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Abstract

We analyze the effects of the observed increased share of delegated capital for trading strate-
gies and equilibrium prices.

We introduce delegation into a standard Lucas exchange economy, where in equilibrium some
investors trade on their own account, but others decide to delegate trading to professional fund
managers. Flow-performance incentive functions describe how much capital clients provide to
funds at each date as a function of past performance. Convex flow-performance relations imply
that the average fund outperforms the market in recessions and underperforms in expansions.
When the share of capital that is delegated is low, all funds follow the same strategy. However,
when the equilibrium share of delegated capital is high funds with identical incentives employ
heterogeneous trading strategies. A group of managers borrow to take on a levered position on
the stock. Thus, fund returns are dispersed in the cross-section and the outstanding amounts
of borrowing and lending increase. The relation between the share of delegated capital and the
Sharpe ratio typically follows an inverse U-shape pattern.
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1 Introduction

Over the last 30 years there has been a gradual but profound change in the way money is invested
in financial markets. While almost 50% of US equities were held directly in 1980, by 2007 this
proportion decreased to around 20% (see French (2008)). What are the equilibrium implications
of this shift? In particular, how does the increased presence of delegation affect trading strategies,
and prices?1

To analyze the link between the incentives of financial institutions and asset prices, we introduce
financial intermediaries into a Lucas exchange economy. Rather than study an optimal contracting
problem, we rely on empirical regularities in flows and assume a convex relation between flows and
performance relative to the market, as documented for example in Chevalier and Ellison (1997)
Then we study how the risky and risk free asset are traded both by fund managers and by traders
holding the assets directly (direct traders).

Based on the Jensen and Meckling (1976) risk-shifting argument that convex incentives induce
gambling, naive intuition would suggest that in our model managers should leverage up, taking on
more exposure to market risk than direct traders and, consequently, the presence of fund managers
should lower the Sharpe ratio. Interestingly, this is not what we find. In equilibrium, the average
manager has smaller exposure to market risk than direct traders. When the equilibrium share of
delegated capital is small all managers follow the same strategy. However, when the equilibrium
share is high a group of managers emerges that levers up, taking more exposure to the market
risk than unity, and trading against the rest of the managers who hold a positive share of their
capital in bonds. Thus, in equilibrium ex ante identical traders take positions against one another
increasing open interest in leverage. Both the size of this latter group and the leverage of each
member typically increases with the larger share of delegated capital. We connect this finding with
the increased use of levered strategies and the large increase of the size of the repo market during
the last decades before the financial crisis. Finally, the effect of delegation on the Sharpe ratio is
non-monotonic. There is an inverse U-shape relation between the share of capital that is delegated
and the Sharpe ratio of the market portfolio.

We study an exchange economy where the endowment process is represented by a Lucas tree
paying a stochastic dividend each period. The dividend growth follows a two-state i.i.d. process
with a larger chance for the high state. There are two financial assets: a stock which is a claim on
the endowment process, and a riskless bond which is in zero net supply. The economy consists of
two type of agents, both with log utility: investors and fund managers. Investors are the owners
of the capital. Investors, arrive and die according to independent Poisson processes with constant
intensity, while managers live forever. Newborn investors decide for life whether to be clients of
managers or to trade directly in financial markets. Trading directly imposes on investors a utility

1See, for example, the presidential address of Allen (2001) for an elaborate discussion on the importance of the
role of financial intermediaries.
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cost. This utility cost represents the cost of acquiring the knowledge to understand how capital
markets work, as well as the utility cost imposed by making regular time consuming investment
decisions. Investors can avoid this cost by becoming a client and delegating the determination of
their portfolio to a fund. However, when they delegate they need to pay fund managers a fee each
period that is determined by the fund. The fee is consumed by the fund manager.

Clients’ allocate capital to funds to manage each period depending on funds’ past relative
performance, where the relation between last period’s return compared to the market and new
capital flow is described by each manager’s incentive function. We interpret the incentive function
as a short-cut for an unmodeled learning process by clients on managers’ talent. Its empirical
counterpart is the flow-performance relation. We are agnostic as to whether the learning process
is rational or not.2

We approximate the convex relation between flows and excess returns by a function which is
piece-wise linear in logs. The combination of log utility with incentive functions of this particular
functional form is the key methodological contribution that allows us to derive analytical formulas
for the trading pattern and asset prices under various incentive functions. This combination results
in a locally concave, but globally non-concave portfolio problem for managers. The first property
keeps the framework tractable, while the second property ensures that we do not lose the general
insight connected to convex incentives.

We present a stationary equilibrium where the equilibrium share of delegated capital is constant.
In this equilibrium, most objects are given by simple, closed form expressions. As the main focus
of this paper is the effect of the increasing share of delegated capital for equilibrium strategies and
prices, we construct a range of economies as follows. We fix all other parameters and vary only the
cost of direct trading, in a way that the equilibrium share of delegated capital varies along the full
range of (0, 1) . Then we compare strategies and prices across these economies.

We show that convex incentives lead the average fund to choose a smaller than one market-
beta: implying that consistent with evidence in Moskowitz (2000), Kosowski (2006), Lynch and
Wachter (2007), Kacperczyk, Van Nieuweburgh and Veldkamp (2010), and Glode (2010) the average
fund overperforms the market in recessions and underperforms in expansions. To understand the
intuition behind this result, consider the case when financial markets are only populated by direct
traders and the first fund manager enters. She can decide whether to take a sufficiently contrarian
position to overperform and get high capital flows in the recession, or to take a sufficiently levered
position to get high capital flows in the expansion. Recall that the probability of an expansion is
larger than the probability of a recession. Thus, the relative overperformance implied by her optimal
contrarian position must be larger than the one implied by her optimal levered position because
the earlier realizes in the low probability state. Because convex flows reward overperformance

2For example Berk and Green (2004) provides microfoundation for convex flow-performance relationship in a
setting with incomplete information about fund managers’ talents.
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disproportionally, she values this larger overperformance and picks the contrarian position.
While the average fund always overperforms in recessions, the cross sectional distribution of

fund returns depends on the equilibrium share of delegation in the economy. At low levels of
delegation, all funds choose the same portfolio. However, as the share of delegation increases, there
is a threshold above which fund managers follow heterogeneous strategies, even though funds are
identical ex ante and all have the same incentive function. In particular, above the threshold as
the share of delegation increases a group of decreasing size still follows a “contrarian strategy”
of smaller than one market beta, while a group with increasing size follows a leveraged strategy
by borrowing up and investing more than 100% of their assets under management in the stock.
This is a consequence of the interaction of the shape of the flow-performance relationship and the
larger share of total delegation. The idea is that when the market is dominated by fund managers,
if each manager followed the same strategy, they could not beat the market in any states of the
world. Thus, they could not profit from the convexity of the flow-performance relationship. Instead
in equilibrium, the group of managers who leverage up beat the market and receive large capital
inflow in the high state, while the other group beats the market and obtain large capital flows in
the low state. Thus, there are gains from trade. The size of these two groups are determined in
equilibrium so that prices make each manager indifferent between the two strategies.

