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We propose a model of trade in over-the-counter (OTC) markets in which each
dealer with private information can engage in bilateral transactions with other deal-
ers, as determined by her links in a network. Each dealer’s strategy is represented as
a quantity-price schedule. We analyze the effect of trade decentralization and adverse
selection on information diffusion, expected profits, trading costs, and welfare. Infor-
mation diffusion through prices is not affected by dealers’ strategic trading motives,
and there is an informational externality that constrains the informativeness of prices.
Trade decentralization can both increase or decrease welfare. A dealer’s trading cost is
driven by both her own and her counterparties’ centrality. Central dealers tend to learn
more, trade more at lower costs, and earn higher expected profit.

KEYWORDS: Information aggregation, bilateral trading, demand schedule equilib-
rium, trading networks.

1. INTRODUCTION

A VAST PROPORTION OF FINANCIAL ASSETS is traded in over-the-counter (OTC) markets.
In these markets, transactions are bilateral, prices are dispersed, trading relationships
are persistent, and typically, a few large dealers intermediate a large share of the trading
volume. In this paper, we explore a novel approach to modeling OTC markets that reflects
these features.

In our model, each dealer with private information can engage in several bilateral trans-
actions with her potential trading partners, as determined by her links in a network. Each
dealer’s strategy is represented as a quantity-price schedule. Our focus is on how decen-
tralization (characterized by the structure of the dealer network) and adverse selection
jointly influence information diffusion, expected profits, trading costs, and welfare. We
prove that information diffusion through prices is not affected by strategic considerations
in a well-defined sense. We show that each equilibrium price depends on all the infor-
mation available in the economy, incorporating even the signals of dealers located far
from a given transaction. We identify an informational externality that constrains the in-
formativeness of prices. We highlight that decentralization can both increase or decrease
welfare and that an important determinant of a dealer’s trading cost besides her own cen-
trality is the centrality of her counterparties. Using an example calibrated to securitization
markets, we argue that in realistic inter-dealer networks, more central dealers learn more,
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trade more at lower costs, and earn higher expected profit. However, we also explain why,
in some special cases, more-connected dealers can earn a lower expected profit.

In our main specification, there are n risk-neutral dealers organized in a dealer net-
work. Intuitively, a link between i and j indicates that they are potential counterparties
in a trade. There is a single risky asset in zero net supply. The final value of the asset
is uncertain and interdependent across dealers, with an arbitrary correlation coefficient
controlling the relative importance of the common and private components. Each dealer
observes a private signal about her value, and all dealers have the same quality of infor-
mation. Since the values are interdependent, it is valuable to infer each other’s signals.
Values and signals are drawn from a known multivariate normal distribution. Each dealer
simultaneously chooses her trading strategy, understanding her price effect given other
dealers’ strategies. For any private signal, each dealer’s trading strategy is a generalized
demand function that specifies the quantity of the asset she is willing to trade with each
of her counterparties, depending on the vector of prices in the transactions in which she
engages. Each dealer, in addition to trading with other dealers, trades with price-sensitive
customers. In equilibrium, prices and quantities must be consistent with the set of gener-
alized demand functions and the market clearing conditions for each link. We refer to this
structure as the OTC game. The OTC game is, essentially, a generalization of the Vives
(2011) variant of Kyle (1989) to networks. We consider general connected networks.

We show that the equilibrium beliefs in the OTC game are independent of dealers’
strategic considerations. In fact, we construct a separate game, in which dealers do not
trade, that generates the same posterior beliefs. In this simpler, auxiliary game, dealers
are connected in the same network and act in the same informational environment as
in the OTC game. However, the dealers’ aim is to make a best guess of their own value
conditional on their signals and the guesses of the other dealers to which they are con-
nected. We refer to this structure as the conditional guessing game. Because each dealer’s
equilibrium guess depends on her neighbors’ guesses, and through those, on her neigh-
bors’ neighbors’ guesses, etc., each equilibrium guess partially incorporates the private
information of all the dealers in a connected network. However, dealers do not internal-
ize how the informativeness of their guess affects others’ decisions, and the equilibrium
is typically not informationally efficient. That is, dealers tend to put too much weight on
their own signal, thereby making their guess inefficiently informative about the common
component.

In the OTC game, we show that each equilibrium price is a weighted sum of the pos-
terior beliefs of the counterparties that participate in the transaction; hence, it inherits
the main properties of the beliefs. In addition, each dealer’s equilibrium position is pro-
portional to the difference between her expectation and the price. Therefore, a dealer
tends to sell at a price higher than her belief to relatively optimistic counterparties and
buys at a price lower than her belief from pessimists. This results in dispersed prices and
profitable intermediation for dealers with many counterparties, as is characteristic of real-
world OTC markets. The proportionality coefficient of a dealer’s position is the inverse
of her price impact in that transaction. In turn, the dealer’s price impact is smaller if her
counterparty is less concerned about adverse selection, either because the common value
component is less important or because she is more central and learns from several other
prices.

To gain further insights into our main topics, we proceed in two distinct ways. First,
using a network associated with the securitization market as presented by Hollifield, Nek-
lyudov, and Spatt (2017), we show that more-connected dealers learn more, intermediate
more, trade a larger gross volume with a lower price impact, and make more profit. We
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also illustrate how our parameters can be matched to the data and contrast our predic-
tions with the findings from the empirical literature across various markets.

Second, we gain further insights into welfare, expected profits, and illiquidity by analyz-
ing trade in various simple networks. In particular, we isolate the effect of decentralization
by comparing the complete OTC network with centralized markets; we illustrate the role
of link density by comparing circulant OTC networks in which we successively increase
the number of links that each dealer has, and we analyze the effect of asymmetric number
of links in the star OTC network. We show that centralized trading might not improve
welfare and explain that for certain parameters, more links imply more profits only when
the network exhibits assortativity.

Finally, we argue that our one-shot game can be interpreted as a reduced form of the
complex dynamic bargaining process that leads to price determination in real-world OTC
markets by constructing an explicit, decentralized protocol for the price-discovery pro-
cess. This exercise also highlights the advantages and limitations of our static approach
compared to a full dynamic treatment.

Related Literature

Most models of OTC markets are based on search and bargaining (e.g., Duffie, Gâr-
leanu, and Pedersen (2005, 2007), Lagos, Rocheteau, and Weill (2008), Vayanos and Weill
(2008), Lagos and Rocheteau (2009), Afonso and Lagos (2015), and Atkeson, Eisfeldt,
and Weill (2015)). By construction, in search models, transactions are between atomistic
dealers through nonpersistent links. Therefore, our approach is more suitable for captur-
ing the effects of high market concentration implied by the presence of few large dealers
intermediating the bulk of the trading volume. At the same time, we collapse trade to
a single period, thus missing implications of the dynamic dimension. In this sense, we
view these approaches to be complementary. However, models of learning through trade
based on search require nonstandard structures and are difficult to compare to existing re-
sults regarding centralized markets (e.g., Duffie, Malamud, and Manso (2009), Golosov,
Lorenzoni, and Tsyvinski (2014)).1 Our approach is compatible with the standard, jointly
normal framework of asymmetric information and learning.

There is a growing literature studying trading in a network (e.g., Kranton and Minehart
(2001), Rahi and Zigrand (2006), Gale and Kariv (2007), Gofman (2014), Condorelli and
Galeotti (2017), Choi, Galeotti, and Goyal (2017), Malamud and Rostek (2017), Manea
(2018), Nava (2015)). These papers typically consider either the sequential trade of a
single unit of the asset or a Cournot-type quantity competition.2 In contrast, we allow
agents to form (generalized) demand schedules conditioning the quantities for each of
their transactions on the vector equilibrium prices in these transactions. This emphasizes
that the terms of the various transactions of a dealer are interconnected in an OTC mar-

1The main focus of these models is the time-dimension of information diffusion across agents. In these
models, incentives to share information and to learn are driven by the fact that two agents meet repeatedly or
any agent meets with counterparties of their counterparties with zero probability. This is in contrast with our
approach, in which dealers understand that the network structure may lead to overlapping information among
their counterparties.

2As an exception, Malamud and Rostek (2017) also used a multi-unit double-auction setup to model a
decentralized market. However, they did not consider the problem of learning through trade.
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ket. Additionally, to our knowledge, none of the papers within this class addresses the
issue of information aggregation which is the focus of our analysis.3

A separate literature studies Bayesian (Acemoglu, Dahleh, Lobel, and Ozdaglar
(2011)) and non-Bayesian (Bala and Goyal (1998), DeMarzo, Vayanos, and Zwiebel
(2003), Golub and Jackson (2010)) learning in the context of arbitrary connected social
networks. In these papers, agents update their beliefs about a payoff-relevant state after
observing the actions of their neighbors in the network. Our model complements these
works by considering that (Bayesian) learning occurs through trading.

The paper is organized as follows. The following section introduces the model setup
and the equilibrium concept. In Section 3, we derive the equilibrium and give sufficient
conditions for its existence. We characterize the informational content of prices and char-
acteristics of information diffusion in Section 4. In Section 5, we study expected profit,
welfare, and illiquidity based on some of the most common networks and calibrate our
model to securitization markets. In Section 6, we show how our one-shot game can be
interpreted as a reduced form of the complex dynamic bargaining process. Finally, we
conclude.

2. A GENERAL MODEL OF TRADING IN OTC MARKETS

2.1. The Model Setup

We consider an economy with n risk-neutral dealers that trade bilaterally a divisible
risky asset.4 All trades take place at the same time. Dealers, in addition to trading with
each other, also serve a price-sensitive customer base. Each dealer is uncertain about
the value of the asset. This uncertainty is captured by θi, referred to as dealer i’s value.
We consider that values are interdependent across dealers. In particular, the value of the
asset for dealer i can be explained by a component, θ̂, that is common to all dealers and a
component, ηi, that is specific to dealer i such that

θi = θ̂+ηi�

with θ̂ ∼ N(0�σ2
θ̂
), ηi ∼ i.i.d. N(0�σ2

η), and V(θ̂�ηi) = 0, where V(·� ·) represents the
variance-covariance operator. This implies that θi is normally distributed with mean 0
and variance σ2

θ = σ2
θ̂
+σ2

η. The common value component stands for the uncertain cash-
flow from the asset. The private value component is a short-cut for unmodeled differences
in the utility a dealer derives from this cash-flow, because of differences in background
risk, in the usage of the asset as collateral, in technologies to repackage and resell cash
flows, or in risk-management constraints, for example. The degree of the interdependence
between dealers’ values is captured by the correlation coefficient

ρ= σ2
θ̂

σ2
θ

�

3Whereas there is another stream of papers (e.g., Ozsoylev and Walden (2011), Colla and Mele (2010),
Walden (2018)) that consider that traders have access to the information of their neighbors in a network, in
these models, trade takes place in a centralized market.

4While our paper focuses exclusively on over-the-counter markets, in Appendix C of the Supplemental
Material (Babus and Kondor (2018)), we show how our framework can be generalized to model other partially
segmented markets.
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where ρ ∈ [0�1]. This representation is useful because we can vary the degree of interde-
pendence, ρ, while keeping the variance σ2

θ constant.
The asset is in zero net supply. This is without loss of generality, provided supply is

constant. We do not assume any constraints on the sizes or signs of dealers’ positions.
We assume that each dealer receives a private signal, si, such that

si = θi + εi�

where εi ∼ i.i.d. N(0�σ2
ε) and V(θj� εi)= 0, for all i and j.

Dealers are organized into a trading network, g. A link ij ∈ g implies that i and j are
potential trading partners, or neighbors in the network g. Intuitively, agents i and j know
and sufficiently trust each other to trade if they find mutually agreeable terms. Let gi

denote the set of i’s neighbors and mi ≡ |gi| the number of i’s neighbors. If two dealers
have a link, let qi

ij denote the quantity that dealer i trades over link ij. The price at which
trade takes place is denoted by pij . Links in the network are undirected, such that if ij ∈ g,
then ji ∈ g also. The notation reflects this property. For instance, pij = pji and qi

ij = qi
ji.

Whereas our main results hold for any network, throughout the paper, we illustrate the
results using two main types of networks as examples.

EXAMPLE 1: In an (n�m) circulant network with n odd and m< n even, if dealers are
arranged in a ring, then each dealer is connected with m/2 other dealers on her left and
m/2 on her right. The (n�2) circulant network is the circle, whereas the (n�n−1) circulant
network is the complete network.

EXAMPLE 2: In a star network, one dealer is connected with n− 1 other dealers, and no
other links exist.

We define a one-shot game in which each dealer chooses an optimal trading strategy,
provided she takes as given others’ strategies but she understands that her trade has a
price effect. In particular, the strategy of dealer i is a map from the signal space to the
space of generalized demand functions. For each dealer i with signal si, a generalized de-
mand function is a continuous function Qi : Rmi → Rmi that maps the vector of prices,5
pgi = (pij)j∈gi , that prevail in the transactions that dealer i participates in network g into a
vector of quantities she wishes to trade with each of her counterparties. The jth element
of this correspondence, Qi

ij(s
i;pgi ), represents her demand function when her counter-

party is dealer j, such that

Qi
(
si;pgi

) = (
Qi

ij

(
si;pgi

))
j∈gi �

Note that a dealer can buy a given quantity at a given price from one counterparty and
sell a different quantity at a different price to another at the same time. When dealer i
buys on the link ij, the quantity qi

ij =Qi
ij(s

i;pgi ) is positive. Conversely, when dealer i sells
on the link ij, the quantity qi

ij is negative.
The demand function of dealer i in a transaction with dealer j, Qi

ij(s
i;pgi ), depends

on all the prices pgi . For example, if k is linked to i who is linked to j, a high demand
from dealer k might raise the bilateral price pki. This might make dealer i revise her esti-
mate of her value upwards and adjust her quantity supplied to both k and j accordingly.

5A vector is always considered to be a column vector unless explicitly stated otherwise.
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However, Qi
ij(s

i;pgi ) depends only on pgi , not on the full price vector. This emphasizes
a critical feature of OTC markets, namely, that the price and quantity traded in a bilat-
eral transaction are known only by the two counterparties involved in the trade and not
immediately revealed to all market participants. Whereas OTC trading protocols do not
typically involve the submission of full demand schedules, we think of generalized demand
functions as a reduced-form price determination mechanism that captures the repeated
exchange of limit and market orders (i.e., the offer and acceptance of quotes) across fixed
counterparties that have persistent links, within a short time-interval. To illustrate this
mapping, we explicitly model the price-discovery process in Section 6. This also shows
why our specification need not rely on the implicit assumption of a Walrasian auctioneer.

