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As it was noticed by Yilin Wang, in our paper Babus and Kondor (2018) the first-order condition
(10) is not fully consistent with our description of the OTC game. In particular, we derive the first
order condition for dealer i from problem
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where we take the intercept If] defined by (8) as insensitive to the quantity qu.
In our derivations, we implicitly assume that each dealer ¢ chooses his demand function when trading
with a neighbor j € g' to maximize her objective function (2) understanding that his residual demand

on link 75 is determined by market clearing conditions
ij (Sivpgi) + ng (Sj7pgj) + Bijpi; = 0,

but taking prices at which she does not trade as given.
However, while dealer ¢ does not observe prices pj i, at which she does not trade, in a Bayesian
Nash equilibrium dealer i should still consider the indirect effect of her quantity qﬁjon pi; through pjy,

leading to the first order condition with respect to qg'j
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In this corrigendum, we proceed as follows. In Section 1, we amend the OTC game in Babus
and Kondor (2018) to restore consistency. Under this amendment, all our results and proofs remain
unchanged. This is our preferred correction. In addition, in Section 2, we work out under the original
specification (1) the analytical solution for the star network and (2) the general algorithm to calculate
all equilibrium objects numerically in any network to account for indirect price effects. The analytical
solutions for the star can be useful for applications where the star network is a reasonable starting point.
We show that in this case the indirect price effects leave our qualitative results virtually unchanged.
The general algorithm can be useful to compare a wide range of networks numerically, if the original
specification is preferred. Based on this algorithm, we regenerate Figure 2 of the original paper for
comparison. While the new and original figures are both quantitatively and qualitatively similar, we

point out some new insights to inform future research.

1 The modified OTC game: Dealers as groups of traders

We amend the OTC game in Babus and Kondor (2018) as follows. As before, consider n dealers
organized in a dealer network g. Let g° denote the set of i’s neighbors and m*® = ‘ gi‘ the number of
i’s neighbors. Unlike in our original set-up, we consider that each dealer i represents a group of many
risk-neutral traders who have the same valuation for the asset, #%, and observe the same private signal,
st, as well as any information available to the group (i.e. prices).! In particular, there is a mass m® of
traders affiliated with dealer i. A group i is divided into m® unit-mass subgroups, and each subgroup
is assigned a single link on which to trade. Trade is still bilateral and takes places between pairs of
traders. Thus, a link between ¢ and j indicates that a trader affiliated with dealer ¢ and assigned to link
ij can potentially enter a transaction with a trader affiliated with dealer j and assigned to link 4j.

We argue that this is a sensible representation of many OTC markets. Large dealers, like the trading
desks of major investment banks employ a large number of traders. While traders share their market
insights, they trade independently. Usually, a significant part of their compensation is related to their
own trading performance. Given the large number of these traders, it is reasonable to assume — similarly
to the approach of Atkeson, Eisfeldt, and Weill (2015) — that the quantity an individual trader trades
has insignificant price impact to other agents’ transaction prices.

The set-up we propose here still captures the critical features of OTC markets that we emphasized
in our original paper, such as “transactions are bilateral, prices are dispersed, trading relationships
are persistent, and typically, a few large dealers intermediate a large share of the trading volume.”
Likewise, we can shed light on our original research question of “how decentralization (characterized

by the structure of the dealer network) and adverse selection jointly influence information diffusion,

IThe joint distribution of all random variables are as in Babus and Kondor (2018).



expected profits, trading costs, and welfare.” Effectively, under the modified specification dealers are
the relevant units of independent information, and traders are the relevant units of independent trading.
Perhaps the only limitation of the modified set-up relative to the original specification is that one of our
insights that “information diffusion through prices is not affected by strategic considerations” is much
less surprising.

We show that in the set-up we propose here all the results and proofs in Babus and Kondor (2018)
go through without any change. To see this formally, we introduce some new notation. Within each
subgroup in a group ¢, we index traders by 7 € [0, 1]. Thus, a particular trader is identified by its group
(i.e. the dealer), the link at which she trades at, and her index in the subgroup, (i,ij,7), where j € g°.
Without loss of generality, we assume that the counterparty of trader (7,47, 7) is trader (4,47, 7). These

two traders trade at price p;; (7). Let the trading strategy of trader (¢,4j,7) be a demand function
Q;’:j,‘r (Si’pgiaﬁij (T)) (02)

which maps the signal of the group, s?, the vector of average prices, Pgi, that prevail in the group’s
transactions and the transaction price p;; (7) into a traded quantity. Let us denote this quantity by

(j;‘j (7). In particular, elements of p,: are defined as

Dik = /Olﬁik (7)dr
for all k € g*. Trader (j,ij,7) chooses a strategy to maximize her expected profit
E Qi 7 (5", pgis i (7)) (0" = Dij (7)) I8, Pyt o Big (7))
where p;; (7) is a function which is continuous almost everywhere, and defined as the solution of
tir (85 Pgr g (7)) + ng,f (s, pgs,bij (7)) + Bijhij (1) =0

for every link 45 and index 7.2 Just as in Babus and Kondor (2018), 3;; corresponds to the representative
share of customers at the given link.

