Stabilizing Weighted Graphs

Zhuan Khye Koh Laura Sanità

Combinatorics and Optimization
University of Waterloo, Canada

July 3, 2018
Let $G = (V, E)$ be a graph with edge-weights $w \in \mathbb{R}^E \geq 0$.

Def. A vector $x \in \mathbb{R}^E$ is a fractional matching if it is a feasible solution to

$$\nu_f(G) := \max \left\{ w^\top x : x(\delta(v)) \leq 1 \forall v \in V, x \geq 0 \right\}.$$

Def. A vector $y \in \mathbb{R}^V$ is a fractional w-vertex cover if it is a feasible solution to

$$\tau_f(G) := \min \left\{ 1^\top y : y_{uv} + y_{vu} \geq w_{uv} \forall uv \in E, y \geq 0 \right\}.$$

• Denote $\nu(G)$ as the value of a maximum-weight matching in G.

• By LP duality, $\nu(G) \leq \nu_f(G) = \tau_f(G)$.

Matchings and w-vertex covers
Matchings and w-vertex covers

- Let $G = (V, E)$ be a graph with edge-weights $w \in \mathbb{R}^E_{\geq 0}$.
Matchings and w-vertex covers

• Let $G = (V, E)$ be a graph with edge-weights $w \in \mathbb{R}^E_{\geq 0}$.

Def. A vector $x \in \mathbb{R}^E$ is a fractional matching if it is a feasible solution to

$$
\nu_f(G) := \max \left\{ w^T x : x(\delta(v)) \leq 1 \ \forall v \in V, x \geq 0 \right\}.
$$

• Denote $\nu(G)$ as the value of a maximum-weight matching in G.

• By LP duality, $\nu(G) \leq \nu_f(G) = \tau_f(G)$.
Matchings and w-vertex covers

• Let $G = (V,E)$ be a graph with edge-weights $w \in \mathbb{R}^E_{\geq 0}$.

Def. A vector $x \in \mathbb{R}^E$ is a fractional matching if it is a feasible solution to

$$\nu_f(G) := \max \left\{ w^\top x : x(\delta(v)) \leq 1 \ \forall v \in V, \ x \geq 0 \right\}.$$

Def. A vector $y \in \mathbb{R}^V$ is a fractional w-vertex cover if it is a feasible solution to

$$\tau_f(G) := \min \left\{ 1^\top y : y_u + y_v \geq w_{uv} \ \forall uv \in E, \ y \geq 0 \right\}.$$
Matchings and \(w \)-vertex covers

- Let \(G = (V, E) \) be a graph with edge-weights \(w \in \mathbb{R}^E_{\geq 0} \).

Def. A vector \(x \in \mathbb{R}^E \) is a **fractional matching** if it is a feasible solution to

\[
\nu_f(G) := \max \left\{ w^T x : x(\delta(v)) \leq 1 \ \forall v \in V, x \geq 0 \right\}.
\]

Def. A vector \(y \in \mathbb{R}^V \) is a **fractional \(w \)-vertex cover** if it is a feasible solution to

\[
\tau_f(G) := \min \left\{ 1^T y : y_u + y_v \geq w_{uv} \ \forall uv \in E, y \geq 0 \right\}.
\]

- Denote \(\nu(G) \) as the value of a maximum-weight matching in \(G \).
Matchings and w-vertex covers

• Let $G = (V, E)$ be a graph with edge-weights $w \in \mathbb{R}^E_{\geq 0}$.

Def. A vector $x \in \mathbb{R}^E$ is a **fractional matching** if it is a feasible solution to
\[
\nu_f(G) := \max \left\{ w^\top x : x(\delta(v)) \leq 1 \ \forall v \in V, x \geq 0 \right\}.
\]

Def. A vector $y \in \mathbb{R}^V$ is a **fractional w-vertex cover** if it is a feasible solution to
\[
\tau_f(G) := \min \left\{ \mathbb{1}^\top y : y_u + y_v \geq w_{uv} \ \forall uv \in E, y \geq 0 \right\}.
\]

• Denote $\nu(G)$ as the value of a maximum-weight matching in G.

• By LP duality,
\[
\nu(G) \leq \nu_f(G) = \tau_f(G).
\]
Stable graphs

There are graphs where $\nu(G) < \nu(f(G))$. 1

Def. A graph G is stable if $\nu(G) = \nu(f(G))$. 1

$x = 1$
Stable graphs

- There are graphs where $\nu(G) < \nu_f(G)$.
Stable graphs

- There are graphs where $\nu(G) < \nu_f(G)$.

\[x_e = 1\]

\[x_e = \frac{1}{2}\]
Stable graphs

- There are graphs where $\nu(G) < \nu_f(G)$.

\[\nu(G) = 1 \quad \text{and} \quad \nu_f(G) = 1.5 \]

Def. A graph G is **stable** if $\nu(G) = \nu_f(G)$.
Stable graphs

• There are graphs where \(\nu(G) < \nu_f(G) \).

\[
\begin{align*}
\nu(G) &= 1 \\
\nu_f(G) &= 1.5
\end{align*}
\]

Def. A graph \(G \) is stable if \(\nu(G) = \nu_f(G) \).

\[
\begin{align*}
\nu(G) &= 1 \\
\nu_f(G) &= 1.5
\end{align*}
\]
Stable graphs

• There are graphs where $\nu(G) < \nu_f(G)$.

\[\nu(G) = 1\]
\[\nu_f(G) = 1.5\]

Def. A graph G is **stable** if $\nu(G) = \nu_f(G)$.
Stabilizers

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \setminus F$ is stable.