Apart from trading with each other, each dealer also serves a price-sensitive customer
base. Customers have quadratic preferences for holding a quantity q of the asset. We
assume that a dealer i uses each link ij to satisfy an exogenously given fraction of her
customer base. In particular, we consider that dealer i trades with the customers she as-
sociates to the link ij at the same price she trades with dealer j, pij , adjusted by an exoge-
nous markup. This implies that for each transaction between i and j, the customer base
generates a downward-sloping demand

Dij(pij)= βijpij� (1)

where the constant βij < 0 is a summary statistic for dealer i and j’s customers’ prefer-
ences and the markup that the dealers charge.6 Just as the dealers do, customers in our
model take the network structure as given and do not search across dealers for better
prices. This specification captures in reduced form the fact that clients in OTC markets
typically have very few and long-lasting dealer relationships. For instance, Hendershott,
Li, Livdan, and Schürhoff (2016) documented that a large group of clients in the corpo-
rate bond market trade with a single dealer annually.

The expected payoff for dealer i corresponding to the strategy profile {Qi(si;pgi )}i∈{1�����n}
is

E

[∑
j∈gi

Qi
ij

(
si;pgi

)(
θi −pij

)∣∣∣si�pgi

]
� (2)

where pij are the elements of the bilateral clearing price vector p defined by the smallest
element of the set

P̃
({

Qi
(
si;pgi

)}
i
� s

) ≡ {
p |Qi

ij

(
si;pgi

) +Q
j
ij

(
sj;pgj

) +βijpij = 0�∀ij ∈ g
}

(3)

by lexicographical ordering,7 if P̃ is nonempty. While in equilibrium qi
ij and q

j
ij tend to

have the opposite sign, qi
ij �= −q

j
ij , because the customers also trade a quantity βijpij . If P̃

is empty, we choose p to be the infinity vector and say that the market breaks down and de-
fine all dealers’ payoffs to be zero. We refer to the collection of rules that define a unique

6For example, suppose that the marginal utility of each customer buying quantity q is 1
β
q. If a customer is

associated to a link ij, she will pay pij(1 + μij) per unit where μij is the markup. Then, her inverse demand
function is given by 1

β
q = pij(1 +μij), that is, βij = β(1 +μij).

7The specific algorithm we choose to select a unique price vector is immaterial. To ensure that our game is
well-defined, we need to specify dealers’ payoffs as a function of strategy profiles both on and off the equilib-
rium path.
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vector p for any given realization of signals and strategy profile as P({Qi(si;pgi )}i� s). In-
troducing the set (3) ensures that we can evaluate dealers’ payoffs for any demand func-
tions that dealers may choose. This will allow us to search for a Bayesian Nash equilib-
rium, as explained in the following section.

2.2. Equilibrium Concept

The environment described above represents a Bayesian game, henceforth referred to
as the OTC game. The risk-neutrality of dealers and the normal information structure
allows us to search for a linear equilibrium of this game, which is defined as follows.

DEFINITION 1: A Linear Bayesian Nash equilibrium of the OTC game is a vector of
linear generalized demand functions {Q1(s1;pg1)�Q2(s2;pg2)� � � � �Qn(sn;pgn)} such that
Qi(si;pgi ) solves the problem

max
(Qi

ij )j∈gi
E

{[∑
j∈gi

Qi
ij

(
si;pgi

)(
θi −pij

)]∣∣∣si�pgi

}
� (4)

for each dealer i, where p = P(·� s).

A dealer i chooses a demand function, Qi
ij(·), for each transaction ij, to maximize her

expected profits, given her information, si, and given the demand functions chosen by the
other dealers. Implicit in the definition of the equilibrium is that each dealer understands
that she has a price impact when trading with the counterparties given by the network g.
Solving problem (4) is equivalent to finding a fixed point in demand functions.

3. THE EQUILIBRIUM

In this section, we derive the equilibrium in the OTC game. First, we derive the equilib-
rium strategies as a function of posterior beliefs. Second, we construct posterior beliefs.
Third, we provide sufficient conditions for the existence of the equilibrium in the OTC
game for any network.

3.1. Derivation of Demand Functions

Our derivation follows Kyle (1989) and Vives (2011). We conjecture an equilibrium
in linear demand functions, such that the demand function of any given dealer i in the
transaction with a counterparty j is

Qi
ij

(
si;pgi

) = tiij

(
yi
ijs

i +
∑
k∈gi

zi
ij�ikpik −pij

)
� (5)

We refer to tiij as the trading intensity of dealer i on the link ij, whereas yi
ij and zi

ij�ik capture
the effects specific to the dealer’s private signal and the price pik on the quantity that
dealer i demands on the link ij. As will become clear below, dealer i’s best response is (5)
when all other agents’ demand functions are given by (5).

As is standard in similar models, we simplify the optimization problem (4), which is
defined over a function space, to finding the functions Qi

ij(s
i;pgi ) point-by-point. For this,
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we fix a realization of the vector of signals, s. Then, we solve for the optimal quantity qi
ij

that each dealer i demands when trading with a counterparty j as she takes the demand
functions of the other dealers as given. Thus, we obtain dealer’s i best response quantity
qi
ij in the transaction with dealer j for each realization of the signals. This essentially gives

us a map from prices to quantities, or her demand function. We describe the procedure
in detail below.

Given the conjecture (5) and market clearing

Qi
ij

(
si;pgi

) +Q
j
ij

(
sj;pgj

) +βijpij = 0� (6)

the residual inverse demand function of dealer i in a transaction with dealer j is

pij = −
t
j
ij

(
y
j
ijs

j +
∑

k∈gj�k �=i

z
j
ij�jkpjk

)
+ qi

ij

βij + t
j
ij

(
z
j
ij�ij − 1

) � (7)

Denote

I
j
ij ≡ −

t
j
ij

(
y
j
ijs

j +
∑

k∈gj�k �=i

z
j
ij�jkpjk

)
βij + tiij

(
z
j
ij�ij − 1

) (8)

and rewrite (7) as

pij = I
j
ij − 1

βij + t
j
ij

(
z
j
ij�ij − 1

)qi
ij� (9)

The uncertainty that dealer i faces about the signals of others is reflected in the random
intercept of the residual inverse demand, Ijij , whereas her capacity to affect the price is
reflected in the slope −1/(βij + t

j
ij(z

j
ij�ij − 1)). Thus, the price pij is informationally equiv-

alent to the intercept Ijij . This implies that finding the vector of quantities qi = Qi(si;pgi )
for one particular realization of the signals, s, is equivalent to solving

max
(qiij )j∈gi

∑
j∈gi

qi
ij

(
E

(
θi|si�pgi

) + 1

βij + t
j
ij

(
z
j
ij�ij − 1

)qi
ij − I

j
ij

)
�

From the first-order conditions, we derive the quantities qi
ij for each link of i and for each

realization of s as

2
1

βij + t
j
ij

(
z
j
ij�ij − 1

)qi
ij = I

j
ij −E

(
θi|si�pgi

)
�

Then, using (9), we can find the optimal demand function for each dealer i when trading
with dealer j:

Qi
ij

(
si;pgi

) = −(
βij + t

j
ij

(
z
j
ij�ij − 1

))(
E

(
θi|si�pgi

) −pij

)
� (10)
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Furthermore, given our conjecture (5), equating coefficients in equation (10) implies
that

E
(
θi|si�pgi

) = yi
ijs

i +
∑
k∈gi

zi
ij�ikpik�

However, the projection theorem implies that the belief of each dealer i can be described
as a unique linear combination of her signal and the prices she observes. Thus, it must
be that yi

ij = yi and zi
ij�ik = zi

ik for all i, j, and k. In other words, the posterior belief of a
dealer i is given by

E
(
θi|si�pgi

) = yisi + zgipgi � (11)

where zgi = (zi
ij)j∈gi is a row vector of size mi. Then, we obtain that the trading intensity of

dealer i is the inverse of her price impact in the transaction with dealer j, or

tiij = t
j
ij

(
1 − z

j
ij

) −βij� (12)

Substituting (11) back into our conjecture (5), we obtain that the demand of dealer i in a
transaction with dealer j is given by

Qi
ij

(
si;pgi

) = tiij
(
E

(
θi|si�pgi

) −pij

)
� (13)

That is, the quantity that dealer i trades with j is the perceived gain per unit of the asset,
(E(θi|si�pgi )−pij), multiplied by the endogenous trading intensity parameter, tiij . More-
over, by substituting the optimal demand function (13) into the bilateral market clearing
condition (6), we obtain the equilibrium price between any pair of dealers i and j as a
linear combination of the posterior beliefs of i and j:

pij = tiijE
(
θi|si�pgi

) + t
j
ijE

(
θj|si�pgj

)
tiij + t

j
ij −βij

� (14)

At this point, we depart from the standard derivation. The standard approach is to
determine the coefficients of the demand function (5) using a fixed-point argument. In
particular, given our conjecture (5), the bilateral clearing conditions represent a system
of linear equations from which prices can be derived as an affine combination of signals.
Then, the projection theorem implies that for each dealer i, the coefficients yi and zgi
must satisfy the following fixed-point condition:[

yi

z�
gi

]
= V

(
θi�

[
si

pgi

])
×

(
V

[
si

pgi

])−1

� (15)

Note that if (15) has a solution for each dealer i, equation (10) implies that our conjecture
(5) is verified.

In general networks, this procedure yields a high-dimensional problem. First, the sys-
tem of bilateral clearing conditions (6) has as many equations as the number of links in
the network. Second, for each dealer, we need to solve a fixed-point problem that is itself
a function of her position in the network.

Our main methodological innovation is that we derive the equilibrium of the OTC game
in two steps. First, we construct the equilibrium posterior beliefs without solving for the
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demand curve or the implied quantities and prices. For this, in Section 3.2, we introduce
an auxiliary game called the conditional guessing game.

Second, based on the equilibrium beliefs in the conditional guessing game, we construct
the equilibrium demand functions of the OTC game in Section 3.3. We provide conditions
for the existence of an equilibrium. In Section 4, we also formally state and qualify the
one-to-one mapping of the posterior beliefs in the two games.

3.2. Deriving Posterior Beliefs: The Conditional Guessing Game

We define the conditional guessing game as follows. Consider a set of n agents that are
connected in the same network g as in the corresponding OTC game. The information
structure is also the same as in the OTC game. Before the uncertainty is resolved, each
agent i makes a guess, ei, about her value of the asset, θi. Her guess is the outcome of
a function that has as arguments the guesses of other dealers she is connected to in the
network g. In particular, given her signal, dealer i chooses a guess function, E i(si; egi ), that
maps the vector of guesses of her neighbors, egi , into a guess ei. When the uncertainty is
resolved, agent i receives a payoff −(θi − ei)2, where ei is an element of the guess vector
e defined by the smallest element of the set

Ξ
({
E i

(
si; egi

)}i
� s

) ≡ {
e | ei = E i

(
si; egi

)
�∀i}� (16)

by lexicographical ordering. We assume that if a fixed point in (16) did not exist, then
dealers would not make any guesses and their payoffs would be set to minus infinity.
Essentially, the set of conditions (16) is the counterpart in the conditional guessing game
of the market clearing conditions in the OTC game.

DEFINITION 2: An equilibrium of the conditional guessing game is given by a strat-
egy profile (E 1�E 2� � � � �En) such that each agent i chooses strategy E i : R × Rmi → R to
maximize her expected payoff

max
Ei

{−E
((
θi − E i

(
si; egi

))2|si� egi
)}
�

where e =Ξ(·� s).

As in the OTC game, we simplify this optimization problem and find the guess func-
tions E i(si; egi ) point-by-point. That is, for each realization of the signals, s, an agent i
chooses a guess that maximizes her expected profits, given her information, si, and the
guess functions chosen by the other agents. Her optimal guess function is then given by

E i
(
si; egi

) = E
(
θi|si� egi

)
� (17)

In the next proposition, we state that the guessing game has an equilibrium in any
network.

PROPOSITION 1: In the conditional guessing game, for any network g, there exists an equi-
librium in linear guess functions such that

E i
(
si; egi

) = ȳ isi + z̄giegi

for any i, where ȳ i is a scalar and z̄gi = (z̄i
ij)j∈gi is a row vector of length mi.
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We derive the equilibrium in the conditional guessing game as a fixed-point problem in
the space of n×n matrices. In particular, consider an arbitrary n×n matrix

′
V = [ ′

vi]i=1�����n

and let the guess of each agent i be
′
ei= ′

vi s� (18)

given a realization of the signals s. It follows that when dealer j takes as given the choices
of her neighbors, ′egj , her best response guess is

′′
ej= E

(
θj|sj� ′egj

)
� (19)

Since each element of ′egj is a linear function of the signals and the conditional expectation
is a linear operator for jointly normally distributed variables, equation (19) implies that
there is a unique vector

′′
vj , such that

′′
ej= ′′

vj s� (20)

In other words, the conditional expectation operator defines a mapping from the n × n

matrix
′
V = [ ′

vi]i=1�����n to a new matrix of the same size
′′
V = [ ′′

vi]i=1�����n. An equilibrium of the
conditional guessing game exists if this mapping has a fixed point. Proposition 1 shows the
existence of a fixed point and describes the equilibrium as given by the coefficients of si
and egi in E(θi|si� egi ) at this fixed point.

Next, we use the conditional guessing game to establish conditions for the existence
of an equilibrium in the OTC game, and we show how to solve for the equilibrium coef-
ficients. In the following section, we also prove that posterior beliefs of the OTC game
coincide with the equilibrium beliefs in the conditional guessing game.

3.3. Solving for Equilibrium Coefficients and Existence

In this subsection, we prove the main results of this section. In particular, we provide
sufficient conditions under which we can construct an equilibrium of the OTC game build-
ing on an equilibrium of the conditional guessing game.