Accounting for the fact that over the last three decades the share of delegation has increased
considerably (Allen (2001) and French (2008)), this result is consistent with observations on the
increased use of leveraged strategies across financial intermediaries in the last two decades before
the 2007/2008 financial crisis.3 Relatedly, a central contribution of the paper is to link increases
in delegated portfolio management to increased amounts of borrowing and lending in equilibrium.
As to lever up, managers have to borrow from the rest of the agents, the equilibrium is consistent
with the observed large increase in the size of the repo market in the last decades before the 2008
financial crisis (Gorton-Metrick (2010)). Consistent with evidence in Kacperczyk, Van Nieuweburgh
and Veldkamp (2010) on the return dispersion of mutual funds, we also show that the implied cross-
sectional dispersion in returns among managers is typically larger in recessions than in booms.

We show that typically the Sharpe ratio follows an inverted U-pattern as the share of delegation
increases. This is the outcome of the change in relative strength of two effects. First, an extra unit
of return is appreciated more when it increases capital flows through the incentive function for the
marginal agent. We call this the capital-flow effect. Second, an extra unit of return is appreciated
more when the wealth of the marginal agent is lower. This is the standard wealth effect. The
first effect is increasing in the share of delegation in the region when each fund follows the same
contrarian strategy and is constant in the region with heterogeneous strategies. The second effect
changes little in the first region and typically decreases in the second region. Thus, the capital

3See Adrian and Shin (2008) on the leverage in investment banks and Lo and Patel (2007) on the increased role
of leveraged mutual funds and leveraged ETFs.
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flow effect dominates for low levels of delegation and the wealth effect dominates for large levels of
delegation implying the result.

Using parameters implied by the data, we calculate a simple numerical example to investigate
the magnitude of these effects. Because of the structure of our model, we can directly compare
our results to the ones implied by the standard Lucas economy. We find that even small convexity
leads to large effect on managers’ strategies. Relatedly, the increasing share of delegated capital
radically increases the lending and borrowing activity. Furthermore, under reasonable parameter
values for the incentive function, delegation has the potential to significantly increase the Sharpe
ratio relative to the case without delegation: in the example the Sharpe ratio is up to 2.5 times
higher than in the Lucas economy.

To our knowledge, our paper is the first to study the effect of the interaction between the
increasing share of delegated capital and nonconcave incentives on fund managers strategies and
implied asset prices. We are also the first to show that although this interaction is consistent with
a smaller-than-1 beta portfolio for the average manager, it also leads to levered portfolios for a
small group of increasing size. Still, our paper is related to at least three main branches of the
literature. First, it is related to papers that study the effects of delegated portfolio management on
asset prices (e.g. Shleifer and Vishny (1997), Vayanos (2003), Cuoco and Kaniel (2010), Dasgupta
and Prat(2006)(2008), Guerrieri and Kondor(2010), Vayanos and Woolley(2008), Malliaris and Yan
(2010)). Both the used framework and the focus of all these papers differ significantly from ours.
Among many others, studied questions in this literature include the effect of delegation on limited
arbitrage, on trading volume on price discovery, on procyclicality in premiums and on momentum.
The closest to our exercise is He and Krishnamurthy (2008) who also studies the effect of delegation
in a standard Lucas economy. However, in He and Krishnamurthy (2008) managers are not directly
motivated by flows because they do not receive fees after their capital under management. Its main
focus is on the amplification of bad shocks through the incentive constraint of managers.

Second, starting with the seminal paper of Jensen and Meckling (1976), there is a large literature
on the effect on nonconcave objectives on fund managers strategies either by taking incentives as
given (e.g. Dow and Gorton (1997), Basak, Pavlova and Shapiro (2007), Basak and Makarov
(2010), Carpenter (2000), Ross (2004)) or by deriving them endogenously (Biais and Casamatta
(2000), Cadenillas et al. (2007), Diamond (2001), Hellwig (2009), Ou-Yang (2003) and Palomino
and Prat (2003), Makarov and Plantin (2010)). The starting point that nonconcave incentives
induce gambling is the connection between our paper and this literature. While, the first group
of papers focuses on the optimal portfolios for given prices, the second group focuses on optimal
contracts to avoid risk-shifting. In contrast, we focus on the interaction of prices and portfolios
under fixed contracts.

Third, our framework is also related to the literature on consumption based asset pricing with
heterogeneous risk aversion (e.g. Dumas (1989), Wang (1996), Chan and Kogan (2002), Bhamra
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and Uppal (2007), Longstaff and Wang (2008)). Unlike in our work, in these papers identical agents
follow identical strategies, less risk-averse agents always borrow from more risk averse agents which,
typically, decreases the price of risk. This is true even when utility depends on consumption relative
to others such as in Chan and Kogan (2002). The main reason for the different results is that this
literature does not allow for convexities in incentives.

The structure of the paper is as follows. In the next section we present the general model. We
discuss the general set up, our equilibrium concept and the main properties of the equilibrium.
In Section 3, we present and discuss the derived implications. In Section 4, we present a simple
calibrated example. Finally, we conclude.

2 The general model

In this section, we introduce professional fund managers into a standard Lucas exchange economy.
Our main focus is effect of the increasing share of delegated asset management on the equilibrium
strategies and asset prices. In what follows, we introduce our framework, define our equilibrium
concept and present sufficient conditions for the existence of such an equilibrium and its basic
properties.

2.1 The Economy

We consider a discrete-time, infinite-horizon exchange economy with complete financial markets
and a single perishable consumption good. There is only one source of uncertainty and participants
trade in financial securities to share risk.