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \setminus S$ is stable.
Stabilizers

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \setminus F$ is stable.
Stabilizers

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \setminus F$ is stable.

![Diagram of edge-stabilizer]

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \setminus S$ is stable.

![Diagram of vertex-stabilizer]
Stabilizers

Def. An edge-stabilizer is a subset $F \subseteq E$ such that $G \setminus F$ is stable.

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \setminus S$ is stable.
Stabilizers

Def. An edge-stabilizer is a subset $F \subseteq E$ such that $G \setminus F$ is stable.

![Diagram of edge-stabilizer](image1)

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \setminus S$ is stable.

![Diagram of vertex-stabilizer](image2)
Finding small stabilizers

This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

Why are stable graphs interesting?

Motivated by network bargaining games and cooperative matching games.
Finding small stabilizers

- This gives rise to the following two optimization problems:
Finding small stabilizers

- This gives rise to the following two optimization problems:

 Minimum Vertex-Stabilizer
 Find a vertex-stabilizer of minimum cardinality.

 Minimum Edge-Stabilizer
 Find an edge-stabilizer of minimum cardinality.
Finding small stabilizers

- This gives rise to the following two optimization problems:

 Minimum Vertex-Stabilizer
 Find a *vertex-stabilizer* of minimum cardinality.

 Minimum Edge-Stabilizer
 Find an *edge-stabilizer* of minimum cardinality.

- Why are stable graphs interesting?
Finding small stabilizers

- This gives rise to the following two optimization problems:

 Minimum Vertex-Stabilizer
 Find a *vertex-stabilizer* of minimum cardinality.

 Minimum Edge-Stabilizer
 Find an *edge-stabilizer* of minimum cardinality.

- Why are stable graphs interesting?
 - Motivated by network bargaining games and cooperative matching games.
Network bargaining games

• Given an edge-weighted graph $G = (V, E)$

 ▶ Every vertex represents a player.
 ▶ Every edge e represents a deal of value w_e.

• Every player can make a deal with at most 1 neighbour. → matching M

 ▶ When a deal is made, players split the value. → allocation $y \in \mathbb{R}^V_\geq 0$:

 $y_u + y_v = w_{uv} \quad \forall uv \in M$

 $y_u = 0$ if u is M-exposed.

• An outcome is given by (M, y).

• An outcome is stable if $y_u + y_v \geq w_{uv}$ for all $uv \in E$.

• A stable outcome is balanced if the deal values are "fairly" split.

• A stable outcome exists \iff A balanced outcome exists $\iff G$ is stable
Network bargaining games

• [Kleinberg and Tardos '08] Given an edge-weighted graph $G = (V, E)$
Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G = (V, E)$
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e.

 verdict

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G = (V, E)$
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e.
- Every player can make a deal with at most 1 neighbour.
 \rightarrow matching M
Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G = (V, E)$
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e.
- Every player can make a deal with at most 1 neighbour.
 \[\rightarrow \text{matching } M \]
- When a deal is made, players split the value.
 \[\rightarrow \text{allocation } y \in \mathbb{R}_{\geq 0}^V : \]
 \[y_u + y_v = w_{uv} \quad \forall uv \in M \]
 \[y_u = 0 \text{ if } u \text{ is } M\text{-exposed}. \]
Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph \(G = (V, E) \)
 - Every vertex represents a player.
 - Every edge \(e \) represents a deal of value \(w_e \).
- Every player can make a deal with at most 1 neighbour.
 \[\rightarrow \text{matching } M \]
- When a deal is made, players split the value.
 \[\rightarrow \text{allocation } y \in \mathbb{R}_\geq 0^V: \]
 \[y_u + y_v = w_{uv} \quad \forall uv \in M \]
 \[y_u = 0 \text{ if } u \text{ is } M\text{-exposed.} \]
- An outcome is given by \((M, y)\).
Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G = (V, E)$
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e.
- Every player can make a deal with at most 1 neighbour.
 → matching M
- When a deal is made, players split the value.
 → allocation $y \in \mathbb{R}^V_{\geq 0}$:
 $y_u + y_v = w_{uv}$ \(\forall uv \in M\)
 $y_u = 0$ if u is M-exposed.
- An outcome is given by (M, y).
- An outcome is stable if $y_u + y_v \geq w_{uv}$ for all $uv \in E$.
Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G = (V, E)$
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e.
- Every player can make a deal with at most 1 neighbour.
 - \rightarrow matching M

- When a deal is made, players split the value.
 - \rightarrow allocation $y \in \mathbb{R}^V_{\geq 0}$:
 - $y_u + y_v = w_{uv} \quad \forall uv \in M$
 - $y_u = 0$ if u is M-exposed.