PROPOSITION 2: Let ȳ i and z̄gi = (z̄i
ij)j∈gi be the coefficients that support an equilibrium

in the conditional guessing game and let ei = E(θi|si� egi ) be the corresponding equilibrium
expectation of agent i. Then, there exists a Linear Bayesian Nash equilibrium in the OTC
game whenever ρ < 1 and the following system has a solution {yi� zi

ij}i=1�����n�j∈gi such that
zi
ij ∈ (0�2):

yi(
1 −

∑
k∈gi

zi
ik

2 − zk
ki

4 − zi
ikz

k
ki

) = ȳ i�

zi
ij

2 − zi
ij

4 − zi
ijz

j
ji(

1 −
∑
k∈gi

zi
ik

2 − zk
ki

4 − zi
ikz

k
ki

) = z̄i
ij� ∀j ∈ gi�

(21)
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All zi
ij are determined by ρ and the ratio σ ≡ σ2

ε

σ2
θ

and independent of βij . The equilibrium
demand functions are given by (5) with

tiij = −βij

2 − z
j
ij

zi
ij + z

j
ji − zi

ijz
j
ji

� (22)

The equilibrium beliefs are E(θi|si�pgi ) = yisi + ∑
j∈gi z

i
ijpij , whereas the equilibrium prices

and quantities are

pij = tiije
i + t

j
ije

j

tiij + t
j
ij −βij

� (23)

qi
ij = tiij

(
ei −pij

)
� (24)

The conceptual advantage of our method of constructing the equilibrium compared
with the standard approach is that our method is based on a simpler fixed-point problem.
Indeed, in the conditional guessing game, we solve for a fixed point in beliefs. This sim-
plifies the fixed-point problem because there are only n guessing functions as opposed
to (Σim

i) demand functions. Then, the system of equations (21) ensures we can map n
expectations, ei, from the conditional guessing game into M ≥ n prices in the OTC game
in a consistent manner.

Note also that Proposition 2 also describes a simple numerical algorithm to find the
equilibrium of the OTC game for any network. In particular, the conditional guessing
game gives parameters ȳ i and z̄ij , and conditions (21) imply parameters yi and zij . Making
use of (22), we then obtain the demand functions that imply prices and quantities by (23)–
(24).

The next proposition strengthens the existence result for our specific examples.

PROPOSITION 3:
1. In any network in the circulant family, the equilibrium of the OTC game exists.
2. In a star network, the equilibrium of the OTC game exists.

For the star network and the complete network, closed-form solutions are derived in
Appendix B.

We showed in Proposition 2 that an equilibrium exists when the solution, zi
ij , of the

system (21) is in the interval (0�2). As Section 5 illustrates, apart from the networks char-
acterized in Proposition 3, we found that the equilibrium exists for a large range of pa-
rameters for empirically relevant networks.8

We conclude this section with the observation that customers’ demand plays a limited
role in our analysis. Whereas there is no equilibrium for βij = 0, for any choice of βij <

0, prices, beliefs, and scaled quantities
qiij

βij
are not affected. We summarize this in the

following corollary.

8There are irregular networks for which the conditions of Proposition 2 are not satisfied for some param-
eters. In these cases, there is at least one agent who puts negative weight on at least one of her neighbors’
expectations, that is, z̄iij < 0 for some i and ij. This is possible because the correlation between θi and ej , con-
ditional on all the other expectations of i’s neighbors and si might be negative. Whereas this is still a valid
equilibrium of the conditional guessing game, it results in a negative ziij in the OTC game, which violates the
second-order conditions. More details are available on request.
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COROLLARY 1: Prices, beliefs, and scaled quantities,
qiij

βij
, are independent of the slope of

customers’ demand, βij . Furthermore, if βij = β̂ · β̂ij , where each β̂ij is an arbitrary negative
scalar and β̂ is a positive constant, then prices, beliefs, and scaled quantities remain constant
and well-defined as β̂ → 0. When β̂ = 0, the equilibrium in the OTC game does not exist.

This result follows immediately from (22) and (24). Clearly, beliefs must be indepen-
dent of customers’ demand as they can be derived from the conditional guessing game
where there are no customers. Quantities, qi

ij , are proportional to βij , because trading
intensities, tiij , are. This follows immediately from the fact that βij is a parallel shift in
expression (12), which drives the equilibrium trading intensities.

Intuitively, we need a nonzero βij because 1
βij

serves as a finite upper bound for the
price impact of an additional unit supplied in a transaction between i and j. This is ap-
parent from (9). To see why this is essential, it is useful to think about equation (26) as a
best response function for trading intensities. If βij were 0, then the counterparties’ best
responses would converge to zero as |(1 − zij)|< 1 by the conditions required in Proposi-
tion 2. That is, trade would collapse. This is a well-known property of similar games (e.g.,
Kyle (1989) for the case of two agents). Based on Corollary 1, we argue that the exoge-
nous demand from customers solves this technical problem with minimal impact on the
results.

4. INFORMATION DIFFUSION

In this section, we discuss the informational properties of prices in the OTC market.
First, we characterize the role of the market structure in the diffusion of information
through prices. Second, we introduce a measure of informational efficiency and highlight
inefficiencies in how agents learn from prices.

4.1. Prices and Information Diffusion

We study how the market structure affects the diffusion of information through the
network or trades. For this purpose, we analyze two dimensions. First, we are interested
in finding out to what extent the ability of agents to behave strategically and impact prices
influences how much information gets revealed. Second, we investigate how the network
structure interacts with the role of prices as information aggregators.

To evaluate the role of agents’ strategic motives when trading, the conditional guessing
game is a useful benchmark. This is because any considerations related to price manipu-
lation are not present in the conditional guessing game. We establish the following result.

PROPOSITION 4: In any Linear Bayesian Nash equilibrium of the OTC game, the vector
with elements ei defined as

ei =E
(
θi|si�pgi

)
is an equilibrium expectation vector in the conditional guessing game.

The idea behind this proposition is as follows. We have already shown that in a linear
equilibrium, each bilateral price pij is a linear combination of the posteriors of i and j,
E(θi|si�pgi ) and E(θj|sj�pgj ), as described in (14). Therefore, in each transaction, given
that a dealer knows her own belief, the price reveals the belief of her counterparty. Thus,



1740 A. BABUS AND P. KONDOR

when a dealer chooses her generalized demand function, she essentially conditions her
expectation about the asset value on the expectations of the other dealers she is trad-
ing with. Consequently, the set of posteriors implied in the OTC game works also as an
equilibrium in the conditional guessing game.

The equivalence of beliefs on the two games implies that any feature of the beliefs in
the OTC game must be unrelated in any way to price manipulation, market power, or
other profit-related motives.

Next, we analyze the role of the network structure in how prices aggregate information.
We obtain the following result for general connected networks.

PROPOSITION 5: Suppose that there exists an equilibrium in the OTC game. Then, in any
connected network g, each bilateral price is a linear combination of all signals in the economy,
with strictly positive weight on each signal.

This result suggests that a decentralized trading structure can be surprisingly effective
in transmitting information. Indeed, although we consider only a single round of trans-
actions, each price partially incorporates all the private signals in the economy. A simple
way to see this is to consider the residual demand curve and its intercept, Iiij , defined in
(8)–(9). This intercept is stochastic and informationally equivalent with the price pij . The
chain structure embedded in the definition of Iiij is critical. The price pij gives information
on I

j
i , which gives some information about the prices at which agent j trades in equilib-

rium. For example, if agent j trades with agent k, then pjk affects pij . By the same logic,
pjk in turn is affected by the prices agent k trades at with her counterparties, etc. There-
fore, pij aggregates the private information of signals of every agent dealer i is indirectly
connected to, even if this connection is through several intermediaries.

Typically, however, dealers in the OTC market do not learn from prices all the relevant
information in the economy. This is because in a network g, a dealer i can use only mi

linear combinations of the vector of signals, s, to infer the informational content of the
other (n−1) signals. In contrast, as Vives (2011) showed, in a centralized market in which
each agent chooses one demand function and the market clears at a single price, a dealer
i learns all the relevant information in the economy, and her posterior belief is given by
E(θi|s).

There are two special cases in which the prices are privately fully revealing if agents
trade over the counter. In our context, the equilibrium prices are privately fully revealing if,
for each dealer i, (si�pgi ) is a sufficient statistic of the vector of signals s, in the estimation
of θi. The following result describes these cases.

PROPOSITION 6:
1. In the complete network, prices are privately fully revealing.
2. In any connected network, g, when an equilibrium in the OTC game exists, prices are

arbitrarily close to privately fully revealing as ρ approaches 1. That is,

lim
ρ→1

E
(
θi|si�pgi

) = E
(
θi|s)�

lim
ρ→1

V
(
θi|si�pgi

) = V
(
θi|s)�

The first case follows immediately. In a complete network, each agent has mi = n − 1
neighbors; thus, she observes n− 1 prices. Given that she knows her own signal, she can,
in equilibrium, invert the prices to obtain the signals of the other dealers.
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The second case in Proposition 6 shows that in the common value limit, decentraliza-
tion per se does not impose any friction on the information transmission process in any
network. To shed more light on the intuition behind the latter result, we build intuition
based on the learning process in the conditional guessing game and appeal to the equiva-
lence of beliefs with the OTC game.

Consider the case in which ρ = 1. As we show in Appendix A, this implies a unique
equilibrium in the conditional guessing game where each agent guess is the best guess
they could obtain by observing all the signals:

ei =E
(
θj|s) = E

(
θi|s) = ej�

The key idea is that at ρ= 1, there is no private value component; hence, each agent wants
to make the best guess about the common value component only. Once i can learn E(θi|s)
from its neighbor j, i can and will make the same guess. That is, this is a fixed point of the
system (18)–(20) and hence an equilibrium in the conditional guessing game. Because the
conditional guessing game is continuous in ρ, any equilibrium in the conditional guessing
game is close to this one when ρ is close to 1. That is, it is close to being privately fully
revealing in the sense of the statement. By Proposition 2, the equilibrium in the OTC
game for ρ close to 1 inherits this property.

Note that we use a limit argument because when ρ= 1, an equilibrium in the OTC game
does not exist. The intuition is essentially the Grossman–Stiglitz paradox. If prices reveal
the common value, dealers do not have incentives to put weight on their private signal.
However, in this case, market clearing cannot channel the private information into the
prices. In contrast, we formally define the equilibrium of the conditional guessing game
as a fixed point of guesses. As a consequence, the equilibrium of the conditional guessing
game is well defined, even when ρ= 1.

4.2. Informational Efficiency

In this section, we discuss the informational efficiency of prices. We defer the discussion
of allocative inefficiency to Section 5.1.

As we have seen above, information is generally not fully revealed in the equilibrium of
the OTC trading game, apart from the two cases discussed in Proposition 6. Moreover, no
single price fully reveals all of the information, except in the common value limit. Thus,
we propose a measure of informational efficiency based on dealers’ beliefs, taking into
account that their learning is constrained by the network structure. More precisely, we
exploit the equivalence of beliefs in Proposition 4 and define a measure of constrained
informational efficiency as the negative sum of squared deviations from the true value,

U
({
ȳ i� z̄gi

}
i∈{1����n}

) ≡ −E

[∑
i

(
θi − E i

(
si; egi

))2
∣∣∣s]� (25)

where E i(·) is the guess function of a dealer i in the conditional guessing game. Then,
we can find conditional guessing functions {E i(si; egi )}i=1�����n that maximize our measure
of constrained informational efficiency (25) subject to e = Ξ(·� s) and (16). This is the
planner’s solution in the conditional guessing game. Alternatively, we can also look for
marginal deviations in dealers’ equilibrium strategies in the conditional guessing game
(which, by Proposition 2, would correspond to marginal deviations from equilibrium
strategies in the OTC game), which would improve constrained informational efficiency.
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In general, we find that beliefs are not constrained informationally efficient. We il-
lustrate the underlying informational externality on the circle and star networks in this
section, and show that this observation is robust to a large set of random networks in
Section 5.2.

Since, in a circle, all dealers are symmetric, and each can learn only from two prices,
this is the simplest example that can be used to recover the learning externality that leads
to informational inefficiencies. To see the intuition, we use expressions (18)–(20) as an
iterated algorithm of best responses. That is, in the first round, each agent i receives an
initial vector of guesses, ′egi , from her neighbors. Given this, each agent i chooses her best
guess,

′′
ei, as in (19). The vector of guesses ′′egi , with elements given by (20), is the starting

point for i in the following round. By definition, if the algorithm converges to a fixed
point, then this is an equilibrium of the conditional guessing game.

We chose an example with eleven dealers to have a sufficient number of iterations. We
illustrate the iteration rounds in Figure 1 from the point of view of dealer 6. We plot
the weights with which signals are incorporated in the guess of dealers 5, 6, and 7, that
is, v5, v6, v7. In each figure, the dashed lines show the posteriors of dealers 5 and 7 at
the beginning of each round, and the solid line shows the posterior of agent 6 at the
end of each round after she observes her neighbors’ guesses. We start the algorithm by
assuming that the posteriors of dealers 5 and 7 are the posteriors in the common value
limit, σ2

θ

nσ2
θ+σ2

ε
1�s, as illustrated by the straight dashed lines that overlap in Panel A. The

best response guess of dealer 6 at the end of round 1 is shown by the solid line peaking
at s6 in Panel A. The reason dealer 6 puts more weight on her signal, s6, is that it is more
informative about her value, θ6, than the rest of the signals. Clearly, this is not a fixed
point because all other agents choose their guesses in the same way. Thus, in round 2,
agent 6 observes posteriors that are represented by the dashed lines shown in Panel B;
these are the mirror images of the round-1 guess of dealer 6. Note that the posteriors
that dealers 5 and 7 hold at the beginning of round 2 are less informative for dealer 6
than the equal-weighted sum of signals σ2

θ

nσ2
θ+σ2

ε
1�s. The reason is that, for dealer 6, her

signal together with the equal-weighted sum of signals is a sufficient statistic for all the
information in the economy. Thus, whereas in round 1 she learned everything she wanted
to learn, in round 2 she cannot do so. The weight that dealers 5 and 7 place on their
own private signals “jams” the information content of the guesses that dealer 6 observes.
Nevertheless, the round-2 guesses are informative, and dealer 6 updates her posterior by
placing a larger weight on her own signal, as the solid line in Panel B indicates. Since all
other agents update their posterior in a similar way, the guesses that dealer 6 observes in
round 3 are a mirror image of her own guess, as indicated by the dashed lines in Panel C.
The solid line in Panel C represents dealer 6’s guess in round 4. In Panel D, we depict the
guess of dealer 6 in each round until round 5, where we reach the fixed point.

