Information Asymmetries, Volatility, Liquidity, and the Tobin Tax

Albina Danilova^{\log} Christian Julliard^{\log}

[¢]London School of Economics

Adam Smith Asset Pricing workshop, London, March 21st 2014

Ø≫

Outline

The Bigger Picture

- Introduction
- (Other) Related Literature

2 The Model

- Set Up
- Equilibrium
- Time Change(s) and Lower Frequencies

3 Conclusion

Appendix

In market data:

- Volatility is time varying and clusters at high/medium frequency ⇒ ARCH/GARCH/SV models
- Highest degree of clustering at high frequency.
- Market vol \neq fundamental vol (e.g. Campbell-Kyle (1993)).
- A relation between volatility and number/volume of trade (e.g. Gallant-Rossi-Tauchen (1992), Jones-Kaul-Lipson (1994)) & frequency matters (e.g.

Engle-Sun (2007))

- ⇒ Gaussian log returns under a number of trades (stochastic) time change (Ané-Geman (2000))
 - A link between information asymmetries, volatility and <u>liquidity</u>, and return dynamics (e.g. Kelly-Ljungqvist (2013), Easly-Hvidkjaer-O'Hara (2002)).

Our paper: a (non trivial) theory that can explain all the above facts and, more broadly, the equilibrium determinants of volatility (at different frequencies), and liquidity (tightness, depth, resilience).

Introduction (Other) Related Literature

(Other) Related Literature

• Sequential trade models e.g. Glosten-Milgrom (1985), Easley-O'Hara

(1987), Glosten (1989), Brunnermeier-Pedersen (2009) etc.

- But: a) complete order book; b) dynamic info; c) weakly exogenous arrival process; d) arrival intensity to infinity \rightarrow approximate continuous market \rightarrow make arrival process irrelevant;
 - Time Deformation and Volatility e.g. Clark (1973), Ghysels-Gouriroux-Jasiak (1995), Yor-Madan-Geman (2002), Andersen-Bollerslev-Dobrev (2007), Kalogeropoulos-Roberts-Dellaportas (2007), etc.
 - ⇒ a distributional characterisation (via stochastic time change) of equilibria on different time scales (trade, calendar, business).
 - M.M. Invariance Kyle-Obizhaeva (2011, 2013) \rightarrow same M.M. characteristics for different stocks in "business time."
- But: in our case it is an equilibrium property.
 - Information aggregation in markets e.g. Grossman-Stiglitz (1980), Hellwig

(1980), Admati (1985), Kyle (1985), Wang (1993), Easley-O'Hara (2004), Vayanos-Wang (2012) etc.

Market Structure

Assets: a riskless bond (r = 0) and a stock with final value e^{D_T}

 $dD_t = \mu dt + \sigma dW_t^d$, $D_0 = const$, W_t^d is B.M. w.r.t. to \mathcal{F}_t .

Utilities: risk neutral traders and (competitive) market maker (M).

- A1: Traders arrive to the market and meet M according to a stochastic counting process, N_t , with stopping times $\theta_i = \inf \{t \ge 0 : N_t = i\}$ and $\sigma \{N_{\theta_i+t} - N_{\theta_i}, t \ge 0\} \perp \mathcal{F}_{\theta_i} \forall i, N_T < \infty \text{ a.s.}$
 - When the trader arrives at time θ_i , she observes bid, $B_{\theta_i}(v^-)$, and ask, $A_{\theta_i}(v^+)$, prices per-share posted by M, and decides if and how much to trade ($v \in \mathbb{R}$).
- Friction: proportional transaction cost δ (like Tobin tax), aka M receives $v^+ A_t (v^+) (1 \delta)$ (spends $v^- B_t (v^-) (1 + \delta)$)

if v = 0 M does not observe the arrival. Notation: $L_t = \text{cumulated } \# \text{ of trades, } V_t = \text{cumulated volume, } P_t = \frac{5/23}{\text{price.}}$

