links, especially links to other well-connected banks, but not necessarily the large players by size.

Figure 5 reports excess impulse response functions (upper panel), average net borrowing (central panel), and network flows (lower panel) for Period 2 – the period characterised by
Figure 4: The period before the Northern Rock/Hedge Fund Crisis: Network excess impulse response functions to a unit shock (upper panel); net borrowing (central panel); borrowing and lending flows (lower panel) where the ellipses identifying individual banks are (log) proportional to their average gross borrowing, incoming arrows to a node indicate borrowing flows while outgoing arrows indicate lending flows, and the thickness of arrows is (log) proportional to the sterling value.
Figure 5: The period after the Norther Rock/Hedge Fund Crisis but before QE: Network excess impulse response functions to a unit shock (upper panel); net borrowing (central panel); borrowing and lending flows (lower panel) where the ellipses identifying individual banks are (log) proportional to their average gross borrowing, incoming arrows to a node indicate borrowing flows while outgoing arrows indicate lending flows, and the thickness of arrows is (log) proportional to the sterling value.
a high degree of stress in the financial market. The first thing to notice is that despite
the overall increase in borrowing and lending activities in the interbank market (see also
Figure 9 in the Appendix), there is a drastic reduction in the average network multiplier
reported in the top panel: the network-induced excess reaction to a unit shock is only about
0.43. In a crisis period, banks seem to have radically adjusted their liquidity management
objectives, reflected by the estimate of φ, and they have done so despite having increased
the utilization of interbank network to transfer liquidity. Nevertheless, systemic risk, even
though substantially reduced, is still quite high and driven by a few key players. In particular,
a unit shock to Bank 5, Bank 9 and Bank 6 trigger an excess reaction of aggregate liquidity
equal to 1.77, 1.36 and 0.85 respectively, while a shock to Bank 4 has an average effect, and
the remaining banks contribute little.

The results for Period 3 – the one starting at the onset of QE – are reported in Figure 6
and are radically different from the ones of the previous two periods. First, banks’ liquidity
holdings exhibit strategic substitution (\(\hat{\phi} < 0 \)), and as a result, the network buffers shocks
to individual banks, reflected in an average excess multiplier of \(-0.15\) – a unit shock equally
spread across banks would result in a shock of \(1 - 0.15 = 0.85\) to the aggregate liquidity.
But, once again, there is substantial heterogeneity among the banks, in the sense that most
banks (1, 3, 7, 8, 10 and 11) contribute little to shock propagation, while a few key players
(4, 5, 6, and 9) are responsible for the network buffering effect.

This behaviour arises in a period in which the degree of connectedness of the network
was substantially reduced (see Figure 3 and the lower panel of Figure 6), the total borrowing
had been substantially reduced (see Figure 9 in the Appendix), and most banks held net
borrowing positions close to zero (central panel of Figure 6), but at the same time, the overall
liquidity in the system had substantially increased, which is likely due to QE (Figure 1).

What is also interesting to notice is that the same banks that were the riskiest players
in the previous two periods (Banks 5, 6 and 9) are now the least risky ones for the system.
Thanks to their network centrality, and more importantly, the overall strategic substitution
behaviour on the network, these banks become the biggest shock absorbers.

A natural question is whether we can explain the large heterogeneity of individual banks’
contribution to system risk using banks’ characteristics, and maybe find some proper indi-
cators. Table 2 reports the rank correlations of individual bank characteristics with banks’
network impulse-response functions in the three subsamples. Only a few characteristics seem
to correlate significantly with the magnitude of \(\text{NIRF}^e_i\). Several observations are in order.

For the total payments channeled by a bank, in periods 1 and 2, the rank correlations
for this variable are, respectively, 82.73% and 95.45%, while in period 3 we have -85.45%,
suggesting banks that channel a larger amount of payments are likely to be central in the
Figure 6: The QE period: Network excess impulse response functions to a unit shock (upper panel); net borrowing (central panel); borrowing and lending flows (lower panel) where the ellipses identifying individual banks are (log) proportional to their average gross borrowing, incoming arrows to a node indicate borrowing flows while outgoing arrows indicate lending flows, and the thickness of arrows is (log) proportional to the sterling value.
interbank credit network but the implications of its centrality depends on the type of equilibrium, i.e., strategy complementarity ($\phi > 0$) or substitution ($\phi < 0$). In the first two periods, when $\phi > 0$, banks with large payment flows contribute to the volatility of aggregate liquidity, while in the third period, when $\phi < 0$, they dampens the effect of shocks.

The last row of Table 2 shows that net borrowing has no significant rank correlation with banks’ $NIRF_i^e$, consistent with Figures 4-6. Nevertheless, gross lending and gross borrowing, and their sum, are all highly correlated with banks’ $NIRF_i^e$. That is, banks that borrow and/or lend a lot (in gross terms) tend to be key players in our network. Once again, the sign of correlation depends on the sign of ϕ: large banks, in terms of gross borrowing or lending, can be key risk contributors or absorbers depending on the type of equilibrium on the network. How to measure bank size is important. For example, size measured by total assets is only weakly correlated with $NIRF_i^e$. Interestingly, the rank correlations are, in absolute terms, marginally larger for total lending than for total borrowing, suggesting outdegree links are more important for shock propagations. As we have shown in the theoretical model, outbound routes are responsible for the discrepancy between the planner’s solution and

<table>
<thead>
<tr>
<th>Table 2: Rank Correlation of Bank Characteristics and $NIRF_i^e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Interbank Rate</td>
</tr>
<tr>
<td>$\ln LevPay_{i,t-1}$</td>
</tr>
<tr>
<td>$rK^m_{i,t-1}$</td>
</tr>
<tr>
<td>$rK^{out}_{i,t-1}$</td>
</tr>
<tr>
<td>$\ln VolPay_{i,t-1}$</td>
</tr>
<tr>
<td>$\ln LU_{i,t-1}$</td>
</tr>
<tr>
<td>Repo Liability</td>
</tr>
<tr>
<td>Total Assets (log)</td>
</tr>
<tr>
<td>$\Delta Deposits_{Assets}$</td>
</tr>
<tr>
<td>CDS Spread</td>
</tr>
<tr>
<td>Stock Return</td>
</tr>
<tr>
<td>Total Lending and Borrowing (log)</td>
</tr>
<tr>
<td>Total Lending (log)</td>
</tr>
<tr>
<td>Total Borrowing (log)</td>
</tr>
<tr>
<td>Net Borrowing (log)</td>
</tr>
</tbody>
</table>

* represents 10% significance, ** 5% significance, and *** 1% significance.
Table 3: Central Planner vs. Market Equilibria

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆% Volatility of Total Liquidity</td>
<td>−90.8%</td>
<td>−64.8%</td>
<td>30.7%</td>
</tr>
<tr>
<td>∆ Level of Total Liquidity (unit: £10bn)</td>
<td>−3.47</td>
<td>15.5</td>
<td>−27.5</td>
</tr>
</tbody>
</table>

The three subsamples are indexed by $j = 1, 2, 3$, and \bar{G}_j is the average G_t in subsample j. The table reports:

- in first row, $100 \times \left[\frac{\text{Var} \left(Z^p (\hat{\phi}_j, \bar{G}_j) \right)}{\text{Var} \left(Z^* (\hat{\phi}_j, \bar{G}_j) \right)} - 1 \right]$;
- in second row, $1' \left[M_p \left(\hat{\phi}_j, \bar{G}_j \right) - M \left(\hat{\phi}_j, \bar{G}_j \right) \right] \hat{\mu}_j$.

