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As it was noticed by Yilin Wang, in our paper Babus and Kondor (2018) the first-order condition

(10) is not fully consistent with our description of the OTC game. In particular, we derive the first

order condition for dealer i from problem

max
(qiij)j∈gi

∑
j∈gi

qiij

E (θi|si,pgi)+
1

βij + tjij

(
zjij,ij − 1

)qiij − Ijij


where we take the intercept Ijij defined by (8) as insensitive to the quantity qiij .

In our derivations, we implicitly assume that each dealer i chooses his demand function when trading

with a neighbor j ∈ gi to maximize her objective function (2) understanding that his residual demand

on link ij is determined by market clearing conditions

Qiij
(
si, pgi

)
+Qjij

(
sj , pgj

)
+ βijpij = 0,

but taking prices at which she does not trade as given.

However, while dealer i does not observe prices pjk,k 6=i, at which she does not trade, in a Bayesian

Nash equilibrium dealer i should still consider the indirect effect of her quantity qiijon pij through pjk,

leading to the first order condition with respect to qiij(
E
(
θi|si,pgi

)
− pij

)
− qiij

∂pij
∂qiij

−
∑
k∈gi
k 6=j

qiik
∂pik
∂qiij

= 0. (C1)
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In this corrigendum, we proceed as follows. In Section 1, we amend the OTC game in Babus

and Kondor (2018) to restore consistency. Under this amendment, all our results and proofs remain

unchanged. This is our preferred correction. In addition, in Section 2, we work out under the original

specification (1) the analytical solution for the star network and (2) the general algorithm to calculate

all equilibrium objects numerically in any network to account for indirect price effects. The analytical

solutions for the star can be useful for applications where the star network is a reasonable starting point.

We show that in this case the indirect price effects leave our qualitative results virtually unchanged.

The general algorithm can be useful to compare a wide range of networks numerically, if the original

specification is preferred. Based on this algorithm, we regenerate Figure 2 of the original paper for

comparison. While the new and original figures are both quantitatively and qualitatively similar, we

point out some new insights to inform future research.

1 The modified OTC game: Dealers as groups of traders

We amend the OTC game in Babus and Kondor (2018) as follows. As before, consider n dealers

organized in a dealer network g. Let gi denote the set of i’s neighbors and mi ≡
∣∣gi∣∣ the number of

i’s neighbors. Unlike in our original set-up, we consider that each dealer i represents a group of many

risk-neutral traders who have the same valuation for the asset, θi, and observe the same private signal,

si, as well as any information available to the group (i.e. prices).1 In particular, there is a mass mi of

traders affiliated with dealer i. A group i is divided into mi unit-mass subgroups, and each subgroup

is assigned a single link on which to trade. Trade is still bilateral and takes places between pairs of

traders. Thus, a link between i and j indicates that a trader affiliated with dealer i and assigned to link

ij can potentially enter a transaction with a trader affiliated with dealer j and assigned to link ij.

We argue that this is a sensible representation of many OTC markets. Large dealers, like the trading

desks of major investment banks employ a large number of traders. While traders share their market

insights, they trade independently. Usually, a significant part of their compensation is related to their

own trading performance. Given the large number of these traders, it is reasonable to assume — similarly

to the approach of Atkeson, Eisfeldt, and Weill (2015) — that the quantity an individual trader trades

has insignificant price impact to other agents’ transaction prices.

The set-up we propose here still captures the critical features of OTC markets that we emphasized

in our original paper, such as “transactions are bilateral, prices are dispersed, trading relationships

are persistent, and typically, a few large dealers intermediate a large share of the trading volume.”

Likewise, we can shed light on our original research question of “how decentralization (characterized

by the structure of the dealer network) and adverse selection jointly influence information diffusion,

1The joint distribution of all random variables are as in Babus and Kondor (2018).
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expected profits, trading costs, and welfare.” Effectively, under the modified specification dealers are

the relevant units of independent information, and traders are the relevant units of independent trading.

Perhaps the only limitation of the modified set-up relative to the original specification is that one of our

insights that “information diffusion through prices is not affected by strategic considerations” is much

less surprising.

We show that in the set-up we propose here all the results and proofs in Babus and Kondor (2018)

go through without any change. To see this formally, we introduce some new notation. Within each

subgroup in a group i, we index traders by τ ∈ [0, 1]. Thus, a particular trader is identified by its group

(i.e. the dealer), the link at which she trades at, and her index in the subgroup, (i, ij, τ) , where j ∈ gi.

