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Abstract

In large �rms, management resolves a trade o¤ between hiring more versus better workers. The

span of control or size is therefore intimately intertwined with the sorting pattern. This is important

for macro and cross-country comparisons of productivity, for applications in international trade, and

for labor markets. We analyze the worker assignment, �rm size, and wages. The sorting assignment

between workers and �rms is governed by an intutitive cross-margin-complementarity condition that

captures the complementarities between qualities (of workers and �rms), and quantities (of the work

force and �rm resources). A simple system of two di¤erential equations determines the equilibrium

�rm size and wages. More productive �rms are larger if their advantage to increase the span of

control (the �rm type-workforce size complementarity) outweighs the workers�relative advantage of

the use of �rm resources (the worker type-�rm resource complementarity).
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1 Introduction

Span of control �the number of workers under the control of management within a �rm �attributes an

essential role to the �rm in economics. In the canonical macroeconomic context, �rms predominantly

make quantity decisions. Endowed with di¤erent management, technologies, or capital, companies

choose the span of control accordingly, and this has important implications for the size of �rms, as �rst

pointed out by Lucas (1978). This labor factor intensity decision is both realistic and a convenient

modeling device. It has been invoked to explain di¤erences between countries (Restuccia-Rogerson,

2008), and to analyze technology adoption in evolving �rms (Mortensen-Lentz, 2005, Jovanovic, 1982).

Yet, �rms typically face a more complex tradeo¤. They simultaneously choose the quality of the

workers as well as the quantity. Heterogeneity in skills and jobs is without doubt an important compo-

nent of the labor market. The allocation process of di¤erently skilled workers to jobs has extensively

been analyzed, both with search frictions and without.1 In the standard frictionless matching model

(Becker, 1973), each �rm consists of exactly one job, just as in most of the matching models with search

frictions.2 This leads to sorting since the �rm�s choice is in e¤ect about which worker to hire � the

extensive margin �, rather than how many �the intensive margin.

The aim of this paper is to investigate sorting in an otherwise conventional macro environment where

the �rm simultaneously choose the quality as well as the quantity of the work force. This provides a

much richer role for the �rm and its span of control or size. For example, we shed light on why the

high skilled upper management in �rms like Walmart have an enormous span of control over relatively

low skilled workers, while in mom-and-pop retail stores the span of control is small and skills of both

managers and workers are average. Or, what are the consequences of information technology that

improves the ability to manage many workers, such as monitoring and GPS tracking devices? These

example illustrate that we can address general questions: Are more productive �rms larger? Do they

hire better workers; or both? How does this a¤ect managerial compensation and �rm pro�ts? And how

does it depend on the particular industry and country we are considering?

We formalize the tradeo¤between the intensive and the extensive margin in a very simple framework.

Firms di¤er in the quality of their endowment, such as managerial skill in a modern economy or quality

of their arable land in an agrarian economy. In the spirit of the previous work in this literature, �rms

compete in the same industry and produce a homogeneous output good, but nevertheless the best �rms

do not employ all the labor because of decreasing returns. With homogeneous workers, this replicates

the Lucas model with an intensive margin only. Better �rms have a comparative advantage and span

their control over more workers. With heterogeneous workers, a �rm simultaneously chooses the worker

type and its span of control. If decreasing returns are so stark that each �rm optimally chooses only one

worker, then the model replicates the standard Beckerian matching model. Only the extensive margin

matters and all �rms have the same size. The general speci�cation gives rise to a rich but tractable

framework to study the interaction between �rm size and the skill of the workforce.

1The canonical matching model has also extensively been used in the international trade literature, see amongst others
Grossman and Maggi (2000), Grossman (2004) and Costinot (2009).

2Amongst many others, see Burdett and Coles (1997) and Shimer and Smith (2000).
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The paper contributes to existing work in four ways. First, we ask which workers are hired by

which �rms. We �nd a surprisingly simple condition for assortative matching that captures both

the quality and quantity considerations. This condition is new and compares the di¤erent degrees of

complementarity3 along four margins: (1) type complementarity captures the interaction between �rm

and worker types. Clearly, if better �rms receive a exceptionally high return only from better workers,

then they will end up hiring those workers. This is the only e¤ect present in standard quality-sorting

models in the spirit of Becker (1973). Additionally, there is the (2) complementarity in quantities of

workers and resources, just as in the standard model with quantity choices only. There is the (3) span-

of-control complementarity between the �rm or manager type and the number of workers that features

in Lucas (1978); how much of a higher marginal product do better managers have from supervising

more workers of a given skill? Finally, there is the (4) managerial resource complementarity, the

complementarity between worker skills and managerial or �rm resources: do better workers have a

higher marginal product of receiving more supervision time? A simple tradeo¤ between these four

forces determines the pattern of sorting. It characterizes the e¢ cient equilibrium outcome and is a

measure of the e¢ ciency losses that would result from misallocation.

Second, we can precisely pin down the composition of the work force within di¤erent �rm types,

i.e., how �rms resolve the tradeo¤ of span of control over more versus better workers. The equilibrium

allocation of types and quantities is entirely governed by a simple system of two di¤erential equations.

In particular, this gives a prediction for the �rm�s span of control, and therefore, for the �rm size distri-

bution. For example under positive assortative matching, better management supervises larger groups

(better �rms are larger) provided the span of control complementarity (3) outweighs the managerial

resource complementarity (4).

Even if the theory is very stylized, it allows us to revisit our example of the retail industry where

high productivity companies such as Walmart have high skilled management and hire many mainly low

skilled workers, compared to the smaller mom and pop stores. This indicates negative sorting together

with a size distribution that exhibits a density of workers that is increasing in �rm productivity. In

the light of our theory, this is consistent with a type complementarity (1) that is small in this industry,

whereas the span of control complementarity (3) is large: while the complementarity between managers

and workers is small, at the margin management in better �rms is much better at managing large groups

than the low productivity �rms. This may be the case for example because cash registers and inventories

are nearly trivial to operate, while the �rm heavily invests in management and control tools that allow

the supervision of many workers through centralized information on performance on all registers and

inventories. Not only does this lead to negative sorting, but also to a sharply increasing �rm size in

productivity, thus creating very large �rms at the top. They do not need to spend much time with

each employee because supervision time does not increase productivity much, and they have the tools

to supervise many. Instead, in management consulting, with strong complementarities in manager and

3We will use the term complementarity and supermodularity interchangedly. For our purposes, it can best be thought
of as the fact that the marginal contribution of higher input (quantity or quality) to output is higher when matched with
other high inputs, i.e. there are synergies. In mathematical terms, the cross-partial of the output generated is positive
(negative in the case of substitutes or submodularity).
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subordinate skill ((1) large) but moderate span of control technologies ((3) moderate), there is positive

sorting. Top �rms are only larger than bottom �rms if their span of control (3) outweighs the bene�ts

from training and interacting with employees (4). Given that the two counteract, top consulting �rms

tend to be only moderately larger than other �rms in the industry.

The Walmart example clearly illustrates that their way of doing business is very di¤erent from

how the retail sector worked half a century ago. Over time, information technology and investment in

knowledge dramatically changes the production process. We can therefore analyze how technological

change a¤ects the �rm size distribution and the composition in the work force. Skill-biased technological

change is usually viewed as a change that makes the complementarity between worker skill and �rm

technology larger. But much of technological change is in terms of information technology that changes

the complementarity between manager skill and the amount of workers he supervises. In this model,

increases in (3) change the sorting pattern, but in particular it spreads out the �rm size distribution.

Big �rms become even bigger relative to the small �rms.

These insights on �rm size, wages, and sorting patterns are captured in conditions that are su¢ -

ciently simple to suggest that the model might be a useful building block in future work. It captures as

a special case the speci�c production structure of Garicano (2000), which has been fruitfully applied in

the context of international trade and o¤shoring (e.g., Antràs, Garricano and Rossi-Hansberg (2006)).

While international trade applications are beyond the scope of the present paper, we hope that our

approach will prove useful for studying how both the size and the work-force skills of heterogeneous

�rms change when international integration changes the market structure. In our setting the size of the

�rm is limited by decreasing returns to scale in production due to scare managerial resources, which

o¤ers a complimentary channel to the usual Dixit-Stiglitz reasoning based on limited demand for each

variety (e.g., Costinot, 2009). Our model can be studied without functional form assumptions, yet it

can also be integrated into a Dixit-Stiglitz type framework, as we show in our extensions. There we

also show how unemployment can be introduced in our two-sided matching framework, which again

has attracted recent interest in trade settings (e.g., Helpman, Itskohki and Redding (2011)).4 And

our approach might prove useful to understand cross-country di¤erences in total factor productivity,

which Restuccia-Rogerson (2008) and Hsieh-Klenow (2010) attribute to �rm heterogeneity in conjunc-

tion with Lucas�span of control. By introducing worker heterogeneity and sorting in this otherwise

standard model, the debate can be illuminated taking into account di¤erences in skill distributions

across countries, on top of the size distribution across �rms.