- An outcome is given by (M, y).
- An outcome is stable if $y_u + y_v \geq w_{uv}$ for all $uv \in E$.
- A stable outcome is balanced if the deal values are “fairly” split.
Network bargaining games

• [Kleinberg and Tardos '08] Given an edge-weighted graph $G = (V, E)$
 ▶ Every vertex represents a player.
 ▶ Every edge e represents a deal of value w_e.
• Every player can make a deal with at most 1 neighbour.
 → matching M

• When a deal is made, players split the value.
 → allocation $y \in \mathbb{R}^V_{\geq 0}$:
 $y_u + y_v = w_{uv}$ $\forall uv \in M$
 $y_u = 0$ if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if $y_u + y_v \geq w_{uv}$ for all $uv \in E$.
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists \iff A balanced outcome exists \iff G is stable
Cooperative matching games

Let $G = (V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate
 $\sum_{v \in S} y_v \geq \nu(G[S])$ \quad $\forall S \subseteq V$

- Such an allocation y is called stable.

[Deng et al. '99] proved that a stable allocation exists $\iff G$ is stable.

Can we stabilize unstable games through minimal changes in the underlying network?

e.g. by blocking some players

Vertex-stabilizer

by blocking some deals

Edge-stabilizer
Cooperative matching games

- [Shapley and Shubik ’71] Let $G = (V, E)$ be an edge-weighted graph.

- [Deng et al. ’99] proved that a stable allocation exists $\iff G$ is stable. Can we stabilize unstable games through minimal changes in the underlying network? e.g. by blocking some players (Vertex-stabilizer) or blocking some deals (Edge-stabilizer).
Cooperative matching games

• [Shapley and Shubik '71] Let $G = (V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

\[
\sum_{v \in S} y_v \geq \nu(G[S]) \quad \forall S \subseteq V
\]
Cooperative matching games

• [Shapley and Shubik ’71] Let $G = (V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that
 1. No subset $S \subseteq V$ is incentivized to form a coalition to deviate
 $$\sum_{v \in S} y_v \geq \nu(G[S]) \quad \forall S \subseteq V$$
 2. Such an allocation y is called stable.

• [Deng et al. ’99] proved that G is stable if and only if a stable allocation exists.
Cooperative matching games

• [Shapley and Shubik '71] Let \(G = (V, E) \) be an edge-weighted graph.

Goal: Allocate the value \(\nu(G) \) among the vertices such that

- No subset \(S \subseteq V \) is incentivized to form a coalition to deviate

\[
\sum_{v \in S} y_v \geq \nu(G[S]) \quad \forall S \subseteq V
\]

- Such an allocation \(y \) is called **stable**.

• [Deng et al. '99] proved that a stable allocation exists \(\iff \) \(G \) is stable
Cooperative matching games

- [Shapley and Shubik ’71] Let $G = (V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that
- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$\sum_{v \in S} y_v \geq \nu(G[S]) \quad \forall S \subseteq V$$

- Such an allocation y is called **stable**.

- [Deng et al. ’99] proved that a stable allocation exists $\iff G$ is stable.

Can we stabilize unstable games through minimal changes in the underlying network?
Cooperative matching games

• [Shapley and Shubik ’71] Let $G = (V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$\sum_{v \in S} y_v \geq \nu(G[S]) \quad \forall S \subseteq V$$

- Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists $\iff G$ is stable

Can we stabilize unstable games through minimal changes in the underlying network?

E.g. by blocking some players
Vertex-stabilizer

by blocking some deals
Edge-stabilizer
State of the art

Unweighted Graphs

• [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

• They gave an $O(\omega)$-approximation algorithm, where ω is the sparsity of the graph.

• [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer is polynomial time solvable.

• Stabilizing a graph via different operations:
 ▶ [Ito et al. '16] Adding vertices/edges.
 ▶ [Chandrasekaran et al. '16] Fractionally increasing edge weights.

• [Ahmadian et al. '16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. '11, Biró et al. '12, Kőnemann et al. '15].
Unweighted Graphs

- Finding a minimum edge-stabilizer is hard to approximate within a factor of $2 - \varepsilon$ for any $\varepsilon > 0$ assuming UGC.
- An $O(\omega)$-approximation algorithm was given, where ω is the sparsity of the graph.

- Finding a minimum vertex-stabilizer is polynomial time solvable.

- Stabilizing a graph via different operations:
 - Adding vertices/edges.
 - Fractionally increasing edge weights.
 - Vertex-stabilizer with costs.

- Other variants: [Mishra et al. '11, Biró et al. '12, Könenmann et al. '15].
State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.
State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of \((2 - \varepsilon)\) for any \(\varepsilon > 0\) assuming UGC.
- They gave an \(O(\omega)\)-approximation algorithm, where \(\omega\) is the sparsity of the graph.

- [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer is polynomial time solvable.

- Stabilizing a graph via different operations:
 - [Ito et al. '16] Adding vertices/edges.
 - [Chandrasekaran et al. '16] Fractionally increasing edge weights.
 - [Ahmadian et al '16] Vertex-stabilizer with costs.

- Other variants [Mishra et al. '11, Biró et al. '12, Kőnemann et al. '15].
State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to approximate within a factor of \((2 - \varepsilon)\) for any \(\varepsilon > 0\) assuming UGC.