The thick dashed curve in the last panel of Figure 1 shows the optimal weights on each
signal in the belief of dealer 6 in the planner’s solution. As is apparent, the dealer places
more weight on her own signal in equilibrium than what is informationally efficient. The
reason is that each agent’s conditional guess function affects how much her neighbors can
learn from her guess. This, in turn, affects the learning of her neighbors’ neighbors, etc.
Although dealers optimally choose guesses that are tilted towards their own signals, they
do not internalize that they distort the informational content of these guesses for others.

In the following proposition, we show that this observation is not unique to the exam-
ple. Indeed, in any star network, the sum of payoffs would increase if, starting from the



TRADING AND INFORMATION DIFFUSION 1743

FIGURE 1.—Best responses in the conditional guessing game in a ring network. Panel A shows player 6’s
best response weight on each signal when her neighbors’ guess weighs each signal uniformly at σ2

θ

nσ2
θ+σ2

ε
1�. Panels

B–D show further iterations of best responses. Panel D also shows the planner’s solution. The parameters are
n= 11, ρ= 0�8, σ2

θ = σ2
ε = 1, βij = −1.

decentralized equilibrium, both central and periphery dealers would put less weight on
their respective signal and more weight on their neighbors’ guesses.

PROPOSITION 7: Let U({ȳ i� z̄gi}i∈{1�����n}) be the sum of payoffs in a star network for any
given strategy profile {ȳ i� z̄gi}i∈{1�����n}. Then, if {ȳ i∗� z̄∗

gi
}i∈{1�����n} is the decentralized equilibrium,

then

lim
δ→0

∂U
({
ȳ i∗ − δ� z̄∗

gi
+ δ1

}
i∈{1�����n}

)
∂δ

> 0�

That is, starting from the equilibrium solution, marginally decreasing weights on a dealer’s
signal or marginally increasing weights on other dealers’ guesses increase the sum of payoffs.

The intuition that we provide about why dealers overweight their signal in a circle net-
work is informative as well about why the central dealers overweight their signal in a star
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network. The planner would prefer the central dealer to put less weight on her own signal
because this would make her guess more informative on the common value component,
that is, more useful for the periphery agents. In turn, once the guess of the central agent
is more informative, the periphery agents should put more weight on that and less weight
on their own signal. This explains why periphery agents overweight their signal in the
decentralized solution.

Note that this informational inefficiency does not arise as a result of imperfect com-
petition or strategic trading motives that agents have. Indeed, the equivalence between
dealers’ beliefs in the conditional guessing game and in the OTC game implies that this
is not the case. Instead, it is a consequence of the learning externality arising from the
interaction between the interdependent value environment and the network structure.

An interesting question is whether the informational inefficiency can be corrected to
some degree. It is a reasonable conjecture that when signals are costly to acquire, dealers
may put less weight on their signal relative to the information they learn from prices than
when the signals are costless. However, how dealers would best respond to each others’
choices of information precision, how the properties of the remaining equilibrium would
change with the network structure, and how it would compare to the planner’s solution
are nontrivial questions which we leave for future research.

5. SIMPLE NETWORKS AND REAL-WORLD OTC MARKETS

In this section, we further explore the implications of our model. We proceed in two
distinct ways.

First, we gain further insights into welfare, expected profits, and illiquidity by analyz-
ing trade in simple networks. In particular, we isolate the effect of decentralization by
comparing the complete OTC network with centralized markets, we illustrate the role
of link density by comparing different circulant networks, and we analyze the effect of
asymmetric number of links in the star OTC network.

Second, using a filtered network associated to the securitization market as presented by
Hollifield, Neklyudov, and Spatt (2017), we argue that we should expect more connected
dealers to learn more, intermediate more, trade a larger gross volume with a lower price
impact, and make more profit. We illustrate how our parameters can be matched to the
data and contrast our predictions with findings from the empirical literature across vari-
ous markets.

5.1. Profit, Welfare, and Illiquidity

In this section, we start with some general observations about how the OTC market
structure and adverse selection affect dealers’ expected profit, welfare, and illiquidity.
Then, we proceed to give further insights by analyzing two simple OTC networks: the
complete network and the star network.

To keep the market structures comparable, we assume that dealers have an identically
sized customer pool. To simplify the welfare analysis, we assume that dealers charge zero
markup. As before, a dealer i in the OTC market uses each link ij to satisfy an exogenous
fraction of her customer base. This implies that in the centralized market, the absolute
slope of the customers’ demand is −βV = nB, whereas in any OTC markets with K total
links, the customers’ demand in any transaction between dealer i and j is −βij = nB

K
, where

B > 0 is an exogenous constant.
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5.1.1. General Observations

Before the formal analysis, it is instructive to explain the intuition about what might
determine traders’ profit and total welfare in our economy. First of all, recall that each
dealer is risk-neutral and their valuation has a private component. This implies that if all
dealers would take unboundedly large negative or positive positions, that could lead to
unboundedly large expected profit and welfare. As an illustration, consider the follow-
ing (non-equilibrium) allocation. Let the posterior expectations ei be determined in the
equilibrium of the conditional guessing game and let prices and traded quantities be fixed
at

pij = ei + ej

2
� qi

ij = t
(
ei −pij

)
�

where the trading intensity, t, is the same arbitrary positive constant for each agent. It
is easy to check that as each dealer trades in the direction of her posterior, increasing t
without bound would increase expected profit and total welfare without bound.

In equilibrium, dealers do not take infinite positions because they are concerned about
adverse selection. Whereas expressions (23) and (24) for prices and quantities are similar
to the thought experiment above, the trading intensity of each dealer, tiij , is determined as
in equilibrium from the best response function given by expressions (11) and

tiij = t
j
ij

(
1 − z

j
ij

) −βij� (26)

The coefficients of prices in posteriors, zj
ij , depend on the network structure, and so do the

trading intensities. By solving for the trading intensities while keeping z
j
ij and zi

ij constant,

we obtain the equilibrium expression (22). Note that this expression implies
∂tiij

∂z
j
ij

< 0. That

is, the trading intensity of dealer i is smaller if her counterparty puts a larger weight on
the price pij when forming her expectation. We should expect zj

ij to be higher when the
price pij is a more important source of information for j because either i observes more
prices, j observes fewer prices, or the correlation across values is small. Therefore, zj

ij is a
natural measure of how much dealer j is concerned about adverse selection when trading
with dealer i.

From (9) and (26), 1
tiij

is the price impact of a unit of trade of i at link ij. That is, the more

j is concerned about adverse selection, the less liquid the trade is for dealer i. Hence, she
trades with a lower trading intensity. Averaging 1

tiij
over the links of i provides a natural,

dealer-level illiquidity measure similar to the one used in Li and Schürhoff (2017) and
Hollifield, Neklyudov, and Spatt (2017), for instance. We use this measure to compare
illiquidity across market structures from i’s perspective. We use illiquidity, cost of trading,
and price impact interchangeably.

We naturally expect the average profit of dealer i,

E

(∑
ij∈gi

qi
ij

(
θi −pij

)) =
∑
ij∈gi

tiijE
((
ei −pij

)2)
� (27)

to increase with the number of links because this implies both more opportunities to trade
and intermediate, in addition to higher trading intensities. Although the expected profit
also depends on the gains per unit of trade, E((ei − pij)

2) at each link, we find in all our
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examples that variation in trading intensities and opportunities for intermediation are the
driving forces.

As a fraction of assets are allocated to customers in equilibrium, we also need their
expected utility for a full welfare analysis. Customers’ expected utility at link ij is propor-
tional to the variance of the price pij since

E

((−(
q
j
ij + qi

ij

))2

2βij

+ (
qi
ij + q

j
ij

)
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as follows from market clearing.
The total welfare is then the sum of profits and customers’ utility summed over each

link of the network:∑
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Sometimes, it will be easier to work with the equivalent formula∑
ij∈g
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where we net out the transfers across agents obtaining the sum of expected value of allo-
cations for dealers and customers. Provided βij = β for all links, welfare is linear in β.

Finally, note that from (23), it immediately follows that price dispersion arises naturally
in this model. A dealer with multiple trading partners is trading the same asset at various
prices because she is facing different demand curves along each link. Just as a monopolist
does in a standard price-discrimination setting, this dealer sets a higher price in markets
in which the demand is higher. In fact, from (23), we can foresee that the price dispersion
in our framework must be closely related to the dispersion in posterior beliefs.

5.1.2. The Effect of Decentralized Trading: The Centralized and the Complete Network
OTC Market

Comparing the equilibrium in a centralized market as described in Vives (2011) with
the equilibrium in the OTC complete network isolates the effect of trade decentraliza-
tion. In both cases, each trader can trade with all of the others, and, from Proposition 6,
we have that the posterior expectations are the same (and efficiently incorporate all the
information in the market). Nevertheless the prices, allocations, and welfare differ.

The main observation in this subsection is that the effect of trade decentralization on
welfare and illiquidity depends on the correlation across dealers’ values. Close to the
common value limit, the OTC market is more liquid and provides higher total welfare
than the centralized market, whereas for lower correlations across values, the opposite is
typically true.

In Appendix B.1, we report closed-form solutions for the price, pV , quantity, qV , and
the price coefficient in expectations, zV , for centralized markets (i.e., Vives (2011)). The
trading intensity of a dealer in a centralized market is given by tV = −βV

n(zV −1)+2−zV
, which is

the fixed point of expression

ti = (n− 1)t−i
(
1 − z−i

V

) −βV � (31)
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Equation (31) shows how the trading intensity, ti, of dealer i responds to the trading
intensity of all other agents, t−i, and to their adverse selection concern, z−i

V . This is the
centralized counterpart of (26). The expected profit and welfare in a centralized market
are calculated by trivial modifications of (27) and (29).

Importantly, Vives (2011) showed that there is linear equilibrium in centralized mar-
kets, if and only if 1 − 1

n−1 < zV . As we argued above, adverse selection concerns deter-
mine the slope of demand curves when dealers are risk-neutral. In a centralized market,
this concern must be sufficiently strong, or the equilibrium cannot be sustained. The same
condition is also required for an equilibrium to exist in an OTC market. However, with
bilateral trades, it reduces to 0 < z

j
ij .

In a complete network, the trading intensity is t
j
ij = tiij = tCN = −βCN

1
zCN

, and a closed
form for the adverse selection parameter zCN is given in Appendix B.3. Additionally, as
we explained above, we keep the total mass of customers constant across the two market
structures, implying −βCN = 2B

n−1 and −βV = Bn for some B > 0.
Panels A–D in Figure 2 illustrate how dealers’ profit, customers’ utility, illiquidity, and

total welfare compare across the two markets for different values of ρ, fixing all other
parameters.

In the next proposition, we state our analytical results corresponding to these figures.

PROPOSITION 8: Comparing a centralized market with a complete-network OTC market:
1. When ρ or σ2

ε

σ2
θ

is sufficiently low, such that zV converges to 1 − 1
1−n

from above, the total
welfare and dealers’ profits are larger and illiquidity is smaller in the centralized market.

2. When ρ is sufficiently close to 1, then
(a) total welfare and customers’ utility are higher and illiquidity is lower in the OTC market,

whereas
(b) dealers’ profits are higher in the centralized market.

The intuition is as follows. Note first that as zV → 1 − 1
n−1 from above, trading intensity

grows without bound, tV → ∞, and illiquidity falls to zero. Because the information con-
tent of the price increases with ρ and σ2

ε

σ2
θ

in a centralized market, so does zV . This implies

that for sufficiently low ρ and σ2
ε

σ2
θ
, welfare and dealers’ profit are increasing without bound

in a centralized market. This holds because as adverse selection becomes weaker, dealers
are ready to take on very large bets. Because the private value component implies gains
from trade, these large trades translate into high expected profit and high welfare. Given
that quantities and profits are finite in the OTC market as long as ρ is not close to 0, it
immediately follows that at least when zV is close to 1 − 1

n−1 , profit and welfare are larger
and illiquidity is lower in centralized markets.

Perhaps more surprising is that in the common value limit, when ρ is close to 1, total
welfare is higher and illiquidity is lower in the OTC market than in the centralized market.

We start with the result on illiquidity. There are two forces that drive this result. First,
even if price aggregated the same amount of information under the two market structures,
that is, if zV and zCN were equal, mechanical differences in best responses in (31) and
(26) would lead to a different outcome. Namely, the absolute values of both the slope
and the intercept of best responses are higher in the centralized market. The slope is
higher because the aggregate response of (n − 1) counterparties is higher than that of a
single counterparty, whereas the intercept is higher because all customers are present in
the centralized market: −βV = Bn > 2B

n−1 = −βCN . Whereas the slope and intercept have
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FIGURE 2.—Expected profit, expected welfare, expected customer utility, average trading cost (illiquidity)
per trader in various networks. Parameters: n= 9, B = 1, σ2

θ = 0�1, σ2
ε = 1.

opposite effects, simple algebra shows that the sum of these forces would result in higher

illiquidity in the OTC market as
1
tV
1

tCN

|zv=zCN=z < 1.

Second, however, the single price in the centralized market aggregates more informa-
tion than each of the individual prices separately in the OTC market. Indeed, it is easy
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to check that zCN < zV for any parameter values. This tends to make illiquidity higher in
the OTC market. Note that increasing the ratio zV

zCN
increases illiquidity in the centralized

market relative to the OTC market as

∂

1
tV
1
tCN

∣∣∣∣∣∣∣∣
zV
zCN

=x

∂x
=

∂
− 2B
n− 1

1
z

−nB

n(xz − 1)+ 2 − zx

∂x
> 0�

Because zV
zCN

is monotonically increasing in ρ, this force is strongest at the common value
limit. As we prove in the proposition, this effect is sufficient to make illiquidity higher in
the centralized market than in the OTC market in the common value limit.

