
B Appendix (Online only): Details of Case 2

In this Appendix, I provide more details on Case 2 of the model. First, I formally define the

equilibrium concept.

Definition B.1 A linear Rational Expectation Equilibrium is given by the linear price func-

tions p1, p2, mapping the aggregate random variables to prices and individual demands,

di1, d
j
1, d

j
2 such that di1, d

j
2, d

j
1, solve problems (9)-(11) and (41) , respectively and pt clear

the market in period t = 1, 2.

Following the discussion in the main text, conjecture (13) and definitions of q2, τ2, and

τθ, b2, c2, e2, g2 are used as before. I defined the conjecture of the first period price, q1, φ and

τ1 in the main text.

I define bI , cI , eI and bJ , cJ , eJ as the linear coefficients of the conditional expectations

E
(
q2|xi, y, q1

)
= aIx

i + cIy + eIq1 (B.1)

E
(
q2|zj, y, q1

)
= bJz

j + cJy + eJq1 (B.2)

and

τ 2
I ≡

1

var (q2|xi, y, q1)

τ 2
J ≡

1

var (q2|zj, y, q1)

as the corresponding precision.

The problem of each J-trader in the second period and that of each I-trader in the first

period are very similar to their respective problems in case 1. The optimal demand of these

traders leads to the same formulations of (20) and (21), respectively.

However, J-traders have to solve a two period problem in period 1. I show below that

their demand function takes the form of

dj1 =
(τ 2
θ b

2
2 + τ 2

J ) (E (p2|zj, y, q1)− p1)

(b2 + e2)2 γ
+
τ 2
θ b

2
2 (zj − E (q2|zj, y, q1))

(b2 + e2) γ
, (B.3)

a weighted sum of the trader’s expected price change between period 1 and 2 and her expected

demand in period 2. I refer to the first term as the myopic component and the second term

as the hedging component of demand.

Just as in Case 1, I have to find b2,b1, c2, c1, e2, e1 and g2, which ensure that the price

functions coincide with their respective conjectures. The next proposition follows.
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Proposition B.1 Suppose that the system

δ2τ
2
θ

b2

γ
= τ2 (B.4)

δ1
µ (τ 2

JbJ + τ 2
θ b

2
2) + (1− µ) τ 2

I aI
γ (e2 + b2)

= τ1, (B.5)

µ (τ 2
JbJ + τ 2

θ b
2
2)

µ (τ 2
JbJ + τ 2

θ b
2
2) + (1− µ) τ 2

I aI
= φ, (B.6)

has a fixed point τ ∗1 , τ
∗
2 , φ

∗. Then there is a linear REE. In this equilibrium price and demand

in period 2 is given by (13) and (22) where (24)-(27) hold. In period 1, price is given by

p1 =
a1 (θI + θC) + b1 (θJ + θC) + c1y − u1

e1

and demand functions are given by

di1 = aIx
i + cIy − eIp1 (B.7)

dj1 = bJx
i + cJy − eJp1 (B.8)

where

(1− µ) aI = a1 (B.9)

µbJ = b1 (B.10)

(1− µ) cI + µcJ = c1

(1− µ) eI + µeJ = e1 (B.11)

and

bJ =
τ 2
JbJ + τ 2

θ b
2
2

γ (e2 + b2)
(B.12)

aI =
τ 2
I aI

γ (e2 + b2)
(B.13)

and cI , cJ , eI , eJ can also be written as analytical functions of the parameters and τ1, τ2, φ

only. Furthermore, all coefficients are calculated at τ1 = τ ∗1 and τ2 = τ ∗2 and φ = φ∗
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Proof. Period 2 is equivalent to case 1. For period 1 objects, first, I derive expression

(B.3). In period 1, J-traders maximize the expected utility

max
di1

E1

(
− exp

(
−γ (p2 − p1) dj1 − γ

E (θ|q2, q1, y, z
j)− p2

γvar (θ|q2, q1, y, z̄j)
(θ − p2)

)
|zj, q1, y

)
=

E1

(
E2

(
− exp

(
−γ (p2 − p1) dj1 −

E (θ|q2, q1, y, z
j)− p2

var (θ|q2, q1, y, z̄j)
(θ − p2)

)
|q2, q1, y, z

j

)
|zj, q1, y

)
as E (exp (θ)) = exp

(
E (θ) + 1

2
var (θ)

)
E2

(
− exp

(
−γ (p2 − p1) dj1 − γ

E (θ|q2, q1, y, z
j)− p2

γvar (θ|q2, q1, y, z̄j)
(θ − p2)

)
|q2, q1, y, z

j

)
=

= exp
(
−γ (p2 − p1) dj1

)
exp

(
−(E (θ|q2, q1, y, z

j)− p2)
2

var (θ|q2, q1, y, z̄j)
+

1

2

(E (θ|q2, q1, y, z
j)− p2)

2

var (θ|q2, q1, y, z̄j)

)

thus, the trader maximizes

E1

(
− exp

(
−γ (p2 − p1) dj1 −

(E (θ|q2, q1, y, z
j)− p2)

2

var (θ|q2, q1, y, zj)

1

2

)
|zj, q1, y

)
=

= E1

(
− exp

(
−γ (p2 − p1) dj1 − var

(
θ|q2, q1, y, z

jj
)

(b2)2 (zj − q2

)2 1

2

)
|zj, q1, y

)
=

= E1

− exp

−γ (b2q2 + g2q1 − c2y

e2

− p1

)
dj1 −

(b2)2
(

(zj)
2 − 2q2z

j + q2
2

)
τ 2
θ

1

2

 |zj, q1, y


where I used that

E (θ|q2, q1, y, z
j)− p2

γvar (θ|q2, q1, y, zjj)
= b2

(
zj − q2

)
= τ 2

θ

b2

γ

(
zj − q2

)
.