The paper contributes to existing work in a third way. We integrate labor market frictions into the

model by means of directed search. The general setup is su¢ ciently �exible to allow for us to introduce

directed search frictions in the presence of sorting. We show that irrespective of the sorting pattern,

unemployment rates are lower for more skilled workers, which is consistent with the empirically observed

unemployment patterns. Instead, the vacancy rates across �rm productivity levels is ambiguous. It

4 In Helpman, Itskohki and Redding (2011) �rms are heterogeneous and also workers draw a heterogeneous match
quality once they meet a �rm, but in their setting workers are ex-ante identical and earn identical expected-payo¤s since
heterogeneity only arises as a shock, while in many trade settings we would like to start from a situation where workers of
di¤erent types exist in the population.
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depends on how �rm size varies, which in turn is governed by the strength of the span of control

complementarity relative to the managerial resource complementarity.

As a �nal contribution, we point out that our theory provides a unifying framework for previous

models, most of which are special cases of ours. Clearly, Becker (1973) and Lucas (1978) are special

cases. A general setup was also proposed in Rosen (1982), but solved only for a functional form that

is a special case of our model, that of e¢ ciency units of labor. Our setup also includes as special or

limiting cases the functional forms of several existing models in this line of research such as Sattinger

(1975), Garicano (2000), Antràs, Garicano and Rossi-Hansberg (2006), and Van Nieuwerburgh and

Weill (2010). We can also adjust the setup to match the features of the Roy model (Heckman and

Honore, 1990). Here we consider the competitive equilibrium outcome of the general model.

It should be noted that our setup is not restricted to the interpretation of span of control. For

example, agricultural �rms whose capital is land of di¤erent soil quality and who assign plots to workers

of di¤erent endurance, or production �rms whose capital is in its speci�c projects and who have to

determine how many of these are handled by each of their workers.5

Related Literature

Our model relates to several strands of existing literature. Here we single out the following four most

relevant once. Once we have laid out the model and derived the results, we discuss more formally in

Section 3.3 how our framework captures and extends a number of the existing models in the literature

that we mention here. In particular, there we make explicit the way in which those can be viewed as

special cases of our setup.

1. The most common one-to-one matching models originating from Kantorovich (1942), Koopmans and
Beckmann (1957), Shapley and Shubik (1971), and Becker (1973), restrict attention to settings where

agents have to be matched into pairs, with the obvious limitation that they do not provide insights

into the size of the �rm and the capital intensity. This is a special case of our model with extreme

decreasing returns. Notice that the matching models by Terviö (2008, and Gabaix and Landier (2007)

to explain the changes of CEO compensation are of this kind. While they use �rm size to determine

the type of �rm, only one worker (the CEO) is matched to one �rm. A number of both early and recent

contributions have focussed on environments where managers can supervise more than one worker. In

Sattinger (1975), each employed worker type produces one unit of output, but requires supervision-

time that depends on the manager type in a decreasing relation. A related structure arises in Garicano

(2000) and Antràs, Garricano and Rossi-Hansberg (2006). Both models have the feature that both the

quantity and quality of workers play a role, but in a rather stark manner where additional supervision

time above the minimum has no additional bene�ts. Their conditions again arise as limiting cases of

our model.

Rosen (1982) proposes a general setup with worker heterogeneity, where quantity and quality interact

5 Instead of projects, the capital may be their clients, and the decision is how many clients to assign to a member of the
sales force of a given ability. Such capital is speci�c to the �rm. In an extension we also accommodate generic physical
capital on top of the di¤erentiated �rm-speci�c capital.
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multiplicatively, which is a special case of ours. Rosen never solves his general setup, but assumes a

functional form that guarantees perfect substitutability, i.e., workers of a given type generate exactly

the same output as twice as many workers of half that type. This is assumption is now commonly

known as e¢ ciency units of labor, and it is well-known that it generates no sorting implications.

2. While the assortative matching literature has made rather speci�c assumptions for multi-worker
�rms that we attempt to generalize, the combinatorial matching and general equilibrium literature has

instead stayed general but focusses mainly on existence theorems rather than on characterizing the

sorting or the wage patterns. The classic example in the combinatorial matching literature is Kelso

and Crawford (1982), who propose a many-to-one matching framework in a �nite economy and allow

for arbitrary production externalizes across workers in the same �rm. While it is well-known that the

stable equilibrium or the core may not exist, they derive a su¢ cient condition for existence, that of

gross substitutes. This condition means that adding another worker decreases the marginal value of

each existing worker. This condition is satis�ed in our setting since output is assumed to be concave

in the number of workers. Gul and Stacchetti (1999) analyze the gross substitutes condition in the

context of Walrasian equilibrium and show existence and the relation between the Walrasian price and

the payment in the Vickrey-Clarke-Groves mechanism. In the context of auction design, Milgrom and

Hat�eld analyze package bidding as a model of many to one matching.

3. Our model di¤ers from settings such as the Roy (1951) model and its recent variants in e.g.,

Heckman and Honore (1990) where each �rm (or sector) can absorb unbounded numbers of agents.

In our setup marginal product decreases as any particular �rm gets extensively large. Some models

combine the Roy model with a demand by consumers that entials a constant elasticity of substitution

(CES), which implies that the price falls when more workers produce output in a particular sector (see

recently Costinot (2009)). The di¤erence is that in such settings no agent internalizes the fact that

the price falls when more output is produced. In our settings the �rms understand that output falls

when they produce more. In the �nal examples we also allow for a CES demand structure, but now this

results in a model of imperfect competition similar to Dixit and Stiglitz (1977), only that now two-sided

heterogeneity and an extensive margin are allowed.

4. Finally, the extension to search frictions is linked to recent developments in the literature. In one-
to-one matching, sorting has been integrated in models of search, see for example Shimer and Smith

(2000), Shi (2001), Shimer (2005), Atakan (2006), and Eeckhout and Kircher (2010). Also �rm size has

in di¤erent ways been modeled in the canonical search framework. The key challenge has been the wage

setting mechanism. Smith (1999) resolves this with multi-agent sequential Nash Bargaining, whereas

Hawkins (2011) and Kaas and Kircher (2011) determine market prices by means of wage posting and

directed search. We use the latter. The real novelty of our approach here relative to the existing search

literature is to combine both sorting under two-sided heterogeneity and �rm size. This allows us to

provide general conditions on the variation of the unemployment rate by skills and the vacancy rate by

�rm size. This is important for the estimation of search models using matched employer-employee data

that feature both sorting and �rm size variation.
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2 The Model

We consider a static assignment problem in the tradition of Monge-Kantorovich and where the allocation

is not limited to one-to-one matching.

Agents. The economy consists of heterogeneous �rms and workers. Workers are indexed by their

skill x 2 X = R+; and Hw(x) denotes the measure of workers with skills below x: Also �rms are

heterogeneous in terms of some proprietory input into production that is exclusive to the �rm, such as

scarce managerial talent or particular proprietary capital goods. In a modern business setting, this is

the time endowment of an entrepreneur that he spends interacting with and supervising his employees.

In an agricultural economy this is the amount of land that an agricultural �rm possesses. Firms are

indexed by their productivity type y 2 Y = R+; where Hf (y) denotes the measure of �rms with
type below y: Unless otherwise stated, we focus on distributions Hf and Hw with non-zero continuous

densities hf and hw on a compact subset [x; x] � X and [y; y] � Y; respectively, but especially for our
main characterization result we also provide a proof for arbitrary distribution functions.

Preferences and Production. Firms and workers are risk-neutral expected utility maximizers. The main

primitive of our model is the output function F : R4+! R++ that describes how the �rm combines labor
and its resources to produce output. If a �rm of type y hires an amount of labor lx of type x; it has to

choose a fraction of its proprietory resources rx that it dedicates to this worker type. This allows the

�rm y to produce output

F (x; y; lx; rx)

with this worker type x, where the �rst two arguments (x; y) are quality variables describing the worker

and �rm types while the latter two arguments (l; r) are quantity variables describing the level of inputs.

We assume that total resources at the �rm level r are �xed. Without loss we can therefore normalize

r = 1.6 The �rms can allocate resources over di¤erent skilled worker types x as long as its choice rx
satis�es the feasibility constraint

R
X rxdx = 1.

We will focus on a particular class of functions F , where the output of each worker depends only on

his own type x, the type of the �rm y, and the factor intensity rx=lx that each of the workers obtains.

Total output F then has constant returns to scale in the quantity variables: output doubles when both

the quantity of resources and of workers are doubled. We retain the assumption of constant returns to

scale in the quantity variables throughout. Therefore, if we denote �x = lx=rx, we can write output per

rx units of resources as7

f(x; y; �) := F (x; y; lx=rx; 1):

If a �rm hires only one worker type, the unit endowment of resources means that total output is f and

6 If instead r exogenously depends on y, our analysis goes through for a function ~F (x; y; l; r) = F (x; y; l; r(y)) after a
change of variables. Below in section 4.2, we analyze the case where r is endogenous.

7 If F (x; y; l; r) has constant returns to scale, we can write it as F = rF (x; y; l=r; 1) and de�ne f(x; y; l=r) := F (x; y; l=r; 1)
as the output per unit of resource. Alternatively, we can write it as F = lF (x; y; 1; r=l); so that g(x; y; r=l) = F (x; y; 1; r=l)
represents the output per worker. In our exposition we work with the former, ie, from the �rm�s perspective, which is
convenient in many derivations.
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its third argument represents the �rm�s size. We also assume that F is twice continuously di¤erentiable,

and that it is strictly concave in each of the quantity variables. Even though we often refer to higher

types as �better" types, we do not need to make any assumptions with respect to the quality variables

except twice-di¤erentiability to obtain our results.