Information Structure

- Common knowledge: preferences, parameters, and $\mathcal{G}_t^M := \mathcal{F}_t^P \lor \mathcal{F}_t^V$
- I type: *i*-th (more) informed trader, in share 1 q, knows $\mathcal{G}_t^{l,i} = \mathcal{G}_t^M \vee \mathcal{F}_t^D \vee \sigma \left\{ \theta_i^l \wedge s, s \leq t \right\}$
- U type: *i*-th uniformed/liquidity/noisy, in share q, with $\delta \in (0, q)$, trader knows $\mathcal{G}_t^{U,i} = \mathcal{G}_t^M \lor \sigma \left\{ S_{\theta_i^U} \right\} \lor \sigma \left\{ \theta_i^U \land s, s \leq t \right\}$
 - A2: \mathcal{F}_T^W , \mathcal{F}_T^N and S_{θ_i} are conditionally independent given $\mathcal{H}_{i-1} \forall i$, where $\mathcal{H}_i = \mathcal{G}_{\theta_i}$, $\mathcal{G}_t = \mathcal{F}_t^V \lor \mathcal{F}_t^N$.
 - A3: I_i is independent of $\mathcal{F}_T^{N,S,D} \vee \sigma (U_k)_{k \neq i}$ A4: $\mathbb{P}(v_i \in C | \mathcal{H}_{i-1}, I_i, \theta_i) = \mathbb{P}(v_i \in C | \mathcal{H}_{i-1}, U_i, \theta_i)$ for $C \in \mathcal{B}(\mathbb{R})$

Traders' optimisation problem

Notation: z_i (shadow price) is the expected value of holding one share of the asset for the agent that arrives at time θ_i

$$z_i = \mathbf{1}_{\{I_i\}} z_i^I + \mathbf{1}_{\{U_i\}} z_i^U.$$

- The expected utility from investing in the risk free asset the amount needed to buy v⁺ shares at time θ^k_i is v⁺A_{θ^k} (v⁺).
- \Rightarrow the **expected utility** can be expressed as:

$$\max_{v^{+},v^{-}} v^{+} \left[z_{i}^{k} - A_{\theta_{i}^{k}} \left(v^{+} \right) \right] + v^{-} \left[B_{\theta_{i}^{k}} \left(v^{-} \right) - z_{i}^{k} \right].$$
(1)

Set Up Equilibrium Time change(s) and Lower Frequencies

Trader's Demand

Lemma (Trader's optimal demand)

Suppose $A_t(v^+)$, $B_t(v^-)$ satisfy regularity conditions C1-C6. Consider a trader who arrives on the market at time θ_i and observes the posted prices $A_{\theta_i}(v^+)$ and $B_{\theta_i}(v^-)$. Then

• if $z_i > A_{\theta_i}(0)$, $v^* > 0$ is the unique solution of

$$z_{i} = A_{\theta_{i}}(v) + vA_{\theta_{i}}'(v)$$
⁽²⁾

• if $z_i < B_{\theta_i}(0)$, $v^* < 0$ is the unique solution of

$$z_i = B_{\theta_i}(-v) - v B'_{\theta_i}(-v)$$
(3)

• if $B_{\theta_i}(0) \leq z_i \leq A_{\theta_i}(0)$, then the optimal order size is $v^* = 0$.

where z_i is the stock's valuation of the trader.

Market Maker's optimisation problem

• Need a (non-falsifiable) belief of M about N_t . We assume that $N_t = L_t \Rightarrow M$ doesn't update her beliefs if no trade occurs.

Notation: M's utility from owning one share of the stock until T is

$$Z_t^M := \mathbb{E}\left[\left.e^{D_T}\right|\mathcal{G}_t^M, N_t = L_t
ight].$$