Without loss of generality, we assume that the counterparty of trader (i, ij, τ) is trader (j, ij, τ) . These

two traders trade at price p̂ij (τ) . Let the trading strategy of trader (i, ij, τ) be a demand function

Qiij,τ
(
si,pgi , p̂ij (τ)

)
(C2)

which maps the signal of the group, si, the vector of average prices, pgi , that prevail in the group’s

transactions and the transaction price p̂ij (τ) into a traded quantity. Let us denote this quantity by

q̂iij (τ). In particular, elements of pgi are defined as

pik ≡
∫ 1

0

p̂ik (τ) dτ

for all k ∈ gi. Trader (j, ij, τ) chooses a strategy to maximize her expected profit

E
(
Qiij,τ

(
si,pgi , p̂ij (τ)

) (
θi − p̂ij (τ)

)
|si,pgi,k 6=j , p̂ij (τ)

)
where p̂ij (τ) is a function which is continuous almost everywhere, and defined as the solution of

Qiij,τ
(
si,pgi , p̂ij (τ)

)
+Qjij,τ

(
sj ,pgj , p̂ij (τ)

)
+ βij p̂ij (τ) = 0

for every link ij and index τ.2 Just as in Babus and Kondor (2018), βij corresponds to the representative

share of customers at the given link.

Then, Babus and Kondor (2018) finds a symmetric Linear Bayesian Nash equilibrium of this game

where (1) q̂iij (τ) ≡ qiij , p̂ij (τ) ≡ pij are invariant in τ , (2) Qiij,τ
(
si,pgi , p̂ij (τ)

)
are invariant in τ , hence

have the form of Qiij
(
si,pgi

)
, and (3) Qi(si; pgi) is the collection of functions Qiij

(
si,pgi

)
.

To see that with this modification the analysis in Babus and Kondor (2018) remains intact and the

indirect price effect disappears, note that the impact of any dealer (i, ij, τ) on the average price pij is

infinitesimal and only that average price affects other dealers’ beliefs. Therefore, under this modification,

Proposition 1-9 are all hold virtually unaffected.

2If such p̂ij (τ) does not exist for all links and index, just as in the paper, we consider that markets break down and

assign zero utility to all players. If there is more than one such group of functions, we choose by an arbitrary selection

mechanism.
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2 The indirect price effect in the original specification

In this section, we return to analyzing the Linear Bayesian Nash equilibrium of the original game in

Babus and Kondor (2018). First, we fully solve the case of the n-star network and argue that in this

example, the indirect price effects have minimal consequences. Second, we provide a solution method

to find the equilibrium for any network by solving a nested fixed-point problem numerically. Based on

this, we regenerate Figure 2 of the original paper.

2.1 The case of the n−star

We analyze the consequences of the indirect price effects in our main example, the n−star network. For

this network, we can still derive the equilibrium in simple closed form expressions. We use the same

notation as in Appendix B of Babus and Kondor (2018), and consider that dealer 1 is the centre, and

dealers 2, ..., n are the periphery. All our expressions in Appendix B remain intact, except the last three

which modify to

zC =
z̄C2

1 + (n− 2) z̄C (1− z̄P )
(C3)

yC = ȳC

(
1− 1

2

zC (n− 1) (1− z̄P ) (2− (n− 2) zC)

2− (n− 2) zC − z̄P zC

)
(C4)

yP = ȳP

(
1− z̄P

2− (n− 1) zC
2− (n− 2) zC − z̄P zC

)
. (C5)

To see this, without loss of generality, we first derive the total price effect of periphery dealer n by

solving the equation system

qnn1 + tC
(
yCs

1 + Σnk=2zCp1k − p1n
)

+ βp1n = 0

tP
(
yP s

j + zP p1j − p1j
)

+ tC
(
yCs

1 + Σnk=2zCp1k − p1j
)

+ βp1j = 0.

for each j = 2..n− 1. The first equation gives

qnn1 + tC
(
yCs

1 + Σn−1j=2 zCp1j
)

tC (1− zC)− β
= p1n (C6)

while summing up the rest of the equations gives

tP yPΣn−1j=2 s
j + tC

(
(n− 2) yCs

1 + (n− 2) zCp1n
)

−β + tC (1− (n− 2) zC) + tP (1− zP )
= Σn−1j=2 p1j . (C7)