Finally, for a �rm that hires several worker types we assume that its total output is the sum of the

outputs across all its worker types: �rm y�s total output is
R
F (x; y; lx; rx)dx. This is an important

assumption because it rules out complementarities between di¤erent worker types. The motive for this

assumption is tractability. Abstracting from this one source of complementarity is obviously restrictive.

It does allow us to solve the model8 and make progress in analyzing all the other cross-complementarities

between quantities and qualities.

Competitive Market Equilibrium. We consider a competitive equilibrium where �rms can hire a worker

of type x at wage w(x): In equilibrium, their hiring decisions must be optimal and markets for each

worker type must clear.

Firm optimality in a frictionless competitive market requires that a �rm of type y maximizes its

output minus wage costs as follows:

max
lx;rx

Z
[F (x; y; lx; rx)� w(x)lx]dx (1)

where rx can be any probability density function over x. Factoring out rx from the square bracket

reveals that the interior depends only on the factor intensity � = lx=rx; which can be freely chosen at

any level in � = R+ by adjusting the labor input appropriately. Because output across di¤erent types
is additive, optimality requires that the �rm places positive resources only on combinations of x 2 X
and � 2 � that solve9

max
x;�

f (x; y; �)� �w(x): (2)

If there is only one such combination that solves this maximization problem, then the �rm will hire

only one worker type, allocate all resources to this type, and hire an amount of labor l = �: Both �rms

and workers can abstain from the market and obtain a payo¤ normalized to zero, which means that

pro�ts and wages cannot fall below this level.10

Feasibility of the allocation implies that �rms attempt to hire no more workers than there are in the

population. Denote by R(x; y; �) the resource allocation in the economy, which describes the amount
of resources that �rms with a type below y devote to workers of a type below x that are employed with

a factor intensity lx=rx � �: We use the convention that R(x; y; 0) = 0:11 Let R(yjX ;�) denote the
8Several di¢ culties to solve the model arise, eg, those due to non-existence as pointed out by Kelso and Crawford

(1982).
9Problem (1) is equivalent to maxr(�)

R
(rxmax�x [F (x; y; �x; 1)� w(x)�x]) dx , where �x = lx=rx can be adjusted

through appropriate hiring of workers. Clearly, resources are only devoted to combinations of x and � that maximize (2).
10This is indeed simply a normalization. Consider true outside options o(x) and q(y) for �rms and workers and output

function ~F (x; y; lx; ry): These can be incorporated into our framework by considering a normalized production function of
form F (x; y; lx; ry) = ~F (x; y; lx; ry)� lxo(x)� ryq(y) that captures the loss in outside option due to matching.
11This implies that �rms that do not want to hire any worker (� = 0) are counted as �unmatched" rather than employing
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marginal over y when the other two variables can take any value in their type space: It denotes the

amount of resources used by �rms with type below y: Similarly, let R(�; xjY) be the resources spent by
all �rms on workers of with type x employed with intensity less than �: Weighted by the intensity this

yields the number of workers hired, so
R
� �dR(�; xjY) gives the number of workers hired with type up

to x: Feasibility requires that these cannot exceed the number of agents in the population, ie, for all

y0 < y and x0 < x we have

R(yjX ;�)�R(y0jX ;�) � Hf (y)�Hf (y0) (3)Z
�
�dR(�; xjY)�

Z
�
�dR(�; x0jY) � Hw(x)�Hw(x0): (4)

We can now de�ne an equilibrium as follows:

De�nition 1 An equilibrium is a tuple (w,R) consisting of a non-negative hedonic wage schedule w(�)
and a feasible resource allocation R such that

1. Optimality: (x; y; �) 2suppR only if it satis�es (2).

2. Market Clearing: (4) holds with equality if wages are strictly positive on (x0; x]:12

The market clearing condition simply states that if wages for some worker types are positive, their

markets clear. Existence of an equilibrium when output is multiplicatively separable in quantity and

quality variables and bounded has been proven, eg, in Jerez (2009). Her proof can also be extended to

the general setting when output is bounded, and we provide a way to construct an equilibrium under our

sorting condition. Our main focus in this work, though, is on characterization: When do better �rms

hire better workers? How are the wages determined? When are better �rms employ more employees?

How is that e¤ected by quantity-biased technological change?

Assortative Matching. Let R(x; yj�) be the marginal distribution of R over the �rm and worker types

at any level of intensity. It denotes the amount of resources devoted by �rms with type below y to

workers of skill below x; and we refer to it as the type allocation. Matching is positive assortative

if (x; y) in the support of the type allocation implies that (x0; y0) is not in its support unless either

both dimensions are weakly larger or both weakly smaller than (x; y): This means that better �rms

hire better workers. Similarly, matching is negative assortative if (x; y) in the support of the type

allocation implies that (x0; y0) is not in its support unless one dimension is weakly larger and one is

weakly smaller than (x; y): In such a case better �rms hire lower worker types. For some derivations it

will be particularly useful to focus on (strictly) di¤erential assortativeness, where the support of R is

concentrated only on points (x; �(x); �(x)) for some di¤erentiable functions � and �; with the former

strictly positive almost everywhere and the latter (strictly) monotone.

Alternative interpretations of our setup. In our exposition we assume that the number of �rms is �xed,

they each own a unit measure of a scarce resource and allocate it to the di¤erent workers that they

zero workers of type x: This will only be important when we consider the de�nition of assortative matching.
12Formally: (4) holds with equality if wages are strictly positive Hw�almost everywhere on (x0; x]:
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hire. Only the workers are traded in the market. Think about managers, each of whom has one unit of

time for supervision, and who hire workers.

It might be worthwhile to note that there are alternative ways to set up our model that lead to

identical results for sorting and factor prices. In our setup, we assumed that �rms "buy" workers at

wage w(x):We could have chosen a di¤erent setup where workers buy resources for production at some

endogenous price schedule v(y): It turns out that our equilibrium pro�ts according to (2) coincide with

the equilibrium price v(y) that arises in the alternative model where workers by resources.

Finally, we could assume that there are both resource owner and workers, and both workers and

resources are traded in the market at endogenous prices v(y) and w(x); respectively. Both workers and

resources can be put together to produce output. Anybody can set up a production entity and make

pro�ts

max
x;y;l;r

F (x; y; l; r)� lw(x)� rv(y);

which in equilibrium has to equal zero due to free entry, and demand has to equal supply of both

workers and resources. Again, in equilibrium of this alternative model the wages are the same as in

our equilibrium and the price of resources equals the �rms�pro�ts in our setup. In fact, this setup is

identical to ours, only that we assumed that unit measure of resources are tied to a particular manager

who runs the �rm and reaps as pro�ts the price of his resource.

Even within our exposition the production function can be interpreted in broader terms. First, we

interpreted r as the fraction of the �rm�s resources, implicitly using a unit measure of resources for each

�rm. This is natural in the example of managerial time, but in many other settings �rms di¤er in their

endowments. It turns out that this is easily captures in our setting, since the unit restriction in terms

of resources is a normalization.13 We can also accomodate a setting where �rms can acquire additional

resources:14

Additionally, one might want to follow many macroeconomic models and include some kind of generic

capital good that can be bought in the world market for price i per unit and enters the production

function as another factor.15 We return to this extension in Section 4. In Section 4.1 we also cover the

case where �rms have to post vacancies in a frictional (competitive) search market, and the �rm has to

determine how many vacancies to post in order to attract the right level workers into production. This

framework also allows us to capture unemployed workers in a large �rm model with heterogeneity.

13 If �rms of type y have T (y) resources and produce ~F (x; y; l; t) by using t units of them, we can express this in terms
of the fraction r of their resources: F (x; y; l; r) = ~F (x; y; l; rT (y)):
14 If �rms can create a unit of resources at cost c(y); then in the ensuing equilibrium after resources are created the

equilibrium pro�t per unit of resource of type y has to equal c(y): It turns out that this makes it particularly easy to
construct an equilibrium.
15 If the �rm buys k units generic capital and ~F (x; y; l; t; k) is the corresponding output, then the production function we

analyze is the induced production after optimal decisions on generic capital are made: F (x; y; l; r) = maxk ~F (x; y; l; r; k)�
ik:
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3 The Main Results

Models of assortative matching are in general di¢ cult to characterize. Therefore, the literature has

tried to identify conditions under which sorting is assortative. These conditions help our understanding

of the underlying driving sources of sorting. In a setting like this where the welfare theorems hold, such

conditions uncover the e¢ ciency reasons behind the sorting pattners. And if the appropriate conditions

are full�lled, they substantially reduce the complecity of the assignment problem and allow further

characterization of the equilibrium. In this section we derive necessary and su¢ cient conditions for

assortative matching and characterize the assortative equilibrium.