• They gave an \(O(\omega)\)-approximation algorithm, where \(\omega\) is the sparsity of the graph.

State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

- They gave an $O(\omega)$-approximation algorithm, where ω is the sparsity of the graph.

- [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer is polynomial time solvable.

- Stabilizing a graph via different operations:
 - [Ito et al. '16] Adding vertices/edges.
 - [Chandrasekaran et al. '16] Fractionally increasing edge weights.
State of the art

Unweighted Graphs

- [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to approximate within a factor of \((2 - \varepsilon)\) for any \(\varepsilon > 0\) assuming UGC.

- They gave an \(O(\omega)\)-approximation algorithm, where \(\omega\) is the sparsity of the graph.

- Stabilizing a graph via different operations:
 - [Ito et al. ’16] Adding vertices/edges.
 - [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to approximate within a factor of \((2 - \varepsilon)\) for any \(\varepsilon > 0\) assuming UGC.

• They gave an \(O(\omega)\)-approximation algorithm, where \(\omega\) is the sparsity of the graph.

• Stabilizing a graph via different operations:
 ▶ [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].
Unweighted vs. weighted graphs

• On unweighted graphs,
 • For any minimum edge-stabilizer F, $\nu(G \setminus F) = \nu(G)$.
 • For any minimum vertex-stabilizer S, $\nu(G \setminus S) = \nu(G)$.

• This property does not hold on weighted graphs.
Unweighted vs. weighted graphs

- On unweighted graphs,
 - For any minimum edge-stabilizer F, $\nu(G \setminus F) = \nu(G)$.
 - For any minimum vertex-stabilizer S, $\nu(G \setminus S) = \nu(G)$.

This property does not hold on weighted graphs.
Unweighted vs. weighted graphs

• On unweighted graphs,
 ▶ For any minimum edge-stabilizer \(F \), \(\nu(G \setminus F) = \nu(G) \).
 ▶ For any minimum vertex-stabilizer \(S \), \(\nu(G \setminus S) = \nu(G) \).

• This property does not hold on weighted graphs.
Unweighted vs. weighted graphs

- On unweighted graphs,
 - For any minimum edge-stabilizer F, $\nu(G \setminus F) = \nu(G)$.
 - For any minimum vertex-stabilizer S, $\nu(G \setminus S) = \nu(G)$.

- This property does not hold on weighted graphs.

\begin{align*}
\nu(G) &= 5 \\
\nu_f(G) &= 6
\end{align*}
Main results

Thm 1: There exists a polynomial time algorithm that computes a minimum vertex-stabilizer S for a weighted graph G. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where $\nu(G \setminus S) = \nu(G)$ is NP-complete.

Thm 3: There is no constant factor approximation for the minimum edge-stabilizer problem unless $P = NP$.

Thm 4: There exists an efficient $O(\Delta)$-approximation algorithm for the minimum edge-stabilizer problem.
Main results

Thm 1: There exists a polynomial time algorithm that computes a minimum vertex-stabilizer S for a weighted graph G. Moreover,

$$\nu(G \setminus S) \geq \frac{2}{3} \nu(G).$$

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where $\nu(G \setminus S) = \nu(G)$ is \textbf{NP}-complete.
Main results

Thm 1: There exists a polynomial time algorithm that computes a minimum vertex-stabilizer S for a weighted graph G. Moreover,

$$\nu(G \setminus S) \geq \frac{2}{3} \nu(G).$$

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where $\nu(G \setminus S) = \nu(G)$ is NP-complete.

Thm 3: There is no constant factor approximation for the minimum edge-stabilizer problem unless $P = NP$.

Thm 4: There exists an efficient $O(\Delta)$-approximation algorithm for the minimum edge-stabilizer problem.
Thm [Balinski '70]:
A fractional matching \hat{x} in G is basic if and only if
$1 \leq \hat{x}_e \leq 1$ for every edge e; and
The edges e with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in G.

$\mathcal{C}(\hat{x}) := \{C_1,...,C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$
$\mathcal{M}(\hat{x}) := \{e \in E : \hat{x}_e = 1\}$.

Def. $\gamma(G) := \min \hat{x} \in X | \mathcal{C}(\hat{x})|$ where X is the set of basic maximum-weight fractional matchings in G.

G is stable if and only if $\gamma(G) = 0$.

Let y be a minimum fractional w-vertex cover in G.
An edge uv is tight if $y_u + y_v = w_{uv}$.
A path is tight if all its edges are tight.
Thm [Balinski ’70]: A fractional matching \(\hat{x} \) in \(G \) is basic if and only if

1. \(\hat{x}_e \in \{0, \frac{1}{2}, 1\} \) for every edge \(e \); and
2. The edges \(e \) with \(\hat{x}_e = \frac{1}{2} \) induce vertex-disjoint odd cycles in \(G \).
Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if

1. $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge e; and
2. The edges e with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
Thm [Balinski ’70]: A fractional matching \hat{x} in G is basic if and only if
1. $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge e; and
2. The edges e with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
 - $\mathcal{C}(\hat{x}) := \{C_1, \ldots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$
Thm [Balinski '70]: A fractional matching \(\hat{x} \) in \(G \) is basic if and only if

1. \(\hat{x}_e \in \{0, \frac{1}{2}, 1\} \) for every edge \(e \); and
2. The edges \(e \) with \(\hat{x}_e = \frac{1}{2} \) induce vertex-disjoint odd cycles in \(G \).