To understand the result on welfare, we start by comparing customers’ utility. Note first
that the ratio of customers’ utility in the complete network OTC market and the central-

ized market is the ratio of the price variance in each market:
B
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in the common value limit, the price variance is larger under the OTC structure as
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As is apparent from the second expression above, there are two forces. On the one hand,
in a centralized market, the variance of the price is connected to the variance of the sum
of all expectations, whereas in an OTC market, it is connected to the variance of the
sum of the two expectations at each link. The first one is higher, which makes customers’
expected utility higher on centralized markets. On the other hand, as zV > zCN , the mul-
tiplier coming from trading intensities tends to push customers’ utility higher in the OTC
market. The ratio zV

zCN
is maximal in the common value limit, and the second force turns

out to dominate the first. So in this limit, the utility is higher under the OTC structure. As
Panels A–D in Figure 2 demonstrate, when ρ is smaller, the first force might dominate,
thus implying that utility tends to be larger under the centralized structure.

Finally, we explain why welfare is higher but the expected profit of dealers is lower in
the OTC market in the common value limit. For this, we substitute the closed-form ex-
pressions for equilibrium prices and quantities into (30) which is the sum of the value of
allocations to dealers and customers. Taking the limit, it is easy to show that the sum of
terms corresponding to dealers is actually greater in the OTC market than in the central-
ized market in the common value limit ρ → 1. This is due to the larger trading intensity
in OTC markets in this limit. The difference between formulas (29) and (30) represents,
essentially, a transfer from dealers to customers. Since this transfer is larger under the
OTC market structure, this explains why welfare and profit move in opposite directions.
As is apparent from the middle expression in (28), the total transfer is

∑
ij(−βijE(p

2
ij)),

twice the utility of customers, which, as we argued above, is indeed higher in the OTC
complete network than in the centralized market in the common value limit.
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5.1.3. The Effect of More Links: Circulant Networks With Varying Density

Panels A–D in Figure 2 also illustrate how welfare, customers’ utility, dealers’ profit,
and illiquidity compare in various (n�k)-circulants. With fewer links, welfare and cus-
tomers’ utility tend to decrease and illiquidity tends to increase, whereas dealers’ profit
might go either way.

As there are no explicit solutions for the conditional guessing game for circulant net-
works, we do not have analytical results for the circulant OTC networks either. Nonethe-
less, because of the symmetry, the intuition behind the numerical results is relatively sim-
ple. Decreasing the number of links in symmetric fashion has two main effects: each
dealer learns less and each dealer has fewer opportunities to trade and intermediate.
Learning less implies more concern about adverse selection, lower trading intensities on
average, higher illiquidity, and smaller variance of prices at each link (as fewer links im-
plies lower variation in expectations as weights on the common prior increase and weights
on signals decrease). Fewer opportunities to trade and smaller trading intensities imply
a smaller trading volume which is the dominating force in reduced welfare. The lower
price variance implies a reduced customers’ utility and, by the logic explained above, a
smaller total transfer from dealers to customers. Profits can go either way because the net
effect of less trade and smaller transfers is ambiguous. As we see in the figure, close to
the common value limit, less dense networks might be more profitable for dealers.

5.1.4. The Effect of Asymmetry: Periphery and the Central Dealer in a Star Network

The star network is an ideal case to study the effect of asymmetry on allocations and
welfare. The main result in this subsection is that central agents do not always earn higher
expected profit than periphery agents. In fact, expected profit is higher for periphery
agents in the common value limit.

Simple, closed-form solutions that characterize the equilibrium in a star network are
spelled out in Appendix B. The next proposition and Panels E–F in Figure 2 show analyt-
ical and numerical results, respectively, concerning illiquidity, profit, and welfare.

PROPOSITION 9: In a star network, the following statements hold:
1. The adverse selection concern and the trading intensity of periphery traders are higher,

zP > zC , tP > tC , or, equivalently, the central dealer faces a more illiquid market than the
periphery dealers for any ρ.

2. In the common value limit, ρ → 1, central dealer’s profit converges to zero while the
periphery dealer’s profit is bounded away from zero as tP → −β, tC → 0.

We start by comparing the trading intensities, tP and tC . As we noted before, for the
central agent, prices are privately fully revealing. That is, her posterior belief is the same
as the belief of dealers in a complete network or in a centralized market. In contrast, the
learning of periphery dealers is limited by the fact that they observe a single price only. As
a result, the weight that a periphery dealer puts on the price is larger than the weight the
central dealer puts on the same price, so zP > zC always holds. Intuitively, the periphery
dealer is more concerned about adverse selection than the central dealer, as the central
dealer knows more. Therefore, from (22), the trading intensity of periphery traders is
always larger, as

tP

tC
= 2 − zC

2 − zP
> 1�
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Hence, at each link, the central dealer trades with a smaller intensity, or equivalently, the
market is less liquid for the central dealer than for the periphery dealer.

The lesson from the above intuition is that a dealer trading with less-connected counter-
parties should face a higher price impact. In the special case of a star, the dealer with the
least-connected counterparties is the central dealer. Thus, in the star, there is a positive
correlation between price impact and number of own links. However, this is an artifact
of the special structure of the star. In more general core-periphery networks, the average
number of links of more-connected dealers’ counterparties is often greater. Indeed, in
our calibrated example in Section 5.2, there is a negative relationship both between price
impact and number of counterparty’s links (just as in the star) and between price impact
and number of own links (unlike in a star).

Now, we turn to profits and allocations in the star network. Although the central dealer
trades with less intensity, she also trades and intermediates across more links, and by
(23), the distance between her expectation and the price is higher than for the periphery
dealer. As illustrated in Panels E–F in Figure 2, for a large set of parameter values, the
effect of the smaller trading intensity is dominated, and trading as a central agent is more
profitable in expectation than as a periphery agent. However, this is not always the case.
As is apparent in the figure, this statement is reversed as we approach the common value
limit. In fact, in the limit, the expected profit of the central dealer is zero, whereas it is
strictly positive for periphery dealers, as we state in Proposition 9. Again, this is related
to the strong negative assortativity in a star.

To see the intuition, it is illustrative to specify how profits are determined close to the
common value limit. In the limit, all dealers put diminishing weight on their own signal
as they form expectations. Instead, in the conditional guessing game as ρ → 1, periph-
ery dealers put a weight of z̄P → 1 on the expectation of the central dealer, while the
central dealer puts equal weight on each of the periphery agents’ expectations, implying
z̄C → 1

n−1 . Thus, by Proposition 9, as we approach the common value limit in the OTC
game, this implies trading intensities of tP → −β, tC → 0. That is, central dealers do not
trade in this limit at all, and periphery dealers trade only with customers. In the common
value limit, the central agent has better information about the common value of the asset
than periphery agents. Thus, as a manifestation of the no-trade theorem, there cannot
be an equilibrium where these agents trade with each other. Therefore, the only remain-
ing question is who trades with the customers. As periphery agents are more concerned
about adverse selection, the price impact of the central dealer is larger. This implies that
there is a price-quantity pair at which the central dealer stops trading, but at which the
periphery dealer is still willing to trade. This results in positive trade between periphery
and customers only.

5.2. Real-World OTC Markets: A Calibrated Example

An attractive feature of our model is that it generates a rich set of empirical predictions.
As we emphasize in this section, for any given information structure and dealer network,
our model generates the full list of demand curves and the joint distribution of bilateral
prices and quantities, which we can use to calculate the expectations of price dispersion,
intermediation, trading volume, and other financial variables. Therefore, in principle, our
results could be compared to stylized facts from the growing empirical literature using
transaction-level OTC data.

In this subsection, we give guidelines for future empirical work by an illustrative ex-
ample. Namely, we fit our parameters to the securitization market, that is, the secondary
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market of ABSs, CDOs, CMBs, and non-agency CMOs, as presented by Hollifield, Nek-
lyudov, and Spatt (2017). In particular, conditioning on the reported dealer network, we
explore the sensitivity of various variables of interest to the parameters of our model, we
find the parameters that match few selected moments reported by Hollifield, Neklyudov,
and Spatt (2017), and we analyze the model with the fitted parameters.

5.2.1. The Dealer Network and Sensitivity of Moments

Hollifield, Neklyudov, and Spatt (2017) analyzed the effect of the inter-dealer network
on bid-ask spreads in various segments of the securitization market using a transaction-
level data set from FINRA during eight months in 2011–2012. Conveniently, in the work-
ing paper version, Hollifield, Neklyudov, and Spatt (2013) reported the filtered, 78-dealer
representation of the trading network where only links with sufficient frequency and size
of transactions are reported. We reproduce this network in Figure 3. Using this network,
we calculate the equilibrium of our model as described by Propositions 1 and 2.

To give a sense of which empirical moments one can choose to fit our model to the
data, in Figure 4 we plot a number of objects for a range of parameters. In particular,

FIGURE 3.—The inter-dealer trading network on the securitization market reproduced from Hollifield, Nek-
lyudov, and Spatt (2013, Figure 5). Links are defined by trading relationships with at least 50 trade reports and
at least $10 million of original balance transacted in the sample from May 16, 2011 to February 29, 2012. Deal-
ers are ordered and numbered by their eigenvalue centrality. (The five links unconnected to the main network
are omitted.)
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FIGURE 4.—Moments as a function of correlation across values, ρ, and noise-to-signal ratio, σ ≡ σ2
ε

σ2
θ

. From
left to right and from top to bottom, we show the mean price impact, the ratio of expected profit per dealer
to the expected net positions per dealer, the absolute and relative price dispersion, the expected total gross
volume, and the mean expected profit per dealer, keeping σ2

θ = (−β) = 1 fixed. Each plot is scaled and nor-
malized to show deviations proportional to implied values at calibrated parameters. The minimal ρ = 0�014,
σ = 0�1584 combination in each plot is the pair of calibrated parameters.

we show the mean price impact, the ratio of expected profit per dealer and expected net
positions per dealer, absolute and relative price dispersion, expected total gross volume,
and mean expected profit per dealer as a function of σ ≡ σ2

ε

σ2
θ

and ρ, keeping σ2
θ = −β = 1

fixed. Formal definitions of the variables are provided in Table I. Note that we do not
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TABLE I

MOMENTS AND DEFINITIONS

Moments Formula

mean price impact 1
m
Σi

1
|gi |Σj∈gi 1

tiij

ratio of expected profit to expected net positions per dealer
E( 1

n Σi
∑

ij∈gi q
i
ij (θ

i−pij ))

E( 1
n Σi |

∑
ij∈gi q

i
ij |)

absolute price dispersion
√
E( 1

m
Σij(pij − p̄)2)

relative price dispersion
√

E( 1
m Σij (pij−p̄)2)

E(|p̄|)
expected total gross volume E(ΣiΣj∈gi |qi

ij |)
mean expected profit per dealer E( 1

n
Σi

∑
ij∈gi q

i
ij(θ

i −pij))

have to simulate the random variables θi and εi. For any network, given the equilibrium
coefficients, zi

ij , defined in Proposition 2, we can analytically calculate these objects. There
is also no need to check the sensitivity to β and σ2

θ because the relative price dispersion
and mean profit over the net position depend only on σ ≡ σ2

ε

σ2
θ

and ρ, mean price impact
linearly scales with (−β), absolute price dispersion linearly scales with σθ, gross volume
linearly scales with σθ(−β), and expected profit linearly scales with σ2

θ(−β) by Corollary 1
and Proposition 2. To make the sensitivities comparable, we scale and normalize all the
quantities to be proportional to their calibrated value calculated in the next section. Note
that the smallest ρ, σ combination which is plotted in each surface corresponds to the
calibrated value of ρ, σ ; therefore, each surface takes the value of 0 at that point.

5.2.2. Matching Parameters

Ideally, we would estimate our parameters and test the fit by GMM in an over-identified
system of a large number of moments including the ones in Figure 4. However, because
we do not have access to the data set, we limit ourselves to the following exercise. We use
three moments that are reported in Hollifield, Neklyudov, and Spatt (2017) that have a
natural counterpart in our model and respond differently to our parameters: the average
customer bid-ask spread, relative price dispersion, and total volume.9 As we show in this
subsection, these three moments exactly identify the three free parameters of the model,
σ ≡ σ2

ε

σ2
θ
, (−β)σ2

θ , and ρ. Then, using the fitted parameter values, we calculate various
indicators to assess the strength and weaknesses of our framework. We provide more
details of this exercise in Appendix D in the Supplemental Material (Babus and Kondor
(2018)).

Hollifield, Neklyudov, and Spatt (2017) constructed customer bid-ask spreads as fol-
lows. They identified trades when a customer sells a given quantity to a dealer, which
the dealer (potentially through other dealers) passed on to another customer. The bid-
ask spread is the difference between the two transaction prices with the customers as a
percentage of the value of the transaction. A single dealer was involved in 83% of these
chains.

9For simplicity, we focus on one of the two main explored segments: the “Rule 144a” securities. We choose
this segment because the average trade size is larger; therefore, we expect that the filtering of our base network
is less limiting.
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The variable that corresponds in our model to the customer bid-ask spread is price
impact. Indeed, from (13), the theoretical price difference for customers associated to a
link ij of selling and buying Δ units from dealer j, pij(−Δ) − pij(Δ), as a percentage of
the marginal valuation of that customer is

pij(−Δ)−pij(Δ)

1
β
Δ

=

(
ei − −Δ

tiij

)
−

(
ei − Δ

tiij

)
1
β

= 2β
tiij

� (32)

By (22), for any given dealer and link, this is a constant pinned down by σ ≡ σ2
ε

σ2
θ

and ρ

only. Therefore, we match the average value of (32) implied by our model to the average
customer bid-ask spread in Hollifield, Neklyudov, and Spatt (2017, Table 3).

Hollifield, Neklyudov, and Spatt (2017, Table 10) reported the relative dispersion of
customer bid-ask spread separately for the top 5% of the highest eigenvalue centrality
dealers (core) and for the rest of the dealers (periphery). Because we expect that our
filtered network contains all the core dealers, we choose the relative dispersion measure
corresponding to core dealers as our second moment. We match this with the model im-
plied ratio of expected price dispersion to the absolute mean of prices in those transac-
tions where one of the counterparties is a core dealer.

We match the total volume in identified customer to customer chains in the sample with
the expected total volume in our model as reported in Hollifield, Neklyudov, and Spatt
(2017, Table 2).

This procedure gives the parameter values of ρ= 0�014, σ = 0�1584, (−β)σ2
θ = 7�3835.