• M sets time t bid and ask prices as a functions of the order size v:

$$A_{t} (\mathbf{v}^{+}) (1 - \delta) = \underbrace{\sum_{i=1}^{\infty} \mathbf{1}_{\{i=1+L_{t-}\}} \mathbb{E} \left[e^{D_{T}} | \tilde{\mathcal{H}}_{i}^{M}, N_{\tau_{i}} = L_{\tau_{i}} \right] \Big|_{\tilde{\mathbf{v}}_{i} = \mathbf{v}^{+}, \tau_{i} = t}}_{\mathsf{M}' \text{s valuation}},$$

$$B_{t} (\mathbf{v}^{-}) (1 + \delta) = \sum_{i=1}^{\infty} \mathbf{1}_{\{i=1+L_{t-}\}} \mathbb{E} \left[e^{D_{T}} | \tilde{\mathcal{H}}_{i}^{M}, N_{\tau_{i}} = L_{\tau_{i}} \right] \Big|_{\tilde{\mathbf{v}}_{i} = -\mathbf{v}^{-}, \tau_{i} = t}.$$
Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity (5) (5)

Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity \mathcal{I}

Set Up Equilibrium Time change(s) and Lower Frequencies

Equilibrium: Price Setting

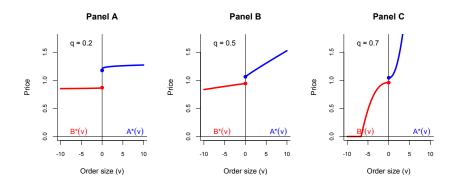
Proposition (Optimal ask and bid functions)

Suppose assumptions A1-A5 are satisfied. Then there exist optimal ask, $A_t(v^+)$, and bid, $B_t(v^-)$, prices that satisfy conditions C1-C5, and the market maker's optimality conditions. Moreover, optimal $A_t(v)$ and $B_t(v)$ have the following forms:

$$\begin{aligned}
A_t^*(\mathbf{v}) &= \frac{q}{q-\delta} \left(1 + \alpha v^{\frac{q-\delta}{1-q}} \right) \underbrace{\sum_{i=0}^{\infty} \mathbf{1}_{\{i=L_{t-}+1\}} Z_{\tau_{i-1}}^M}_{M's \text{ valuation}} \\
B_t^*(\mathbf{v}) &= \begin{cases} \frac{q}{q+\delta} \left(1 - \beta v^{\frac{q+\delta}{1-q}} \right) \underbrace{\sum_{i=0}^{\infty} \mathbf{1}_{\{i=L_{t-}+1\}} Z_{\tau_{i-1}}^M}_{0} & \text{if } \beta v^{\frac{q+\delta}{1-q}} \le 1 \\ 0 & \text{otherwise} \end{cases} (6)
\end{aligned}$$

where α and β are strictly positive arbitrary constants, and Z^M denotes the market maker valuation.

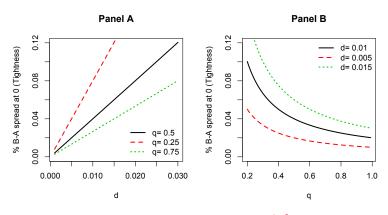
Equilibrium Bid and Ask functions



- order book interpretation (M analogy).
- flexible parametrisation and empirically promising.

Set Up Equilibrium Time change(s) and Lower Frequencies

Liquidity: Tightness



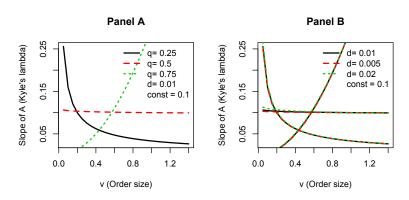
% Bid-Ask spread at $0 = \frac{2q\delta}{q^2 - \delta^2}$

B-A ↑ in adverse selection (1 – q) and trading cost (δ)
mutually reinforcing effects

Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity

Set Up Equilibrium Time change(s) and Lower Frequencies

Liquidity: Depth



Slope of the Ask schedule, normalised by M's valuation: $\frac{q}{1-q}\alpha(v^+)^{\frac{2q-\delta-1}{1-q}}$.

Note: Loeb (1983) and Keim and Madhavan (1996) find that the price impact per unit trade is smaller for large orders.

High Frequency Price Process

• Since trades happen either at ask or bid, we can characterise the price process for any volume process:

$$\log \frac{P_{t+s}}{P_t} = \sum_{i=L_t}^{L_{t+s}} \left\{ \log \left(1 + \xi_i \left| V_{\tau_i} - V_{\tau_{i-1}} \right|^{\gamma_i} \right) + \log c_{1,i} + \log c_{2,i-1} \right\}.$$
(8)
where $\xi_i, \gamma_i, c_{1,i}$ and $c_{2,i}$ are known functions of δ, q , and

whether trades are at ask or bid (the latter is a binomial r. v.).