The planner’s solution vs. decentralised equilibrium

Using the estimates of structural parameters, we assess the discrepancy between banks’ liquidity holdings in the decentralized equilibrium, and the level of liquidity buffer that a benevolent central planner would have wanted the banks to hold. That is, from equations (8) and (18), we compute the (expected) difference between the aggregate liquidity of planner’s choice and the aggregate decentralized liquidity as $1' \left[M_p \left(\phi, \psi, \delta, G \right) - M \left(\phi, G \right) \right] \hat{\mu}$. Similarly, from equations (10) and (19) we compute the difference in the volatility of planner’s choice and that of the aggregate decentralized liquidity: $\text{Var} (Z^p (\phi, \psi, \delta, G))^{1/2} - \text{Var} (Z^* (\phi, G))^{1/2}$.

To compute these quantities, we need ψ and the ratio δ/γ (see Corollary 2). While we cannot estimate ψ directly, we calibrate it to a natural benchmark, that is $\psi = 1 – \text{banks value the liquidity available from the network (i.e., borrowing from neighbors) in an identical manner as they value its own liquidity holdings. Since we have an estimate of } \phi, \text{the ratio } \delta/\gamma \text{ can be backed out from the definition of } \phi, \text{i.e., } \delta/\gamma = \phi + \psi$.

Table 3 reports the discrepancies between the central planner’s solutions and the market equilibria, based on the estimates of structural parameters in Table 1, and the average value of the adjacency matrix G_t, in the three subsamples.

In Period 1 – when the (average) network multiplier was extremely large – the market equilibrium features excessive risk from the perspective of a central planner: the planner would prefer the volatility of aggregate liquidity to be reduced by almost 91%. Moreover, albeit marginally, the liquidity level in the system is also excessive. Because both the planner and individual banks face the same bank-specific mean valuation of liquidity ($\hat{\mu}$) and shock variance (σ_i^2), the discrepancy between the planner’s solution and decentralized outcome lies in the fact that individual banks do not internalise their impact on each other (i.e., the outdegree linkages), as shown by equation (16).

In Period 2, the market equilibrium produces less volatility than in the Period 1. Nevertheless, the market volatility is still too large (by about 65%) from the central planner’s...
perspective. In comparison with Period 1, the network is less cohesive (see Figure 3), and the network multiplier declines since ϕ is closer to zero. However, this does not mean that the network externalities are eliminated. Quite to the opposite, such externalities through outdegree linkages lead to an expected level of aggregate liquidity buffer that is £15.5 billions lower than what is considered optimal by the central planner.

In the last period, the (average) network multiplier in the market equilibrium is smaller than 1, hence overall the system dampens the volatility of shocks. From the central planner’s perspective, not enough volatility is generated (by about 31%) while at the same time the aggregate network liquidity buffer is too high. This implies that banks hold idle reserves, and thus, the transmission of monetary policy (i.e., QE in this context) to the broad economy tends to be less effective than envisioned.

V.3 Time-varying network effects

The results presented so far indicate a substantial change over time in the role played by the network interactions in determining aggregate liquidity level and risk. In this section, we analyse the drivers of this time variation.

Drivers of variation in network effects. The network impulse response functions depicted in Figures (4)-(6) show substantial time variation in the amplification of shocks across periods. This could be caused by either the time variation in the network topology G or in the network multiplier ϕ. To examine the relative contribution, we compute the changes in the network impulse response functions across the three periods.

In particular, Panel A of Figure 7 reports the change in NIRFs between Periods 1 and 2 due to the variation of G ($NIRF_i(\hat{\phi}_1, 1, \bar{G}_2) - NIRF_i(\hat{\phi}_1, 1, \bar{G}_1)$, dotted line with triangles), and the change due to the variation of ϕ ($NIRF_i(\hat{\phi}_2, 1, \bar{G}_1) - NIRF_i(\hat{\phi}_1, 1, \bar{G}_1)$, dash-dotted line with +). Note that total change is not the sum of ceteris paribus change due to variation in G and ceteris paribus change due to variation in ϕ, but as a point of reference, the total change is plotted ($NIRF_i(\hat{\phi}_2, 1, \bar{G}_2) - NIRF_i(\hat{\phi}_1, 1, \bar{G}_1)$, dashed line with circles).

A striking feature of the graph is that most of the total change comes from the reduction in the network multiplier ϕ for all banks. In fact, ceteris paribus, the NIRF of Bank 5 would have increased from Period 1 to 2 due to the change in G. However, this effect is dwarfed by the reduction of its NIRF caused by the change in ϕ.

Panel B reports the same decomposition of the change in NIRFs between Periods 2 and 3. Once again the changes are mostly driven by the change in the network multiplier rather than the change in network topology. Overall, Figure 7 shows that the time variation of the network multiplier, i.e., the type of equilibrium on the network (strategic complementarity
Figure 7: Attribution of the change in NIRFs across periods: the ceteris paribus change due to variation of G ($NIRF_i(\hat{\phi}_1, 1, \bar{G}_2) - NIRF_i(\hat{\phi}_1, 1, \bar{G}_1)$, dotted line with triangles); the ceteris paribus change due to variation of ϕ ($NIRF_i(\hat{\phi}_2, 1, \bar{G}_1) - NIRF_i(\hat{\phi}_1, 1, \bar{G}_1)$, dash-dotted line with +); the total change ($NIRF_i(\hat{\phi}_2, 1, \bar{G}_2) - NIRF_i(\hat{\phi}_1, 1, \bar{G}_1)$, dashed line with circles).
vs. substitution), has the first order effect on the network amplification mechanism.

Rolling-window estimation and spatial Durbin model. The results in the previous sections indicate the importance of variation of ϕ in determining the network effects. Therefore, to capture this time variation, we now estimate the structural model in equations (23) and (24) using a 6-month rolling window. These rolling estimates of the network coefficient ϕ are reported (blue line), together with 95% confidence bands (red lines), in Figure 8.