With the estimated parameter values, we verify that our model implies that the average
spread for core dealers is less than that for periphery dealers and the average spread for
large trades is smaller than that for small trades. These results are qualitatively consistent
with Hollifield, Neklyudov, and Spatt (2017, Table 3, Table 10). Figure 4 gives a good idea
of how the moments identify the parameters. Relative price dispersion essentially pins
down ρ, as the corresponding surface is very sensitive to ρ but almost flat in σ ≡ σ2

ε

σ2
θ
. This

is intuitive, as a principal source of price dispersion in our model is the private component
in dealers’ values. Given ρ, the average price impact pins down σ ≡ σ2

ε

σ2
θ
. Given these two

parameters, the total volume pins down (−β)σ2
θ because it scales linearly in that variable.

5.2.3. Stylized Facts and Other OTC Markets

In this section, we further explore the qualitative implications of our model and contrast
them with empirical facts from other OTC markets. For this exercise, we use the same
network described above and the parameters we have calibrated.

We start by illustrating how dealers’ centrality is related to a set of standard financial
indicators using our calibrated parameters in Figure 5. Panels A–D show dealer-level
measures. In particular, we plot each dealer’s expected profit, expected gross volume,
intermediation, calculated as the expected gross volume over expected net volume and
posterior precision (as percentage of the corresponding precision under fully revealing
prices), against the number of trading partners of the given dealer. Panels E and F show
link-level measures. In particular, we plot the price impact a dealer faces on a given link
against the number of trading partners, and against the sum of the trading partners of the
two counterparties connected by the link, respectively.
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FIGURE 5.—Panels A–D show each dealer’s expected profit, gross volume, intermediation, and posterior in-
formation precision (as percentage of precision under fully revealing prices) against the number of the dealer’s
trading partners. Panels E and F show the price impact a dealer faces at a given link against the number of
her trading partners, and against the sum of the trading partners of the two counterparties at the given link,
respectively. Parameter values are ρ = 0�014, σ = 0�1584, β= −1, σ2

θ = 7�3835.

The relationship between the degree of the dealer and her profit, gross volume, gross-
to-net volume ratio, or precision is strong and positive. The shape of the scatter plots
suggests that, given the calibrated parameters, the dealer’s degree centrality summarizes
almost all the relevant information of her network position to determine her profit, vol-
ume, information precision, and gross-to-net volume ratio. While there is only a weak
negative relationship between the degree of the dealer and her price impact, there is a
strong relationship between the sum of the degrees of both counterparties and price im-
pact. This is consistent with our discussion in Section 5. The price impact a dealer faces
is smaller when her counterparty puts less weight on the given price, for example, be-
cause she trades with a large number of counterparties. Therefore, we should observe the
smallest price impact when both parties have a large number of trading partners.10

These observations are qualitatively consistent with the empirical literature considering
various markets. Similarly to Hollifield, Neklyudov, and Spatt (2017), Di Maggio, Ker-
mani, and Song (2017) found, in the context of the corporate bond market, that central

10As parameters vary, the relationships shown in Figure 5 are always strong and have the same sign. How-
ever, especially as correlation, ρ, increases, degree centrality does not suppress all the other network charac-
teristics to the same extent. We illustrate this observation in Appendix D of the Supplemental Material.
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dealers offer lower spreads compared to periphery dealers. Consistently with our analy-
sis, they also found that the centrality of both counterparties matter for price impact of
the trade. They found that the price impact is lowest between two high-centrality dealers,
highest between two low-centrality dealers, and in-between when only one of the coun-
terparties has high centrality. This is as predicted by Panel F in Figure 5.11

Li and Schürhoff (2017) also showed that central agents in the municipal bond mar-
ket trade more, their trades are more profitable, and they seem to be better informed
than others. The positive relationship between centrality and trading volume was also
confirmed by Roukny, Georg, and Battiston (2014) for a data set of European CDSs.

Our model can also be used as a basis for counterfactual analysis. As an illustration,
in Appendix D in the Supplemental Material, we analyze the effect of market distress
in our calibrated example. In particular, we remove the most connected dealer from the
network. We find that network-wide price dispersion and average price impact go up,
while overall trading volume goes down. These observations are consistent with findings in
the empirical literature that study the effect of a stress event on market indicators, such as
Friewald, Jankowitsch, and Subrahmanyam (2012) for the corporate bond market, Afonso
and Lagos (2015) for the Fed Funds market, and Agarwal, Chang, and Yavas (2012) for
the MBS market.

Importantly, thinking about the underlying trading network structure might be useful
even when the econometrician has only limited information about dealers’ characteristics.
Indeed, given our results, we should expect that larger transaction size is associated with
lower trading costs, higher profits, and profitable and more informative trades. The rea-
son is that these are properties of transactions of more connected dealers. From this set
of predictions, the pattern that percentage cost is decreasing in the size of the transaction
is a robust observation in many different contexts (see Green, Hollifield, and Schurhoff
(2007) and Li and Schürhoff (2017) on municipal bonds and Edwards, Harris, and Pi-
wowar (2007) and Randall (2015) on U.S. corporate bonds).

Finally, consistently with our observations, Atkeson, Eisfeldt, and Weill (2015), Li and
Schürhoff (2017), and Hollifield, Neklyudov, and Spatt (2017) all reported that the CDS
and the securitized loan markets are highly concentrated. While the same is true when
U.S. corporate bonds are evaluated in the aggregate, Schultz (2001) reported that trading
in specific bonds seems to be spread across multiple dealers. Our model is silent on these
differences.

6. THE PRICE-DISCOVERY GAME

In this section, we guide the reader to better connect our OTC game to the real-world
features of trading in OTC markets. In the OTC game, dealers’ trading strategies are rep-
resented by generalized demand curves, and all trades take place simultaneously. This is a
very tractable and rich theoretical structure, and we consider the one-shot OTC game as
a reduced-form representation of how equilibrium prices and quantities are determined
in reality.

In real-world OTC markets, dealers do not post full demand curves. Instead, dealers
engage in bilateral negotiations with their counterparties by quoting prices which are valid

11Interestingly, in contrast to Hollifield, Neklyudov, and Spatt (2017) and Di Maggio, Kermani, and Song
(2017), Li and Schürhoff (2017) found that central traders offer higher spreads than periphery traders in the
context of the municipal bond market. Hollifield, Neklyudov, and Spatt (2017) suggested that the difference
might be due to the different level of sophistication in these markets. Our model suggests that, in the municipal
bond market, adverse selection might not be the first-order determinant of variation in spreads.
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for a certain quantity. To capture this feature, we introduce a variant of the OTC game
where dealers find the equilibrium prices and quantities through a sequence of bilateral
exchange of quotes.

In particular, consider that each node in a given network is a trading desk. Each desk
i consists of a desk-head, whom we continue to refer to as dealer i, and one or more
traders. Dealer i designs a bidding strategy and the traders have to implement this strat-
egy. The bidding strategy describes how the traders should respond to bids they receive
from counterparties. Bidding takes place sequentially, in rounds. In each bidding round
τ, each trading desk i makes an offer πi

ij�τ = {pi
ij�τ� q

i
ij�τ} to each trading desk j with whom

she has a link, indicating that she is willing to trade quantity qi
ij�τ for price pi

ij�τ. Thus, in
any bidding round, all dealers make and receive offers to and from their counterparties
in the network. If the price offered by i to j is arbitrarily close to the price offered by j to
i, and the two quantities differ only to the extent of the order of the customers’ demand
at the given price, then the offer is accepted. Otherwise, a trading desk j that receives the
bid in round τ responds with a counter-offer πj

ij�τ+1 = {pj
ij�τ+1� q

j
ij�τ+1} in round τ + 1. This

process can continue for any number of rounds, until all trading desks accept the offers.
At that point, trades are executed both across dealers and with customers. We define this
game formally in Appendix C of the Supplemental Material and call it a price-discovery
game.

The following proposition proves our claim that dealers can find the equilibrium prices
and quantities in the OTC game by playing the price-discovery game.

PROPOSITION 10: Suppose that there exists an equilibrium in the OTC game, with ȳ i ≥ 0
and z̄i

ij ≥ 0 whenever j ∈ gi.
1. There exists a set of bidding strategies that are an equilibrium in the price-discovery game.
2. The resulting prices and quantities are the same as the equilibrium prices and quantities

in the OTC game.

Although the construction of the price-discovery game is arguably artificial, it illustrates
some important features of our OTC game. On the one hand, finding the equilibrium
prices and quantities in the OTC game need not rely on any kind of auctioneer. The price-
discovery game shows that equilibrium prices and quantities can be found via an iterative,
decentralized process. Moreover, the coefficients of the generalized demand curves (and,
consequently, the coefficients of the bidding strategies) can be derived without observing
the realization of signals. Indeed, dealers can find the equilibrium coefficients just by
understanding the structure of the game they are facing.

On the other hand, the price-discovery game emphasizes an important limitation of
the OTC game. Namely, the equivalence between the price-discovery game and the OTC
game relies on the fact that the bidding strategies are static. That is, they do not depend
on the bidding round, and they are conditional only on the outcome of the last bidding
round, as opposed to all previous rounds. This restriction on the strategy space of dealers
that dealers can use is necessary as the OTC game is nevertheless a static game. Thus, in
our framework, we are unable to capture any dynamic learning considerations inherent
in real-world OTC markets.

7. CONCLUSIONS

In this paper, we proposed a model of trading and information diffusion in OTC mar-
kets. Dealers trade on a fixed network, and each dealer’s strategy is represented as a
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quantity-price schedule. We showed that information diffusion through prices is unaf-
fected by dealers’ strategic trading motives and that each price partially incorporates the
private information of all dealers, and we identified an informational externality that con-
strains the informativeness of prices. We also highlighted that trade decentralization can
both increase or decrease welfare and that the main determinant of a dealer’s trading cost
is not her centrality but rather the centrality of her counterparties. We used a calibrated
example and various robustness checks to illustrate that, in realistic inter-dealer networks,
more-central dealers learn more, intermediate more, trade more at lower costs, and earn
higher expected profit.

Importantly, trading protocols in OTC markets have become increasingly diverse.
There are a number of protocols (e.g., dealer runs, broker-assisted work-up protocols)
which our paper does not address explicitly. Given this increasing diversity, it is important
to develop frameworks that put limited emphasis on any one particular trading protocol
and can still capture robust features of OTC markets. Our approach emphasizes that links
are persistent, that the market structure is concentrated, and that dealers intermediate
trade between otherwise-disconnected counterparties. Our model yields price-quantity
pairs that are consistent with each dealer’s information, potential trading partners, and
objectives. We implicitly suggest that if such pairs exist, it is likely that the market will
converge to these points, independently of the trading protocol.

Demand and supply curves have been a powerful tool to model equilibrium in cen-
tralized goods markets since the beginning of economic thinking. Using our approach of
generalized demand curves on networks, we have also found a method to obtain insights
for decentralized markets.

APPENDIX A: SELECTED PROOFS

In some proofs, we use the convention that a network, g, can be represented by an ad-
jacency matrix A(g) with elements Aij = 1 if ij ∈ g, and Aij = 0 if ij /∈ g. Also, sometimes
we use matrix notation as follows. V , Z̄, Ȳ are n × n matrices of row vectors vi, ȳi, z̄i,
i = 1� � � � � n, respectively. The individual elements of V are vij . The individual element of
Z̄ is z̄i

ij iff Aij = 1 and 0 otherwise, while Ȳ is a diagonal matrix with ȳ i at its ith diagonal
element. All omitted proofs are in the Supplemental Material.

Proof of Proposition 1

We prove the statement in a more general form than stated. It proves existence for a
general Gaussian information structure. We need only that if ωi is a column vector of the
covariances between θi and each of the signals (in our case, it is ωii = σ2

θ and ωij = ρσ2
θ

for i �= j), then ωi > 0 for all i.
Note that solving for an equilibrium is equivalent to finding a V ∗ matrix of which each

row vi is the solution of the problem of

max
ȳi�z̄i

(
2viωi − viΣ

(
vi

)�)
s.t. vi = [

ȳi + z̄iV ∗]
zi
ij = 0 ⇐⇒ Aij = 0�

(A.1)
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where Σ is the covariance matrix of signals, s, and ȳi is a row vector with a ȳ i at the ith
place and 0 otherwise, while z̄i is a row vector of size n with elements of some (z̄i

ij)j=1�����n

(subject to the last constraint).
To see that this V ∗ exists, let us first define the matrix mapping F : Rn×n → Rn×n, which

maps any n× n matrix V 0 to another one with rows (vi)i=1�����n defined by

vi ≡ arg max
ȳi�z̄i

(
2viωi − viΣ

(
vi

)�)
s.t. vi = [

ȳi + z̄iV 0
]

zi
ij = 0 ⇐⇒ Aij = 0�

(A.2)

Further, let

V
i ≡ {

vi : f (
vi

) ≤ 0
}
�

where

f
(
vi

) ≡ viΣ
(
vi

)� − 2viωi + ω2
ii

Σii

� (A.3)

is a function from Rn to R. We also define V
n×n ≡V

1 ×V
2 ×· · ·×V

n as the set of matrices
with rows vi ∈ V

i.
We need to show that F is a continuous self-map with respect to the set of matrices Vn×n

and that Vn×n is a convex compact set. Hence, the Brouwer fixed-point theorem applies.
We proceed in steps.

1. We show that F defined by (A.2) is a self-map.
For this, note that increasing the number of 0’s in the ith row of A (decreasing the

number of links to i in the network) adds more constraints to the problem (A.2). So we
consider the extreme problem where the ith row and column of A has only zeros, that is,
each z̄i

ij ≡ 0. It is easy to show that in this case the problem reduces to

ω2
ii

Σii

= max
vii

[2viiωii − viiΣiivii]

with a solution of yi = vii = ωii

Σii
and vij = 0 for all i �= j. Thus, for any A with nonzero

elements in the ith row and column, ω2
ii

Σii
is a lower bound on the value agent i can achieve;

that is, the solution vi will satisfy ω2
ii

Σii
≤ 2viωi − viΣ(vi)�, implying that for any V0 and A, F

projects to V
nxn.

2. F is continuous in V 0 by the Maximum Theorem.
3. Given that the Cartesian product of convex and compact sets is also convex and

compact, we only have to show that each V
i is convex, closed, and bounded:

(a) V
i is convex. Under the assumption that Σ is positive definite, f (vi) is a convex

function (the sum of a convex and a linear function). From the fact that the sub-level sets
of a convex functions are convex, it follows that the set Vi is convex.