- ⇒ consistent with non-lin model of Gallant, Rossi, and Tauchen (1992) (Tauchen-Pitts (1983), Epps-Epps (1976), Clark (1973), etc.) if $|\xi_i| |V_{\tau_i} - V_{\tau_{i-1}}|^{\gamma_i}$ is
 - $\frac{\rm Small}{\rm Mantegna} \approx power \ law \ relationship \ (e.g. \ Farmer \ and \ Lillo \ (2004) \ and \ Farmer, \ Lillo, \ and \ Mantegna \ (2003))$

Large \approx log-log relationship (e.g. Potters-Bouchaud (2003)).

Set Up Equilibrium Time change(s) and Lower Frequencies

Equilibrium: Volume

Theorem

Suppose Assumptions A1-A5 are satisfied. For strictly positive constants α and β , there is a unique market equilibrium, $A_t^*(v)$, $B_t^*(v)$, v_i^* , where $A_t^*(v)$ and $\overline{B_t^*(v)}$ are given, respectively, by equations (6) and (7), and

$$\mathbf{v}_{i}^{*} = \begin{cases} \left[\frac{1-q}{\alpha(1-\delta)} \left(\frac{q-\delta}{q} \frac{z_{i}}{z_{i}^{M}} - 1 \right) \right]^{\frac{1-q}{q-\delta}} & \text{if } \frac{q}{q-\delta} z_{i}^{M} < z_{i}, \\ - \left[\frac{1-q}{\beta(1+\delta)} \left(1 - \frac{q+\delta}{q} \frac{z_{i}}{z_{i}^{M}} \right) \right]^{\frac{1-q}{q+\delta}} & \text{if } z_{i} < \frac{q}{q+\delta} z_{i}^{M}, \\ 0 & \text{if } \frac{q}{q+\delta} z_{i}^{M} \leq z_{i} \leq \frac{q}{q-\delta} z_{i}^{M} \end{cases}$$

where $z_i^M := Z_{\theta_i}^M$

From fundamentals to price process

Lemma (price process as map of fundamentals)

Suppose that Assumptions A1-A5 are satisfied and the market is at the equilibrium. Then the trading times are defined recursively $(\tau_0 = 0)$

$$\tau_{i} = \inf \left\{ \theta_{j} > \tau_{i-1} : \log z_{j} - \log \tilde{p}_{i-1} \notin \left(b\left(c_{2,i-1}\right), a\left(c_{2,i-1}\right) \right) \right\},$$

where
$$a(x) = \log\left(\frac{qx}{q-\delta}\right)$$
 and $b(x) = \log\left(\frac{qx}{q+\delta}\right)$, and prices are

$$\tilde{p}_{0} = e^{D_{0} + \left(\mu + \frac{1}{2}\sigma^{2}\right)T}, \ \tilde{p}_{i} = \frac{1}{c_{2,i}} \left[\left(1 - q\right) z_{i} + q \tilde{p}_{i-1} c_{2,i-1} \right],$$
(9)

$$c_{2,i} = \begin{cases} 1 - \delta & \text{if } \log \tilde{z}_i - \log \tilde{p}_{i-1} > a(c_{2,i-1}) \text{ and } i > 0\\ 1 + \delta & \text{if } \log \tilde{z}_i - \log \tilde{p}_{i-1} < b(c_{2,i-1}) \text{ and } i > 0\\ 1, & \text{if } i = 0 \end{cases}$$

Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity

The process *Z* (Shadow Price)

We will work with the value of the log profit of the last agent that arrived before t, D_t^{tr} , given by

$$d_i^{tr} = \begin{cases} \log z_i - \left(\mu + \frac{\sigma^2}{2}\right) \left(T - \theta_i\right) & \forall i \ge 1\\ D_0 & i = 0 \end{cases}, \quad D_t^{tr} = \sum_{i=0}^{\infty} \mathbf{1}_{\{i=N_t\}} d_i^{tr}.$$