- Given a basic fractional matching \(\hat{x} \) in \(G \), denote
 - \(C(\hat{x}) := \{C_1, \ldots, C_q\} \) as the set of odd cycles induced by \(\hat{x}_e = \frac{1}{2} \)
 - \(M(\hat{x}) := \{e \in E : \hat{x}_e = 1\} \).
Preliminaries

Thm [Balinski ’70]: A fractional matching \hat{x} in G is basic if and only if
1. $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge e; and
2. The edges e with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in G.

• Given a basic fractional matching \hat{x} in G, denote
 ▶ $\mathcal{C}(\hat{x}) := \{C_1, \ldots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$
 ▶ $M(\hat{x}) := \{e \in E : \hat{x}_e = 1\}$.

Def.

$$\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathcal{C}(\hat{x})|$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.
Thm [Balinski ’70]: A fractional matching \(\hat{x} \) in \(G \) is \textit{basic} if and only if

1. \(\hat{x}_e \in \{0, \frac{1}{2}, 1\} \) for every edge \(e \); and
2. The edges \(e \) with \(\hat{x}_e = \frac{1}{2} \) induce vertex-disjoint odd cycles in \(G \).

- Given a basic fractional matching \(\hat{x} \) in \(G \), denote
 - \(\mathcal{C}(\hat{x}) := \{C_1, \ldots, C_q\} \) as the set of odd cycles induced by \(\hat{x}_e = \frac{1}{2} \)
 - \(M(\hat{x}) := \{e \in E : \hat{x}_e = 1\} \).

\textbf{Def.}

\[
\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathcal{C}(\hat{x})|,
\]

where \(\mathcal{X} \) is the set of basic maximum-weight fractional matchings in \(G \).

- \(G \) is stable if and only if \(\gamma(G) = 0 \).
Preliminaries

Thm [Balinski ’70]: A fractional matching \(\hat{x} \) in \(G \) is basic if and only if
1. \(\hat{x}_e \in \{0, \frac{1}{2}, 1\} \) for every edge \(e \); and
2. The edges \(e \) with \(\hat{x}_e = \frac{1}{2} \) induce vertex-disjoint odd cycles in \(G \).

- Given a basic fractional matching \(\hat{x} \) in \(G \), denote
 - \(C(\hat{x}) := \{C_1, \ldots, C_q\} \) as the set of odd cycles induced by \(\hat{x}_e = \frac{1}{2} \)
 - \(M(\hat{x}) := \{e \in E : \hat{x}_e = 1\} \).

Def.

\[
\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |C(\hat{x})|
\]

where \(\mathcal{X} \) is the set of basic maximum-weight fractional matchings in \(G \).

- \(G \) is stable if and only if \(\gamma(G) = 0 \).

- Let \(y \) be a minimum fractional \(w \)-vertex cover in \(G \).
Preliminaries

Thm [Balinski '70]: A fractional matching \(\hat{x} \) in \(G \) is basic if and only if

1. \(\hat{x}_e \in \{0, \frac{1}{2}, 1\} \) for every edge \(e \); and
2. The edges \(e \) with \(\hat{x}_e = \frac{1}{2} \) induce vertex-disjoint odd cycles in \(G \).

• Given a basic fractional matching \(\hat{x} \) in \(G \), denote
 - \(\mathcal{C}(\hat{x}) := \{C_1, \ldots, C_q\} \) as the set of odd cycles induced by \(\hat{x}_e = \frac{1}{2} \)
 - \(M(\hat{x}) := \{e \in E : \hat{x}_e = 1\} \).

Def.

\[
\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathcal{C}(\hat{x})|
\]

where \(\mathcal{X} \) is the set of basic maximum-weight fractional matchings in \(G \).

- \(G \) is stable if and only if \(\gamma(G) = 0 \).

• Let \(y \) be a minimum fractional \(w \)-vertex cover in \(G \).
 - An edge \(uv \) is tight if \(y_u + y_v = w_{uv} \).
Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if

1. $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge e; and
2. The edges e with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
 - $C(\hat{x}) := \{C_1, \ldots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$
 - $M(\hat{x}) := \{e \in E : \hat{x}_e = 1\}$.

Def.

$$\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |C(\hat{x})|$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.

- G is stable if and only if $\gamma(G) = 0$.

- Let y be a minimum fractional w-vertex cover in G.
 - An edge uv is tight if $y_u + y_v = w_{uv}$.
 - A path is tight if all its edges are tight.
Preliminaries

1. By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

2. By alternate rounding on $C \in \mathbb{C}(\hat{x})$ at vertex v, we mean...
Preliminaries

- We will use the following 2 operations:

1. By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

2. By alternate rounding on $C \in C(\hat{x})$ at vertex v, we mean...
Preliminaries

- We will use the following 2 operations:
 1. By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

Preliminaries

• We will use the following 2 operations:

1. By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

![Diagram of graph with alternating path]
Preliminaries

• We will use the following 2 operations:

 1. By **complementing** on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

 ![Diagram](image-url)
Preliminaries

• We will use the following 2 operations:

1. By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

2. By alternate rounding on $C \in \mathcal{C}(\hat{x})$ at vertex v, we mean
Preliminaries

• We will use the following 2 operations:

1. By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

2. By alternate rounding on $C \in \mathcal{C}(\hat{x})$ at vertex v, we mean

![Diagram of an alternating path](image)
• We will use the following 2 operations:

1. **By complementing** on \(F \subseteq E \), we mean replacing \(\hat{x}_e \) by \(\bar{x}_e = 1 - \hat{x}_e \) for all \(e \in F \).