3.1 Assortative Matching

In order to build intuition for our main proposition, it will be useful to focus �rst on di¤erential

assortativeness which allows us to make the derivation of our main condition transparent. Assume that

the equilibrium is assortative, supported by some di¤erentiable assignment function �(x) and intensity

�(x) > 0. By (2) this means that (x; �(x)) are maximizers of the following problem for a �rm of type

y = �(x) :

max
x;�

f(x; y; �)� �w(x):

Assortative matching means that each �rm only hires one type, and this problem can be understood as

the problem of a �rm that could choose any other worker type at any other quantity. As will become

clear in the following, the wages are twice di¤erentiable,16 and the �rst order conditions for optimality

are

f�(x; �(x); �(x))� w(x) = 0 (5)

fx(x; � (x) ; �(x))� �(x)w0(x) = 0; (6)

where �(x) and l(x) are the equilibrium values. The second order condition requires the Hessian H to

be negative de�nite:

H =

 
f�� fx� � w0(x)

fx� � w0(x) fxx � �w00(x)

!
:

This requires f�� to be negative and the determinant jHj to be positive, or

f��[fxx � �w00(x)]� (fx� � w0(x))2 � 0: (7)

We can di¤erentiate (5) and (6) with respect to the worker type to get

fx� � w0(x) = ��0(x)fy� � �0(x)f�� (8)

fxx � �(x)w00(x) = ��0(x)fxy � �0(x)
�
fx� � w0(x)

�
: (9)

16Given the assumed di¤erentiability of � and �, the wage has to be di¤erentiable as de�ned in (8) and (9) below.
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In the following three lines we successively substitute (8), (9) and then (6) into optimality condition

(7):

��0(x)f��fxy �
�
�0(x)f�� + fx� � w0(x)

� �
fx� � w0(x)

�
� 0

��0(x)f��fxy + �0(x)fy�
�
fx� � w0(x)

�
� 0

��0(x)[f��fxy � fy�fx� + fy�fx=�] � 0

For strictly positive assortative matching (�0(x) > 0) it has to hold the the term in square brackets

is negative, for strictly negative assortative matching the term in square brackets need to be positive.

Focussing on positive assortative matching, and using the relationsship in (6), we obtain the condition:

f��fxy � fy�fx� + fy�fx=� � 0: (10)

It turns out that this condition can more conveniently be summarized in terms of the original

function F (x; y; r; s); for which we know that F (x; y; �; 1) = f(x; y; �): The following relationships will

also prove useful. Homogeneity of F implies that �F34 = �F33. Since F is constant returns, so is F1.17

A standard implication of constant returns it then F1(x; y; �; 1) = �F13+F14: We can now rewrite (10)

in terms of F (x; y; �; 1) and rearrange to obtain the following cross-margin-complementarity condition:

F33F12 � F23 [F13 � F1=�] � 0 (11)

, F33F12 + F23F14=� � 0
, F12F34 � F23F14 (12)

So the condition depends on the cross-partials in each dimension, relative to the cross-partials across

the two dimensions. Only if the within-complementarities in extensive and intensive deminsion on the

left hand side exceed the between-complementarities from extensive to intensive margin on the right

hand side does positive assortative matching arise. The following sums up this �nding: A necessary

condition to have equilibria with positive assortative matching is that (12) holds along the equilibrium

path. The reverse inequality is necessary for negative assortative matching.

The preceeding argument heavily relied on local variations to establish the necessity of inequality

(12). In the following we will show that one does not need any additional requirements to achieve

assortative matching. Also, we will prove the proposition for arbitrary type distributions including

those that might not have a continuous density.18

Proposition 1 Consider arbitrary type distributions. A necessary (su¢ cient) condition for some (all)
equilibria to entail positive assortative matching under any type distribution is that the following in-

17 It holds that F (x; y; r; s) = sF (x; y; r=s; 1); so di¤erentiation implies that F1(x; y; r; s) = sF1(x; y; r=s; 1).
18Also note that under homogeneity of degree one the condition F12(x; y; l; r)F34(x; y; l; r) � F23(x; y; l; r)F14(x; y; l; r)

is equivalent to F12(x; y; l=r; 1)F34(x; y; l=r; 1) � F23(x; y; l=r; 1)F14(x; y; l=r; 1) when r > 0 and l > 0; which means that
less combinations have to be checked.
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equality holds (strictly):

F12F34 � F23F14 for all (x; y; l; r) 2 R4+: (13)

The opposite inequality provides a necessary and su¢ cient condition for negative assortative matching.

Proof. The proof relies on the �rst welfare theorem. Since we have quasi-linear utility, any equilibrium
maximizes the sum of outputs in the economy. A feasible distribution R generates market output

S(R) =
Z
F (x; y; �; 1)dR:

In the appendix we prove su¢ ciency by considering the case where (xi; yi; �i) 2suppR for i 2 f1; 2g
and x1 > x2 but y1 < y2: We establish that output is strictly increased under a feasible variation

yielding resource allocation R0 that pairs some of the x1 workers to some of the y2 resources. Therefore,
R cannot be optimal and cannot be an equilibrium, implying that sorting must be positive assortative,

which establishes su¢ ciency. Since we construct an improvement path, we require the condition to hold

at all possible values (i.e., in R4+). A similar argument establishes that if (13) fails than any matchings
within the type space where it fails have to be negative assortative, as otherwise re-arranging would

improve output. So if (13) fails we can �nd some type distribution with types in the region where it

fails such that we have negative sorting, which means that positive assortative matching cannot hold

for all type distributions. This establishes necessity. An analogue argument establishes the results for

negative assortative matching.

While the interpretation applies most generally, we like to think of the resources of a �rm as the time

spent by managers supervising other workers. Now one of the key determinants of positive/negative

assortative matching is whether F14 is positive or negative. If managerial time is particularly productive

when spent with high skilled types, then it is positive. If more managerial time is especially useful for

the low skilled, then it is negative. Observe that this is a requirement for a given y and does not involve

any variation in the managerial quality y. It is an empirical question whether it is positive or negative.

To illustrate that F14 may be negative, a comparison can be insightful with the attention teachers pay

to students. Typically, teachers will spend more time with the less gifted students rather than with the

more gifted ones.

Interpreting this condition is relatively straightforward: On the left-hand side, a high cross-partial

on the quality dimensions (F12) means that higher types have ceteris paribus a higher marginal return

for matching with higher types on the other side. This is reinforced by a higher cross-partial on the

quality dimension, even though under constant returns to scale this can be viewed as a normalization.

More importantly is the interpretation of the terms on the right-hand side. Consider the cross-partial

F23: If this is high, it means that we are in a setting where higher �rms have a higher marginal valuation

for the quantity of workers. That is, better �rms value the number of �bodies" that work for them

especially high. In this case better �rms would like to employ many workers, which favors those where

which do not require many resources. If F14 is negative these are the high skilled workers and the right

hand side favors positive assortative matching, while F14 negative means that these are the low skilled
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workers which favors negative assorative matching.

The importance of the right hand side relies on the ability to substitute additional workers to make

up for their lower quality. The discussion in Subsection 3.3 reveals that as the elasticity of substition

on the quantity dimension goes to zero in a way that agents can only be matched into pairs, the

importance of the right hand side vanishes. It also discusses other settings from the literature that arise

as special cases. Finally, one may wonder what happens when our non-homotheticity assumption does

not hold and output is not proportional to the ratio � of the labor force l to the amount of resources r.

Conceptually, the problem is identical to the one we solve here (see the Appendix for the derivation).

While the interpretation is much less transparent19, the main sorting condition (11) is still necessary for

di¤erential positive assortative matching under increasing returns to scale, only the steps that require

homogeneity do not apply.

3.2 Equilibrium Assignment, Firm Size Distribution and Wage Pro�le

In contrast to models with pairwise matching where assortativeness immediately implies who matches

with whom (the best with the best, the second best with the second best, and so forth), this is not

obvious in this framework as particular �rms may hire more or less workers in equilibrium. In the

appendix we show how to construct a di¤erentiable positive assorted equilibrium when (13) holds on

the full domain. Our main focus is the characterization. For the following we will consider output

functions that are increasing in types, which ensures that all types above some cuto¤ are matched.20

We

Proposition 2 If matching is di¤erentially assortative and output is increasing in types, then the factor
intensity, equilibrium assignment, and wages are determined by the following system of di¤erential

equations evaluated along the equilibrium allocation:

PAM: �0(x) =
H(x)F23 � F14

F34
; �0(x) =

H(x)
�(x)

; w0(x) =
F1
�(x)

; (14)

NAM: �0(x) = �H(x)F23 + F14
F34

; �0(x) = �H(x)
�(x)

; w0(x) =
F1
�(x)

; (15)

where H(x) = hw(x)
hf (�(x))

.

Proof. Consider the case of PAM �the case of NAM can be derived in a similar way. The equilibrium

condition for market clearing condition implies Hw(x)�Hw(x) =
R y
�(x) �(~x)hf (~x)dx: Di¤erentiating with

respect to x delivers the second di¤erential equation in (14). The initial condition in the case of PAM

19At the moment we have entertained the notion that each worker interacts with the resources to obtain output. Just
envision brie�y a production technology that is customized such that for each worker type, output can be produced easier
when there are more workers and resources of that type in the sense that the output function F has increasing returns to
scale. Clearly, in this the restriction that each �rm has a unit-measure of resources becomes binding: �rms would ideally
like to merge to larger entities. In many settings this might not be feasible feasible, though, for example if a manager
cannot expand the time he has available for supervision.
20 If output can fall for higher types, holding all other variables constant, than there might be holes in the matching set,

and the following characterization can only be applied on each connected component. The results holds even if output
can fall, as long as it is ensured that on the equilibrium path all agents above some cut-o¤ trade.
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is �(x) = y. From (6) we know that w0 = fx=�; which gives the third equation since F1 = fx. From the

�rst-order condition in equation (5) we know that f�(x; �(x); �(x)) = w(x): Then from equation (8),

after substituting for w0 and �0 we obtain:

fx=� = fx� + fy�=� + �
0f��:

Using the same substitutions that we used in connection with equation (10) we obtain the �rst equation

in (14). The initial condition for this di¤erential equation obtains from running down the allocation

from the top to the bottom and where the boundary condition holds either when the lowest type is

attained or when the number of searchers goes to zero. An equilibrium allocation simultaneously solves

the di¤erential equation for �0 and �0 with the respective boundary conditions.