Combining (C6)-(C7), we obtain that the inverse residual demand curve is given by

p1n = I1n1 + λ1n1q
n
n1

with

λ1n1 =
1

tC (1− zC)− β
1(

1− (zC)2(tC)2(n−2)
(−β+tC(1−(n−2)zC)+tP (1−zP ))(tC(1−zC)−β)

)
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Then, the first order condition for periphery dealer n modifies to

qnn1 =

=

(
(tC (1− zC)− β)− (tC (1− zC)− β) (zC)

2
(tC)

2
(n− 2)

(−β + tC (1− (n− 2) zC) + tP (1− zP )) (tC (1− zC)− β)

)
(E (θn|sn, p1n)− p1n) .

(C8)

The form of the first order condition of the central agent still implies (12). Then, solving for tC and tP ,

we get

tP = −2β
(n− 1) zC − 2

nzP zC − 2zP − 2zC
(C9)

tC = −β (2− zP )
(n− 2) zC − 2

nzP zC − 2zP − 2zC
(C10)

which need to be compared to equation (22) in the paper.

Importantly, (C8) shows that, even when we account for the indirect price effect, the demand function

of dealer j still has the form of tP
(
E
(
θ|sj , p1j

)
− p1j

)
. This implies that the counterparty of agent j

can learn the posterior of agent j from the market clearing price. Similarly, any periphery dealer j can

learn the belief of the central dealer from the market clearing price. This critical property allows us to

follow Proposition 2 and use the conditional guessing game to derive the equilibrium. In the particular

case of the n-star, instead of system (21), we use z̄P = 1
2zP from Appendix B and express z̄C , ȳP , ȳC

from (C3)-(C5). Given these equations, following the proof of Proposition 2 we show that choosing the

prices and demand functions (23) and (24) in Babus and Kondor (2018) is an equilibrium of the OTC

game in the n-star network, where the trading intensities are given by (C9)-(C10).

Note also, that the general observations in Section 5.1.1 of Babus and Kondor (2018) relied only

on this property and that (22) implies
∂tiij

∂zjij
< 0, which still holds under (C9)-(C10). We have also

checked that the other statements concerning the n-star network, the second part of Proposition 3 and

the first part of Proposition 9 still holds unchanged.3 That is, the effect of the indirect price effect on

the equilibrium analysis is negligible for the n−star network.

2.2 General networks

In general networks, we show that the equilibrium can be derived by solving a nested fixed point problem

which we describe in this section.

3As for the second part of Proposition 9, while zC , zP , yC , yP converge to the same values in the limit ρ → 1 as in

Babus and Kondor (2018), because of the changing expressions of (C9)-(C10), the limits of tC and tP change to tC → − βn
and tP → −(n− 1) β

n
. In this limit, each dealer’s profit is bounded away from zero. Details are available on request.
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2.2.1 Equilibrium conditions

As a first step, define Λi, a
∣∣gi∣∣×∣∣gi∣∣ matrix of price impacts. Λi has rows {ij}j∈gi and columns {ik}k∈gi

and elements ∂pik
∂qiij

= λikij . Note that while the upper index is interchangeable, or λikij = λkiij , the lower

index is not, or λikij 6= λikji . Then, we rewrite (C1) as the generalized demand function for dealer i

Qgi = T i
(
E
(
θi|si,pgi

)
· 1gi−pgi

)
(C11)

where 1gi to be a
∣∣gi∣∣ × 1 column vector of 1−s and T i ≡

(
Λi
)−1

, is the inverse price impact matrix.

The matrix T i has rows {ij}j∈gi and columns {ik}k∈gi , and we denote the element in row ij and column

ik by tikij . Now, we can write all bilateral market clearing conditions in the form of∑
i∈N

T̃ i
(
E
(
θi|si,pgi

)
· 1g−p̃

)
+ βp̃ = 0, (C12)

where 1g is a |g|× 1 column vector of 1−s, and T̃ i and p̃ are constructed as follows. Let the links in the

network g be ordered lexicographically. For each dealer i we construct T̃ i, a |g| × |g| expanded matrix,

which has rows {ii′}ii′∈g,i<i′ and columns {jj′}jj′∈g,j<j′ . The matrix T̃ i has elements tikij in row ij (if

i < j) or ji (if j < i) and column ik (if i < k) or ki (if k < i) for each j, k ∈ gi, and 0 otherwise.

Similarly, p̃ is a column vector of all prices with price pij in row ij.