A property of normal distributions is that if C is constant scalar, L is a nx1 constant vector,

N is an nxn constant matrix and M is an nx1 stochastic matrix and I is an information

set, then

E (− exp (C + L′M −M ′NM ′) |I) =

− |W |−1/2
∣∣2N +W−1

∣∣−1/2
exp

(
C + L′Q−Q′NQ+

1

2
(L′ − 2Q′N))

(
2N +W−1

)−1
(L− 2NQ)

)
(B.14)
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where Q = E (M |I) and W = var (M |I). Let q2 = M and

C = −γ
(

g2q1 − c2y

e2

− p1

)
dj1 − τ 2

θ b
2
2

(
zj
)2 1

2

L = −γ a
′
2

e′2
dj1 + τ 2

θ b
2
2z
j

N = τ 2
θ b

2
2

1

2

then the term in the brackets in (B.14) is

−γ
(

g2q1 − c2y

e2

− p1

)
dj1 − τ 2

θ b
2
2

(
zj
)2 1

2
+(

−γb2

e2

dj1 + τ 2
θ b

2
2z
j

)
E
(
q2|zj, q1, y

)
−E2

(
q2|zj, q1, y

) 1

2
τ 2
θ b

2
2

+
1

2

(
−γ b2

e2
dj1 + τ 2

θ b
2
2z
j − E (q2|zj, q1, y) τ 2

θ b
2
2

)2

τ 2
θ b

2
2 + τ 2

J

.

Thus, the trader maximizes

γ

(
g2q1 − c2y

e2

− p1

)
dj1+γ

(
dj1

b2

e2

)
E
(
q2|zj, q1, y

)
−1

2

(
−γ b2

e2
dj1 + τ 2

θ b
2
2z
j − E (q2|zj, q1, y) τ 2

θ b
2
2

)2

τ 2
θ b

2
2 + τ 2

J

taking the first order condition gives(
g2q1−c2y

e2
+ b2

e2
E (q2|zj, q1, y)− p1

)
(τ 2
θ b

2
2 + τ 2

J ) + τ 2
θ b

2
2
b2

e2
(zj − E (q2|zj, q1, y))

γ
(

b2

e2

)2 = dj1 (B.15)

which is equivalent to (B.3). Collecting coefficients of zj and using that b2

e2
= b2 + e2, gives

the expression for bJ as

b2

e2
bJ (τ 2

θ b
2
2 + τ 2

J ) + τ 2
θ b

2
2
b2

e2
(1− bJ)

γ
(

b2

e2

)2 =
bJ (τ 2

θ b
2
2 + τ 2

J ) + τ 2
θ b

2
2 (1− bJ)

γ (e2 + b2)
=
τ 2
JbJ + τ 2

θ b
2
2

γ (e2 + b2)
.
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The demand of I-traders in the first period is

di1 =
E (p2|xi, q1, y)− p1

γvar (p2|xi, q1, y)
= τ 2

I

b2

e2
E (q2|xi, q1, y) + g2q1−c2y

e2
− p1

γ
(

b2

e2

)2 . (B.16)

Collecting terms multiplying xi gives

aI =
τ 2
I aI

γ (e2 + b2)
.

where (45)-(46) define coefficients aI , cI , eI and bJ , cJ , eJ . As, by market clearing, (47)-(50)

have to hold, the system (B.4)-(B.6) comes from plugging (B.12)-(B.13) into (B.9) and (B.10)

and the resulting formulas into (44),(17) and the definition of φ. Finally, I derive expressions

for cI , eI and cJ , eJ and c1, e1 as functions of the primitives and τ1, τ2. First, collecting the

terms multiplying y in (B.15) and (B.16), plugging in the definition of q1 gives

cJ =
e2

γ(b2)2

(
τ 2
Jb2cJ +

(
τ 2
θ b

2
2 + τ 2

J

)(
c2 − g2

c1

a1 + b1

))
(B.17)

cI =
e2

γ(b2)2
τ 2
I

(
c2 + b2cI − (g2 + b2eI)

c1

a1 + b1

)
. (B.18)

Using c1 = µcJ + (1− µ) cI and a1 + b1 = µaI + (1− µ) bJ This gives

c1

a1 + b1

=
(1− µ) τ 2

I (c2 + b2cI) + µ (τ 2
Jb2cJ + (τ 2

θ b
2
2 + τ 2

J ) c2)

b2 (τ 2
I (1− µ) (aI + eI) + µ (τ 2

JaJ + τ 2
θ b

2
2)) + g2 ((1− µ) τ 2

I + µ (τ 2
θ b

2
2 + τ 2

J ))
.

Plugging back this and the expressions for e2,b2,g2 into expressions (B.17)-(B.18) gives the

result. By analogous steps I get

e1

a1 + b1

=
e2
b2

(µ (τ 2
J + τ 2

θ b
2
2) + (1− µ) τ 2

I )

τ 2
I (1− µ)

(
aI + eI + g2

b2

)
+ τ 2

Jµ
(
aJ + g2

b2

)
+ µτ 2

θ b
2
2

(
1 + g2

b2

)
eI =

(
e2

b2

)2
τ 2
I

γ

(
1− e1

a1 + b1

(g2 + b2eI)

)
eJ =

1

γ

(
e2

b2

)2(
1− e1

a1 + b1

g2

b2

)(
τ 2
J + τ 2

θ b
2
2

)
.