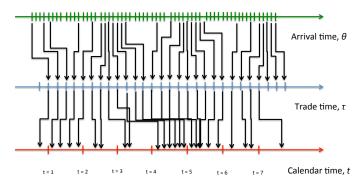
The distribution of the process D^{tr} is (Lemma 3):

$$\begin{split} \mathbb{P}\left[d_i^{tr} \leq x | \mathcal{H}_{i-1}, \theta_i\right] &= (1-q) \sum_{j=1}^{i-1} q^{i-1-j} \mathbb{P}\left[d_j^{tr} + \varepsilon_{i,j} \leq x | d_j^{tr}, \Delta_{i,j}\right] \\ &+ q^{i-1} \mathbb{P}\left[d_0^{tr} + \varepsilon_{i,0} \leq x | d_0^{tr}, \Delta_{i,0}\right] \end{split}$$

where $\Delta_{i,j} := \theta_i - \theta_j$, $\varepsilon_{i,j} := \mu \Delta_{i,j} + \sigma \sqrt{\Delta_{i,j}} \eta_{i,j}$, and $\eta_{i,j} \sim N(0,1)$ is independent of d_j^{tr} and $\Delta_{i,j}$ for all j < i.

Sequence of Markets in a Nutshell

Arrival intensity $\rightarrow \infty$ ("business time") \Rightarrow valuation of *i*-th arrival $(D^{tr}) \stackrel{\mathcal{L}}{\longrightarrow}$ to B.M. (Prop. 9) \Rightarrow Trade occurs when B.M. touches B-A bounds + The map from D^{tr} to P is continuous (Lem. 5) \Rightarrow Price $\stackrel{\mathcal{L}}{\longrightarrow}$ on trade time (Thm. 7) \Rightarrow Calendar time dist. = time change wrt trades per time (Prop. 9) \Leftrightarrow S.V. driven by # of trades



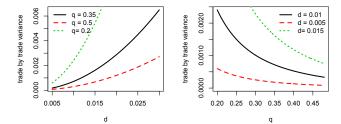
Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity

Trade-by-trade Volatility (Med. Frequency)

Corollary (Volatility of the Limiting Price Process)

The conditional variance on the trade time scale, for i > 1, is:

$$u'$$
ar $\left(rac{ ilde{p}_i}{ ilde{p}_{i-1}}|\mathcal{F}^{\mathcal{W}}_{ au_{i-1}}
ight)=rac{\delta^2(1-q^2)}{q^2-\delta^2}.$



in adverse selection and δ (cf. Hau (2006), Jones-Seguin (1997), Umlauf (1993)) \Rightarrow Tobin Tax reduces (increases) Vol. in calm (hectic) times. • mutually reinforcing efficient Sold) Information Asymmetries, Volatility, and Liquidity

Low/Ultra-Low Frequency Price Distribution

Proposition (Low/Ultra-Low Frequency Price Distribution)

$$\frac{\log \frac{P_t}{P_s} - \frac{\sigma^2}{2}(s-t)}{\sqrt{L_t^p - L_s^p}} \xrightarrow[t-s \to \infty]{} \mathcal{N}\left(0, \sigma^2 \mu_{\tau}\right), \tag{10}$$

where μ_{τ} is the expected time between trades. And at Ultra-low frequency

$$\frac{\log \frac{P_t}{P_s} - \frac{\sigma^2}{2}(s-t)}{\sqrt{t-s}} \xrightarrow[t-s\to\infty]{d} \mathcal{N}\left(0,\sigma^2\right).$$
(11)

Eq. (10) consistent with Jones, Kaul, and Lipson (1994), Ané and Geman (2000), Engle and Sun (2007) etc. Note: second result due to $L_t^p/t \xrightarrow{a.s} 1/\mu_{\tau}$

Set Up Equilibrium Time change(s) and Lower Frequencies

Expected time between trades (μ_{τ})