This gives an immediate propositon for the size of the di¤erent �rms:

Proposition 3 Under di¤erential assortative matching when output is increasing in types, better �rms
hire more workers if and only if along the equilibrium path:

1. H(x)F23 > F14 under PAM,

2. �H(x)F23 < F14 under NAM.

Proof. This follows readily from Proposition 2, once one realizes that under NAM �0(x) < 0.

The result follows immediately from the Proposition, observing that F34 = ��F33 is strictly positive
because of our concavity assumption, and that under NAM better workers are working for worse man-

agers. The trade-o¤ in the case of PAM is the following. Clearly, if better �rms have a higher marginal

value of hiring many workers (F23 large), this gives rise to better �rms being large. Nevertheless, under

assortative matching they also hire better workers. If these workers have a high marginal value from

getting many resources of the �rm (F14 large), then the �rm will tend to be small. Clearly, if F14 is

negative, meaning that better workers need less resources, this generates an even stronger force for

�rm growth. Under NAM, the �rst e¤ect is the same, but now better �rms are matched with worse

workers. In this case, �rms become exceptionally large if better workers need more resources, meaning

that worse workers need less resources.

This suggests clear di¤erences between industries. In some industries such as retail, better �rms

are those that - amongst other things - have invested heavily in the ability of the management team to

supervise many workers. This is achieved through information technology that tells the chain manager

exactly how much is in stock, how each cash register is operating, and how each individual employee is

performing. In local mom-and-pop stores this is usually not in place to the same degree. Thus, higher

�rms are associated with a large F23: Moreover, they tend to employ lower ability workers (which might

be partially driven by a large F23). So both arguments go in the same directions, H(x)F23+F14 might
be very large, and the di¤erence between the group that is supervised by a single manager in pro�table

retail chains is much larger than in local mon-and-pop stores.
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In other industries such as management consulting or law �rms the complementarities in types (F12)

are very large and matching positive assortative. While it is clearly bene�tial for the top managers to

have many team members in order to leverage their skills (F23 > 0), it is also very bene�tial to spend

time with the very talented team that they assambled to transfer their knowledge (F14 > 0): In this

case �rm size changes according to H(x)F23�F14, which might be zero or negative, giving an indication
why top consultancy �rms do not operate much larger groups than lower level ones.

Interestingly, if matching is PAM, distributions are identical, and F14 = F23; then the economy

operates as in a one-to-one matching model: the ratio of workers to resources is always one, the

assignment and the wages are as in Becker (1973). The reason is that the improvements of the �rm in

taking on more workers are exactly o¤set by the advantages of the workers to obtain more resources.

Since the size distribution does not vary accross types, the renumeration also does not stray from the

one that arises if we exogenously imposed a one-to-one matching ratio.

This shows an interesting di¤erence between skill-biased technological change and quantity-biased

technological change. Skill-biased technological change in terms of an increase in F12 changes the

wages, but might not a¤ect the factor allocations are size distribution. In particular, if the model

remains symmetric and remains in the region of positive assortative matching, �rms would still remain

of unit-size, since both �rms bene�t from better workers but also better workers bene�t from better

�rms. The wage di¤erences between workers according (14) depend on F1; which is larger for higher

types when F12 is larger since the role of the �rm for one�s own wage increase is more important.

In contrast, quantity-biased technological change that increases F23 directly e¤ects the size distrib-

ution. Today better �rms not only have better managers, but they also invest in resources to supervise.

If quantity-biased technological change manifests itsself in computing resources that allow to supervise

larger groups (F23 larger), then it immediately implies that larger �rms are bigger. Such quantity-biased

technological change might be more suitable to understand the change in �rm sizes and group sizes

within �rms than the notion of skill-biased technological change.

The importance of the general conditions in (13), (14) and (15) that allow for changes in the �rm

size due to di¤erentials in the advantages between workers and �rms is exactly to highlight the relevant

sorting and assignment conditions when substitution between �rm and worker inputs takes place and

�rm size varies across types. For special cases one can analytically construct the equilibrium allocations

using these conditions and conduct more careful comparative statics, but more importantly one can

exploit the conditions in Proposition 2 to construct an equilibrium in a way that is easily implemented

computationally, as shown in the appendix. This hopefully enables the use of two-sided heterogeneity

with �rm-size-e¤ects in many applied settings.

3.3 Special Cases

The following highlights how our model characterizes a number of existing setups that have been

heavily used in the literature. It also highlights that it can capture new settings that have not been

analyzed before. It also shows that it is not easy to start with certain separability assumptions (for

example between the quality and quantity dimensions as in the second example below), because a lot of
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formulations in the literature have used di¤erent ways of interacting the variables that can be captured

in our setup but not in more specialzied versions.

1. E¢ ciency units of labor. A particularly common assumption in the literature is the case of

e¢ ciency units of labor, where the output remains unchanged as long as the multiplicative term xlx

remains unchanged. In such a case workers of one type are completely replaceable by workers of half

the skills as long as there are twice as many of them. Sorting is then essentially arbitrary: Each

�rm cares only about the right total amount of e¢ ciency units, but not whether they are obtain by

few high-type workers or many low-type workers. Our setup captures e¢ ciency units of labor under

production function f(x; y; l) = ~f(y; xl): Taking cross-partials immediately reveals that we always

obtain F12F34 = F23F14 in this case.

2. Multiplicative separability. A particularly tractable case arises under multiplicative separability
of the form F (x; y; l; r) = A(x; y)B(l; r). In this case the condition (13) for positive assortative matching

can be written as [AA12=(A1A2)][BB12=(B1B2)] � 1: If B has constant elasticity of substitution "; we

obtain an even simpler condition AA12=(A1A2) � ":21

3. Becker�s one-on-one matching model as a limit case. Consider some output process

F (x; y; l; r). In the spirit of most of the sorting literaterature, we can now consider the restricted

variant where only "paired" inputs can operate: every worker needs exactly one unit of resource and

any resources needs exactly one worker, otherwise it is not used in production. The output can then

be represented by F (x; y;minfl; rg;minfr; lg) = F (x; y; 1; 1)minfl; rg; where the equality follows from
constant returns to scale. This nicely corresponds to the multiplicatively separable setup discussed in

the previous point. While our framework is build around the idea that more resources or more labor

inputs improve production, this Leontief setup on the quantity dimension is exactly the limit case of

a CES function with zero elasticity (" ! 0): From the previous point we therefore know that sorting

arises in this limit if F12 � 0; which is exactly the condition in Becker (1973).

4. Sattinger�s and Garicano�s span of control problem as a limit cases. One of the few
contributions that provides clear conditions for sorting in a many-to-one matching model is presented

in Sattinger (1975). His production function assumes that each worker produces the same, but a

worker of type x needs t(x; y) units of supervision time from manager of type y; where better types

need to spend less time. The manager can only hire as many workers as he can supervise, so that

F (x; y; l; r) = minfr=t(x; y); lg; where the �rst terms in the minimization operator captures the number
of workers that can be supervised and the second the number of workers hired. Our model allows for

more �exibility in the substitution between inputs, but a CES extension that takes r=t(x; y) and l as

inputs again has the previous Liontie¤ speci�cation as the inelastic limit.22 Inspecting (13) and taking

21 If " is in the unit interval, this condition is equivalent to root-supermodularity, i.e., it is equivalent to n
p
A(x; y) being

supermodular with n = (1 � ")�1 as shown by Eeckhout and Kircher (2010) in a pairwise matching framework with
directed search frictions. If " > 1 this requires conditions on A(x; y) that are stronger than log-supermodularity.
22The function F (x; y; l; r) = ([rg(x; y)]("�1)=" + l("�1)=")"=("�1) approaches minfrg(x; y); lg as "! 0:
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the inelastic limit reveals that positive sorting arises only if t(x; y) is log-superodular. This exactly

recovers the condition found by Sattinger.

Related is Garicano (2000) formulation where each worker can solve problems with di¢ culty equal

to his type, and passes the remaining problems to the supervisor who need one unit of time to answer

each problem passed to him. Here the supervision "time" t (x) depends only on the worker type, but

each manager can solve problems up to category y himself, leading to output F = yminfr=t(x); lg:
Approximating this with the appropriate CES highlights that better managers prefer to hire better

workers to leverage their skills.

5. Extension of Lucas� Span of Control, and Rosen�s general production: Lucas (1978)
assumed a production function that is multiplicatively separable in the �rm type and the amount of la-

bor, where all labor is identical. Consider the following extension to heterogeneous labor: F (x; y; l; r) =

yg(x; l=r)r; which boils down to yg(x; l) in the case where all resources are spent on the same worker

type. The new condition for assortative matching is g2g12 � g1g22: If production is increasing in worker
type and strictly concave, this means that sorting will be positive unless better workers types indeed

dislike to work together because that limits the amount of resources they can obtain (g12 su¢ ciently

negative).