Now I turn to the analyisis of the trading volume. In the second period, by the same

analysis as in case 1, the equilibrium demand of each trader is described by (31) and the

volume in the second period is described by (37). For demand and expected volume in the
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first period, observe that from (45)-(46) and the definition of q1

di1 = aIx
i + y

(
cI − eI

c1

e1

)
− eI

q1 (a1 + b1)

e1

=

= aIε
i +

[
a1

(
1

(1− µ)
− eI

e1

)
(θI + θC)− eI

b1

e1

(θJ + θC) + y

(
cI − eI

c1

e1

)]
+

eI
e1

u1,

(B.19)

dj1 = bJx
i + y

(
cJ − eJ

c1

e1

)
− eJ

q1 (a1 + b1)

e1

=

= bJε
j +

[
b1

(
1

µ
− eJ

e1

)
(θJ + θC)− eJ

a1

e1

(θI + θC) + y

(
cJ − eJ

c1

e1

)]
+

eJ
e1

u1 (B.20)

and, consequently,

V1 ≡ E
(∣∣di1∣∣) =

=

√
1

2π
(1− µ)

(aI)
2

α
+


(

a1
(1−µ)+cI−

eI
e1

(a1+c1)
)2

+
(
cI−eI

c1+b1
e1

)2
ν

+(
a1

(1−µ)−
eI
e1

(a1+b1+c1)+cI

)2
ω

+

(
cI−eI

c1
e1

)2
β

+

(
eI
e1

)2

δ1


1
2

+

+

√
1

2π
µ

(bJ)2

α
+


(

b1
µ

+cJ−
eJ
e1

(b1+c1)
)2

+
(
cJ−eJ

c1+b1
e1

)2
ν

+

+

(
b1
µ
− eJ

e1
(a1+b1+c1)+cJ

)2
ω

+

(
cJ−eJ

c1
e1

)2
β

+

(
eJ
e1

)2

δ1


1
2

.

Unlike in Case 1, equilibrium demand does depend on the realization of aggregate random

variables. The reason is that in period 1, I-traders’ and J-traders’ demand react differently

to each piece of information. This is so because both the joint distribution of signals in each

trader’s information set and the trading horizon differ across groups. As a consequence, apart

from the risk-sharing and speculative parts of trades defined in Case 1, there is also trade

across groups. This latter part of equilibrium demand and expected volume is in squared

brackets in each expression. Note that the population weighted average of the terms in the

squared brackets is 0.

Speculative volume separates the within-group part of trade and given by (51). Just as

in Case 1, it is useful to establish the following result.
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Proposition B.2 In the limit ν →∞, there is a unique equilibrium where

b2 = α
1

γ

a1 = (1− µ)
α

γ

αδ2
2

γ2 + αδ2
2

b1 = µ
α

γ
.

Thus
∂bt
∂β

=
∂a1

∂β
=
∂Ct

∂β
=
∂VS

t

∂β
= 0

for t = 1, 2.

Proof. The result is a consequence of Proposition B.1 and the fact that

τ ∗2 = α
δ2

γ
, τ ∗1 = δ1

(
(1− µ)

α

γ

αδ2
2

γ2 + αδ2
2

+ µ
α

γ

)
and

φ =
µ

µ+ (1− µ)
αδ22

γ2+αδ22

is the fixed point of the system (B.4)-(B.6) at ν →∞.

The proposition shows that under the standard information structure, even if traders with

heterogeneous horizon coexist, more public information has no effect on trading intensities,

the information content of trade or speculative volume. Numerical simulations show that

the effect on total expected volume also diminishes as ν →∞.
To complement the analysis in the in the main text, I decompose the trading intensity

of J-traders in the first period on Figure 6. As it was pointed out in the main text, this

trading intensity increases in public information for any β. The left panel shows the term
τ2θ b

2
2

γ(e2+b2)
which is the hedging component of the trading intensity. This panel shows that this

component is decreasing in β. The term
τ2JbJ
γ

is the numerator in the myopic component of

the trading intensity in (B.3). Comparing this term to equilibrium value of b2 shows that

this term would be the trading intensity, if the true value were to realize in period 2 instead

of period 3. The right panel on Figure 6 shows that this term is also decreasing in β. Thus,

trading intensity bJ increases in β solely because of the remaining term, 1
b2+e2

, the numerator

of the myopic component. Note that this term is the inverse of the sensitivity of p2 to the

fundamental. Intuitively, as public information increases, the second period price is more

correlated to the fundamental, so in the first period all traders can estimate p2 with more

certainty. While, this effect is not sufficient to influence the sign of the derivative of aI with
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respect to public information, it switches that of bJ .
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Figure 6: Decomposition of trading intensity, bJ of J-traders in the first period. The left
and right panel show the intensity corresponding to the hedging component and myopic
component respectively. In each plot, different curves correspond to different fraction of
J-traders on the market,µ. The thicker the curve, the larger the fraction. The x-axis is the
precision of the public signal, β. The vertical line depicts β = ν2

ω
, the threshold above which

second-order expectations are polarized by more public information. Parameter values are
γ = 1, ω = 4.01, ν = 2, and α = δ1 = δ2 = 5.