Then, Babus and Kondor (2018) finds a symmetric Linear Bayesian Nash equilibrium of this game
where (1) Gi; (1) = ¢}, pi; (T) = pij are invariant in 7, (2) Q% - (s*, pgi, pij (7)) are invariant in 7, hence
have the form of Qéj (si, pgi), and (3) Q'(s*; py:) is the collection of functions Qéj (si,pgi).

To see that with this modification the analysis in Babus and Kondor (2018) remains intact and the
indirect price effect disappears, note that the impact of any dealer (i,ij,7) on the average price p;; is
infinitesimal and only that average price affects other dealers’ beliefs. Therefore, under this modification,

Proposition 1-9 are all hold virtually unaffected.

2If such Pij (1) does not exist for all links and index, just as in the paper, we consider that markets break down and
assign zero utility to all players. If there is more than one such group of functions, we choose by an arbitrary selection

mechanism.



2 The indirect price effect in the original specification

In this section, we return to analyzing the Linear Bayesian Nash equilibrium of the original game in
Babus and Kondor (2018). First, we fully solve the case of the n-star network and argue that in this
example, the indirect price effects have minimal consequences. Second, we provide a solution method
to find the equilibrium for any network by solving a nested fixed-point problem numerically. Based on

this, we regenerate Figure 2 of the original paper.

2.1 The case of the n—star

We analyze the consequences of the indirect price effects in our main example, the n—star network. For
this network, we can still derive the equilibrium in simple closed form expressions. We use the same
notation as in Appendix B of Babus and Kondor (2018), and consider that dealer 1 is the centre, and
dealers 2, ...,n are the periphery. All our expressions in Appendix B remain intact, except the last three

which modify to

. zZc2
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To see this, without loss of generality, we first derive the total price effect of periphery dealer n by

solving the equation system

am +te (ves' + Si_azepie — pin) + Bpin =0

tp (yps’ + zpp1j — p1j) +to (yos' + Si_szepin — pj) + Bp1; = 0.

for each j = 2..n — 1. The first equation gives

am +to (ycs1 + E?:}lchu)
to (1 — Zc) - B

while summing up the rest of the equations gives

= Pin (06)

tpypYiy s’ +to ((n—2)yes' + (n — 2) zopin)
—B4+tc(l—(n—2)zc)+tp(l—2zp)

Combining (C6)-(C7), we obtain that the inverse residual demand curve is given by

pin = I+ Ahah
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Then, the first order condition for periphery dealer n modifies to

q:ﬁ =
(tc (1 - 2¢) = B) (2¢)* (tc)® (n — 2)
(=B+tc(I—=(n—2)zc)+tp(1—2p))(tc (1 —2c) —B)

= ((tc(l —zc)—B) -

The form of the first order condition of the central agent still implies (12). Then, solving for t¢ and tp,

we get
- (TL — 1) zZC — 2
tp = nzpzc — 2z2p — 2z¢ (C9)
n—2)zc—2
te =—B(2— zp) (n—2)zc (C10)

nzpzc — 2z2p — 2z¢

which need to be compared to equation (22) in the paper.

Importantly, (C8) shows that, even when we account for the indirect price effect, the demand function
of dealer j still has the form of ¢p (E (9|sj,p1j) — plj). This implies that the counterparty of agent j
can learn the posterior of agent j from the market clearing price. Similarly, any periphery dealer j can
learn the belief of the central dealer from the market clearing price. This critical property allows us to
follow Proposition 2 and use the conditional guessing game to derive the equilibrium. In the particular
case of the n-star, instead of system (21), we use zp = %zp from Appendix B and express Z¢, ¥p, Yo
from (C3)-(C5). Given these equations, following the proof of Proposition 2 we show that choosing the
prices and demand functions (23) and (24) in Babus and Kondor (2018) is an equilibrium of the OTC
game in the n-star network, where the trading intensities are given by (C9)-(C10).

Note also, that the general observations in Section 5.1.1 of Babus and Kondor (2018) relied only
2;2 < 0, which still holds under (C9)-(C10). We have also

checked that the other statements concerning the n-star network, the second part of Proposition 3 and

on this property and that (22) implies

the first part of Proposition 9 still holds unchanged.? That is, the effect of the indirect price effect on

the equilibrium analysis is negligible for the n—star network.

2.2 General networks

In general networks, we show that the equilibrium can be derived by solving a nested fixed point problem

which we describe in this section.

3As for the second part of Proposition 9, while z¢, zp, yc, yp converge to the same values in the limit p — 1 as in
B

n

Babus and Kondor (2018), because of the changing expressions of (C9)-(C10), the limits of t¢ and ¢p change to tc — —

and tp — —(n — 1)% In this limit, each dealer’s profit is bounded away from zero. Details are available on request.

) (E (an‘sn’pln) _pln) .

(C8)



2.2.1 Equilibrium conditions

As a first step, define A%, a |gl| X |gz| matrix of price impacts. A’ has rows {ij};e e and columns {ik}, .