Panel A Panel B expected time between trades expected time between trades = 0.5 d = 0.01 0.08 q ≓ 0.75 d = 0.005 a<mark>-</mark> 0.25 0.08 d= 0.015 0.04 0.04 00.0 8.0 0.005 0.025 0.20 0.30 0.015 0.40 d q $\mu_{\tau} := \frac{2}{\sigma^2} \left[\log \frac{q-\delta}{a(1-\delta)} + \frac{(q+\delta)(1+\delta)}{2(q+\delta^2)} \log \frac{(1-\delta)(q+\delta)}{(1+\delta)(q-\delta)} \right]$

 \uparrow in adverse selection (1-q) and trade cost (δ)

• mutually reinforcing effects

Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity

Liquidity: <u>Resilience</u>

Note: on the trade time scale, the market maker valuation evolves as

$$ilde{z}_{i}^{M} = (1-q)\, ilde{z}_{i} + q ilde{z}_{i-1}^{M}.$$
 (12)

(i.e. an AR(1)) where \tilde{z}_i is the valuation of the *i*-th trader.

Hence: half-life (reciprocal of resilience) on the calendar time scale:

- w.r.t. δ : same properties as $\mu_{\tau} \Rightarrow \uparrow$ in δ (consistent with Umlauf (1993)): resilience \downarrow in δ (Tobin Tax)
- w.r.t. q: two opposing effects:
 - $\textcircled{1}{\mu_\tau}\downarrow\mathsf{in}\ q$
 - 2 trade-by-trade half-life \uparrow in q

overall: calendar time half-life \downarrow in *q*: resilience \downarrow in adverse selection

mutually reinforcing negative effects

Conclusion

A simple and tractable equilibrium framework that:

- can rationalise a very large set of empirical findings about financial market volatility and returns at different frequencies.
- identifies the equilibrium determinants of the 3 main liquidity dimensions, and can rationalise related empirical findings.
- delivers policy relevant (and empirically consistent) predictions about the Tobin Tax.
- Q can be structurally estimated to pin down asset specific measures of: asy. info., frictions to trade, liquidity, fundamental vol etc. ⇒ empirical follow up.
- provides a novel approach for the study of equilibrium dynamics (at multiple frequencies) for very different economic problems (e.g. sticky prices/wages/information, endogenous consumption optimisation etc.)

Appendix

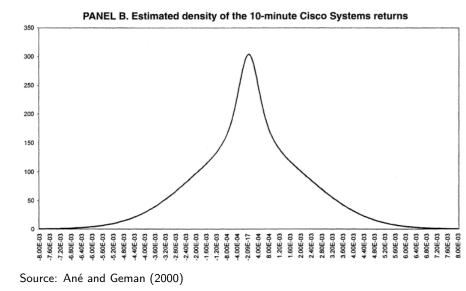
Additional Figures
 Ané and Geman (2000)
 Bid-Ask Curves

5 In a Nutshell

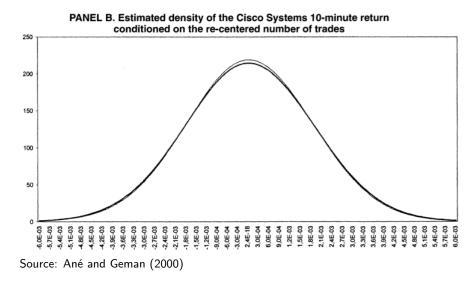
- Time Scales
- Regularity Conditions
- Equilibrium Definition

()≫

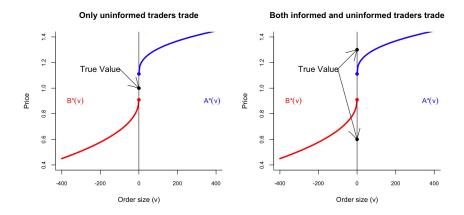
Ané and Geman (2000) Bid-Ask Curves



Ané and Geman (2000) Bid-Ask Curves



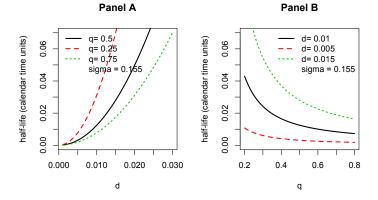
Ané and Geman (2000) Bid-Ask Curves



Ø≫

Ané and Geman (2000) Bid-Ask Curves

Resilience: calendar time half-life of M's update



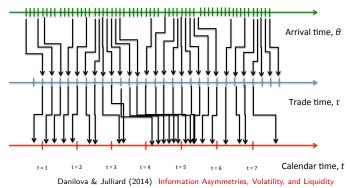
negative effects of trade and adverse selection costs on resilience mutually reinforce

Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity

Ø≫

In a Nutshell

- for (non trivial) heteroscedasticity, need the conditional and unconditional information reflected into prices to be different.
- \Rightarrow Asym. information + trade friction (δ) (for B-A spread) $lacksymbol{ ext{blue}}$
- High freq. : trade-by-trade price process adapted to info process: no SV in the latter ⇔ no SV in the former.
 - But : trade $t \neq$ calendar t (in equilibrium)



In a Nutshell cont'd

Med freq. := arrival rate $\rightarrow \infty$ i.e. "business time" \Rightarrow Number of trades becomes the relevant information (no residual info in volume).

- Trade-by-trade Price Vol \uparrow in δ and adverse selection
- \Rightarrow Tobin tax: \downarrow Vol in calm times, and \uparrow Vol in hectic ones.
 - price SV on calendar time driven by number of trades.
- Low freq. := number of trades per time is "large"
 - $\bullet\,$ Trades per time \downarrow in δ and adverse selection.
- tradeoff: calendar Vol \approx Trade-by-trade Vol \times Trades per time.
 - \Rightarrow Vol \uparrow in δ and adverse selection.

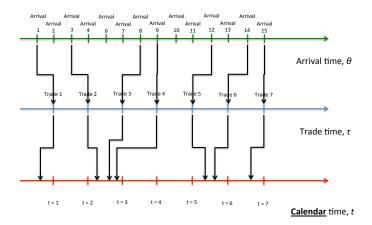
Tobin Tax :

- Vol \uparrow
- \downarrow "Tightness" & "Resilience" (small impact on depth)
- stronger effect in less liquid markets

()≫

Time Scales Regularity Conditions Equilibrium Definition

Review of Time Scales



Danilova & Julliard (2014) Information Asymmetries, Volatility, and Liquidity

Time Scales Regularity Conditions Equilibrium Definition

Regularity Conditions

- C1 For a fixed v, the processes $B_t(v^-)$, $A_t(v^+)$, are cáglád
- aka: M can change prices at any time but the time of trade.
 - C2 For a fixed t, $A_t(v^+) : \mathbb{R}_+ \to \overline{\mathbb{R}}_+ \setminus \{0\}$ is continuous, nondecreasing and $\lim_{v^+ \to \infty} A_t(v^+) = +\infty$.
 - C3 For a fixed t, $B_t(v^-) : \mathbb{R}_+ \to \overline{\mathbb{R}}_+$ is continuous, nonincreasing and $\lim_{v^- \to \infty} B_t(v^-) = 0.$
- aka: no: free disposal, infinite trade size, decreasing price per-share.
 - C4 For a fixed t, $A_t(0) \ge B_t(0)$ for all $\omega \in \Omega$.
 - C5 For any fixed t, $A_t(\cdot)$ is continously differentiable, and $B_t(\cdot)$ is continously differentiable on the set $\{v : B_t(v) > 0\}$
 - C6 For a fixed t, $vA_t(v)$ is strictly convex, and $vB_t(v)$ is strictly concave on the set $\{v : B_t(v) > 0\}$
- aka: C5-C6 ensures strict concavity of traders' problem.

Time Scales Regularity Conditions Equilibrium Definition

Equilibrium: Definition

Definition (Equilibrium)

A market equilibrium is a set of policy fuctions $A_t(v^+)$, $B_t(v^-)$ satisfying regularity conditions and $v_i(A_{\theta_i}(v^+), B_{\theta_i}(v^-))$ such that:

- A_t (v⁺) and B_t (v[−]) solve the market maker optimisation problem ∀v, t;
- $v_i(A_{\theta_i}(v^+), B_{\theta_i}(v^-))$ solves the trader's problem.

()≫