In the main text, numerical analysis illustrated that in a weakly correlated information

structure, the larger the fraction of short-term traders, the larger the response in speculative

volume. Here, I prove analytically the weaker statement that this relationship holds for the

direct effect when τ1, τ2, φ are held constant.

Lemma B.1 Holding τ1, τ2, φ fixed, the public information elasticity of speculative volume

is decreasing in the fraction of long-horizon traders (J-traders) in period 1:

∂
∂V S1
∂β

β
V S1

∂µ
|τ1=τ̄1,τ2=τ̄2,φ=φ̄ < 0.

Proof. By definition

∂V S
1

∂β

β

V S
1

|τ1=τ̄1,τ2=τ̄2,φ=φ̄ =

= (1− µ)

∂|aIτ2I |
∂β
|τ1=τ̄1,τ2=τ̄2,φ=φ̄

(1− µ) |aIτ 2
I |+ µ (bJτ 2

J + b2
2τ

2
θ )

+µ

∂bJτ
2
J+b22τ

2
θ

∂β
|τ1=τ̄1,τ2=τ̄2,φ=φ̄

(1− µ) |aIτ 2
I |+ µ (bJτ 2

J + b2
2τ

2
θ )

+
∂ 1
b2+e2
|τ1=τ̄1,τ2=τ̄2,φ=φ̄

∂β
.
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By simple substitution, I can show that
∂|aIτ2I |
∂β
|τ1=τ̄1,τ2=τ̄2,φ=φ̄ > 0 and

∂bJτ
2
J+b22τ

2
θ

∂β
|τ1=τ̄1,τ2=τ̄2,φ=φ̄ <

0.

Turning to expected total volume, the left panel on Figure 7 shows that the qualitative

results are similar to speculative volume. The public information elasticity of expected

volume decreases in the fraction of long-term traders, if β is sufficiently large.
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Figure 7: Expected volume in period 1 and price volatility in period 2 in Case 2. The left
panel depicts the public information elasticity of expected volume in period 1 while the right
panel shows price volatility in period 2. In each plot, different curves correspond to different
fraction of J-traders on the market,µ. The thicker the curve, the larger the fraction. The
x-axis is the precision of the public signal, β. The vertical line depicts β = ν2

ω
, the threshold

above which second-order expectations are polarized by more public information. Parameter
values are γ = 1, ω = 4.01, ν = 2, and α = δ1 = δ2 = 5.

Turning to the volatility of prices, as in Case 1, the coefficients b2

e2
, a1

e1
, b1

e1
show the price

effects of the part of fundamentals which agents have private information on, the coefficients
1
e2
, 1
e1

show the price effect of supply shocks while c2
e2
, c1

e1
show price effect of public infor-

mation. The definition of price volatility in the second period is still given by (40). The

definition in the first period changes to

Σ1 ≡ var (p1|y) =

[(
a1

e1

)2

+

(
b1

e1

)2
]

1

ν
+

(
a1

e1

+
b1

e1

)2
1

ω
+

1

(e1)2 δ1

.

As in case 1, it is useful to start with the standard information structure. The next

Proposition shows that the coexistence of I and J-traders does not change the conclusion

that the standard information structure is inconsistent with volatility-generating public an-

nouncements.
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Proposition B.3 In Case 2, in the limit ν → ∞, price coefficients b2

e2
, b1

e1
, c2
e2
, c1
e1
, 1
e2
, 1
e1

inherit all the properties of Case 1 described in Proposition 5. Also, price in period 1 is

positively affected by the average information of I-traders and this effect decreases in the

precision of public information. That is,

a1

e1

> 0,
∂ a1

e1

∂β
< 0.

Thus, just as in Case 1,
∂Σ1

∂β
,
∂Σ2

∂β
< 0.

Proof. The results for coefficients in period 2 are implied by the same steps as in

Proposition 5. Below I provide the main steps for the rest of the results. Just as in Case 1,

I use the fact that (τ ∗1 )2 , (τ ∗2 )2 do not change in this limit with β, so I have to only consider

the direct effects.

1.

=
(α+τ22 )µ

α+β+ω+τ21 +τ22

α2τ22 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ
2
2 (2−µ)+βτ21 τ

2
2 +τ41 τ

2
2 +τ21 τ

4
2 (1−µ)+ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )(τ22 +αµ)
> 0

and

∂
(

limν→∞
b1

e1

)
∂β

=

=

∂

(
(α+τ22 )µ

α+β+ω+τ21 +τ22

)
∂β

α2τ22 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ
2
2 (2−µ)+βτ21 τ

2
2 +τ41 τ

2
2 +τ21 τ

4
2 (1−µ)+ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )(τ22 +αµ)
+

+
(α + τ 2

2 )µ

α + β + ω + τ 2
1 + τ 2

2

∂
α2τ22 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ

2
2 (2−µ)+βτ21 τ

2
2 +τ41 τ

2
2 +τ21 τ

4
2 (1−µ)+ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )(τ22 +αµ)

∂β

where

∂

(
(α+τ22 )µ

α+β+ω+τ21 +τ22

)
∂β

= −µ α + τ 2
2

(α + β + ω + τ 2
1 + τ 2

2 )
2 < 0

x



and

∂
α2τ22 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ

2
2 (2−µ)+βτ21 τ

2
2 +τ41 τ

2
2 +τ21 τ

4
2 (1−µ)+ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )(τ22 +αµ)

∂β
=

= −τ 2
2

(
α + τ 2

2

) τ 2
1 τ

2
2 + α2µ+ ατ 2

2 − µτ 2
1 τ

2
2

(τ 2
2 + αµ) (τ 2

1 τ
2
2 + α2µ+ ατ 2

2 + βτ 2
2 + ωτ 2

2 )
2 < 0.