The figure also reports the rolling point estimates of the coefficient ϕ implied by the spatial Durbin model (green line) in equation (26) which, as a more general model, serves as a specification test of our benchmark spatial error model. If the two estimated ϕ are close to each other, as shown in Figure 8, this indicates that our theory-driven spatial error

36 Recall that when G_t is a right stochastic matrix, separate identifications of the bank (α_{bank}) and network (μ) fixed effects require that there is a subset of banks that does not borrow at least at one point in time in each subsample (see footnote 25 and the Appendix A.3.1). This condition is not satisfied in all the rolling windows. But since the separate identification of these fixed effect does not affect the identification of ϕ, we normalise the bank fixed effects to zero. Moreover, given the very short length of the rolling window, we drop time fixed effects from the specification and heteroskedastic specification of shocks. Estimates with the full sets of fixed effects and heteroscedasticity show a very similar behaviour, but with somewhat larger confidence intervals, due to the increase of number of parameters. We focus on the more parsimonious specification, but results of full specifications are available upon request.
specification of the interbank network cannot be rejected for a more general specification.\footnote{Likelihood ratio test cannot reject the spatial error model most part of our sample (i.e., except rolling windows ending from May 2009 to May 2010). Results are available upon request.} Specifically, we find that less than 95% of the time, the two estimates differ statistically at the 5% confidence level.

At the beginning of the sample, the estimate of ϕ implies an extremely large network multiplier, and thus, the interbank system as a powerful shock amplifier. The estimate has its first sharp reduction around the 18th of May 2006 when the Bank of England introduced the reserve averaging system described in Section \ref{sec:reserve-averaging}. The network multiplier is relatively stable after that, except for a temporary decrease during the 2007 subprime mortgage default, until the Northern Rock bank run when the network multiplier is drastically reduced for several months. After this reduction, the coefficient goes back to roughly the previous average level but exhibits a declining trend that culminates in a slump following the Bear Stearns collapse. From this period onward, and until long after the Lehman Brothers bankruptcy, the coefficient is statistically indistinguishable from zero.

Our estimation suggests that banks’ liquidity management objectives change in response to market-wide crisis in a way that reduce the domino effect of shock propagation and amplification on the interbank network. This may happen through the following channels: a) a reduction in the informational spillover effect (e.g., DeMarzo, Vayanos and Zwiebel (2003)) and/or interbank collateralization (“leverage stack” as in Moore (2012)), i.e., a reduction in δ; b) interbank credit becomes more prominent a source of liquidity, i.e., an increase in ψ; c) the marginal utility from liquidity hoarding decreases faster, i.e., an increase in γ.

Interestingly, the coefficient $\hat{\phi}$ becomes negative right before the announcement of Asset Purchase Programme, and remains negative throughout the QE period. This indicates that during the active liquidity injection by the Bank of England (and also in expectation of it), banks’ liquidity holding decisions exhibit strategic substitution in their liquidity holding decision (as in Bhattacharya and Gale (1987)). Note that our results are unlikely to be driven by the direct or mechanical impact of QE on the interbank market of reserves for the following reasons: a) our estimation controls for variation in many prices (e.g., interbank rates), aggregate quantities (e.g., payment patterns, repo, deposits etc.), and time (weekly) fixed effects, so our estimated response functions of individual banks are already conditional on such information; b) as shown in Figure \ref{fig:liquidity-holding}, overall, banks hold more liquidity after QE, which favours strategic complementarity (i.e., correlated liquidity holdings) instead of strategic substitution; c) the drop in ϕ actually occurred before the announcement of QE; d) as previously emphasized and described in the Appendix \ref{sec:QE}, the Bank of England followed an accommodative reserve supply policy throughout our sample period, so the impact of QE
is not through alleviating reserve scarcity. Therefore, our finding of a strong QE impact on banks’ liquidity management objectives (i.e., our structural parameters) posit a challenge for theoretical research on how monetary policy affects the banking system.

VI Conclusion

In this paper, we develop a network model of banks’ liquidity holding decisions, and estimate the model to uncover the structural parameters that determine the type of equilibrium on the interbank network, i.e., strategic complementarity or substitution. Using the estimated parameters and the observed network topology, we construct measures of systemic risk and identify players that contribute the most to the level and risk of aggregate liquidity buffer in the banking system.

We find that the network effects vary significantly through the sample period of 2006 to 2010. In the pre-crisis period, banks’ liquidity holding decisions exhibit strategic complementarity, so shocks are amplified by the network. In contrast, during the crisis, the network multiplier declined significantly, suggesting that banks adjusted their liquidity management objectives in a way that reduce network domino effects. Finally, during the QE period, in response to the large liquidity injection, the equilibrium on interbank network is characterised by strategic substitution, and accordingly, the network became a shock buffer.

To the best of our knowledge, we are the first to provide evidence on the substantial time variation in the nature of equilibrium on a financial network. Moreover, we show that, form a systemic risk perspective, the change in the type of equilibrium is the dominant force (rather than the change in network topology). This could rationalise the empirical puzzle of network changes having little impact on aggregate quantities in the calibration/simulation studies on interbank networks (e.g., Elsinger, Lehar, and Summer (2006)).

From a policy perspective, we are able to identify key risk contributors using our estimates of structural parameters, and show that a small subset of players are responsible for systemic risk generated through network connections. Last, but not least, we solve the choice of a benevolent central planner, and quantify the discrepancy between the planner’s solution and the decentralised outcome in both expected level and volatility of aggregate liquidity. In particular, we find that during both the pre-crisis and the 2007-2009 crisis periods, the system was characterised by an excessive amount of risk, and during the crisis, too little liquidity buffer held by individual banks relative to the social optimum.
References

A Appendix

A.1 Reserves schemes, payment systems, and interbank liquidity

Banks in the UK choose the amount of central bank reserves that they hold to support a range of short term liquidity needs. Reserves are the ultimate settlement asset for interbank payments. Whenever payments are made between the accounts of customers at different commercial banks, they are ultimately settled by transferring central bank money (reserves) between the reserves accounts of those banks. Reserve balances are used to buffer against intraday payment imbalances (i.e., cumulative outflows larger than inflows). Additionally, central bank reserves are the most liquid asset that banks can draw upon in the presence of unexpected outflows of funds. Since 2006, the starting year of our sample, banks choose their reserve holdings on a discretionary basis, i.e., reserve holdings are not mandatory. However, their reserve holding decisions depend on the policy framework in which they operate.