This is related to Rosen�s (1982) setup where F = h(y)g(x; yl=r)r for the �rst level of supervision

and the production workers, which has somewhat di¤erent separability assumptions.23 He allows more

�exibility in other parts by allowing for multiple layers of hierarchy and a choice on who performs on

which layer. But he analyzes the model only for the case of linear homogeneity of g, which is equivalent

to e¢ ciency units of labor analyzed in point 1 above. Since it is a special case of our setup, our sorting

conditions apply directly to this setting. Again, one can easily write the conditions in terms of g:

g12=g1 � g22=g2 � 1=�, but does not get that much additional insight above and beyond those we have
discussed already for the general model.

6. Spatial Sorting Within the Mono-centric City. The canonical model of the mono-centric city
can explain how citizens locate across di¤erent locations, however there is no spatial sorting. All agents

are identical and in equilibrium they are indi¤erent between living in the center or in the periphery by

trading o¤ commuting time for housing space and prices.24 We therefore consider a model of spatial

sorting within the city. Let there be a continuum of locations y, each with housing stock r(y). Let

y 2 [0; 1], where y is the center and y is the inverse of a measure of the distance from the center.

Agents with budget x have preferences over consumption c and housing h represented by a quasi-linear

utility function u(c; h) = c+v(h). With consumption the numeraire good and ph(y) the price per unit of

housing in location y, the budget constraint is c+ph(y)h = xg(y), where x is the worker skill and g(y) is

23Rosen (1982) equation (1) for the output per worker can be written as h(y)�(yr=l; x) for some functions h and �;so
that total output is constant returns to scale. Output per resource is therefore yg(yl=r; x) after appropriate transformation
(so that g(y�; x) := �(y=�; x)=�):
24Also Lucas and Rossi-Hansberg (2002) model the location of identical citizens but their model incorporates productive

as well as residential land use. Though agents are identical, they earn di¤erent wages in di¤erent locations. The paper
proves existence of a competitive equilibrium in this generalized location model which endogenously can generate multiple
business centers.
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an increasing function representing the time at work rather than in commute. The closer to the center,

the less time is spent on commuting and the more time is earned. Then we can write the individual

citizen x�s optimization problem as xg(y) + v(h) � ph(y)h. The total supply of housing in location y
is r and as a result, l � h = r. Net of the transfers, the aggregate surplus for all l citizens is given by
F (x; y; l; r) = xg(y)l + v

�
r
l

�
l. It is easily veri�ed that F12 = g0(y)l; F34 = � r

l v
00 � r

l

�
; F14 = 0 so that

if v(�) is concave there is positive assortative matching of the high income earners into the center and
the low income earners in the periphery. A similar functional form is used in Van Nieuwerburgh and

Weill (2010) to consider di¤erences between cities rather than within the city, where the term xg(y) is

replaced by a more agnostic worker-output u(x; y) depending on worker skill x and city type y: Sorting

is again fully determined by the cross-partial of x and y because F14 = 0:

4 Extensions

Our baseline model set up is very general. So far, we have given it the interpretation of a managerial

assignment problem that optimizes both the worker quality and the �rm�s span of control. The advan-

tage of the generality of the setup is that we can readily interpret the basic model in di¤erent settings

and extend it with minor modi�cations. Our principal extension is the introduction of unemployment.

This is then followed by several other interpretations.

4.1 Frictions and Involuntary Unemployment

There is no doubt that frictional unemployment is a major ingredient of the labor market. Moreover,

in recent years substantially more has been understood about both the determinants of unemployment

across heterogeneously skilled agents in the presence of sorting (amongst others Shimer and Smith 2000,

Eeckhout and Kircher 2011) and about how unemployment varies across �rms of di¤erent sizes (Smith

1999, Hawkins 2011, Kaas and Kircher 2010, Menzio and Moen 2010; Garibaldi and Moen forthcoming).

Yet, little is known about how unemployment varies in the presence of sorting and variation in �rm

size jointly.

The sorting framework that we laid out in the previous section is well-suited to capture multi-worker

�rms with decreasing returns in production. In this section we embed a a costly recruiting and search

process in the previous setup in order to capture the hiring behavior of large �rms. This setup builds on

the directed search literature (e.g., Peters 1991; Acemoglu and Shimer 1999; Burdett, Shi and Wright

2001; Shi 2001; Shimer 2005; Guerrieri, Shimer and Wright 2010), now with sorting of heterogeneous

agents and large �rms.

Consider a situation where the workers are unemployed and can only hired by �rms via a frictional

hiring process. As part of this process, each �rm decides how many vancancies vx to post for each

worker type x that it wants to hire. Posting vx vacancies has a linear cost cvx. It also decides to post

wage !x for this worker type. Observing all vacancy postings, workers decide where to search for a

job. Let qx denote the �queue" of workers searching for a particular wage o¤er, de�ned as the number

of workers per vacancy. Frictions in the hiring process make it impossible to �ll a position for sure.
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Rather, the probability of �lling a vacancy is a function of the number of workers queueing for this

vacancy, denoted by m (qx) ; which is assumed to be strictly increasing and strictly concave.25 Since

there are qx workers queueing per vacancy, the workers�job-�nding rate for these workers is m(qx)=qx:

The job �nding rate is assumed to be strictly decreasing in the number of workers qx queueing per

vacancy. Firms can attract workers to their vacancies as long as these workers get in expectation their

equilibrium utility, meaning that qx adjusts depending on !x to satisfy: !xm(qx)=qx = w(x). Note the

di¤erence between the wage !x which is paid when a worker is actually hired, and the expected wage

w(x) of a queueing worker who does not yet know whether he will be hired or not. In equilibrium the

�rm takes the latter as given because this is the utility that workers can ensure themselves by searching

for a job at other �rms, while the former is the �rm�s choice variable with which it can a¤ect how many

workers will queue for its jobs. Therefore, a �rm maximizes instead of (1) the new problem

max
rx;!x;vx

Z
[F (x; y; lx; rx)� lx!x � vxc] dx (16)

s.t. lx = vxm(qx); and !xm(qx)=qx = w(x)

and rx integrates to unity. The �rst line simply takes into account that the �rm has to pay the vacancy-

creation cost, and that the number of hires depends on the amount of hiring per vacancy which is in

turn related to the wage that it o¤ers. There are two equivalent representations of this problem

that substantially simplify the analysis. It can easily be veri�ed that problem (16) is mathematically

equivalent to both of the following two-step problems:

1. Let G(x; y; s; r) = maxv [F (x; y; vm(s=v); r)� vc] ; and solve maxsx;rx
R
[G(x; y; sx; rx)�w(x)sx]dx

where rx integrates to unity.

2. Let C(l; x) = minv;q[cv+ vqw(x)] s.t. l = vm(q); and solve maxsx;rx
R
[F (x; y; lx; rx)�C(lx; x)]dx

where rx integrates to unity.

In the �rst equivalent formulation, the �rm attracts �searchers" sx, which queue up to get jobs at

this �rm. In order to entice them to do this, it has to o¤er wage w(x) in expectation to them whether

or not they actually get hired. The de�nition of G then re�ects the fact that the �rm can still decide

how many possible vacancies to create for these workers. If the �rm creates more vacancies, searchers

have an easier time �nding a vacancy suitable to them, and this increases the amount of actual labor

that is employed within the �rm. In the second formulation the �rm the output minus the costs of

hiring the desired amount of labor. The costs include both the vacancy-creation costs as well as the

wage costs, where again the expected wage has to be paid to all workers that are queueing for the jobs.

This has two direct consequences:

1. It has the beauty that G is fully determined by the primitives, and can be directly integrated

into the framework we laid out in Section 2 (where now G replaces F ): The �rm looks as if it hires

25Careful elaborations how this queueing problem in a �nite economy translates into matching probabilities as the
population is exanded is given e.g. in Peters (1991) and Burdett, Shi and Wright (2001). It is based on the idea that
workers approach vacancies unevenly due to coordination problems, which leads to excess applicants at some vacancies
and to few vacancies at others.
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"searchers" which have to be paid their expected wage. Applying the machinery from the previous

section allows us to assess whether sorting is assortative, and what the expected wages w(x) are that

are paid in equilibrium. We take this formulation embedded in the equilibrium de�nition of the previous

section as the de�nition of a competitive search equilibrium with large �rms.26

2. It then relates the expected wages w(x) that were determined in the previous problem into

job �nding probabilties of the searchers. Substituting the constraint in Problem 2 into the objective

function and taking �rst order conditions yields the main characterization of this section. It can best be

expressed by writing the elasticity of the matching probability as �(q) := qm0(q)=m(q) and by denoting

the queue length that solves the minimization problem by q(x): We then obtain

w(x)q(x) =
�(q(x))

1� �(q(x))c (17)

The right hand side is related to the well-known Hosios condition (Hosios, 1990), which showed that

e¢ cient vacancy creation is related to the elasticity of the matching function. The condition becomes

particularly tractable in commonly used settings in which the elasticity is constant. In this case the

queue length that di¤erent workers face is inverse proportional to the expected utility that they obtain

in equilibrium. Since better workers obtain higher expected utility w(x) as determined in Problem 1

(otherwise a �rm could higher better workers at equal cost), they face proportionally lower competition

for each job and correspondingly higher job �nding probabilities. This arises because the opportunity

costs of having high skilled workers unsuccessfully queue for employment is higher, and therefore �rms

are more willing to create enough vacancies to enable most of these applicants to actually get hired for

the job. The logic applies even if the elasticity is not constant:

Proposition 4 Assume higher worker types create more output (Fx > 0): In the competitive search

equilibrium with large �rms, higher skilled workers have face lower unemployment rates.