The aggregate endowment process is described by the binomial tree

δt+1 = ytδt

where the growth process yt has two i.i.d. states: st = H,L. The dividend growth is either high
yH or low yL, with yH > yL. The probability of the high and the low states are p > 1

2 and 1 − p

respectively.4 Investment opportunities are represented by a one period riskless bond and a risky
stock. The riskless bond is in zero net supply. The stock is a claim to the dividend stream δt and is
in unit supply. The price of the stock and the interest rate on the bond are qt and Rt respectively.
The return on a portfolio with portfolio weights of α in the stock and 1 − α in the risk free bond
is denoted by

ρt+1 (α) ≡ α

(
qt+1 + δt+1

qt
−Rt

)
+Rt. (1)

4We focus on p > 1
2

because the consumption growth process is negatively skewed empirically.
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The economy is populated by investors and fund managers5. Investors own the stock, but,
initially, only fund managers know how to trade assets.The mass of each group is normalized to
one, all agents derive utility from inter-temporal consumption, and have log utility. At the beginning
of each period 1 − λ fraction of investors die and the same fraction is born. We assume that the
aggregate capital of those who died is inherited by newborn investors in equal shares. Each living
investor in any given period belongs to one of three groups: Newborn investors (I), direct traders
(D) and clients (C). Newborn investors can choose whether to trade directly, or delegate their
trading decisions to fund managers (M). This decision is made once at birth and is irreversible.
Trading directly imposes a one time utility cost, f, on investors but gives them the free choice over
their consumption and portfolio decisions in every subsequent period. We think of f as the cost of
acquiring the knowledge to understand how capital markets work. If they choose to trade directly,
they belong to group of direct traders in all subsequent periods. If they choose to delegate, they
will be assigned to a particular manager (m ∈M) randomly and for life. In this case they belong to
the group of clients in all subsequent periods. A client doesn’t suffer the utility cost she would bear
if she traded directly, but gives up the flexibility to determine her consumption and stock to bond
mix. As we will explain, her consumption-investment choice depends on the past performance of
managers and is determined by an exogenously specified flow-performance relationship, while her
portfolio is chosen by her fund manager for a fee.6 Note that although there are four groups of
agents in this economy: newly born investors, clients, direct traders and fund managers, financial
assets are traded only by two of these groups: fund managers and direct traders. In what follows,
we first describe the problem of each of the four groups in detail then present our specification for
the flow-performance relationship. We write each problem in recursive form.

We conjecture and later verify that we have to keep track of only two state variables to fully
describe the aggregate state of the economy in period t. The first is the dividend shock realized
at the end of the last period, st = H,L, while the second is the share of aggregate investment of
managers compared to total investment at the beginning of last period

Ωt−1 ≡
∫
m∈M

[
wt−1 (m) − ct−1 (m)

]
dm∫

i∈D
[
wt−1 (i) − ct−1 (i)

]
di+

∫
m∈M

[
wt−1 (m) − ct−1 (m)

]
dm

where ct−1 (m), wt−1 (m) are the consumption and assets under management of a particular man-

5Conceptually, we think of fund managers as a group representing all type of institutional traders who actively
participate in the equity market. That is, actively managed mutual funds, hedge funds, proprietary trading desks
of investment banks, pension funds, etc. Still, when we confront our findings to empirical work, we often have to
rely on observations about mutual funds only as the majority of empirical results are on this segment of the sector.
Presumably, this is so because of data availability.

6It is apparent that in our model investors not “paying” the utility cost, f, delegate their trading decision by
assumption: both trading and producing fruit from the tree requires a degree of sophistication that is obtained by
bearing the utility costs f . This precludes clients from holding the tree passively, since their lack of sophistica-
tion implies that if they hold it passively it will not generate any fruit. A similar assumption is made in He and
Krishnamurthy (2008).
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ager m ∈ M , and ct−1 (i), wt−1 (i) are the consumption and wealth level of a particular direct
trader investor i ∈ D. With slight abuse of notation when we refer to a general direct trader or a
general manager, we write wDt−1 instead of wt−1 (i) , i ∈ D and wMt−1 instead of wt−1 (m) , m ∈ M.

We follow the same convention for all variables. We refer to Ωt−1 as the share of delegated capital.
Fund Managers. In period, t, each manager with assets under management wMt chooses the

fraction ψMt she will receive as a fee. We assume the manager must consume her fee ψMt w
M
t .7 She

then invests the remaining (1 − ψMt )wMt in a portfolio with αMt share in the stock and
(
1 − αMt

)
share in the bond. Her value function is given by

VM
(
wMt , st,Ωt−1

)
= max

ψM
t ,αM

t

lnψMt w
M
t + βE

(
VM

(
wMt+1, st+1,Ωt

))
(2)

s.t. wMt+1 = Γtg
(
υMt+1

)
wMt+1,− (3)

wMt+1,− ≡ ρt+1

(
αMt
) (

1 − ψMt
)
wMt (4)

Note that assets under management at beginning of a period, wMt+1, are proportional to assets
under management at the end of the previous period , wMt+1,−. This proportion depends on three
quantities. First, the share of wealth each existing client delegates to the manager which depends
on the past realized performance of this manager and given by g(υMt+1) where

υMt+1 ≡ ρt+1

(
αMt
)

qt+1+δt+1

qt

(5)

is a fund’s return relative to the market portfolio.8 We specify the shape of this function below.
Second, the total wealth of a manager’s existing clients. Third, the total wealth of the fraction
of newborn investors who decide to be clients and who are assigned to this particular manager.
The second and third elements are combined into Γt, a state dependent scaling factor that is
endogenously determined in equilibrium and which the manager takes as given. For simplicity,
we refer to this variable as the size of the client-base. It impacts all funds similarly, and depends
positively on the overall capital of clients in that state.

If more then one portfolio αMt solves (2)-(4), we will allow managers to mix between these
portfolios. This will be useful, as sometimes the equilibrium portfolio profile requires a subset of

7The assumption that managers cannot invest their fees is a major simplification allowing us to not keep track of
fund managers private wealth. Note also that on one hand, we are allowing ψt to be conditional on any variable in
the managers’ information set in t. That is, we do not constrain our attention to proportional fees ex ante. On the
other hand, our assumptions imply that fees are proportional in equilibrium, managers effectively maximize capital
under management and fees do not play any role in the portfolio decision.