A.1.1 Monetary policy framework

Since the 1998 Banking Act, the Bank of England (BoE) has had independent responsibility for setting interest rates to ensure that inflation, as measured by the Consumer Price Index (CPI), meets the inflation target of 2%. Each month the Monetary Policy Committee (MPC) meets to decide the appropriate level of the Bank rate (the policy interest rate) to meet the inflation target in the medium term. The Sterling Monetary Framework changed over time. During our sample period, the Bank of England had three distinct monetary frameworks: prior to 18 May 2006, the Bank of England operated an unremunerated reserve scheme; this was then replaced by a reserves average scheme; since March 2009 and the initiation of Quantitative Easing, the reserves average scheme has been suspended.

Pre-2006 Reform: Prior to the 2006 reforms, the Sterling Monetary Framework (SMF) was based upon a voluntary unremunerated reserves. There were no reserve requirements and no reserve averaging over a maintenance period. The only requirement was that banks were obliged to maintain a minimum zero balance at the end of each day. In practice, due to uncertainties from end of day cash positions, banks opted for small positive reserve balances.

Reserve Averaging: In May 2006, the Bank of England undertook a major reform of the Sterling Monetary Framework. The new scheme was voluntary remunerated reserves with a period-average maintenance requirement. Each maintenance period – the period between two meetings of the Monetary Policy Committee – banks were required to decide upon a reserves target. This voluntary choice of reserves target is a feature unique to the UK system. Over the course of each maintenance period, the banks would manage their balance sheets so that, on average, their reserve balances hit the target. Where banks were unable to hit the
target, standing borrowing and deposit facilities were available. Within a range of ±1% of the target, reserves are remunerated at the Bank Rate38 Holding an average level of reserves outside the target range attracts a penalty charge.39 But an SMF participant can ensure it hits its target by making use of the Bank’s Operational Standing Facilities (OSFs). These bilateral facilities allow SMF participants to borrow overnight from the Bank (against high-quality collateral) at a rate above Bank Rate or to deposit reserves overnight with the Bank at a rate below Bank Rate. The possibility of arbitrage between interbank market rates and reserves remunerated at Bank Rate is the main mechanism through which market rates are kept in line with Bank Rate. In both schemes before Quantitative Easing (QE), the BoE would ensure sufficient reserves supply for banks to meet their reserves target. Banks then use the interbank market to reallocate reserves from banks in surplus to banks in deficit.

Post Quantitative Easing: Quantitative Easing in UK started in March 2009 when the MPC decided that in order to meet the inflation target in the medium term, it would need to supplement the use of interest rate (which had hit the practical lower bound of 0.5%) with the purchase of assets using central bank reserves. This consisted of the BoE’s boosting the money supply by creating central bank reserves and using them to purchase assets, predominantly UK gilts. Furthermore, the BoE suspended the average reserve targeting regime, and now remunerates all reserves at the Bank rate.

A.1.2 Payment and settlement systems

Banks use central bank reserves to, inter alia, meet their demand for intraday liquidity in the payment and settlement systems. Reserves act as a buffer to cover regular timing mismatches between incoming and outgoing payments, for example, due to exceptionally large payments, operational difficulties, or stresses that impact upon a counterparty’s ability, or willingness to send payments. There are two major payment systems in the UK: CHAPS and CREST.40 These two systems play a vital role in the UK financial system. On average, in 2011, £700 billion of transactions was settled every day within the two systems. This equates to the UK 2011 nominal GDP being settled every two days.

CHAPS is the UK’s large-value payment system. It is used for real time settlement of payments between its member banks. These banks settle payments on behalf of hundreds of other banks through correspondent relationships. Typical payments are business-to-business payments, home purchases, and interbank transfers. Payments relating to unsecured inter-

38At various points during the crisis, this ±1% range was increased to give banks more flexibility to manage their liquidity.

39Settlement banks also pay a penalty if their reserves account is overdrawn at the end of any day.

40There are also four retail payment systems (Bacs, the Faster Payments Service (FPS), Cheque and Credit Clearing (CCC) and LINK) that are operated through the BoE.
bank money markets are settled in CHAPS. CHAPS opens for settlement at 8 am and closes at 4:20 pm. Payments made on behalf of customers cannot be made after 4 pm. The system has throughput guidelines which require members to submit 50% of their payments by noon and 75% by 14:30. This helps ensure that payments are settled throughout the day and do not bunch towards the end of the day.

In 2011, CHAPS settled an average of 135,550 payments each day valuing £254bn. CHAPS is a real-time gross settlement (RTGS) system. This means that payments are settled finally and irrevocably in real time. To fund these payments, banks have to access liquidity intraday. If a bank has, at any point during the day, cumulatively sent more payments than it has received, then it needs liquidity to cover this difference. This comes either from central bank reserves or intraday borrowing from the BoE. Furthermore, when a bank sends funds to another bank in the system, it exposes itself to liquidity risk. That is, the risk that the bank may not get those fund inflows back during the day, and so will run down their own liquidity holdings or borrow from the BoE. Therefore, it is important to choose an appropriate level of liquidity buffer. Besides maintaining a liquidity buffer, banks manage liquidity by borrowing from and lending to each other in the unsecured overnight markets. According to Bank of England estimates, payments relating to overnight market activity (advances and repayments) account for about 20% of CHAPS values (Wetherilt, Zimmerman, and Soramaki (2010)).

CREST is a securities settlement system. Its Delivery-vs-Payment (DVP) mechanism ensures simultaneous transfer of funds and securities. When a liquidity need is identified, the CREST system’s intraday liquidity mechanism with the BoE works automatically through “Self Collateralising Repos” (SCRs): if a CREST settlement bank would otherwise have insufficient funds to settle a transaction, a secured intraday loan is generated using as eligible collateral either the purchased security (if eligible) or other securities.

A.1.3 The sterling unsecured overnight interbank market

Interbank markets are the markets where banks and other financial institutions borrow and lend assets, typically with maturities of less than one year. At the shortest maturity, overnight, banks borrow and lend central bank reserves. Monetary policy aims at influencing the rate at which these markets transact, so as to control inflation in the wider economy. There is limited information available about the size and the structure of the sterling money markets. The Bank of England estimates suggest that the overnight unsecured market is approximately £20–30 billion per day during our sample period. Wetherilt, Zimmerman, and Soramaki (2010) describe the network of the sterling unsecured overnight money market. They find that the network has a small core of highly connected participants, surrounded by
a wider periphery of banks loosely connected with each other, but with connections to the
core. It is believed that prior to the recent financial crisis, the unsecured market was much
larger than the secured one. We identify interbank borrowing and lending transactions in
CHAPS settlement data.