Opik _

and elements g
ij

)\Z’“ Note that while the upper index is interchangeable, or )\Z“ = )\fj, the lower

index is not, or )\ZC #* /\;’f Then, we rewrite (C1) as the generalized demand function for dealer 4
Qi =T (E (05", pgi) - 15i—Pyi) (C11)

where 1,: to be a ’gi’ x 1 column vector of 1—s and T? = (Ai)f1 , is the inverse price impact matrix.

The matrix T* has rows {ij} ., and columns {ik},c ;, and we denote the element in row 4j and column

Jjeg
ik by tﬁf Now, we can write all bilateral market clearing conditions in the form of
> T (E (0'|s', pg:) - 1,—P) + 8P = 0, (C12)
ieN
where 1, is a |g| x 1 column vector of 1—s, and T% and p are constructed as follows. Let the links in the
network g be ordered lexicographically. For each dealer i we construct T%, a |g| x |g| expanded matrix,
The matrix T% has elements t;? in row ¢j (if

which has rows {ii’}  and columns {jj'}

i1’ €g,i< Ji'€9,3<j"
i < j)orji (if j < i) and column ik (if i < k) or ki (if k < i) for each j,k € ¢, and 0 otherwise.
Similarly, p is a column vector of all prices with price p;; in row ij.

Finally, we can write the vector of conditional expectations as
E(0's',py) - 1,=y's" 1,4+ 2" P (C13)

where Z? is a |g| x |g| matrix with elements zj; in (every row of) column 4j (if i < j) or ji (if j < 1),
for all j € g¢*, and 0 otherwise. Substituting (C13) into (C12), solving for p, and equate the matrix

expression for the inverse price impact function with 7% gives the fixed point condition

-1

= ||| - (ZJ’ - I) — BI (C14)
JEN
J#i gi
where [ is the identity matrix of size |g| x |g| and the operator [A],: “reduces” matrix [g| X |g| A to a

matrix |g'| x |g| by selecting only those elements that are located in rows ij with j € g* and columns

ik with k € g°. 4

4For instance, in the case of a 3-star network where dealer 1 is the central agent, expression (C14) gives equations

tc 0 _ —(B—tpttpzp) 0
0 tc 0 —(B—tp +tpzp)

for dealer 1 and 2. The operator []g2 selects the 11 elements of the matrix, leading to an equation system with solution

(C9)-(C10).
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2.2.2 The nested fixed point problem

Based on the equilibrium conditions (C12)-(C14), we can construct the following algorithm to find the

equilibrium for any networks.’

1. For each agent i, conjecture values y* and zjj for all j € g*. Values zjj define the matrix Z? for

each 1.

2. Given Z', find the elements of matrix T* for each i by the fixed point problem (C14). These

elements also define T°.

3. Then, matrices Z and T along with the conjectured y* values give the coefficients of each signal
in p. As p, the signals, s*, and values, 7, are jointly normally distributed, the projection theorem
implies new values for y* and zjj by (C13). In an equilibrium, the initial conjecture and the implied

y", z;; coeflicients should coincide.

2.2.3 Circulants, the complete network and the centralized market

Using the general algorithm above, we regenerate Figure 2 of the original paper as Figure 1. For easier
comparison, we fix the scale of each panel as in Figure 2.5

Comparing the two figures shows that the main equilibrium objects are similar both in a qualitative
and quantitative sense. However, there are some new insights which can be informative for future
research. First, the comparison of the OTC market with the centralized market differs. As we see
on Panels A-D, the centralized market leads to higher expected profit for traders, higher utility for
customers, higher total welfare and lower illiquidity for the traders than any of the circulant networks
including the complete network. This was not always the case without taking into account the indirect
price effect (see Proposition 8 in Babus and Kondor (2018)). Second, related to our remark in footnote
3, the expected profit of periphery agents in a star is lower than those of the central agents even when
p is close to 1. Whether these observations hold in general or only for our particular parameters is left

for future research.

5Note this solution method does not rely on a connection between the OTC game and the conditional guessing game.
Hence, while the results in Babus and Kondor (2018) with respect to the conditional guessing game which are the basis of
Proposition 1, 5, 6, and 7 continue to hold, their implications on the OTC game equilibrium — along with the statement of
a close connection in Proposition 4 — become uncertain. Also, the existence conditions in Proposition 2 are to be replaced
by the existence conditions for this fixed point. We did not investigate the existence for circular networks of the first part

of Proposition 3 separately from the general case.
6In the original set up we defined illiquidity for agent i as the average of t% To keep the objects as comparable as
ij

possible across the two versions, here we define it as the average of the diagonal elements in (TZ) -t

= A%



A:Expected profit per trader B:Expected total welfare
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Figure 1: Expected profit, expected welfare, expected customer utility, average trading cost (illiquidity)

per trader in various networks. Parameters: n =9, B =1, 05 = 0.1, 02 = 1.



3 Conclusion

In this note, we introduced a modification of the OTC game in Babus and Kondor (2018) which restores
the consistency of all the results and proofs despite the overlooked indirect price effect under the original
specification. This is our preferred correction. However, for interested readers, we have also worked out
the modified expressions for the n—star network and a general algorithm to find the equilibrium in any

network under the original specification.
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