2. **By alternate rounding** on \(C \in \mathcal{C}(\hat{x}) \) at vertex \(v \), we mean

Preliminaries

\(\hat{x}_e \) by \(\bar{x}_e = 1 - \hat{x}_e \) for all \(e \in F \).
Preliminaries

- We will use the following 2 operations:

 1. By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 - \hat{x}_e$ for all $e \in F$.

 2. By alternate rounding on $C \in \mathcal{C}(\hat{x})$ at vertex v, we mean

```
    C
    ▶
    ✔
    ✔_
```


 Def. An alternating path is valid if it
 - starts with an exposed vertex or a matched edge
 - ends with an exposed vertex or a matched edge
Computing vertex-stabilizers

1. Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.

2. Compute a minimum fractional w-vertex cover y in G.

3. For every odd cycle, delete the vertex with the smallest y value.
Computing vertex-stabilizers

The algorithm:

1. Compute a basic maximum-weight fractional matching \(\hat{x} \) in \(G \) with \(\gamma(G) \) odd cycles.
2. Compute a minimum fractional \(w \)-vertex cover \(y \) in \(G \).
3. For every odd cycle, delete the vertex with the smallest \(y \) value.
Computing vertex-stabilizers

The algorithm:

1. Compute a basic maximum-weight fractional matching \(\hat{x} \) in \(G \) with \(\gamma(G) \) odd cycles.
Computing vertex-stabilizers

The algorithm:

1. Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
Computing vertex-stabilizers

The algorithm:

1. Compute a basic maximum-weight fractional matching \(\hat{x} \) in \(G \) with \(\gamma(G) \) odd cycles.
2. Compute a minimum fractional \(w \)-vertex cover \(y \) in \(G \).
Computing vertex-stabilizers

The algorithm:

1. Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
2. Compute a minimum fractional w-vertex cover y in G.
3. For every odd cycle, delete the vertex with the smallest y value.
Computing vertex-stabilizers

The algorithm:

1. Compute a basic maximum-weight fractional matching \(\hat{x} \) in \(G \) with \(\gamma(G) \) odd cycles.
2. Compute a minimum fractional \(w \)-vertex cover \(y \) in \(G \).
3. For every odd cycle, delete the vertex with the smallest \(y \) value.
Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|C(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|C(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_i, C_j \in C(\hat{x})$.

Furthermore, alternate rounding on C_i, C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $C(\bar{x}) \subset C(\hat{x})$.
Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|C(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|C(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_i, C_j \in C(\hat{x})$. Furthermore, alternate rounding on C_i, C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $C(\bar{x}) \subset C(\hat{x})$.

Minimize number of odd cycles
Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathcal{C}(\hat{x})| = \gamma(G)$.

Thm [Balas ’81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|\mathcal{C}(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_i, C_j \in \mathcal{C}(\hat{x})$.
Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|C(\hat{x})| = \gamma(G)$.

Thm [Balas ’81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|C(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_i, C_j \in C(\hat{x})$.
Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|C(\hat{x})| = \gamma(G)$.

Thm [Balas ’81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|C(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_i, C_j \in C(\hat{x})$.

Furthermore, alternate rounding on C_i, C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $C(\bar{x}) \subset C(\hat{x})$.
Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|C(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|C(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_i, C_j \in C(\hat{x})$.

Furthermore, alternate rounding on C_i, C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $C(\bar{x}) \subset C(\hat{x})$.
Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|C(\hat{x})| = \gamma(G)$.

Thm [Balas ’81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|C(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_i, C_j \in C(\hat{x})$.

Furthermore, alternate rounding on C_i, C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $C(\bar{x}) \subset C(\hat{x})$.

![Diagram of graph with paths and cycles](image)
Minimize number of odd cycles

Thm 5:
Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|C(\hat{x})| > \gamma(G)$, then G contains at least one of the following:

- $y_v = 0$
- C_i tight and valid
- P_w tight

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \overline{x} such that $C(\overline{x}) \subset C(\hat{x})$.
Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional ω-vertex cover in G. If $|C(\hat{x})| > \gamma(G)$, then G contains at least one of the following:
Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|C(\hat{x})| > \gamma(G)$, then G contains at least one of the following:

- C_i tight and valid
- $P_{C_i}^j$ tight
- Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $C(\bar{x}) \subset C(\hat{x})$.
Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|C(\hat{x})| > \gamma(G)$, then G contains at least one of the following:

- C_i with $y_v = 0$
- C_i with tight and valid P and $y_v = 0$
Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathcal{C}(\hat{x})| > \gamma(G)$, then G contains at least one of the following:

- $y_v = 0$
- C_i tight and valid P
- C_i tight P
- C_i and C_j connected by a path P
Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|C(\hat{x})| > \gamma(G)$, then G contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $C(\bar{x}) \subset C(\hat{x})$.
Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathcal{C}(\hat{x})| > \gamma(G)$, then G contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathcal{C}(\bar{x}) \subset \mathcal{C}(\hat{x})$.