Proof. The term �(q)=[q(1��(q))] = m0(q)=[m(q)�qm0(q)]: This term is strictly decreasing in q; since

the numerator is strictly decreasing and the denominator is strictly increasing in q: Since output at any

�rm is increasing in skill (Fx > 0) it follows immediately that in any equilibrium w(x) is increasing in

x. Implicit di¤erentiation of (17) implies that q(x) is decreasing, which in turn implies that the chances

of �nding employment are increasing in x:

Interestingly, this implies that under positive assortative matching the �rm-size can be increasing

in �rm type even though the number of workers that apply for jobs is decreasing. This can be seens

mathematically as follows. The amount of labor that is actually hired, l(x); relates to the actual number

of searchers and their queue per vacancy as l(x) = s(x)m(q(x))=q(x); implying:

l0(x) = s0
m

q
+ s

m0q �m
q2

q0:

26The same mathematical structure arises (after rearranging) when we start with an equilibrium de�nition in the natural
way that is usually used in the competitive search literature, where �rms compete in actual wages and not in terms of
expected wage payments.
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The change in the number of searchers (s0) is determined by (14) under appropriate change of variables

(� and f replaced by s and g): Even if the number of workers that search for employment at better

�rms is not increasing, the number of hires might still be increasing because the second term is strictly

positive. This may be due to the fact that high productivity �rms put more resources into creating

jobs for their high-skilled applicants. Recruiting of talented lawyers at a law �rm is likely to involve

more resources, either the direct cost or the opportunity cost of time, than what is spent on hiring low

skilled labor at a fast food restaurant.

Instead, the vacancy rate across �rms of di¤erent sizes is ambiguous.

Proposition 5 The vacancy rate is ambiguous in �rm size.

Proof. Consider PAM (likewise for NAM). The vacancy rate (1=q) is increasing in x, and under PAM

then also in y. However, from Proposition 3, �rm size ambiguous in y. In particular, it is increasing if

F23 � F14 and decreasing if F23 � F14.

This result immediately stems from the fact that �rm size in general is ambiguous in �rm type y.

4.2 Capital Investment

Consider a production process that not only takes as inputs the amount of labor and of proprietary

�rm resources, and creates output F̂ (x; y; l; r; k): The generic capital k that can be bought on the world

market at price i.Optimal use of resources requires F (x; y; l; r) = maxk

h
F̂ (x; y; l; r; k)� ik

i
; where

F is constant returns in its last two arguments if F̂ is constant returns in its last three arguments.

Rewriting the cross-margin-complementarity condition (13) in terms of the new primitive yields the

following condition for positive assortative matching: F̂12F̂34F̂55�F̂12F̂35F̂45�F̂15F̂25F̂34 � F̂14F̂23F̂55�
F̂14F̂25F̂35 � F̂15F̂23F̂45:

4.3 Monopolistic Competition

In the previous sections, we analyzed the case where the �rm�s output is converted one-for-one into

agents utility. Therefore, there are no consequences on the �nal output price of the good, which is

normalized to one. An often used assumption in the trade literature concerns consumer preferences

pioneered by Dixit and Stiglitz (1977) which are CES with elasticity of substitution � 2 (0; 1) among
the goods produced by di¤erent �rms. For these preferences it is well-known that a �rm that produces

output ~f has achieves a sales revenues � ~f�, where � is an equilibrium outcome that is viewed as

constant from the perspective of the individual �rm:27 The di¢ culty in this setup is that, despite the

fact that output is constant returns to scale in employment and �rm resources, the revenue of the �rm

has decreasing returns to scale. Therefore, we cannot directly apply (13). But we can conjecture that

27The underlying form for the utility function is U = x1��0

�R
c(y)�dy

��=�
; where x0 is a numeraire good and c(y) is the

amount of consumption of the good of producer y: Then one obtains � = (�Y )1��P � where Y is the aggregatve income,

py denotes the price achieved by �rm y through its equilibrium quantity, and P =
�R
p
�=(1��)
y

��=(1��)
represents the

aggregate price index:
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there is assortative matching so that the �rm employs only one worker type, in which case revenues

are f(x; y; l) = � ~f(x; y; l)�, and we can apply (10) directly. Rearranging and using ~F (x; y; l; r) =

r ~f(x; y; l=r) we get the condition for positive assortative matching"
� ~F12 + (1� �)( ~F )

@2 ln ~F

@x@y

#"
� ~F34 � (1� �)l ~F

@2 ln ~F

@l2

#

�
"
� ~F23 + (1� �) ~F

@2 ln ~F

@y@l

#"
� ~F14 + (1� �)

 
l ~F13 � l ~F

@2 ln ~F

@x@r

!#
:

Several points are note-worthy. First, the condition is independent of �; and therefore can be checked

before this term is computed as an outcome of the market interaction. Furthermore, for elastic prefer-

ences (� ! 1) the condition reduces to our original condition (13). In gereral, the condition relies not

only on supermodularities in the production function, but also on log-supermodularities. This should

not be surprising. Even in the standard models supermodularity is the relevant condition when the

marginal consumption value of output is normalized to one (Becker 1973), while sorting when output is

CES-aggregated requires log-supermodularity. If ~F is multiplicatively separable between quantity and

quality dimension, and the quality dimension is CES, then as the quality dimension becomes increasingly

inelastic it is easy to show that the condition reduces to log-supermodularity in x and y:

4.4 Optimal transportation

Assume it costs �r � c(x; y) to move a r units of waste from production site x into destination storage

y; and if one attempts to move more units r into any given amount l of storage then there is some

probability of damage d(r=l) that each unit that is stored gets destroyed. This leads to function

F (x; y; l; r) = �rc(x; y)� �rd(r=l); where � represents the lost revenue because of destruction. Unlike
in the standard Monge-Kantorovich transportation problem, here the allocation need not occur in �xed

quantities.28

4.5 Endogenous type distributions, technology choice, and team-work

One way to endogenize the type distribution is to assume that there is free entry of �rms (free entry

of resources in the model), but entry with type y costs c(y): If output is increase in y; i.e., F2 > 0;

then it is crucial for a meaningful entry decision that c(y) is strictly increasing. If c is increasing

and di¤erentiable, and our sorting condition is satis�ed everywhere, it is not di¢ cult to construct an

equilibrium where the pro�ts of �rms according to (2) equal the entry cost c(y) for all active �rms. In

fact, this formulation is easier to construct: We know that the highest types match, so that � (�x) = �y:

The problem is usually how to determine at which ratio they match, i.e., to �nd �(�x): But here it is

given simply by requirement that the pro�ts of the highest �rm equals the entry costs. Substituting the

28Observe that in the Monge-Kantorovich problem the allocation need not be in pure strategies. The optimal allocation
may involve mixing or in large populations there may be a fraction of agents of a given type allocated to one location and
the remainder to another location as long as the total measure of agents at any location does not exceed one. What di¤ers
here is the intensive margin. Any location is not restricted to taking on a given measure of agents.
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�rst order condition (5) into the objective function yields pro�t f(�x; �(�x); �(�x))� �(�x)f�(�x; �(�x); �(�x));
which have to equal c(� (�x)): This can be then used together with the �rst order conditions and the

di¤erential equations in (2) to construct the type distribution after entry at all lower types.

More complicated is the analysis when one considers a common pool of workers, some of whom

choose to be managers while others choose to remain workers. This is then a teamwork problem, where

one team becomes the y0s and the other the x0s. While interesting, we leave this analysis for further

work.

5 Concluding Remarks

We have proposed a matching model that incorporates factor intensity and unemployment. We derive

a simple condition for assortative matching and characterize the equilibrium �rm size, unemployment

level and unemployment by skills.
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6 Appendix

Remaining Proof of Proposition 1

Proof. Part I: su¢ ciency. Focus on positive assortative matching. The same logic applies to negative
assortative matching. Strict cross-margin-supermodularity F12F34 > F14F23 for all (x; y; l; r) is by (10)
equivalent to f��fxy � fy�fx� + fy�fx=� < 0 for all (x; y; �). Assume a feasible resource allocation R
such that (xi; yi; �i) 2suppR for i 2 f1; 2g and x1 > x2 but y1 < y2: Since R(x; y; 0) = 0; that means
that �i > 0: If not, by the fact that (xi; yi; �i) 2suppR implies that there is a closeby combination
with positive intensity. Let ri denote the measure of resources at combination (xi; yi; �i): If the type
distribution has mass-points, this is exactly the measure of types assigned to this combination. We will
consider this case here. (If the type distribution only has a density, then it is the mass of resources in
an arbitrarily small area around (xi; yi; �i): By continuity all resources in this area have output very
close to f(xi; yi; �i), and since the inequalities below are strict, the argument applies also to this case.)