2.

lim
ν→∞

a1

e1

= τ 2
2

1−µ
α+β+ω+τ21 +τ22

α2τ22 +τ21 τ
4
2 (1−µ)+τ41 τ

2
2 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ

2
2 (2−µ)+βτ21 τ

2
2 +ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )(τ22 +αµ)
> 0

and

∂ limν→∞
a1

e1

∂β
=
∂τ 2

2
1−µ

α+β+ω+τ21 +τ22

∂β
α2τ22 +τ21 τ

4
2 (1−µ)+τ41 τ

2
2 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ

2
2 (2−µ)+βτ21 τ

2
2 +ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )(τ22 +αµ)
+

+τ 2
2

1− µ
α + β + ω + τ 2

1 + τ 2
2

∂
α2τ22 +τ21 τ

4
2 (1−µ)+τ41 τ

2
2 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ

2
2 (2−µ)+βτ21 τ

2
2 +ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )(τ22 +αµ)

∂β
< 0

3.

lim
ν→∞

c1

e1

= β
τ42 +τ21 τ

2
2 +α2µ+2ατ22 +βτ22 +ωτ22

(α+β+ω+τ21 +τ22 )(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )

and
∂β

τ42 +τ21 τ
2
2 +α2µ+2ατ22 +βτ22 +ωτ22

(α+β+ω+τ21 +τ22 )(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )

∂β
> 0.

lim
ν→∞

1

e1

=
αγ(α+τ22 )

(α+τ22−αµ)(α+β+ω+τ21 +τ22 )
α2τ22 +τ21 τ

4
2 (1−µ)+τ41 τ

2
2 +α3µ+ατ42 +α2µτ21 +α2µτ22 +ατ21 τ

2
2 (2−µ)+βτ21 τ

2
2 +ωτ21 τ

2
2

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )

∂

(
α2τ22 +τ21 τ

4
2 +τ41 τ

2
2 +α3µ+ατ42 +α2µτ21 +α2µτ22 +2ατ21 τ

2
2 +βτ21 τ

2
2−µτ21 τ42 +ωτ21 τ

2
2−αµτ21 τ22

(τ21 τ22 +α2µ+ατ22 +βτ22 +ωτ22 )

)
∂β

=

− τ 2
2

(
α + τ 2

2

) α2µ+ ατ 2
2 + (1− µ) τ 2

1 τ
2
2

(τ 2
1 τ

2
2 + α2µ+ ατ 2

2 + βτ 2
2 + ωτ 2

2 )
2 < 0

xi



∂

(
αγ(α+τ22 )

(α+τ22−αµ)(α+β+ω+τ21 +τ22 )

)
∂β

=

− αγ α + τ 2
2

(α + τ 2
2 − αµ) (α + β + ω + τ 2

1 + τ 2
2 )

2 < 0.

4. it is a direct consequence of statements 1,2 and 4.

Figures 8-9 and the right panel in Figure 7 complement the analysis of the general case in

the main text showing the relevant equilibrium coefficients, and volatility in period 2. Just

as I highlighted in the main text only when the structure is sufficiently close to Case 1, does

volatility in period 1 increases with the amount of public information in any range of the

parameter space.
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Figure 8: Coefficients of the price function in period 1 in Case 2. Each panel shows a given
coefficient of the price function. In each plot, different curves correspond to different fraction
of B-traders on the market,µ. The thicker the curve, the larger the fraction. The x-axis is
the precision of the public signal, β. The vertical line depicts β = ν2

ω
, the threshold above

which second-order expectations are polarized by more public information. Parameter values
are γ = 1, ω = 4.01, ν = 2, and α = δ1 = δ2 = 5.
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Figure 9: Coefficients of the price function in period 2 in Case 2. Each panel shows a given
coefficient of the price function. In each plot, different curves correspond to different fraction
of B-traders on the market,µ. The thicker the curve, the larger the fraction. The x-axis is
the precision of the public signal, β. The vertical line depicts β = ν2

ω
, the threshold above

which second-order expectations are polarized by more public information. Parameter values
are γ = 1, ω = 4.01, ν = 2, and α = δ1 = δ2 = 5.
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where Dt is the vector of strategies of all traders active in period t.

In this Appendix, I consider only Case 1, where I-traders trade in period 1 and sell their

portfolio to J-traders in period 2 and consume the proceeds, while J-traders liquidate their

portfolio in period 3 for the fundamental value θ and consume the proceeds. In period 1,

only I-traders trade. J-traders arrive and trade in period 2 only. Thus the utility of traders

and the market clearing conditions are determined as follows.

Case 1 Each I-trader solves

max
di1(p1,Ii1)

E
[
−e−γW i

I |I i1
]

(C.2)

W i
I = di1

(
p1, I i1

)
(p2 − p1)

and each J-trader solves

max
di2(p2,Ii2)

E
[
−e−γW i

J |Ij2
]

(C.3)

W j
J = dj2

(
p2, Ij2

)
(θ − p2) .

Components of the random supply, u1 and u2 are drawn independently from the distributions

u1 ∼N

(
0,
N2

δ2
1

)
, u2 ∼N

(
0,
N2

δ2
2

)
.