![Diagram of odd cycles and vertex cover](image-url)
Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathcal{C}(\hat{x})| > \gamma(G)$, then G contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathcal{C}(\bar{x}) \subset \mathcal{C}(\hat{x})$.

![Diagram of cycles and vertex cover](image-url)
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x} (\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x} (\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.
5. Shrink every odd cycle $C_i \in C(\hat{x})$ into a pseudonode i.

Lemma: M' is a maximum matching in G' if and only if $|C(\hat{x})| = \gamma(G)$.

Minimize number of odd cycles

Construct the unweighted graph G' as follows:

- **Step 1**: Delete all non-tight edges.
- **Step 2**: Add a vertex z.
- **Step 3**: For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
- **Step 4**: For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv' and $v'z$.
- **Step 5**: Shrink every odd cycle $C_i \in C(\hat{x})$ into a pseudonode i.

Lemma: M' is a maximum matching in G' if and only if $|C(\hat{x})| = \gamma(G)$.
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.

![Graph diagram]
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.

$\textbf{Lemma:}$ M' is a maximum matching in G' if and only if $|C(\hat{x})| = \gamma(G)$.
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.

Lemma: M' is a maximum matching in G' if and only if $|\hat{C}(\hat{x})| = \gamma(G)$.

\[
\begin{array}{c}
\text{Construct the unweighted graph } G' \text{ as follows:} \\
\begin{enumerate}
\item Delete all non-tight edges. \\
\item Add a vertex z. \\
\end{enumerate}
\end{array}
\]
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.
5. Shrink every odd cycle $C_i \in C(\hat{x})$ into a pseudonode i.

Lemma: M' is a maximum matching in G' if and only if $\gamma(G) = |C(\hat{x})|$.
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv' and $v'z$.

Lemma: M' is a maximum matching in G' if and only if $|C(\hat{x})| = \gamma(G)$.
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.

Lemma: M' is a maximum matching in G' if and only if $|\mathcal{C}(\hat{x})| = \gamma(G)$.
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.

Lemma: M' is a maximum matching in G' if and only if $|C(\hat{x})| = \gamma(G)$.

\[G \]

\[M' \]

\[Z \]
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.
5. Shrink every odd cycle $C_i \in \mathcal{C}(\hat{x})$ into a pseudonode i.

Lemma: M' is a maximum matching in G' if and only if $|C(\hat{x})| = \gamma(G)$.
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.
5. Shrink every odd cycle $C_i \in \mathcal{C}(\hat{x})$ into a pseudonode i.
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.
5. Shrink every odd cycle $C_i \in \mathcal{C}(\hat{x})$ into a pseudonode i.

\[\text{Lemma:} \quad M' \text{ is a maximum matching in } G' \text{ if and only if } |\mathcal{C}(\hat{x})| = \gamma(G'). \]
Minimize number of odd cycles

Construct the unweighted graph G' as follows:

1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
4. For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', $v'z$.
5. Shrink every odd cycle $C_i \in \mathcal{C}(\hat{x})$ into a pseudonode i.

Lemma: M' is a maximum matching in G' if and only if $|\mathcal{C}(\hat{x})| = \gamma(G)$.
Computing vertex-stabilizers

Theorem 1:
The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Proof:
- **Stability** - due to complementary slackness.
- **Optimality** - $\gamma(G)$ is a lower bound on the size of a vertex-stabilizer.
Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Proof: Stability - due to complementary slackness. Optimality - $\gamma(G)$ is a lower bound on the size of a vertex-stabilizer.
Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Proof: Stability - due to complementary slackness.
Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Proof: Stability - due to complementary slackness.
Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Proof: Stability - due to complementary slackness.
Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Proof: Stability - due to complementary slackness.
Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \setminus S) \geq \frac{2}{3} \nu(G)$.

Proof: Stability - due to complementary slackness.

Optimality - $\gamma(G)$ is a lower bound on the size of a vertex-stabilizer.
Lemma: For any vertex v, $\gamma(G \setminus v) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with an odd cycle $C(\hat{x})$.

Easy case: v lies in a cycle of $C(\hat{x})$.

Hard case: v does not lie in a cycle of $C(\hat{x})$.
Lemma: For any vertex \(v \), \(\gamma(G \setminus v) \geq \gamma(G) - 1 \).
Lemma: For any vertex \(v \), \(\gamma(G \setminus v) \geq \gamma(G) - 1 \).

Proof: Let \(\hat{x} \) be a maximum-weight fractional matching in \(G \) with \(\gamma(G) \) odd cycles.
Lower bound

Lemma: For any vertex \(v \), \(\gamma(G \setminus v) \geq \gamma(G) - 1 \).

Proof: Let \(\hat{x} \) be a maximum-weight fractional matching in \(G \) with \(\gamma(G) \) odd cycles.