We will establish that output is strictly increased under a feasible variation yielding resource allo-
cation R0 that pairs some of the x2 workers to some of the y2 resources. We proceed in two steps. Step
1 has the key insight. Subsequently, Part II will establish necessity.

1. Establish the marginal bene�t from assigning additional workers to some resource type:
Consider some (x; y; �) such that r resources are deployed in this match (and are paired to �r work-

ers). For the variational argument, we are interested in the marginal bene�t of pairing an additional
measure r0 of resources of type y0 with workers of type x. The optimal output is generated by with-
drawing some optimal measure �0r0 of the workers that were supposed to be working to with resource
y and reassigning them to work with resource y0: The joint output at (x; y) and (x; y0) is given by

rf(x; y; r; � � �0r0=r) + r0f(x; y0; �0): (18)

Optimality of �0 requires according to the �rst order condition that f3(x; y; � � �0r0=r) = f3(x; y
0; �0);

which shows that the optimal �0 is itsself a function of r0. Denote �(y0;x; y; �) the marginal increase of
(18) from increasing r0; evaluated at r0 = 0: It is given by

�(y0;x; y; �) = f(x; y0; �0)� �0f3(x; y0; �0) (19)

where �
0
is determined by f3(x; y

0; �0) = f3(x; y; �): (20)

The constrained (20) reiterates the optimality of �0 as a function of x; y; � and y0. The cross-partial �12
of the marginal bene�t in (19) with respect to x and y0 is strictly positive, evaluated at y0 = y; i¤

fxy > � [�fy�fx� + fy�fx] = [�f��] ;

i.e., exactly when our cross-margin condition holds. Therefore, it is optimal to assign higher buyers to
higher sellers locally around (x; y): This is at the heart of the argument. The next step simply extends
this logic to a global argument where y0 might be far away from y:

2. Not PAM has strictly positive marginal bene�ts from matching the high types:
We started under the assumption that matching is not assortative since x1 > x2 but y1 < y2:. In

particular, consider y1 matched to x2 at queue length �1 and y2 matched to x1 at queue �2; where
x2 > x1 and y2 > y1. For (x1; y2) and (y1; x2) to be matched, optimality requires that the marginal
bene�t of types yv = y1 are higher when paired with x2; while types yv = y2 yield higher bene�t when
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paired with x1 :

�(y1;x2; y2; �2) � �(y1;x1; y1; �1); (21)

�(y2;x2; y2; �2) � �(y2;x1; y1; �1); (22)

where �(�; �; �; �) was de�ned in (18). We will show that if (21) holds, then (22) cannot hold, which
yields the desired contradiction. We will show this by proving that the bene�t �(y0;x1; y1; �1) on the
right hand side of (21) and (22) always remains above the bene�t �(y0;x2; y2; �2) on the left hand side.
By (21) this has to be true at y0 = y1; and we will show that it remains true when we move to higher
y0: The marginal increase of � with respect to its �rst argument y0 is given by

�1(y
v;x; y; �) = f(x; y0; �0); (23)

where �0 is again determined as in (20). Assume there is some y0 � y1 such that marginal bene�ts are
equalized, i.e., �(y0;x2; y2; �2) = �(y0;x1; y1; �1):We have established the result when we can show that
�1(y

0;x2; y2; �2) < �1(y
0;x1; y1; �1).

By (23) this equivalent to showing that f(x2; y0; �02) < f(x1; y
0; �01), where �

0
1 = �

0(y0;x1; y2; �2) and
�02 = �

0(y0;x2; y1; �1) as in (20). To show this, de�ne �(x) for all x in resemblance of (19) by the following
equality

f(x; y0; �(x))� �(x)f3(x; y0; �(x)) = �(y0;x2; y2; �2);

which implies �(x2) = �02 and �(x1) = �
0
1 by equality of the marginal bene�ts at y

0, i.e. by �(y0;x2; y2; �2) =
�(y0;x1; y1; �1). Di¤erentiating f(x; y0; �(x)) with respect to x reveals that it is strictly increasing ex-
actly under our strict inequality f��fxy � fy�fx� + fy�fx=� < 0. This in turn implies f(x2; y0; �02) <
f(x1; y

0; �01).

Part II: necessity. Assume that (13) fails at some (x0; y0; l00; r00): By continuity it also fails at some
(x0; y0; l0; r0) with l0 > 0 and r0 > 0 su¢ ciently close to (x0; y0; l00; r00): Then it also fails at (x0; y0; �0; 1) for
�0 = l0=r0 (see also Footnote 18). By continuity, this means that F12F34 < F23F14 for all (x; y; �; 1) 2 N;
whereN is a small enough open neighborhood of (x0; y0; �0; 1): If we can restrict the equilibrium allocation
to lie in N; then by the analogy of the preceeding section for negative assortative matching we know that
matching can only be negative assortative, and therefore (13) cannot fail if we want to obtain positive
assortative matching. Since we want to ensure positive assortative matching for all type distributions,
we can choose the support of x and y within this neighborhood. But since � is endogenous, this requires
slightly more work. Assume that X = [x0; x0+"] and Y = [y0; y0+"]; and uniform type distributions with
mass H"

w(x
0+") = �0 and H"

f (y
0+") = 1: For small enough "0; �rms make nearly identical pro�ts. Since

they can only match with nearly identical types, identical pro�ts imply that they have to have nearly
identical factor ratios �(x): These have to be close to the average ratio in the population. Therefore,
for " small enough all matches lie in N; which rules out that matching can be positive assortative for
all type distributions if (13) fails.

6.1 Construction of a di¤erential positive assortative equilibrium.

Assume (13) holds at all (x; y; l; r) 2 R4+. Assume also that F (x; y; �; 1) is strictly increasing in x and
y and has a �nite strictly positive maximum in � (for example because of positive outside options as in
outlined in Footnote 10). The former implies that implies that higher types are matched in equilibrium
whenever lower types are. We know there is sorting, so �(�x) = �y. Take a guess for �(�x). Then the �rst
two equations in (14) evaluated at (x; �(x); �(x)) give a di¤erential equation system that uniquely gives
�(x) and �(x) at all values of x below �x: Equation (5) gives the associated wages w(x), and output
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minus the wages gives the �rms�pro�ts �(�(x)). Stop the di¤erential equation at x� and y� = �(x�)
when for the �rst time one of the following conditions occurs: (a) x� =x, (b) y� = y; (c) w(x�) = 0 or
(d) �(y�) = 0: One has found an equilibrium if of the following holds: (a)&(b) which means that the
lowest types are matched and might both get positive payo¤, (a)&(d) which means that not all �rms
are matched which means that the lowest �rms have unmatched immediate substitutes and therefore
have to earn zero, or (b)&(c) in which case some workers are unmatched and the lowest worker type
gets zero, or (c)&(d) hold in which case there are both unmatched workers and �rms at the lower
end. Clearly, the �rst order conditions are satis�ed because the di¤erential equation was constructed to
satisfy (5) and (6), and the second order condition is locall satis�ed because (13) holds. One can show
that (13) also implies that no �rm wants to deviate globally. Finally, for any guess of �(�x) such that
w(�x) > 0 and �(y) > 0 one of the end-point conditions (a)� (d) arises. At very low guesses either (b)
or (d) holds (few workers per �rm means that one either exhausts the �rms or depletes their pro�ts),
while at very high levels of �(�x) either (a) or (c) holds. Since the system changes continuously in the
initial guess, the set of guesses that gives rise to a particular condition is compact. Given that at low
guesses (b) or (d) hold while at high guess (a) or (c) hold, there has to be some intermediate guess
where two conditions hold at the same time: (a)&(b), (a)&(d), (b)*(c) or (c)&(d), constituting and
equilibrium.

The Non-Homogeneous Production Technology

Let output of the �rm be F (x; y; r; s); and the �rm of type y chooses the worker type and the labor
intensity l. As before, let the capital intensity r be given. Then the problem is

max
x;l

F (x; y; l; r)� lw(x)� rv(y):

The �rst order conditions for optimality are

F1(x; �(x); l; r)� lw0(x) = 0

F3(x; �(x); l; r)� w(x) = 0

where �(x) and l are the equilibrium values. The second order condition of this problem requires the
Hessian H to be negative de�nite:

H =

�
F11 � rw00 F13 � w0
F13 � w0 F33

�
which requires that all the eigenvalues are negative or equivalently, F11 � rw00 < 0 (which follows from
concavity in all the arguments (x; y; l; r)), and���� F11 � rw00 F13 � w0

F13 � w0 F33

���� > 0:
After di¤erentiating the two FOCs along the equilibrium allocation to substitute for F11�rw00 = �F12�0
and F13 � w0 = �F23�0 and also using the �rst FOC to rewrite w0 = F1=r we get���� �F12�0 �F23�0

F13 � w0 F33

���� > 0
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or �F12F33�0 + (F13 � F1=r)F23�0 > 0 and thus PAM requires (knowing that F33 < 0)

F12 >
(F1=r � F13)F23

jF33j
:

Observe that this condition is similar to the one we obtained for the homogeneous case, only that now it
depends on the marginal product F1 and the concavity of F in l, F33. Clearly, the production function
has increasing returns, then the �rm will only choose one type and levy all its resources on this type.
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