A.2 An Alternative Model

In this section, we present an alternative model where the network effect on banks’ liquidity
holding decisions is not modelled as a residual. Specifically, we let the total liquidity holding
by bank i, i.e., $l_{i,t}$, to be accessible to the network. Hence, the valuation of liquidity for bank
i in network g_t becomes:

$$\tilde{\mu}_{i,t}(l_{i,t} + \psi \sum_{j \neq i} g_{ij,t} l_{j,t})$$

and the per unit value $\tilde{\mu}_{i,t}$ is specified as

$$\tilde{\mu}_{i,t} := \hat{\mu}_{i,t} + \delta \sum_{j} g_{ij,t} l_{j,t} + \sum_{m=1}^{M} \tilde{\beta}_m x_{i,t}^m + \sum_{j} g_{ij,t} x_{i,j,t} \tilde{\theta} + \sum_{p=1}^{P} \tilde{\gamma}_p x_t^p$$

where $x_{i,j,t}$ denotes match specific control variables and the characteristics of other banks,
and $\tilde{\theta}$ is a vector of suitable dimension. That is, in addition to the aggregate information
embedded in the neighbouring banks’ holdings, also macro variables and the neighbouring
banks’ characteristics affect the per unit valuation of the liquidity.

In this setup, bank i’s utility from holding liquidity is specified as:

$$u_i(l_i | g_t) = \left(\tilde{\mu}_{i,t} + \delta \sum_{j} g_{ij,t} l_{j,t} + \sum_{m=1}^{M} \tilde{\beta}_m x_{i,t}^m + \sum_{j} g_{ij,t} x_{i,j,t} \tilde{\theta} + \sum_{p=1}^{P} \tilde{\gamma}_p x_t^p \right) \left(l_{i,t} + \psi \sum_{j \neq i} g_{ij,t} l_{j,t} \right)$$

$$- \frac{1}{2} \gamma (l_{i,t} + \psi \sum_{j \neq i} g_{ij,t} l_{j,t})^2$$

The optimal response function for each bank is then:

$$l_{i,t}^* = \frac{\hat{\mu}_{i,t} + \sum_{m=1}^{M} \tilde{\beta}_m x_{i,t}^m + \sum_{j} g_{ij,t} x_{i,j,t} \tilde{\theta} + \sum_{p=1}^{P} \tilde{\gamma}_p x_t^p}{\gamma} + \left(\frac{\delta}{\gamma} - \psi \right) \sum_{j \neq i} g_{ij,t} l_{j,t}$$

$$= \mu_{i,t} + \sum_{m=1}^{M} \beta_m x_{i,t}^m + \sum_{j} g_{ij,t} x_{i,j,t} \theta + \sum_{p=1}^{P} \gamma_p x_t^p + \phi \sum_{j} g_{ij,t} l_{j \neq i,t}$$

48
where $\phi := \delta / \gamma - \psi$, $\mu_{i,t} := \hat{\mu}_{i,t} / \gamma := \hat{\mu}_i + \nu_{i,t}$, $\beta_m = \hat{\beta}_m / \gamma$, $\gamma_p = \hat{\gamma}_p / \gamma$, and $\theta = \hat{\theta} / \gamma$. Note that the empirical counterpart of the above best response is the spatial Durbin model in equation (26).

Let us denote $\mu_{i,t} + \sum_{m=1}^{M} \beta_m x_{i,j,t}^m + \sum_{j} g_{ij,t} x_{i,t} \theta + \sum_{p=1}^{P} \gamma_p x_{p,t}$ by $\bar{\mu}_t$. The following result is immediate following similar steps of the proof in the main text.

Proposition 3 Suppose that $|\phi| < 1$. Then, there is a unique interior solution for the individual equilibrium outcome given by

$$l^*_{i,t} (\phi, g) = \{ \mathbf{M} (\phi, \mathbf{G}_t) \}_{i.} \bar{\mu}_t,$$

where $\{ \}_{i.}$ is the operator that returns the i-th row of its argument, $\bar{\mu}_t := [\bar{\mu}_1, t, \ldots, \bar{\mu}_N, t]'$, $l_{i,t}$ denotes the total liquidity holding by bank i.

The above result implies that, even in this more general model, the definitions of conditional volatility of liquidity (equation (10)), risk key player (definition 1), level key player (definition 2), and network impulse response functions (definition 3), as well as their dependency on the network topology and equilibrium parameter ϕ, stay unchanged.

A.3 Details of the Empirical Methodology

A.3.1 Quasi-maximum likelihood formulation and identification

Writing the variables and coefficients of the spatial error model in equations (23) and (24) in matrix form as

$$B := \begin{bmatrix} \alpha_{1,1}^\text{time}, \ldots, \alpha_{1,t}^\text{time}, \ldots, \alpha_{1,T}^\text{time}, \alpha_{2,1}^\text{bank}, \ldots, \alpha_{2,i}^\text{bank}, \ldots, \alpha_{2,N}^\text{bank}, \beta_{1,1}^\text{bank}, \ldots, \beta_{1,m}^\text{bank}, \ldots, \beta_{1,M}^\text{bank}, \beta_{2,1}^\text{time}, \ldots, \beta_{2,p}^\text{time}, \ldots, \beta_{2,P}^\text{time} \end{bmatrix}',$$

$$L := [l_{1,1}, \ldots, l_{N,1}, \ldots, l_{1,t}, \ldots, l_{1,T}, l_{2,1}, \ldots, l_{N,T}]', \quad z := [z_{1,1}, \ldots, z_{N,1}, \ldots, z_{1,t}, \ldots, z_{1,T}, \ldots, z_{N,T}]'$$

$$\nu := [\nu_{1,1}, \ldots, \nu_{1,1}, \ldots, \nu_{1,t}, \ldots, \nu_{1,T}, \ldots, \nu_{N,T}]', \quad \mu := I_T \otimes [\bar{\mu}_1, \ldots, \bar{\mu}_N]',$$

$$G := \text{diag} (\mathbf{G}_t)_t^T = \begin{bmatrix} \mathbf{G}_1 & 0 & \ldots & 0 \\ 0 & \mathbf{G}_2 & \ldots & 0 \\ \ldots & \ldots & \ldots & 0 \\ 0 & \ldots & 0 & \mathbf{G}_T \end{bmatrix}, \quad \mathbf{X} := [\mathbf{D}, \mathbf{F}, \mathbf{X}^\text{bank}, \mathbf{X}^\text{time}],$$

41In this case, l^* should replace z^* in equation (13).