8In a previous version, we consider the possibility to allow the incentive function g(·) to depend non linearly on
the fees ψM

t charged by the fund, but this change has very little effects on the result. Thus, we omit this treatment
here.
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managers to follow a different strategy than other managers, and we implement this by allowing
mixed strategies.

Clients. The utility going forward of an investor that decided to be a client, was matched with
a particular manager, and has time t wealth of wt is

V C
(
wt, υ

M
t , st,Ωt−1

)
= lnwCt

(
1 − g

(
υMt
))

(6)

+βIEV C
(
ρt+1

(
αMt
) (

1 − ψMt
)
g
(
υMt
)
wCt , υ

M
t+1, st+1,Ωt

)
where βI ≡ λβ is the effective discount factor of investors, and αMt and υMt are chosen portfolio
and the relative return of the assigned manager in period t. Note that if the manager follows
a mixed strategy than both αMt+1 and υMt+1 are random variables from the client’s point of view.
Instead of deriving the incentive function, g(·) from first principles, we take it exogenously in the
spirit of Shleifer and Vishny (1997). Below, we motivate the form of this function by empirical
observations. We think of this function as a reduced form description how a client matched to the
manager decides how much she“trusts” the manager’s abilities to outperform the market in the
next period based on past performance.

Direct traders. Direct traders solve a standard asset allocation problem. Denoting by ψDt the
optimal fraction of time t wealth wt a direct investor consumes, we have

V D (wt, st,Ωt−1) = max
ψD

t ,α
D
t

lnψDt w
D
t + βIEV D (wt+1, st+1,Ωt) (7)

s.t. wDt+1 ≡ ρt+1

(
αDt
) (

1 − ψDt
)
wDt

Newborn investors. The expected lifetime utility of a newborn investor entering in period t with
wealth wt is given by

V I (wt, st,Ωt−1) = max
χ∈{0,1},ψI

t ,α
I
t

lnwItψ
I
t

+χβIEV C
(
ρt+1

(
αMt
) (

1 − ψMt
)
wIt
(
1 − ψIt

)
, st+1,Ωt

)
+ (1 − χ)βI

(
EV D

(
ρt+1

(
αIt
)
wIt
(
1 − ψIt

)
, st+1,Ωt

)− f
)
.

where χ is her decision whether to be a client or a direct trader, ψIt is her consumption share, αIt
is her first portfolio decision given that she chooses to be a direct trader.

Relative Performance Incentive Functions. Our key assumption is to model clients’ share of
delegated capital by a reduced form incentive function. The empirical counterpart of the incentive
function is the flow-performance relationship. The incentive function g (·) describes how existing
clients respond to the performance of a given manager. We assume it belongs to the following
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piece-wise constant elasticity class:9

g (υ) ≡
{
ZB υ nB−1 if υ < κ

ZA υ
nA−1 if υ ≥ κ

. (8)

The function is parameterized by the kink κ ≥ 1, the scalers ZA, ZB > 0 and the elasticity
parameters, nA ≥ nB > 1. The subscripts refer to the cases when the relative return is above (A)
the kink, so managers are compensated at the higher-elasticity segment of the incentive function,
and when the relative return is below (B) the kink, so managers are compensated at the low-
elasticity segment of the incentive function. We assume that the g is continuous by imposing the
restriction

ZA = ZBκ
nB−nA .

For a more intuitive form, using (4) and (8) we have

ln
wMt+1

wMt+1,−
= ln

wMt+1

ρt+1

(
αMt
) (

1 − ψMt
)
wMt

= (9)

= lnΓtZB + 1υt≥κ lnκnB−nA + [(nB − 1) 1υt<κ + (nA − 1) 1υt≥κ]
(

ln ρt+1

(
αMt
)− ln

qt+1 + δt+1

qt

)
.

By choosing the appropriate parameters, this specification is a piecewise linear approximation of
any convex relationship between log of capital flows and log of excess returns of funds. This is
consistent with the well documented empirical convex flow-performance relation for a wide range
of financial intermediaries.10 We chose this particular approximation, because it both keeps our
model analytically tractable and consistent with empirical specifications.11

9Allowing the incentive function to be a combination of more than two segments does not pose any conceptual
difficulty for our method. However, as it does not add to the economic intuition either, we omit this treatment.

10There is a large empirical literature exploring the relationship between past performance and future fund flows.
With the notable exception of Grossman, Ingressol and Ross (2002), most papers find a positive relationship for varies
type of financial intermediaries. Also, Chevalier and Ellison (1997), Sirri and Tufano (1998), and Chen et al. (2003)
find that the relationship is convex for mutual funds, while Agarwal, Daniel and Naik (2003) finds similar convexity
for hedge funds. Kaplan and Schoar (2004) finds a positive but concave relationship for private equity partnerships.

Anecdotal evidence suggests that the capital at the disposal of top traders at investment banks and hedge funds
also increases significantly as response to their stellar performance (e.g. WSJ 09/06/06 A1 on Brian Hunter of
Amaranth, and WSJ 02/06/09 A1 on Boaz Weinstein of Deutsche Bank). This should lead to similar incentives to
our specification.

11In Section 4, we estimate the parameters of 9 on a sample of mutual fund flows and returns.
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Finally, we conjecture and later verify that the value functions of different types take the form

V C
(
wCt , υ

M
t , st,Ωt−1

)
=

1
1 − βI

lnwCt + ΛC
(
υMt , st,Ωt−1

)
(10)

V D
(
wDt , st,Ωt−1

)
=

1
1 − βI

lnwDt + ΛD (st,Ωt−1) (11)

VM
(
wMt , st,Ωt−1

)
=

1
1 − β

lnwMt + ΛM (st,Ωt−1) . (12)

2.2 The equilibrium

In this part, we show that under weak parameter restrictions, we can always find a competitive
equilibrium where the share of delegated capital is constant over time, Ωt = Ω∗. More formally, we
are looking for a stationary competitive equilibrium defined as below.

Definition 1 An Ω∗ equilibrium is a price process qt for the stock and Rt for the bond, a relative
investment by fund managers compared to all investment Ω∗, consumption and strategy profiles for
newborn investors, direct investors, and managers such that

1. given the equilibrium prices

• the initial consumption choice of newborn investors ψIt and the decision on whether to
become a direct trader or a client are optimal for each newborn investor,

• fee choice ψMt and trading strategies At, Mt are optimal for each manager,

• consumption choices ψDt and trading strategies αDt are optimal for direct traders,

2. prices qt, and Rt clear both good and asset markets,

3. the relative investment by fund managers compared to all investment is constant overtime at
the level Ωt = Ω∗.