Finally, we can write the vector of conditional expectations as

E
(
θi|si,pgi

)
· 1g = yisi · 1g + Z̃i · p̃ (C13)

where Z̃i is a |g| × |g| matrix with elements ziij in (every row of) column ij (if i < j) or ji (if j < i),

for all j ∈ gi, and 0 otherwise. Substituting (C13) into (C12), solving for p̃, and equate the matrix

expression for the inverse price impact function with T i gives the fixed point condition

T i =



−∑

j∈N
j 6=i

T̃ j
(
Z̃j − I

)
− βI


−1

gi


−1

(C14)

where I is the identity matrix of size |g| × |g| and the operator [A]gi “reduces” matrix |g| × |g| A to a

matrix
∣∣gi∣∣× ∣∣gi∣∣ by selecting only those elements that are located in rows ij with j ∈ gi and columns

ik with k ∈ gi. 4

4For instance, in the case of a 3-star network where dealer 1 is the central agent, expression (C14) gives equations tC 0

0 tC

 =

 − (β − tP + tP zP ) 0

0 − (β − tP + tP zP )



tP =



−


 tC 0

0 tC




 zC zC

zC zC

 −

 1 0

0 1


 +

 0 0

0 tP




 0 zP

0 zP

 −

 1 0

0 1


 + β

 1 0

0 1





−1

g2


−1

for dealer 1 and 2. The operator []g2 selects the 11 elements of the matrix, leading to an equation system with solution

(C9)-(C10).
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2.2.2 The nested fixed point problem

Based on the equilibrium conditions (C12)-(C14), we can construct the following algorithm to find the

equilibrium for any networks.5

1. For each agent i, conjecture values yi and ziij for all j ∈ gi. Values ziij define the matrix Z̃i for

each i.

2. Given Z̃i, find the elements of matrix T i for each i by the fixed point problem (C14). These

elements also define T̃ i.

3. Then, matrices Z̃i and T̃ i along with the conjectured yi values give the coefficients of each signal

in p̃. As p̃, the signals, si, and values, θi, are jointly normally distributed, the projection theorem

implies new values for yi and ziij by (C13). In an equilibrium, the initial conjecture and the implied

yi, ziij coefficients should coincide.

2.2.3 Circulants, the complete network and the centralized market

Using the general algorithm above, we regenerate Figure 2 of the original paper as Figure 1. For easier

comparison, we fix the scale of each panel as in Figure 2.6

Comparing the two figures shows that the main equilibrium objects are similar both in a qualitative

and quantitative sense. However, there are some new insights which can be informative for future

research. First, the comparison of the OTC market with the centralized market differs. As we see

on Panels A-D, the centralized market leads to higher expected profit for traders, higher utility for

customers, higher total welfare and lower illiquidity for the traders than any of the circulant networks

including the complete network. This was not always the case without taking into account the indirect

price effect (see Proposition 8 in Babus and Kondor (2018)). Second, related to our remark in footnote

3, the expected profit of periphery agents in a star is lower than those of the central agents even when

ρ is close to 1. Whether these observations hold in general or only for our particular parameters is left

for future research.

5Note this solution method does not rely on a connection between the OTC game and the conditional guessing game.

Hence, while the results in Babus and Kondor (2018) with respect to the conditional guessing game which are the basis of

Proposition 1, 5, 6, and 7 continue to hold, their implications on the OTC game equilibrium – along with the statement of

a close connection in Proposition 4 – become uncertain. Also, the existence conditions in Proposition 2 are to be replaced

by the existence conditions for this fixed point. We did not investigate the existence for circular networks of the first part

of Proposition 3 separately from the general case.
6In the original set up we defined illiquidity for agent i as the average of 1

tiij
. To keep the objects as comparable as

possible across the two versions, here we define it as the average of the diagonal elements in
(
T i

)−1
= Λi.
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Figure 1: Expected profit, expected welfare, expected customer utility, average trading cost (illiquidity)

per trader in various networks. Parameters: n = 9, B = 1, σ2
θ = 0.1, σ2

ε = 1.
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3 Conclusion

In this note, we introduced a modification of the OTC game in Babus and Kondor (2018) which restores

the consistency of all the results and proofs despite the overlooked indirect price effect under the original

specification. This is our preferred correction. However, for interested readers, we have also worked out

the modified expressions for the n−star network and a general algorithm to find the equilibrium in any

network under the original specification.
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