42This is similar to the spatial formulation in Lee and Yu (2010).
where \(D := I_T \otimes 1_N, F := 1_T \otimes I_N, \) and

\[
X_{\text{time}} = \begin{bmatrix} x_1 \ldots x_1^p \ldots x_1^p \\ \vdots \end{bmatrix} \otimes 1_N, \quad X_{\text{bank}} = \begin{bmatrix} x_{1,1} \ldots x_{1,1}^m \ldots x_{1,1}^m \\ \vdots \end{bmatrix},
\]

we can then rewrite the empirical model as

\[
L = XB + z, \quad z = \mu + \phi Gz + \nu, \quad \nu_{i,t} \sim iid \left(0, \sigma_i^2\right).
\]

This, in turn, implies that

\[
\nu(B, \mu, \phi) = (I_{N \times T} - \phi G)(L - XB) - \mu.
\]

Finally, using the Gaussian distribution to model the exogenous error terms \(\nu \) yields the log likelihood

\[
\ln L \left(B, \phi, \mu, \{\sigma_i^2\}_{i=1}^N \right) \equiv -\frac{T N}{2} \ln \left(2\pi\right) - \frac{T}{2} \sum_{i=1}^N \ln \sigma_i^2 - \sum_{i=1}^N \frac{1}{2\sigma_i^2} \sum_{t=1}^T \nu_{i,t} (B, \mu, \phi)^2,
\]

and the above can be estimated using standard optimization methods.

In the above formulation, the identification of \(\phi \) is ensured by the usual conditions on \(G \) (see, e.g. Bramoullé, Djebbari, and Fortin (2009)). Instead, the separate identification of the bank fixed effects, \(\alpha_{\text{bank}} := \left[\alpha_{1,\text{bank}}, \ldots, \alpha_{N,\text{bank}}\right]' \), and the network-bank fixed effects, \(\bar{\mu} := [\bar{\mu}_1, \ldots, \bar{\mu}_N]' \), deserve some further remarks. Isolating the role of these fixed effects, equation (35) can be rewritten as

\[
\nu(B, \mu, \phi) = (I_{N \times T} - \phi G) \left(L - \bar{X}\tilde{B} - F\alpha_{\text{bank}} \right) - \bar{\mu}
\]

\[
= (I_{N \times T} - \phi G) \left(L - \bar{X}\tilde{B} \right) - 1_T \otimes (\bar{\mu} + \alpha_{\text{bank}}) + \phi GF\alpha_{\text{bank}}
\]

where \(\bar{X} := [D, X_{\text{bank}}, X_{\text{time}}] \) and \(\tilde{B} \) is simply the vector \(B \) without the \(\alpha_{\text{bank}} \) elements. Several observations are in order. First, the above implies that if \(\phi = 0 \), then \(\bar{\mu} \) and \(\alpha_{\text{bank}} \) cannot be separately identified (nevertheless the parameters \(\tilde{B} \) are still identified). Second, if there is no time variation in the network structure, i.e. if \(G_t = \bar{G} \forall t, \bar{\mu} \) and \(\alpha_{\text{bank}} \) cannot be separately identified even if \(\phi \neq 0 \). Third, if a bank never lends to any other bank in the sample, its fixed effects \(\bar{\mu}_i \) and \(\alpha_{i,\text{bank}} \) cannot be separately identified. Fourth, if \(G_t \) is a
right stochastic matrix, separate identification of $\bar{\mu}$ and α_{bank} can be achieved only up to a parameter normalization, since for any scalar κ and vector $\bar{\kappa} := 1_N \otimes \kappa$, we have

$$\nu(B, \mu, \phi) = (I_{N \times T} - \phi G) \left(L - \tilde{X} \tilde{B} \right) - 1_T \otimes (\bar{\mu} + \alpha_{\text{bank}} + \phi \bar{\kappa}) + \phi G F (\alpha_{\text{bank}} + \bar{\kappa})$$

The above also makes clear that a handy normalisation is to set one of the network-bank fixed effect (say the i-th one) to zero since it would imply the restriction $\{\alpha_{\text{bank}} + \phi \bar{\kappa}\}_i = \{\alpha_{\text{bank}} + \bar{\kappa}\}_i$ that, for any $\phi \neq 0$ and 1, can only be satisfied with $\kappa = 0$. Under this normalisation, the remaining estimated bank-network fixed effects are then in deviation from the normalised one. Fifth, note that the lack of separate identification for $\bar{\mu}$ and α_{bank} is due to the fact that when G_t is a right stochastic matrix, and if all banks borrow from at least one bank at each point in time (i.e. G_t has no rows of zeros), then $G_t 1_N = 1_N$ and $G 1_{N \times T} = 1_{N \times T}$. Fortunately, in our dataset, the condition $G_t 1_N = 1_N$ does not hold every day in the sample because there are periods in which certain banks do not borrow (in this case, the corresponding rows of G_t contain all zeros and sum to zero, instead of one). In our sample, except for bank 7 and bank 11, all the other banks borrow every period from at least one of their counterparties. There are fourteen days when bank 7 does not borrow at all, and 145 days in which bank 11 does not borrow at all. Moreover, the no borrowing days of bank 7 and bank 11 do not overlap, so we have a total of 159 days in which either the sum of the 7th row of G_t or the sum of the 11th row of G_t is equal to zero, not one (13.5% of the days).

A.3.2 Confidence bands for the network impulse response functions

The ϕ estimator outlined in the previous section has an asymptotic Gaussian distribution with variance s^2_ϕ (that can be readily estimated from the QMLE covariance matrix based, as usual, on the Hessian and gradient of the log likelihood in equation (36)). That is, $\sqrt{T} \left(\hat{\phi} - \phi_0 \right) \overset{d}{\rightarrow} N (0, s^2_\phi)$, where ϕ_0 denotes the true value of ϕ. Writing

$$a_1 (\phi) := \frac{\partial 1' \left\{ (I - \phi G)^{-1} \right\}_i}{\partial \phi}, \quad a_2 (\phi) = \frac{\partial 1' \left\{ (I - \phi G)^{-1} \phi G \right\}_i}{\partial \phi}$$

we have from Lemma 2.5 of Hayashi (2000) that

$$\sqrt{T} \left[\text{NIRF}_i (\hat{\phi}, 1) - \text{NIRF}_i (\phi_0, 1) \right] \overset{d}{\rightarrow} N (0, a_1 (\phi_0)^2 s^2_\phi),$$

$$\sqrt{T} \left[\text{NIRF}^e_i (\hat{\phi}, 1) - \text{NIRF}^e_i (\phi_0, 1) \right] \overset{d}{\rightarrow} N (0, a_2 (\phi_0)^2 s^2_\phi).$$
Therefore, since \(a_j(\hat{\phi}) \xrightarrow{p} a_j(\phi_0), j = 1, 2 \), by the continuous mapping theorem, and by Slutsky’s theorem, \(a_j(\hat{\phi}) \xrightarrow{p} a_j(\phi_0)^2 \), where \(\hat{s}_\phi^2 \) is a consistent variance estimator, we can construct confidence bands for the network impulse response functions using the sample estimates of \(\hat{\phi} \) and \(\hat{s}_\phi^2 \).