The information structure is defined in the main text in equations (1)-(5). The informa-

tion sets of agents are

I i1 =
{
xi, y

}
Ij1 =

{
zj, y

}
Ij2 =

{
zj, y, p1

}
.

We are looking for a Perfect Bayesian Equilibrium in demand schedules defined as follows.

Definition C.1 A Perfect Bayesian Equilibrium in demand schedules is given by the strat-

egy profiles D1, D2 in which individual strategies are best responses given the equilibrium

strategies of all other players and expectations are formed according to Bayes’ rule. That is,

for any given i and j, and any realization of the information sets I it or Ijt , di1 (p1, I i1) and

dj2
(
p2, Ij2

)
solve problems (C.2)-(C.3) subject to (C.1) , respectively.

Note that in this equilibrium, each trader not only takes into account her direct impact
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on prices due to the market clearing mechanism, but also her indirect impact through the

information content of prices.

C.1.1 Equilibrium

In the conjectured equilibrium strategies are

dj2 = b2z
j + c2y + g2q1 − e2p2 (C.4)

di1 = a1x
i + c1y − e1p1 (C.5)

for J and I-traders, respectively, where q1 is the price signal corresponding to period 1

q1 ≡
e1p1 − c1y

a1

= x̄− u1

a1N
(C.6)

with x̄ ≡ Σix
i and its conditional precision is

τ 2
1 ≡

1

var (q1|x̄)
=

1

δ2
1a

2
1

. (C.7)

It is easy to see that p1 and y are informationally equivalent to y and the price signal q1. For

the definition of q1 I used the market clearing condition in the first period. Also, from the

market clearing condition for the second period, we define the price signal q2 as

q2 ≡
e2p− c2y − g2q1

b2

= x̄− u2

b2N

with a conditional precision

τ 2
2 ≡

1

var (q2|z̄2)
=

1

δ2
2b

2
2N

2
. (C.8)

Finally, we define b2, c2, e2, g2 and a1, c1, e1as the linear coefficients of the conditional

expectations

E
(
θ|zj, y, q1, q2

)
= b2z

j + c2y + e2q2 + g2q1 (C.9)

E
(
q2|xi, y, q1

)
= a1x

i + c1y + e1q1
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and

τ 2
θ ≡

1

var (θ|zj, y, q1, q2)

τ 2
q ≡

1

var (q1|xi, y, q1)

as the corresponding precisions. Note that all the expectational coefficients and precisions

are functions of the primitive parameters and the equilibrium values of τ1, τ2.

I will prove the following proposition.

Proposition C.1 1. For any N̂ > 2, there are δ̂1, δ̂2 thresholds that for every N >

N̂, δ1 < δ̂1 and δ2 < δ̂2 there is a symmetric linear equilibrium,where

b2 = τ 2
θ

b2 (N − 2)− e2

γ (N − 1)
(C.10)

c2 = τ 2
θ

(N − 2) b2 − e2

γ (N − 1)

c2

b2 + e2

(C.11)

e2 = τ 2
θ

b2 (N − 2)− e2

γ (N − 1) (b2 + e2)
. (C.12)

g2 = τ 2
θ

(N − 2) b2 − e2

γ (N − 1)

g2

e2 + b2

(C.13)

and

a1 =
τ 2
q

γ

a1

(e2 + b2)
(

1 + (a1+e1)
((N−2)a1−e1)

) (C.14)

c1 =
τ 2
q

γ

((b2 + e2) c1 + c2) a1
(e2+b2)(a1+e1)+g2

(e2 + b2)
(

1 + (a1+e1)
((N−2)a1−e1)

) (C.15)

e1 =
τ 2
q

γ

(N − 2) a1 − e1

(N − 1) (e2 + b2) ((e2 + b2) (a1 + e1) + g2)
(C.16)

Furthermore, all coefficients and equilibrium constants are calculated at τ1 = τ ∗1 (N)

and τ2 = τ ∗2 (N) where τ ∗2 , τ
∗
1 are the fixed point of

δ2τ
2
θ

b2 (N − 2)− e2

γ (N − 1)
= τ2 (C.17)

δ1

τ 2
q

γ

a1

(e2 + b2)
(

1 + (a1+e1)
((N−2)a1−e1)

) = τ1 (C.18)

respectively.
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2. For any parameters, as N → ∞, the equilibrium converges to a symmetric linear

equilibrium where the equilibrium objects converges to their counterparts in Proposition

2 of the main text.

First I derive the equilibrium objects for given τ1 and τ2.

The problem of J-traders is very similar to the corresponding problem in Kyle (1989).

The main difference is that now they use the price of the first period as as an additional,

endogenous public signal on the fundamental value. From conjecture (C.4) and the market

clearing condition, agent j faces the residual demand curve

p2 = p̃2 − λ2d
j
2

where

λ2 ≡
1

(N − 1) e2

. (C.19)

Thus, a J trader maximizes

(
E
(
θ|zj, y, p̃2, q1

)
− p̃2 − λ2d

j
2

)
dj2 −

(
dj2
)2
(
γ

2τ 2
θ

)
=

=
(
E
(
θ|zj, y, p̃2, q1

)
− p̃2

) (
dj2
)
−
(
dj2
)2
(
λ2 +

γ

2τ 2
θ

)
which gives (

E
(
θ|zj, y, p̃2, q1

)
− p̃2

)
− dj2

(
2λ2 +

γ

τ 2
θ

)
= 0

implying

dj2 =
E (θ|zj, y, p̃2, q1)− p2 + λ2d

j
2

2λ2 + γ
τ2θ

and

dj2 =
E (θ|zj, y, q2, q1)− p2

λ2 + γ
τ2θ

. (C.20)

Using (C.9) and the definition of q2, rewrite this as

dj2 =
b2z

j + c2y + e2
e2p2−c2y−g2q1

b2
+ g2q1 − p2

λ2 + γ
τ2θ

.