(b) V
i is closed. Clearly, f (vi) is continuous. Let vi

n, n = 1� � � � �∞ be a convergent series
of vectors in V

i with vi
∞ being the limit point of this series. Since g is continuous, we have

f (vi
∞)= limn→∞ f (vi

∞) ≤ 0. Hence vi
∞ ∈ V

i.
(c) V

i is bounded. Note that the function f (vi) is strictly convex, continuous, and twice-
differentiable. Hence, there exists a minimum vi

min such that f (vi
min)≤ f (vi) for all vi ∈ V

i.
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Also, from the definition V
i, f (vi)≤ 0 for all vi ∈V

i. Note also that f (·) is strongly convex
on V

i as there exists m> 0 such that ∇2f (v)−mI = 2Σ−mI is positive definite (e.g., one
can pick m= σ2

θ + σ2
ε ). Also, from strong convexity,

f
(
v′′) ≥ f

(
v′) + ∇f

(
v′)(v′′ − v′)� + m

2

∥∥v′′ − v′∥∥2

2

for any v′� v′′ ∈Rn. In particular, for v′ = vi
min, we have ∇f (vi

min)= 0, implying that

f
(
v′′) − f

(
vi

min

) ≥ m

2

∥∥v′′ − vi
min

∥∥2

2
�

Let us pick v′′ = vi an arbitrary element of Vi. Then f (v′′)≤ 0, implying

− 2
m
f
(
vi

min

) ≥ ∥∥vi − vi
min

∥∥2

2
�

proving the claim.

Proof of Proposition 2 and Corollary 1

Consider an equilibrium of the conditional guessing game in which

E
(
θi|si� egi

) = ȳ isi +
∑
k∈gi

z̄i
ikE

(
θk|sk� egk

)
for every i. If the system (21) has a solution, then

E
(
θi|si� egi

) = yi(
1 −

∑
l∈gi

zi
il

2 − zl
li

4 − zi
ilz

l
li

)si

+
∑
k∈gi

zi
ik

2 − zi
ik

4 − zi
ikz

k
ki(

1 −
∑
l∈gi

zi
il

2 − zl
li

4 − zi
ilz

l
li

)E
(
θk|sk� egk

) (A.4)

holds for every realization of the signals, and for each i. Now we show that choosing the
prices and demand functions (23) and (24) is an equilibrium of the OTC game.

First, note that (26) for i and j at a given link implies (22). Also, the choice (24) implies

E
(
θi|si� egi

) = yisi +
∑
k∈gi

zi
ikpij =E

(
θi|si�pgi

)
� (A.5)

The second equality comes from the fact that the first equality holds for any realization
of signals and the projection theorem determines a unique linear combination with this
property for a given set of jointly normally distributed variables. Thus, (24) for each ij link
is equivalent with the corresponding first-order condition (10). Finally, (A.5) also implies



1762 A. BABUS AND P. KONDOR

that the bilateral clearing condition between a dealer i and dealer j that have a link in
network g,

tiij
(
E

(
θi|si�pgi

) −pij

) + t
j
ij

(
E

(
θj|sj�pgj

) −pij

) +βijpij = 0�

is equivalent to (23). That concludes the statement.
Corollary 1 follows from the direct observation of (23) and (24) and (22).

Proof of Proposition 4

In an equilibrium of the OTC game, prices and quantities satisfy the first-order condi-
tions (10) and must be such that all bilateral trades clear.

Since market clearing conditions (6) are linear in prices and signals, we know that each
price (if an equilibrium price vector exists) must be a certain linear combination of signals.
Thus, each price is normally distributed.

From the first-order conditions, we have that

qi
ij

(
si�pgi

) = tiij
(
E

(
θi|si�pgi

) −pij

)
�

The bilateral clearing condition between a trader i and trader j that have a link in network
g implies that

tiij
(
E

(
θi|si�pgi

) −pij

) + tiij
(
E

(
θj|sj�pgj

) −pij

) +βijpij = 0�

and solving for the price pij , we have that

pij = tiijE
(
θi|si�pgi

) + tiijE
(
θj|sj�pgj

)
tiij −βij

�

Since agent i knows E(θi|si�pgi ), by definition, the vector of prices pgi is informationally
equivalent for her with the vector of posteriors of her neighbors Egi = {E(θj|sj�pgj )}j∈gi .
This implies that

E
(
θi|si�pgi

) =E
(
θi|si�Egi

)
�

Note also that as each price is a linear combination of signals and E(θj|·) is a linear
operator on jointly normal variables, there must be a vector wi such that E(θi|si�pgi ) =
E(θi|si�Egi )= wis. That is, the collection of {wi}i=1�����n has to satisfy the system of n equa-
tions given by

wis =E
(
θi|si�{wjs

}
j∈gi

)
for every i. However, the collection {wi}i=1�����n that is a solution of this system, is also an
equilibrium of the conditional guessing game by construction.

Proof of Proposition 5

Equation (23), the fact that tiij > 0 for all i and j, and E(θi|si�pgi ) = E(θi|si�Egi ) = vis
from Proposition 4 imply that we only have to show that all elements of the equilibrium
V ∗ matrix defined in the proof of Proposition 1 are strictly positive.

We use the notation of Proposition 1. Vi is a convex set and must contain at least one
strictly positive vector. This is so, as the one minimizing f (·), defined in (A.3), is (vi)min ≡
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Σ−1ωi. This vector is strictly positive by assumption. Now we show that Vi contains only a
single vector lying on any of the axes of the Rn space. We claim that the elements of this
vector are vii = ωii

Σii
and vij = 0 for all i �= j. This is sufficient to prove that vectors in V

i

cannot have negative elements. Otherwise, since V
i is a convex set, it would cross a given

axis at least twice. We show this by contradiction. Assume that Vi contains another vector
on any of the axes, for example, a v̄i ∈ V

i such that there is a k �= i and x that vik = x and
vij = 0 for all j �= k. Then

f
(
v̄i

) = x2Σkk − 2xωik + ω2
ii

Σii

�

The x at which f (v̄i) is minimal is x∗ = ωik

Σkk
. However, even if x= x∗,

f
(
v̄i

) = −ω2
ik

Σkk

+ ω2
ii

Σii

> 0

under our parameterization as ω2
ik

Σkk
= (ρσ2

θ)
2

σ2
θ+σ2

ε
and ω2

ii

Σii
= (σ2

θ)
2

σ2
θ+σ2

ε
. This implies that v̄i /∈ V

i, a
contradiction.

As we showed in Proposition 1, for any network and any parameters, V ∗ must be in the
Cartesian product of V

n×n. However, the previous argument shows that there is only a
single matrix which has not strictly positive elements in V

n×n. This is the diagonal matrix
with vii = ωii

Σii
for all i. It is simple to check that this cannot be a fixed point of our system

for any connected network and any parameters as long as ρ �= 0.

Proof of Proposition 6

1. From Proposition 4, we know that in any equilibrium of the OTC game,

E
(
θi|si�pgi

) =E
(
θi|si� egi

)
�

Also, Lemma 5 shows that each equilibrium expectation in the conditional guessing game
is a linear combination of all signals in the economy,

E
(
θi|si� egi

) = vis�

where vi > 0 for all i. That is, when the dealer network is complete, through prices, each
dealer observes (n−1) linear combinations of s apart from her own private signal. Clearly,
as long as these linear combinations are independent, the statement holds. Instead, let us
assume that there exists a β, such that E(θi|si� egi ) = vis = βvjs = E(θj|sj� egj ) for some i
and j. These two agents are connected (as everyone else). However, for any ρ < 1, this is
impossible, because at least one of the agents would find that putting a different weight
on its own signal si improves over its estimate of θi over the best estimate of agent j
on θj , implying that either vis vjs is not an equilibrium of the conditional guessing game,
implying that it cannot be an equilibrium guess in the OTC game either (by Proposition 2).

2. Given joint normality, we only have to show that limρ→1 E(θ
i|si�pgi ) = E(θi|s) and

limρ→1 var(θi|si�pgi ) = var(θi|s). We proceed in steps.
(a) Note that when ρ= 1, there exists an equilibrium of the conditional guessing game,

(egi )i=1�����n where E(θi|si� egi ) = E(θi|s) and var(θi|si� egi ) = var(θi|s) for all i. This is so,
because when ρ = 1, the best guess, E(θi|s), for each agent conditionally of observing
each signal is the same across agents. Therefore, if any agent were to pick this guess, all of
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its neighbors would and could pick the same guess (by putting a weight of 1 on this guess).
That is, it is a fixed point as defined by the equilibrium in the conditional guessing game.

(b) We argue this equilibrium is unique. For this, note that with ρ= 1, the equilibrium
guess of agent i, vis, has to be identical to that of agent j, vjs, for any pair of agents. The
reason is that otherwise, there exist two linked agents, i, k with vjs �= vks, which implies
either (1) differing values, for example, (2viωi − viΣ(vi)�) > (2vkωk − vkΣ(vk)�), where
we use the notation in the proof of Proposition 1. However, in this case, because ρ = 1,
agent k would be motivated to put a weight of 1 to the guess of agent i, to obtain the same
value as agent i does. Which is a contradiction of the claim that vks is an equilibrium
guess. Or (2) if (2viωi − viΣ(vi)�) = (2vkωk − vkΣ(vk)�) but vjs �= vks, then a convex
combination of vjs and vks is a feasible guess for any of the agents which improves their
value. This is also a contradiction of the claim that vjs, vks were equilibrium guesses.
However, if all agents have the same guesses, then this guess has to be the best guess
E(θi|s). Otherwise, any agent would put a nonzero weight on his own signal to improve
on this guess, leading to different equilibrium guesses across agents; a contradiction.

(c) By the continuity of the conditional guessing game in ρ, whenever ρ is sufficiently
close to 1, any equilibrium must be arbitrarily close to the one at ρ= 1, implying

lim
ρ→1

E
(
θi|si� egi

) =E
(
θi|s)�

lim
ρ→1

V
(
θi|si� egi

) = V
(
θi|s)�

(d) Following the argument in Proposition 2, if the equilibrium of the OTC game ex-
ists for a ρ sufficiently close to 1, it is based on an equilibrium of the conditional guessing
game. Therefore, for any agent, the equilibrium price vector pgi is informationally equiv-
alent to the guess vector egi in the conditional guessing game, implying the result.

APPENDIX B: CLOSED FORMS IN SPECIAL CASES

Throughout, we use the notation σ ≡ σ2
ε

σ2
θ
.

B.1. Centralized Market

Following Vives (2011), we have

qV = tV
(
ei −pV

)
�

pV = tV

(βV + ntV )

∑
i

ei�

where tV = −βV

n(zV −1)+2−zV
and zV = 2σρ

(1−ρ)(1+ρ(n−1))+σ
, implying ∂zV

∂ρ
� ∂zV

∂σ
> 0 and expectations

are privately fully revealing,

ei =E
(
θi|si� egi

) =E
(
θi|s) = 1 − ρ

1 + σ − ρ

(
si + ρσ

(1 − ρ)(1 − ρ+ nρ+ σ)

n∑
i=1

si

)
�

Substituting these expressions into expressions (27)–(29) gives closed-form solutions
for expected profit, expected utility of customers, and welfare.
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B.2. Star Network

Without loss of generality, we characterize a star network with dealer 1 at the cen-
ter. There exists at least one equilibrium of the conditional guessing game such that, for
dealer 1,

z̄1
1i = z̄C (B.1)

for any i. Similarly, for any dealer i in the periphery,

z̄i
i1 = z̄P �

We start with dealer 1, who chooses her demand function conditional on the beliefs of
the other (n − 1) dealers. Given that she knows s1, she can invert the signals of all the
other dealers. Hence, her belief is given by

E
(
θ1|s1� eg1

) =E
(
θ1|s) = 1 − ρ

1 + σ2 − ρ

(
s1 + ρσ2

(1 − ρ)
(
1 + σ2 − ρ+ nρ

) n∑
i=1

si

)
�

Or

E
(
θ1|s1� eg1

) = v11s
1 +

n∑
j=2

v1js
j�

where

v11 = 1 − ρ

1 + σ2 − ρ

(
1 + ρσ2

(1 − ρ)
(
1 + σ2 − ρ+ nρ

))
� (B.2)

v1j = 1 − ρ

1 + σ2 − ρ

ρσ2

(1 − ρ)
(
1 + σ2 − ρ+ nρ

) � (B.3)

for all j �= 1.
Further, the belief of a periphery dealer i is given by

E
(
θi|si� e1

) =
(

1
Ṽ

(
θi� e1

))� (
1 + σ2 Ṽ

(
si� e1

)
Ṽ

(
si� e1

)
V

(
e1

) )−1 (
si

e1

)
�

where Ṽ(·� ·)≡ V(·�·)
σ2
θ

is the scaled covariance operator and

Ṽ
(
e1

) = (1 − ρ)
(
1 + (n− 1)ρ

) + σ2
(
1 + (n− 1)ρ2

)(
1 + σ2 − ρ

)(
1 + σ2 + (n− 1)ρ

) �

Ṽ
(
si� e1

) = ρ�

Ṽ
(
θi� e1

) = ρ
(1 − ρ)