As the main focus of this paper is the interaction between the increasing share of delegation and
the effect of a convex flow-performance relation to equilibrium strategies and prices, we construct
a range of economies as follows. We fix all other parameters and change only f, the cost of trading
directly, in a way that the implied equilibrium implies a different share of delegation, Ω∗, for each
economy. Then we compare strategies and prices across these economies.12 The following result
makes sure that this method works for any Ω∗.

12Formally, Ω∗ is an equilibrium variable depending on f. Thus, we should define a function which gives an f for
every Ω∗. Then, to analyze the effect of increasing Ω∗, we should change f along the values of this function. Instead,
to keep things simple, we analyze ”comparative statics” with respect to Ω∗ allowing f to adjust in the background
accordingly.
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Proposition 1 For any set of other model parameters there is a Ẑ, λ̂, and an interval
[
f, f̄
]

such
that if ZB < Ẑ, λ ≤ λ̂ then

1. For any f ∈ [f, f̄] there exists an Ω∗ equilibrium for some Ω∗ ∈ (0, 1),

2. for any Ω∗ ∈ (0, 1) there is a corresponding f ∈ [f, f̄] that with that choice there is an Ω∗

equilibrium.

Before highlighting the most critical steps of the proof, we discuss the methodology of equilib-
rium construction. The key is how to deal with the convex flow-performance relation. Convexity in
incentives imply that our problem is globally non-concave, so that local conditions for the equilib-
rium will not be sufficient. However, the interaction of log utility and a piecewise constant-elasticity
incentive function imply that the problem of the manager is locally concave almost everywhere in
the portfolio choice α, even though it is globally non-concave. The dashed line on Figure 1 demon-
strates this by depicting the expected utility of a manager for various αs in a particular case when
all other traders hold the market. It is apparent that the curve can be divided to three segments
in a way that the curve is concave within each of these segments. Portfolios in a given segment
differ from portfolios in other segments in which dividend state, if at all, the manager receives the
extra capital flows implied by the high elasticity segment of her incentive function. In particular,
Contrarian portfolios have smaller than unity exposure to market risk; overperforming the market
in the low state. This overperformance in the low state is sufficiently high to generate the extra
capital flows implied by the high elasticity segment of the incentive function. Moderate portfolios
are close to the market portfolio, they generate moderate over- or under-performance, and thus do
not generate extra capital flows in any state. Aggressive portfolios have larger than unity exposure
to market risk; overperforming the market in the high state. This overperformance is sufficiently
high to generate the extra capital flows in the high state. Because of local-concavity, within each
of these segments there is a single optimal portfolio. Consequently, for a given set of prices man-
agers effectively compare three possible strategies: the locally optimal contrarian, moderate and
aggressive portfolios. The relative ranking of these three choices depend on equilibrium prices.

Our treatment of convex incentive functions helps to reduce the construction of an Ω∗ equilib-
rium to the following steps.

1. We fix a given Ω∗ and conjecture an equilibrium profile of portfolios for managers and direct
traders. In this profile each portfolio is one of the three types of locally optimal portfolios.
We verify the conjecture by showing that the profile is indeed globally optimal under the set
of relative prices consistent with this profile. Sometimes in equilibrium a group of managers
have to hold a different portfolio than other managers. We implement such asymmetries by
allowing managers to mix between portfolios. Importantly, the equilibrium strategy profile is
independent from the utility cost f and the client base Γt.

12



2. By calculating the values of a client and a direct trader under the equilibrium strategies,
we find the utility cost f of trading directly which implies that each newborn investor is
indifferent whether to be a client or a direct trader. Thus, any fraction of newborn investors
choosing to be clients is consistent with the equilibrium strategies and prices for this f.

3. We pick the fractions of newborn investors choosing to be clients in a way that the implied
total client base Γt gives exactly Ω∗ as the share of delegated capital. This has to be true
regardless of the dividend state, st = H,L. We show that this implies that the client-base
Γt = ΓH ,ΓL depends only on the dividend state.

4. Finally, we calculate the equilibrium price of the assets implied by the consumption and
portfolio decisions of each group of agents.

In the rest of this section, we characterize the Ω∗ equilibrium by following the structure pro-
vided by the above steps. We show that our method gives simple analytical expressions for most
equilibrium objects.

2.2.1 Equilibrium portfolios

We start by finding the optimal consumption and portfolio decisions of direct traders and man-
agers for fixed prices. The case of direct traders is standard. Given their log utility, the optimal
consumption share is

ψDt =
(
1 − βI

)
,

while the optimal share in stocks is given by the first order condition

p

qt+1(H)+δt+1(H)
qt

−Rt

αDt

(
qt+1(H)+δt+1(H)

qt
−Rt

)
+Rt

= (1 − p)
Rt − qt+1(L)+δt+1(L)

qt

αDt

(
qt+1(L)+δt+1(L)

qt
−Rt

)
+Rt

. (13)

Consider the decision problem of a manager in period t. First we want to find the locally optimal
contrarian/aggressive/moderate portfolios. For now, conjecture that the locally optimal portfolios
are in the interior of the corresponding segments, just as it is in the case depicted in Figure 1. The
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corresponding optimization problems, given (2) and conjecture (12), are given by

max
αM

t ,ψM
t

lnψMwMt + (14)

+
β

1 − β
p ln ΓtZh

⎛
⎝ ρt+1

(
αMt ,H

)
qt+1(H)+δt+1(H)

qt

⎞
⎠nh

qt
qt+1 (H) + δt+1 (H)

βwMt +

+
β

1 − β
(1 − p) ln ΓtZl

⎛
⎝ ρt+1

(
αMt , L

)
qt+1(L)+δt+1(L)

qt

⎞
⎠nl

qt
qt+1 (H) + δt+1 (H)

βwMt

+ β (pΛ (H,Ωt) + (1 − p)Λ (L,Ωt)) ,

where the indices l, h = A,B refer to whether for the given exercise the performance relative to
the market has to be above (A) or below (B) the kink in the low state (l) and the high state (h),
respectively. For the problem of searching for the locally optimal contrarian portfolio l = A and
h = B, as by definition a contrarian portfolio performs above the market in the low state and
below the market in the high state. Similarly, for the locally optimal aggressive portfolio, l = B

and h = A, while for the moderate portfolio, l = h = B. Note that the logarithmic terms are the
new levels of assets under management, lnwMt+1, in each state, st+1 = H,L.