In a symmetric equilibrium, the coefficient of zj, y, q1 and p2 has to be equal b2, c2,g2 and

e2 respectively. Using also (C.19) gives (C.10)-(C.13).

The problem of each I trader is more subtle. Each I trader has to liquidate her assets
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before the fundamental value, θ, realizes. Thus, she has to form expectations about the price

in period 2. As (C.20) shows for this she have to form expectations about the expectations

of J-traders. That is, second order expectations matter. Furthermore, when she forms

expectations on p2, she has to take into account the effect of her own trades on period 2

prices through period 1 prices which J-traders use as signals.

In particular, market clearing in period 1 implies that given the conjectured strategies of

J-traders, I-traders face the residual demand curve

p1 = p̃1 − λ1d
j
1

in period 1 where

λ1 ≡
1

(N − 1) e1

.

Market clearing in period 2 implies that

p2 =
b2z̄ + c2y + g2q1 − u2

N

e2

.

By the definition of q1 we can rewrite this as

p2 = p̃I − λIdj1 (C.21)

where

λI ≡
g2

e2

e1

a1

λ1

p̃I ≡
b2z̄ +

(
c2 − g2

c1
a1

)
y − u2

N
+ g2

e1
a1
p̃1

e2

.

Thus, problem (C.2) is equivalent to maximizing

(
E
(
p̃I |Ij1 , p1

)
− λIdi1 −

(
p̃1 − λ1d

i
1

))
di1 −

(
di1
)2
(γ

2
var

(
p2|xi, y, p1

))
=

=
(
E
(
p̃I |xi, y, p̃I

)
− p̃1

)
di1 −

(
di1
)2
(

(λ1 − λI) +
γ

2
var

(
p2|xi, y, p1

))
with the second order condition

(λ1 − λI) +
γ

2
var

(
p2|xi, y, p1

)
> 0.
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From the first order condition of I-traders this gives

di1 =
E
(
p̃I |Ij1 , q1

)
− p̃1

2 (λ1 − λI) + γvar (p2|xi, y, p1)

or, equivalently,

di1 =
E (p2|xi, y, q1)− p1

λ1 − λI + γvar (p2|xi, y, q1)
=

E

(
1
N

∑
j

E (θ|zj, y, q2, q1)−
(
λ2 + γ

τ2θ

)
u2
N
|xi, y, q1

)
− p1

λ1 − λI + γvar (p2|xi, y, q1)
.

(C.22)

For the second equation, I used the market clearing condition in period 2 in order to em-

phasize the role of second-order expectations in I-traders demand functions. Rewrite (C.5)

as

di1 =

b2

e2

(
a1x

i + e1

(
e1
a1
p1 − y c1

a1

)
+ c1y

)
+

g2

(
e1
a1
p1−y c1

a1

)
+c2y

e2
− p1

λ1 − λI +
(

b2

e2

)2
γ
τ2q
.

For an equilibrium, we have to find a1, c1, e1, such that (C.5) equals to (C.5) for any

realizations of the random variables. Equating the coefficients in the two equations give

(C.14)-(C.16). Finally, substituting (C.10) and (C.14) into (C.7) and (C.8) give (C.17) and

(C.18).

For the existence and convergence to the REE equilibrium, first we have to find the

coefficients b2, e2, a1, e1, τ
2
q , τ

2
θ by Projection Theorem and substitute in to (C.17) and (C.18).

This procedure gives the following fixed point problem for any fixed N

τ2 = F2 (τ2, τ1)

τ1 = F1 (τ2, τ1, Y )

Y = FY (τ2, τ1)

where

F2 =

=
δ2 (ν + ω)Nα (Nα (N − 2)− τ 2

2 (N − 1)) (ντ 2
1 +Nαν +Nατ 2

1 )

γ (N − 1)

 Nα (N − 1) (Nα (τ 2
1 + ν + ω) + (ν2 + 2ντ 2

1 + 2ων + 2ωτ 2
1 )) +

ντ 2
1 (ν + 2ω) (N − 1) τ 2

2 +

+N2α (Nα (ν2 + αν + αω + 2νω + ατ 2
1 + ντ 2

1 + ωτ 2
1 ) + τ 2

1 (ν2 + αν + αω + 2νω))


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and

F1 = δ1
1

γ

N3α3τ 2
2 (ν2 − βω)

Nα (Nα + (N − 1) τ 2
2 ) (ντ 2

1 +Nαν +Nατ 2
1 ) (ν + ω)

Y

FY =
k1

k2

Nα (N−2)
(N−1)

− τ 2
1

Nα

where

k1 = (N − 1)

(
(ν +Nα) (νβ + νω + 2βω + 2Nαν +Nαβ +Nαω) τ 2

1 +

Nα (ν2β + ν2ω + 2νβω +Nαν2 +Nανβ +Nανω +Nαβω)

)
τ 2

2 +

N2α


(
αν2 + ν2β + ν2ω + ανβ + ανω + αβω + 2νβω +Nαν2 + 2Nα2ν

+Nα2β +Nα2ω +Nανβ +Nανω +Nαβω

)
τ 2

1

+Nα (αν2 + ν2β + ν2ω + ανβ + ανω + αβω + 2νβω)


and

k2 = τ 2
1 (N − 1)