A.3.3 Details on variable construction

Macro control variables

- **\(rK_{t-1} \):** lagged right kurtosis of the intraday time of aggregate payment outflow:

 \[
 rK_t = \frac{\sum_{\tau > m_t} (\tau - m_t)^4}{\sum_{\tau = 1}^{88} (\tau - m_t)^4}
 \]

 where

 \[
 m_t = \frac{1}{88} \sum_{\tau = 1}^{88} \tau \left(\frac{P^{OUT}_{t,\tau}}{\sum_{\tau = 1}^{88} P^{OUT}_{t,\tau}} \right), \quad \sigma_t^2 = \frac{1}{88 - 1} \sum_{\tau = 1}^{88} (\tau - m_t)^2 \left(\frac{P^{OUT}_{t,\tau}}{\sum_{\tau = 1}^{88} P^{OUT}_{t,\tau}} \right)
 \]

 and \(P^{OUT}_{t,\tau} \) is the aggregate payment outflow at time interval \(\tau \). Note that transactions are recorded for 88 10-minute time intervals within each day (from 5:00 to 19:30). The variable \(m_t \) is the average of payment time weighted by the payment outflow.

- **\(\ln \text{VolPay}_{t-1} \):** intraday volatility of aggregate liquidity available (lagged by one day, in logarithms). “Liquidity available” is defined below at bank level.

- **\(\text{TOR}_{t-1} \):** lagged turnover rate in the payment system. To define the turnover rate, we need first to define the Cumulative Net (Debit) Position (CNP):

 \[
 \text{CNP}(T; i, s) = \sum_{t=1}^{T} (P^{OUT}_{i,s,t} - P^{IN}_{i,s,t}),
 \]

 where \(P^{OUT}_{i,s,t} \) is bank \(i \)’s total payment outflow at time \(t \) in day \(s \). \(P^{IN}_{i,s,t} \) is the payment inflow. The turnover rate (in day \(s \)) is defined as

 \[
 \text{TOR}_s = \frac{\sum_{i=1}^{N} \sum_{t=1}^{88} P^{OUT}_{i,s,t}}{\sum_{i=1}^{N} \max\{\max_T[\text{CNP}(T; i, s)], 0\}}
 \]

 The numerator is the total payment made in the system at day \(s \). The denominator sums the maximum cumulative net debt position of each bank at day \(s \). Note that
in the denominator, if the cumulative net position of a certain bank is always below zero (that is, this bank’s cumulative inflow alway exceeds its cumulative outflow), this bank actually absorbs liquidity from the system. If there are banks absorbing liquidity from the system, there must be banks injecting liquidity into the system. When we calculate the turnover rate (the ratio between the total amount circulating and the base), we should only consider one of the two. That’s why we take the first (outside) maximum operator. The reason for the inside operator goes as follows: any increase in the cumulative net debit position (wherever positive) incurs an injection of liquidity into the system, so the maximum of the cumulative net position is the total injection from the outside to the payment system. And, the sum over different banks gives the total injection through all the membership banks. A higher turnover rate means a more frequent reuse of liquidity injected from outside into the payment system.

- **LIBOR**: daily LIBOR rate, lagged by one day.
- **Interbank Rate Premium**: average interbank rate minus LIBOR, lagged by one day.

Bank-level control variables

- Intraday liquidity available (LA) is the amount of liquidity to meet payment requirements and is measured as the sum of reserves (SDAB, Start of Day Account Balance) plus the value of intraday repo available with the BoE (PC, Posting of Collateral). As time passes, the liquidity available in CHAPS is calculated by subtracting the money moved to CREST from the liquidity available in the previous time interval. In this way, we can trace for bank i the liquidity available at any time t in day s:

$$LA(t, i, s) = SDAB_{i,s} + PC_{i,s} - \sum_{\tau=1}^{t} CREST_{i,s,\tau}$$

- Liquidity holdings ($l_{i,t}$, i.e., the dependent variable): the logarithm of reserve balances plus collateral posted to the BoE at the beginning at the day.
- **Interbank Rate**: interbank borrowing rate, lagged by one day.
- $\ln LevPay_{i,t-1}$: total intraday payment level (lagged by one day, in logarithms).
- $rK_{i,t-1}^{in}$: right kurtosis of incoming payment time, lagged by one day.
- $rK_{i,t-1}^{out}$: right kurtosis of outgoing payment time, lagged by one day.
- $\ln VolPay_{i,t-1}$: log intraday volatility of liquidity available, lagged by one day.
• \(\ln LU_{i,t-1} \): liquidity used is defined as follows

\[
LU(i, s) = \max\{\max_T\{CNP(T; i, s)\}, 0\}.
\]

The first (inside) maximum operator picks the highest level of cumulative net debit position (CNP) within a day. About the second (outside) maximum operator, if the highest level is negative, the bank \(i \) is always a liquidity contributor on day \(s \), so \(LU \) is equal to zero. When used in estimation, it is lagged by one day and in logarithms.

• \(\frac{\text{repo Liability}}{\text{Assets}} \): repo liability to total asset ratio (lagged, monthly).

• \(\text{Total Assets (log)} \): total asset (lagged, monthly, in logarithms).

• \(\frac{\Delta \text{Deposits}}{\text{Assets}} \): the change of retail deposits to total assets ratio \(\times 100 \) (lagged, monthly).

• \(\text{Total Lending and Borrowing (log)} \): total lending and borrowing in the interbank market (lagged by one day, in logarithms).

• \(\text{CDS Spread} \): an index (log cumulative change) of 5-year senior unsecured CDS spread.

• \(\text{Stock Return} \): gross stock return including dividends (lagged by one day).

A.4 Additional Figures and Tables

Figure 9: Daily gross interbank borrowing (rolling monthly average).
Figure 10: Velocity of liquidity in the payment system.

Figure 11: Intraday volatility of aggregate outflows.
Figure 12: Turnover rate in the payment system.