It is easy to see the optimal fees are a constant proportion of capital under management,

ψMt = (1 − β) .

It is apparent that the decision on fees is independent from the portfolio decision. Also, αMt is the
solution of

p

(
nh

pnh + (1 − p)nl

) qt+1(H)+δt+1(H)
qt

−Rt

αMt

(
qt+1(H)+δt+1(H)

qt
−Rt

)
+Rt

(15)

=
(

1 − p
nh

pnh + (1 − p)nl

)
Rt − qt+1(L)+δt+1(L)

qt

αMt

(
qt+1(L)+δt+1(L)

qt
−Rt

)
+Rt

.

Comparing this expression to (13), observe that the incentive function affects the problem only to
the extent that it changes the weights of the marginal utilities in the two states. While the direct
trader weights the marginal utility in the high state by p, its probability, the manager uses the
individual shape-adjusted probability,

ξlh ≡ p
nh

pnh + (1 − p)nl
. (16)

ξlh is the probability of a high state adjusted to the relative elasticity of the incentive function
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in the two states. Just as before, the indices l, h = A,B refer to whether the performance relative
to the market is above (A) or below (B) the kink in the low (l) and high (h) states respectively.
For fixed parameters, ξlh depends only on whether the manager chooses a contrarian portfolio
(ξlh = ξBA), a moderate portfolio (ξlh = ξBB = p) or an aggressive portfolio (ξlh = ξAB). We
rewrite the first order condition, (15), as

αMt = αlh =
1 − ξlh

1 −
qt+1(H)+δt+1(H)

qt
Rt

+
ξlh

1 −
qt+1(L)+δt+1(L)

qt
Rt

(17)

and pick lh = BA,BB,AB to get the locally optimal contrarian, moderate and aggressive
portfolios, respectively. Observe that nA > nB implies that ξBA < p < ξAB. That is, a manager
choosing the locally optimal contrarian (aggressive) portfolio acts as if she would distort downwards
(upwards) the probability of the high state. When managers compare the three locally optimal
portfolios they act as if deciding in which way to distort the probabilities.

Recall that (17) describes the locally optimal portfolios if and only if the specified αlh portfolio
is inside the corresponding segment. The next Proposition implies that it is sufficient to consider
this case.

Proposition 2 Suppose that α∗ is a globally optimal portfolio for a given manager for some set of
prices which clear the stock market. Then

ρt+1 (α∗, L)
qt+1(L)+δt+1(L)

qt

�= κ,
ρt+1 (α∗,H)
qt+1(H)+δt+1(H)

qt

�= κ,

i.e., the optimal portfolio is never at the kink.

The following proposition summarizes our findings.

Proposition 3 In an Ω∗ equilibrium,

1. the optimal consumption rules of investors, direct traders and managers are given by

ψIt = ψDt =
(
1 − βI

)
, ψMt = (1 − β) . (18)

2. direct traders optimal trading strategy is

αIt = αDt =
1 − p

1 −
qt+1(H)+δt+1(H)

qt
Rt

+
p

1 −
qt+1(L)+δt+1(L)

qt
Rt

(19)

3. fund managers optimal trading strategies have positive weight on a maximum of two of the
following three portfolios
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• Contrarian:
αAB =

1 − ξAB

1 −
qt+1(H)+δt+1(H)

qt
Rt

+
ξAB

1 −
qt+1(L)+δt+1(L)

qt
Rt

(20)

• Aggresive:

αBA =
1 − ξBA

1 −
qt+1(H)+δt+1(H)

qt
Rt

+
ξBA

1 −
qt+1(L)+δt+1(L)

qt
Rt

(21)

• Moderate :
αBB =

1 − p

1 −
qt+1(H)+δt+1(H)

qt
Rt

+
p

1 −
qt+1(L)+δt+1(L)

qt
Rt

(22)

Which locally optimal portfolio is the globally optimal one? A very convenient property of our
structure is that to answer this question, we do not have to know the level of equilibrium prices.
To see why, first observe that the answer critically depends on the relative returns a manager
can achieve with each of the different locally optimal portfolios. Indeed, from (14), the difference
between the value of choosing the optimal contrarian and the optimal aggressive strategy, for any
given prices, is

β

1 − β

⎛
⎜⎜⎜⎜⎝p ln

ZB

(
ρt+1(αAB ,H)

qt+1(H)+δt+1(H)

qt

)nB

ZA

(
ρt+1(αBA,H)

qt+1(H)+δt+1(H)

qt

)nA
+ (1 − p) ln

ZA

(
ρt+1(αAB ,L)

qt+1(L)+δt+1(L)

qt

)nA

ZB

(
ρt+1(αBA,L)

qt+1(L)+δt+1(L)

qt

)nB

⎞
⎟⎟⎟⎟⎠ , (23)

which is proportional to the expected log difference between the assets under management generated
by relative returns of the two portfolios. Comparing other pairs of locally optimal portfolios gives
similar expressions. Second, any set of prices clearing the asset market imply that relative returns
take a very simple form. To be more specific, let μlh = μAB , μBB , μBA be the equilibrium fraction
of managers whose realized portfolio is the locally optimal contrarian, moderate and aggressive
portfolios, where, just as above, the index pair lh refers to whether the performance of the manager
is below (B) or above (A) the kink, κ, after a low (l) and high (h) shock. Then, the aggregate
shape-adjusted probability of a high state is

ξ̃ (Ω∗) ≡ Ω∗ (μABξAB + μBAξBA + μBBp) + (1 − Ω∗) p, (24)

which is the weighted average of the individual shape adjusted probabilities. The next Lemma
shows that relative returns generated by locally optimal portfolios are given by the proportion of
individual shape adjusted probabilities to their aggregate counterpart.
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Lemma 1 In a Ω∗ equilibrium, for any set of prices for which the stock market clears, that is,

Ω∗ (μABαAB + μBAαBA + μBBαBB) + (1 − Ω∗)αDt = 1

the relative return implied by a locally optimal portfolio is

ρt+1 (αlh,H)
qt+1(H)+δt+1(H)

qt

=
ξlh

ξ̃ (Ω∗)
, (25)

in the high state and
ρt+1 (αlh, L)
qt+1(L)+δt+1(L)

qt

=
1 − ξlh

1 − ξ̃ (Ω∗)
(26)

in the low state where lh = AB,BB,BA for the locally optimal contrarian, moderate and aggressive
portfolios, respectively.