(
1 + (n− 1)ρ

) + σ2
(
2 + (n− 2)ρ

)(
1 + σ2 − ρ

)(
1 + σ2 + (n− 1)ρ

) �
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Since

E
(
θi|si� e1

) = Ṽ(e1)− Ṽ
(
θi� e1

)
ρ

Ṽ(e1)
(
1 + σ2

) − ρ2
si + Ṽ

(
θi� e1

)(
1 + σ2

) − ρ

Ṽ(e1)
(
1 + σ2

) − ρ2
e1

= viis
i + vi1s

i +
n∑

j=2
j �=i

v1js
j

for any i �= 1, it follows that

vi1 = Ṽ
(
θi� e1

)(
1 + σ2

) − ρ

Ṽ
(
e1

)(
1 + σ2

) − ρ2
v11� (B.4)

vii =
Ṽ

(
e1

) − Ṽ
(
θi� e1

)
ρ

Ṽ
(
e1

)(
1 + σ2

) − ρ2
+ Ṽ

(
θi� e1

)(
1 + σ2

) − ρ

Ṽ
(
e1

)(
1 + σ2

) − ρ2
v1j� (B.5)

vij = Ṽ
(
θi� e1

)(
1 + σ2

) − ρ

Ṽ
(
e1

)(
1 + σ2

) − ρ2
v1j� (B.6)

and

ȳP = Ṽ
(
e1

) − Ṽ
(
θi� e1

)
ρ

Ṽ
(
e1

)(
1 + σ2

) − ρ2
�

z̄P = Ṽ
(
θi� e1

)(
1 + σ2

) − ρ

Ṽ
(
e1

)(
1 + σ2

) − ρ2
�

Moreover, since

e1 =E
(
θ1|s1� eg1

) = ȳCs
1 +

n∑
j=2

z̄Ce
j = ȳCs

1 +
n∑

j=2

z̄C
(
ȳPs

i + z̄Pe
1
)
�

then

E
(
θ1|s1� eg1

) = ȳC

1 − (n− 1)z̄Cz̄P
s1 +

n∑
j=2

z̄C ȳP

1 − (n− 1)z̄Cz̄P
si�

This implies that

z̄C = v1j

ȳP + (n− 1)z̄Pv1j

and

ȳC = v11ȳP

ȳP + (n− 1)z̄Pv1j
�

We now solve the system (21) with substituting the expression for z̄C , ȳC , z̄p, ȳP above,
giving the solution

zP = 2z̄P
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and

zC = z̄C(n+ 2z̄P − nz̄P − 1)+ 1 −
√((

z̄C
(
n(1 − z̄P)+ 2z̄P − 1

) + 1
))2 − 4z̄C

and

yC = ȳC

(
1 − nzC

2 − zP

4 − zCzP

)
�

yP = ȳP

(
1 − zP

2 − zC

4 − zCzP

)
�

B.3. Complete Network

In the complete network, each dealer i chooses her demand function conditional on
the beliefs of the other (n− 1) dealers. Given that she knows si, she can invert the signals
of all the other dealers. Hence, her belief is given by

E
(
θi|si� egi

) = E
(
θi|s) = 1 − ρ

1 + σ − ρ

(
si + ρσ

(1 − ρ)(1 − ρ+ nρ+ σ)

n∑
i=1

si

)
�

Then, following the same procedure as above (for a star), and taking into account that,
in a complete network, trading strategies are symmetric, we obtain that

E
(
θi|si� egi

) = ȳsi + z̄

n∑
j=1
j �=i

ej�

where

ej =E
(
θj|sj� egj

)
and

ȳ = (1 − ρ)
(
1 + (n− 1)ρ

)
1 − ρ+ ρ(1 − ρ)(n− 1)+ σ

(
1 + (n− 2)ρ

) �
z̄ = ρσ2

ε

σ2
θ + σ2

ε + ρ2σ2
θ − 2ρσ2

θ − 2ρσ2
ε − nρ2σ2

θ + nρσ2
θ + nρσ2

ε

�

Solving the system (21), we obtain

yi = σ2
θ(1 − ρ)

(
1 + (n− 1)ρ

)(
σ2

θ(1 − ρ)
(
1 + (n− 1)ρ

) + σ2
ε

(
1 + 2(n− 3)ρ

)) + 3ρσ2
ε

� ∀i�

zi
ij = 2ρσ2

ε(
σ2

θ(1 − ρ)
(
1 + (n− 1)ρ

) + σ2
ε

(
1 + 2(n− 3)ρ

)) + 2ρσ2
ε

� ∀ij�

Substituting in the expressions for tiij in Proposition (2), we obtain

tiij = −βij

(
σ2

θ(1 − ρ)
(
1 + (n− 1)ρ

) + σ2
ε

(
1 + 2(n− 3)ρ

)) + 2ρσ2
ε

2ρσ2
ε

�



1768 A. BABUS AND P. KONDOR

REFERENCES

ACEMOGLU, D., M. A. DAHLEH, I. LOBEL, AND A. OZDAGLAR (2011): “Bayesian Learning in Social Net-
works,” The Review of Economic Studies, 78, 1201–1236. [1730]

AFONSO, G., AND R. LAGOS (2015): “Trade Dynamics in the Market for Federal Funds,” Econometrica, 83,
263–313. [1729,1757]

AGARWAL, S., Y. CHANG, AND A. YAVAS (2012): “Adverse Selection in Mortgage Securitization,” Journal of
Financial Economics, 105, 640–660. [1757]

ATKESON, A. G., A. L. EISFELDT, AND P.-O. WEILL (2015): “Entry and Exit in OTC Derivatives Markets,”
Econometrica, 83, 2231–2292. [1729,1757]

BABUS, A., AND P. KONDOR (2018): “Supplement to ‘Trading and Information Diffusion in Over-the-Counter
Markets’,” Econometrica Supplemental Material, 86, https://doi.org/10.3982/ECTA12043. [1730,1754]

BALA, V., AND S. GOYAL (1998): “Learning From Neighbours,” The Review of Economic Studies, 65, 595–621.
[1730]

CHOI, S., A. GALEOTTI, AND S. GOYAL (2017): “Trading in Networks: Theory and Experiment,” Journal of
European Economic Association, 15, 784–817. [1729]

COLLA, P., AND A. MELE (2010): “Information Linkages and Correlated Trading,” Review of Financial Studies,
23, 203–246. [1730]

CONDORELLI, D., AND A. GALEOTTI (2017): “Bilateral Trading in Networks,” The Review of Economic Studies,
84, 82–105. [1729]

DEMARZO, P., D. VAYANOS, AND J. ZWIEBEL (2003): “Persuasion Bias, Social Influence, and Unidimensional
Opinions,” The Quarterly Journal of Economics, 118, 909–968. [1730]

DI MAGGIO, M., A. KERMANI, AND Z. SONG (2017): “The Value of Trading Relations in Turbulent Times,”
Journal of Financial Economics, 124, 266–284. [1756,1757]

DUFFIE, D., N. GÂRLEANU, AND L. H. PEDERSEN (2005): “Over-the-Counter Markets,” Econometrica, 73,
1815–1847. [1729]

(2007): “Valuation in Over-the-Counter Markets,” Review of Financial Studies, 20, 1865–1900. [1729]
DUFFIE, D., S. MALAMUD, AND G. MANSO (2009): “Information Percolation With Equilibrium Search Dy-

namics,” Econometrica, 77, 1513–1574. [1729]
EDWARDS, A. K., L. E. HARRIS, AND M. S. PIWOWAR (2007): “Corporate Bond Market Transaction Costs and

Transparency,” Journal of Finance, 62, 1421–1451. [1757]
FRIEWALD, N., R. JANKOWITSCH, AND M. G. SUBRAHMANYAM (2012): “Illiquidity or Credit Deterioration:

A Study of Liquidity in the US Corporate Bond Market During Financial Crises,” Journal of Financial Eco-
nomics, 105, 18–36. [1757]

GALE, D., AND S. KARIV (2007): “Financial Networks,” American Economic Review, Papers & Proceedings, 92,
99–103. [1729]

GOFMAN, M. (2014): “A Network-Based Analysis of Over-the-Counter Markets,” https://mywebspace.wisc.
edu/gofman/web/JMP/MichaelGofmanJMP.pdf. [1729]

GOLOSOV, M., G. LORENZONI, AND A. TSYVINSKI (2014): “Decentralized Trading With Private Information,”
Econometrica, 82, 1055–1091. [1729]

GOLUB, B., AND M. O. JACKSON (2010): “Naive Learning in Social Networks: Convergence, Influence, and the
Wisdom of Crowds,” American Economic Journal: Microeconomics, 2, 112–149. [1730]

GREEN, R. C., B. HOLLIFIELD, AND N. SCHURHOFF (2007): “Dealer Intermediation and Price Behavior in the
Aftermarket for New Bond Issues,” Journal of Financial Economics, 86, 643–682. [1757]

HENDERSHOTT, T., D. LI, D. LIVDAN, AND N. SCHÜRHOFF (2016): “Relationship Trading in OTC Markets,”
Technical report, Swiss Finance Institute. [1732]

HOLLIFIELD, B., A. NEKLYUDOV, AND C. SPATT (2013): “Bid-Ask Spreads and the Pricing of Securitizations:
144a vs Registered Securitizations,” ASSA meeting 2014. [1752]

(2017): “Bid-Ask Spreads, Trading Networks, and the Pricing of Securitizations,” The Review of Fi-
nancial Studies, 30, 3048–3085. [1728,1744,1745,1752,1754-1757]

KRANTON, R. E., AND D. F. MINEHART (2001): “A Theory of Buyer-Seller Networks,” American Economic
Review, 91, 485–508. [1729]

KYLE, A. S. (1989): “Informed Speculation With Imperfect Competition,” Review of Economic Studies, 56,
317–355. [1728,1733,1739]

LAGOS, R., AND G. ROCHETEAU (2009): “Liquidity in Asset Markets With Search Frictions,” Econometrica,
77, 403–426. [1729]

LAGOS, R., G. ROCHETEAU, AND P.-O. WEILL (2008): “Crashes and Recoveries in Illiquid Markets,” NBER
Working Papers 14119, National Bureau of Economic Research, Inc. [1729]

LI, D., AND N. SCHÜRHOFF (2018): “Dealer Networks,” Journal of Finance (forthcoming). [1745,1757]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Acemoglu2011&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Afonso2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/Agarwal2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/Atkeson2015&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
https://doi.org/10.3982/ECTA12043
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Bala1998&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/Choi2013&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Colla2010&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Condorelli2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/DeMarzo2003&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/diMaggio2017&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/Duffie2005&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/Duffie2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/Duffie2009&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/Edwards2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Friewald2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/Gale2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
https://mywebspace.wisc.edu/gofman/web/JMP/MichaelGofmanJMP.pdf
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/Golosov2009&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/Golub2010&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/Green2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/Hollifield2016&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/Kranton2001&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/Kyle1989&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/Lagos2009&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/Li2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Acemoglu2011&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Afonso2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/Agarwal2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/Atkeson2015&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/Choi2013&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Colla2010&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Condorelli2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/DeMarzo2003&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/diMaggio2017&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/Duffie2005&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/Duffie2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/Duffie2009&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/Edwards2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Friewald2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Friewald2012&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/Gale2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
https://mywebspace.wisc.edu/gofman/web/JMP/MichaelGofmanJMP.pdf
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/Golosov2009&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/Golub2010&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/Green2007&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/Hollifield2016&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/Hollifield2016&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/Kranton2001&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/Kyle1989&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/Lagos2009&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I


TRADING AND INFORMATION DIFFUSION 1769

MALAMUD, S., AND M. ROSTEK (2017): “Decentralized Exchange,” The American Economic Review, 107,
3320–3362. [1729]

MANEA, M. (2018): “Intermediation and Resale in Networks,” Journal of Political Economy, 126, 1250–1301.
[1729]

NAVA, F. (2015): “Efficiency in Decentralized Oligopolistic Markets,” Journal of Economic Theory, 157, 315–
348. [1729]

OZSOYLEV, H., AND J. WALDEN (2011): “Asset Pricing in Large Information Networks,” Journal of Economic
Theory, 146, 2252–2280. [1730]

RAHI, R., AND J.-P. ZIGRAND (2006): “Arbitrage Networks,” Open Access publications from London School
of Economics and Political Science http://eprints.lse.ac.uk/, London School of Economics and Political Sci-
ence. [1729]

RANDALL, O. (2015): “Pricing and Liquidity in the US Corporate Bond Market,” Emory University. [1757]
ROUKNY, T., C.-P. GEORG, AND S. BATTISTON (2014): “A Network Analysis of the Evolution of the German

Interbank Market,” Discussion Papers 22/2014, Deutsche Bundesbank, Research Centre. [1757]
SCHULTZ, P. (2001): “Corporate Bond Trading Costs: A Peek Behind the Curtain,” The Journal of Finance, 56,

677–698. [1757]
VAYANOS, D., AND P.-O. WEILL (2008): “A Search-Based Theory of the On-the-Run Phenomenon,” Journal of

Finance, 63, 1361–1398. [1729]
VIVES, X. (2011): “Strategic Supply Function Competition With Private Information,” Econometrica, 79, 1919–

1966. [1728,1733,1740,1746,1747,1764]
WALDEN, J. (2018): “Trading, Profits, and Volatility in a Dynamic Information Network Model,” Working

paper, University of Berkeley. [1730]

Co-editor Lars Peter Hansen handled this manuscript.

Manuscript received 5 November, 2013; final version accepted 23 April, 2018; available online 18 May, 2018.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/Malamud2013&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/Manea2013&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Nava2013&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/Ozsoylev2011&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://eprints.lse.ac.uk/
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/Schultz2001&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/Vayanos2008&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:39/Vives2011&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/Malamud2013&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Nava2013&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/Ozsoylev2011&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/Schultz2001&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/Vayanos2008&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:39/Vives2011&rfe_id=urn:sici%2F0012-9682%28201809%2986%3A5%3C1727%3ATAIDIO%3E2.0.CO%3B2-I

	Introduction
	Related Literature

	A General Model of Trading in OTC Markets
	The Model Setup
	Equilibrium Concept

	The Equilibrium
	Derivation of Demand Functions
	Deriving Posterior Beliefs: The Conditional Guessing Game
	Solving for Equilibrium Coefﬁcients and Existence

	Information Diffusion
	Prices and Information Diffusion
	Informational Efﬁciency

	Simple Networks and Real-World OTC Markets
	Proﬁt, Welfare, and Illiquidity
	General Observations
	The Effect of Decentralized Trading: The Centralized and the Complete Network OTC Market
	The Effect of More Links: Circulant Networks With Varying Density
	The Effect of Asymmetry: Periphery and the Central Dealer in a Star Network

	Real-World OTC Markets: A Calibrated Example
	The Dealer Network and Sensitivity of Moments
	Matching Parameters
	Stylized Facts and Other OTC Markets


	The Price-Discovery Game
	Conclusions
	Appendix A: Selected Proofs
	Proof of Proposition 1
	Proof of Proposition 2 and Corollary 1
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6

	Appendix B: Closed Forms in Special Cases
	Centralized Market
	Star Network
	Complete Network

	References