Figure 13: Right kurtosis of aggregate payment times.
Figure 14: Cross-sectional dispersion of interbank rates.
Table A1: Spatial Error Model Estimation Results

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\phi})</td>
<td>0.8137*</td>
<td>0.3031*</td>
<td>-0.1794*</td>
</tr>
<tr>
<td></td>
<td>(21.47)</td>
<td>(1.90)</td>
<td>(-4.96)</td>
</tr>
<tr>
<td>(1/(1-\hat{\phi}))</td>
<td>5.3677*</td>
<td>1.4349*</td>
<td>0.8479*</td>
</tr>
<tr>
<td></td>
<td>(4.92)</td>
<td>(4.37)</td>
<td>(32.61)</td>
</tr>
</tbody>
</table>

Macro Control Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(rK_{t-1})</td>
<td>0.1845</td>
<td>0.0084</td>
<td>-0.0032*</td>
</tr>
<tr>
<td></td>
<td>(1.30)</td>
<td>(0.55)</td>
<td>(-3.88)</td>
</tr>
<tr>
<td>(\ln VolPay_{t-1})</td>
<td>-0.4451</td>
<td>0.0308</td>
<td>0.0291</td>
</tr>
<tr>
<td></td>
<td>(-1.00)</td>
<td>(1.17)</td>
<td>(1.72)</td>
</tr>
<tr>
<td>(TOR_{t-1})</td>
<td>0.0166</td>
<td>0.0007</td>
<td>0.0018</td>
</tr>
<tr>
<td></td>
<td>(1.80)</td>
<td>(0.69)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>(\text{LIBOR})</td>
<td>0.2378</td>
<td>0.0928</td>
<td>0.5800*</td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td>(1.28)</td>
<td>(2.52)</td>
</tr>
<tr>
<td>Interbank Rate Premium</td>
<td>3.8845</td>
<td>-0.0405</td>
<td>0.6973*</td>
</tr>
<tr>
<td></td>
<td>(1.61)</td>
<td>(-0.33)</td>
<td>(3.00)</td>
</tr>
</tbody>
</table>

Bank Characteristics/Micro Control Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interbank Rate</td>
<td>-0.2081</td>
<td>-0.0473</td>
<td>-0.0880</td>
</tr>
<tr>
<td></td>
<td>(-0.98)</td>
<td>(-1.03)</td>
<td>(-1.92)</td>
</tr>
<tr>
<td>(\ln LevPay_{i,t-1})</td>
<td>-0.0235</td>
<td>0.0802*</td>
<td>0.0808*</td>
</tr>
<tr>
<td></td>
<td>(-0.62)</td>
<td>(3.29)</td>
<td>(5.09)</td>
</tr>
<tr>
<td>(rK_{i,t-1}^{in})</td>
<td>0.0010</td>
<td>-0.0086</td>
<td>0.0045</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(-0.63)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>(rK_{i,t-1}^{out})</td>
<td>0.0090</td>
<td>0.0320*</td>
<td>-0.0061</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(3.62)</td>
<td>(-1.32)</td>
</tr>
<tr>
<td>(\ln VolPay_{i,t-1})</td>
<td>0.0129*</td>
<td>0.0039</td>
<td>0.0196*</td>
</tr>
<tr>
<td></td>
<td>(4.59)</td>
<td>(1.92)</td>
<td>(5.96)</td>
</tr>
<tr>
<td>(\ln LU_{i,t-1})</td>
<td>-0.0038*</td>
<td>-0.0039*</td>
<td>-0.0027*</td>
</tr>
<tr>
<td></td>
<td>(-2.86)</td>
<td>(-3.41)</td>
<td>(-3.79)</td>
</tr>
<tr>
<td>Repo Liability Assets</td>
<td>-5.5625*</td>
<td>0.0282</td>
<td>-0.3057</td>
</tr>
<tr>
<td></td>
<td>(-3.61)</td>
<td>(0.43)</td>
<td>(-1.45)</td>
</tr>
<tr>
<td>Total Assets (log)</td>
<td>1.2590*</td>
<td>0.6328*</td>
<td>1.0170*</td>
</tr>
<tr>
<td></td>
<td>(5.39)</td>
<td>(10.31)</td>
<td>(18.92)</td>
</tr>
<tr>
<td>(\Delta Deposits)</td>
<td>-0.0014</td>
<td>0.0149*</td>
<td>0.0481*</td>
</tr>
<tr>
<td>Assets</td>
<td>(-0.20)</td>
<td>(5.15)</td>
<td>(11.76)</td>
</tr>
<tr>
<td>Total Lending and Borrowing (log)</td>
<td>-0.1882*</td>
<td>0.0612*</td>
<td>-0.0025</td>
</tr>
<tr>
<td></td>
<td>(-5.57)</td>
<td>(2.95)</td>
<td>(-1.27)</td>
</tr>
<tr>
<td>CDS Spread</td>
<td>0.0051</td>
<td>-0.1212*</td>
<td>-0.0383*</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(-6.61)</td>
<td>(-4.00)</td>
</tr>
<tr>
<td>Stock Return</td>
<td>-0.5667</td>
<td>0.1927</td>
<td>0.2574</td>
</tr>
<tr>
<td></td>
<td>(-0.88)</td>
<td>(1.49)</td>
<td>(1.88)</td>
</tr>
</tbody>
</table>

\(R^2 \) | 66.01% | 92.09% | 91.53% |

Estimation results for equations (23) and (24). Periods 1, 2 and 3, correspond, respectively, to before the Northern Rock/BNP Paribas Fund Crisis, after it but before the first BoE announcement of Asset Purchase Programme, and the QE period. The t-statistics are reported in parentheses under the estimated coefficients, and * denotes statistically significant estimates at a 10% or higher confidence level. Standard errors are QMLE-robust ones, and for the average network multiplier, \(1/(1-\hat{\phi}) \), the delta method is employed.
Table A2: ratio of network to idiosyncratic volatility.

<table>
<thead>
<tr>
<th>Bank</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 1</td>
<td>2.54</td>
<td>1.05</td>
<td>0.98</td>
</tr>
<tr>
<td>Bank 2</td>
<td>2.10</td>
<td>1.04</td>
<td>1.02</td>
</tr>
<tr>
<td>Bank 3</td>
<td>1.83</td>
<td>1.06</td>
<td>0.87</td>
</tr>
<tr>
<td>Bank 4</td>
<td>2.62</td>
<td>1.06</td>
<td>1.08</td>
</tr>
<tr>
<td>Bank 5</td>
<td>2.41</td>
<td>1.10</td>
<td>1.02</td>
</tr>
<tr>
<td>Bank 6</td>
<td>1.65</td>
<td>1.09</td>
<td>1.03</td>
</tr>
<tr>
<td>Bank 7</td>
<td>1.47</td>
<td>0.97</td>
<td>1.13</td>
</tr>
<tr>
<td>Bank 8</td>
<td>1.69</td>
<td>1.09</td>
<td>1.03</td>
</tr>
<tr>
<td>Bank 9</td>
<td>2.12</td>
<td>1.09</td>
<td>1.03</td>
</tr>
<tr>
<td>Bank 10</td>
<td>1.62</td>
<td>0.99</td>
<td>1.09</td>
</tr>
<tr>
<td>Bank 11</td>
<td>2.04</td>
<td>1.14</td>
<td>1.31</td>
</tr>
<tr>
<td>Mean</td>
<td>2.01</td>
<td>1.06</td>
<td>1.05</td>
</tr>
</tbody>
</table>

The table reports $\sqrt{\frac{\text{Var}(z_{i,t})}{\text{Var}(v_{i,t})}}$ for each bank and each period considered.