Thus, to figure out the equilibrium strategy profile of managers, we just have to use (23)-(26)
to find fractions μAB, μBB , μBA such that μAB + μBB + μBA = 1 and any positive μlh corresponds
to a globally optimal portfolio. We show in the Appendix, that there are four different equilibria
types depending on equilibrium fund managers portfolios:

Cont-Agg: some managers hold the locally optimal contrarian portfolio and others hold the locally
optimal aggressive portfolio,

Cont-Mod: some managers hold the locally optimal contrarian portfolio and others hold the
locally optimal moderate portfolio,

Cont: all managers hold the locally optimal contrarian portfolio.

Mod: all managers hold the locally optimal moderate portfolio..

The following proposition matches four subsets of the relevant parameter space to the four
possible types of equilibria and pins down the unique corresponding fractions μAB, μBB , μBA.

Proposition 4 Suppose that ZB < Ẑ, λ ≤ λ̂. There are critical values κ̂high, κ̂low, p̂, p̄ ∈ (1
2 , 1
)

and
Ω̂ ∈ (0, 1) that

1. if κ > κ̂high, there is a unique interior equilibrium and it is a Moderate (Mod) equilibrium
where each agent holds the market: αD = αM = 1,

2. if κ̂low < κ < κ̂high, there is a unique interior equilibrium and its type depends on p as follows:

p ∈ (1
2 , p̂
)

p ∈ (p̂, 1)

Ω∗ ≤ Ω̂ Mod Cont

Ω∗ > Ω̂ Mod Cont−Mod

.
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3. if κ < κ̂low,there is a unique interior equilibrium and its type depends on p as follows:

p ∈ (1
2 , p̄
)

p ∈ (p̄, 1)

Ω∗ ≤ Ω̂ Cont Cont

Ω∗ > Ω̂ Cont−Agg Cont−Mod

κ̂high, κ̂low are functions of nA, nB only, while p̂, p̄ are functions of nA, nB, κ. These functions
are given in the Appendix.

Ω̂ is a function of nA, nB, κ, p and, together with the probability a manager hold the locally
optimal contrarian portfolio, μAB (Ω∗) , are given by

Ω̂ ≡ p− ξ̄

p− ξAB

and

μAB (Ω∗) =

{
1 if Ω∗ ≤ Ω̂

ξ2−ξ̄
ξ2−ξAB

+
(

1
Ω∗ − 1

) p−ξ̄
ξ2−ξAB

if Ω∗ > Ω̂

}
(27)

where ξ̄ is the solution of

p lnκnB−nA

(
ξBA

ξ̄

)nA

(
ξAB

ξ̄

)nB
= (1 − p) lnκnB−nA

(
1−ξAB

1−ξ̄
)nA

(
1−ξBA

1−ξ̄
)nB

(28)

and

p ln

(
p
ξ̄

)nA

(
ξAB

ξ̄

)nB
= (1 − p) lnκnB−nA

(
1−ξAB

1−ξ̄
)nA

(
1−p
1−ξ̄
)nB

(29)

in the parameter regions corresponding to a Cont − Agg and in a Cont −Mod equilibrium
respectively, and ξ2 = ξBA in a Cont − Agg equilibrium and ξ2 = p in a Cont − Mod

equilibrium.

From the proposition it is apparent that when reaching the high elasticity segment of the
incentive function would require sufficiently high relative performance (high κ) then the moderate
strategy is the global optimum, since the portfolio distortions required to achieve relative returns
above κ in one of the states are too large and are suboptimal. Observe that in this case direct traders
and managers follow the same strategy, which also implies that they all hold the market. This is
why we sometimes refer to a moderate equilibrium as the indexed equilibrium. Outside of this range
of parameters, managers always choose a contrarian strategy as long as their capital share is small
(i.e., Ω∗ is small). That is, they lend to direct traders, have a smaller-than-1 exposure to the market
risk, and overperform the market only in the low state. From the point that the capital share of
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delegated management reaches a given threshold (Ω∗ ≥ Ω̂), managers are indifferent between the
contrarian portfolio and either the moderate or the aggressive portfolio. Thus, they mix between
the two globally optimal portfolios. By the law of large numbers, the mixing probabilities are given
by μlh as they must be identical to the fraction of managers ending up with a given portfolio. As
Ω∗ increases, the mixing probabilities adjust in a way to keep managers indifferent between the two
strategies. This is how expressions (27)-(29) are constructed. We analyze further the properties of
the equilibrium strategies in Sections 3 and 4.

2.2.2 Newborn investors’ decision and the client-base

Relative returns in (25)-(26) directly imply the consumption-investment decision of clients. For
example, from the definition of the incentive function, a client whose manager held a contrarian
portfolio in the previous period consumes

1 − g

(
ξAB

ξ̃ (Ω∗)

)
, 1 − g

(
1 − ξAB

1 − ξ̃ (Ω∗)

)

share of her capital in the high and low states respectively, and invests the rest with her fund
manager. Given the consumption and portfolio decision of direct traders, and the equilibrium
strategies of managers, we can compare directly newborn traders value if they decide to be direct
traders or managers. Thus, for a given Ω∗, we can find a cost of trading directly, f, that implies
that newborn managers are indifferent which role to choose. We derive the exact expression in the
Appendix.