(
(ν +Nα) (νβ + νω + 2βω + 2Nαν +Nαβ +Nαω) τ 2

2

+Nα (ν2β + ν2ω + 2νβω +Nαν2 +Nανβ +Nανω +Nαβω)

)
+

N2α

(
αν2 + ν2β + ν2ω + ανβ + ανω + αβω + 2νβω +Nαν2 + 2Nα2ν+

Nα2β +Nα2ω +Nανβ +Nανω +Nαβω

)
τ 2

2 +

N3α2
(
αν2 + ν2β + ν2ω + ανβ + ανω + αβω + 2νβω

)
Observe first, that τ2 = F2 (τ2, τ1) gives a unique solution for any fixed τ1 and this root

is always positive. This is so, because it can be rewritten as a third-order polynomial in τ2,

with positive coefficients but negative intercept. It is easy to check that the root is finite for

any τ1 ∈ (−∞,∞) . Second, FY (τ1, τ2) is positive as long as Nα (N−2)
(N−1)

> τ 2
1 . Finally, for any

positive Y and τ2, τ1 = F1 (τ2, τ1, Y ) gives a unique solution with the same sign as (ν2 − βω) .

Then, the proof is constructed by the following procedure.

1. Let us fix a N̄ (1). Define τmax
2 (N) as

τmax
2 (N) = max

τ1∈(−∞,∞)
τ2

s.t.F2 (τ2, τ1) = τ2.

and define τ
max(1)
2 = maxN>N̄(1) τmax

2 (N) .
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2. Consider FY (τ 2
1 , τ

2
2 ) for any τ 2

1 , τ
2
2 , for any N > N̄ (1), we define Y max (N) , Y min (N) as

Y max (N) = max
τ22∈

[
0,τ

max(1))
2

]
,τ21∈[0,Nα

(N−2)
(N−1) ]

FY (τ1, τ2)

Y min (N) = min
τ22∈[0,τmax(1))],τ21∈[0,Nα

(N−2)
(N−1) ]

FY (τ1, τ2)

also define

Y max(1) = max
N>N̄(1)

Y max (N)

3. Consider F1 (τ1, τ2, Y ) = τ1 equation. Define τmax
1 (N) as

τmax
1 (N) = max

τ2∈[0,τmax
2 ],Y ∈[Y min(1),Y max(1)]

|τ1|

s.t.F1 (τ2, τ1, Y ) = τ1.

Then define τ
max(1)
1 = maxN>N̄(1) |τmax

1 (N)| .

4. Check that whether the above steps give

(
τ

max(1)
1

)2

< N̄ (1)α

(
N̄ (1) − 2

)(
N̄ (1) − 1

)
(
τ

max(1)
2

)2

< N̄ (1)α

(
N̄ (1) − 2

)(
N̄ (1) − 1

) .
If not, decrease δ1 and δ2 until the point that repeating steps 1-3 ensures that these

conditions hold. As δ1 → 0 implies τ1 → 0 for any τ2 and Y, and δ2 → 0 implies τ2 → 0

for any τ1, for any N (1) there will be a δ̂
(1)
1 and δ̂

(1)
2 that this condition holds for any

δ1 < δ̂
(1)
1 and δ2 < δ̂

(1)
2 and N ≥ N (1).

5. Thus, we can define the compact space
[
0, τ

max(1)
1

]
X
[
0, τ

max(1)
2

]
X
[
Y min(1), Y max(1)

]
for ν2 > βω and

[
τ

max(1)
1 , 0

]
X
[
0, τ

max(1)
2

]
X
[
Y min(1), Y max(1)

]
otherwise on which are

fixed point problem is a continuos self-map for every N > N̄ (1), so we will have an

equilibrium for each of these points. This proves existence with δ̂1 = δ̂
(1)
1 and δ̂2 = δ̂

(1)
2 .

6. .Now define ψ(1) =
[
τ

(1)
1 , τ

(1)
2 , Y (1)

]
as (one of) the fixed point of the system

τ2 = F2 (τ2, τ1)

τ1 = F1 (τ2, τ1, Y )

Y = FY (τ2, τ1)

ix



for N = N̄ (1). Following the steps above, after choosing N̄ (n+1) = N̄ (n) +1, we can con-

struct a series of fixed points,ψ(n), compact spaces, τ
max(n)
1 , τ

max(n)
2 , Y min(n), Y max(n)and

thresholds N̄ (n), δ̂
(n)
1 , δ̂

(n)
2 . If there are more than one fixed point in step n, let us choose

the one which is closest to the fixed point [τ ∗1 , τ
∗
2 , Y

∗] given in Proposition 2 in the Eu-

clidean sense. By construction, the compact space is non increasing, the thresholds

δ̂
(n)
1 , δ̂

(n)
2 are non-decreasing, and limn→∞ δ̂

(n)
1 , δ̂

(n)
2 =∞. As all the coefficients in poly-

nomials defined by F1 = τ1 and F2 = τ2 and the coefficients in polynomials defining

Y are converging to their equivalents in the limit problem, the functions must also

converge to the ones in the limit problem point by point. Thus, for every ε, there is a

sufficiently large n that
∣∣ψ(n) − ψ(n−1)

∣∣ < ε. Thus, it is a convergent series and its limit

point must be ψ(∞) = [τ ∗1 , τ
∗
2 , Y

∗] .

x