Diagram:

- Cycle with \(\hat{x} \) edges.
- Other edges for odd cycles.
Lemma: For any vertex v, $\gamma(G \setminus v) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $C(\hat{x})$.
Lemma: For any vertex v, $\gamma(G \setminus v) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathcal{C}(\hat{x})$.
Lower bound

Lemma: For any vertex v, $\gamma(G \setminus v) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

1. **Easy case:** v lies in a cycle of $C(\hat{x})$.
2. **Hard case:** v does not lie in a cycle of $C(\hat{x})$.
Lemma: For any vertex v, $\gamma(G \setminus v) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $C(\hat{x})$.

Hard case: v does not lie in a cycle of $C(\hat{x})$.

![Diagram of a graph with vertices and edges, illustrating the lemma and proof.](image-url)
Can we do better?

Can we preserve more than $\frac{2}{3} \nu(G)$?

No!

For any subset $S \subseteq V$, $\nu(G \setminus S) \leq 2 = \frac{2}{3} - \varepsilon \nu(G)$.

Can we decide if G has a weight-preserving vertex-stabilizer S, i.e., $\nu(G \setminus S) = \nu(G)$?

NP-complete!
Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$?
Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!
Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

![Diagram](image)
Can we do better?

- Can we preserve more than \(\frac{2}{3} \nu(G) \)? No!

For any subset \(S \subseteq V \),

\[
\nu(G \setminus S) \leq 2 = \frac{2}{3 - \varepsilon} \nu(G)
\]
Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

For any subset $S \subseteq V$,

$$\nu(G \setminus S) \leq 2 = \frac{2}{3 - \varepsilon} \nu(G)$$

- Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.

$$\nu(G \setminus S) = \nu(G)?$$
Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

For any subset $S \subseteq V$,

$$\nu(G \setminus S) \leq 2 = \frac{2}{3 - \varepsilon} \nu(G)$$

- Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.

$$\nu(G \setminus S) = \nu(G) ?$$

NP-complete!
Computing edge-stabilizers

• In contrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge e, $\gamma(G \setminus e) \geq \gamma(G) - 2$.

Lower Bound: Every edge-stabilizer has size at least $\lceil \gamma(G) / 2 \rceil$.

Thm 4: There exists an $O(\Delta)$-approximation algorithm for the minimum edge-stabilizer problem.
Computing edge-stabilizers

- In contrast to vertex-stabilizers, \(\gamma(G) \) is not a lower bound.
Computing edge-stabilizers

- In contrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

![Graph Diagram]

Lemma:
For any edge e, $\gamma(G - e) \geq \gamma(G) - 2$.

Lower Bound:
Every edge-stabilizer has size at least $\lceil \gamma(G)^2 \rceil$.

Thm 4:
There exists an $O(\Delta)$-approximation algorithm for the minimum edge-stabilizer problem.
In contrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.
Computing edge-stabilizers

- In contrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

![Diagram of a graph showing edge-stabilizers](image_url)
Computing edge-stabilizers

• In contrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge e, $\gamma(G \setminus e) \geq \gamma(G) - 2$.
Computing edge-stabilizers

• In contrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge e, $\gamma(G \setminus e) \geq \gamma(G) - 2$.

Lower Bound: Every edge-stabilizer has size at least $\left\lceil \frac{\gamma(G)}{2} \right\rceil$.
Computing edge-stabilizers

- In contrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

![Diagram showing edge-stabilizers](image)

Lemma: For any edge e, $\gamma(G \setminus e) \geq \gamma(G) - 2$.

Lower Bound: Every edge-stabilizer has size at least $\left\lceil \frac{\gamma(G)}{2} \right\rceil$.

Thm 4: There exists an $O(\Delta)$-approximation algorithm for the minimum edge-stabilizer problem.
Additional results

- Given a set of deals M, remove as few players as possible such that M is realizable as a stable outcome.

 \rightarrow Find a minimum vertex-stabilizer S such that M is a maximum-weight matching in $G \setminus S$.

- A solution to this problem is called an M-vertex-stabilizer.

Thm [Ahmadian et al. ’16]: If M is a maximum matching in an unweighted graph, then it is polytime solvable.

Thm 6: The problem is \mathbf{NP}-hard on unweighted graphs. Moreover, no $(2 - \varepsilon)$-approximation algorithm exists for any $\varepsilon > 0$ assuming UGC.

Thm 7: The problem admits a 2-approximation algorithm on weighted graphs. Furthermore, if M is a maximum-weight matching, then it is polytime solvable.
Thank you!
Appendix 1

Thm 2: Deciding whether a graph has a weight-preserving vertex-stabilizer is **NP**-complete.

Proof: Reduction from the independent set problem.

Construct the gadget graph G^* as follows:

G has an independent set of size k \iff G^* has a weight-preserving vertex-stabilizer. \square
Appendix 2

Thm 3: There is no constant factor approximation for the minimum edge-stabilizer problem unless \(P = NP \).

Proof: Suppose we have an \(\alpha \)-approximation algorithm. Set \(\rho = \lceil \alpha \rceil \).

- If \(G \) has an independent set of size \(k \), then \(\text{OPT} \leq k \).
- Else, \(\text{OPT} \geq (\rho + 1)k \). \(\square \)