The equilibrium distribution of relative returns given in (25),(26) and (27) also directly imply
the aggregate capital clients delegate to managers at the beginning of the period and the capital
managers return to clients at the end of the period. For example, in a Cont-Agg equilibrium in
the high state, the total share of capital returned to those clients with managers following the
contrarian strategy must be

Ω∗μAB (Ω∗)
ξAB

ξ̃ (Ω∗)
,

the product of the total share of invested capital by managers, the fraction holding the contrarian
portfolio and the relative return corresponding to the contrarian strategy. Following this logic, the
total share of capital returned to all clients is

ΥH ≡ Ω∗
(
μAB (Ω∗)

ξAB

ξ̃ (Ω∗)
+ (1 − μAB (Ω∗))

ξBA

ξ̃ (Ω∗)

)

ΥL ≡ Ω∗
(
μAB (Ω∗)

1 − ξAB

1 − ξ̃ (Ω∗)
+ (1 − μAB (Ω∗))

1 − ξBA

1 − ξ̃ (Ω∗)

)

in the high and low states respectively. Similarly, in a Cont-Agg equilibrium, in the high state the
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total share of capital received by managers who followed the contrarian strategy in the previous
period is

Ω∗μAB (Ω∗) Γtg
(
ξAB

ξ̃ (Ω∗)

)
Thus, the total share of capital delegated to managers is Γtḡs where

ḡH ≡ Ω∗
(
μAB (Ω∗) g

(
ξAB

ξ̃ (Ω∗)

)
+ (1 − μAB (Ω∗)) g

(
ξBA

ξ̃ (Ω∗)

))

ḡL ≡ Ω∗
(
μAB (Ω∗) g

(
1 − ξAB

1 − ξ̃ (Ω∗)

)
+ (1 − μAB (Ω∗)) g

(
1 − ξBA

1 − ξ̃ (Ω∗)

))
,

in the high and low states respectively. Note that from the total share Γtḡs, λḡs comes from those
clients who survived from the previous period and the rest comes from newborn investors choosing
to be clients. That is,

Γtḡs = λḡs + (1 − λ)βI χ̄t (30)

has to hold, where χ̄t is the aggregate share of newborn investors choosing to be clients. By
allocating a given fraction of indifferent newborn investors to the group of clients, we can pick a Γt
which keeps the share of delegated capital, Ω∗ fixed. In particular,

Ω∗ =
βΓtḡs

βΓtḡs + βIλ (1 − Υs) + βI (1 − λ) (1 − χ̄t)

has to hold in both states, s = H,L where the numerator is the total invested capital share of
managers while the denominator is the total invested capital share of all groups. In the denominator,
the second term correspond to the invested share of aggregate capital of direct traders: (1 − Υs)
is the wealth share of direct traders, of which a fraction λ survives and invests βI share in the
asset market. The third terms corresponds to the invested share of newborn investors deciding to
be direct traders. It is easy to see that we can pick the client-base and the fraction of newborns
deciding to be clients in a way that they both depend only on the dividend state; i..e., Γt = ΓH ,ΓL
and χ̄t = χ̄H , χ̄L.

Our findings are summarized in the following Lemma.

Proposition 5 In an Ω∗ equilibrium

1. both the fraction of newborn investors choosing to delegate χ̄t,

2. and the client-base Γt depend only on the state and are

χ̄s = ḡs
Γs − λ

(1 − λ) βI

Γs = Ω∗ β
I (1 − λΥs) + ḡsλ

ḡs (β (1 − Ω∗) + Ω∗)

20



for s = H,L, where Υs, ḡs is given by

ΥH = Ω∗
(
μAB (Ω∗)

ξAB

ξ̃ (Ω∗)
+ (1 − μAB (Ω∗))

ξ2

ξ̃ (Ω∗)

)

ΥL = Ω∗
(
μAB (Ω∗)

1 − ξAB

1 − ξ̃ (Ω∗)
+ (1 − μAB (Ω∗))

1 − ξ2

1 − ξ̃ (Ω∗)

)

and

ḡH = Ω∗
(
μAB (Ω∗) g

(
ξAB

ξ̃ (Ω∗)

)
+ (1 − μAB (Ω∗)) g

(
ξ2

ξ̃ (Ω∗)

))

ḡL = Ω∗
(
μAB (Ω∗) g

(
1 − ξAB

1 − ξ̃ (Ω∗)

)
+ (1 − μAB (Ω∗)) g

(
1 − ξ2

1 − ξ̃ (Ω∗)

))
,

where ξ2 = ξBA, p in a Cont−Agg equilibrium and a Cont−Mod equilibrium respectively.

2.2.3 Equilibrium prices

Given all equilibrium actions, we can determine equilibrium prices by market clearing conditions.
Instead of tracking the stock price q, and the stock price next period qs′ , it is more convenient to
track the price-dividend ratio

π =
q

δ
.

and the price dividend ratio next period

πs′ =
qs′

δ′
. (31)

First, taking the price-dividend ratios πH , πL and a strategy profile of portfolios (20)-(22) as given,
and imposing the market clearing condition that all stock holdings have to sum up to 1 gives the
following result on the implied interest rate.

Proposition 6 In a Ω∗ equilibrium, the interest rate is

R =
θ

π

where θ solves

ξ̃ (Ω∗)
1

yH (1 + πH (Ω∗))
+
(
1 − ξ̃ (Ω∗)

) 1
yL (1 + πL (Ω∗))

=
1

θ (Ω∗)
, (32)

Second, the equilibrium wealth level of all agents, their consumption share and the market
clearing condition for the good market that requires that aggregate consumption has to be equal
to the dividend gives the equilibrium price dividend ratios.
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Proposition 7 In an Ω∗ equilibrium, the price dividend ratio is

πs =
βI (1 − λΥs) + λḡs − (1 − β) Γsḡs

1 − βI (1 − λΥs) − λḡs + (1 − β) Γsḡs

in state s = H,L.

3 Implications

In this section, we discuss the equilibrium and analyze its implications. We focus on the interaction
of non-concave incentives and the increased level of delegation in financial markets. We contrast
our findings with existing empirical work and present additional testable implications. We start
the discussion with briefly presenting two benchmarks. Then we discuss our results connected to
the distribution of relative returns and strategies, then proceed to the Sharpe ratio and managers’
exposure to market risk. Finally, we discuss implications related to the gross amount of borrowing
and lending and the dispersion of portfolios.

3.1 Benchmark cases: no delegation and constant-elasticity incentive functions

A natural benchmark is a market with only direct traders, so that the share of delegation Ω∗ is
zero. For example, this is the case when the utility cost of direct trading is zero. It is simple to
check that our model reduces to the standard Lucas economy where all traders hold the market
and the price-dividend ratio and riskfree rate are constant:

πH = πL =
βI

1 − βI
,

R =
1
βI

yHyL
pyL + (1 − p)yH

,

and the Sharpe ratio is constant as well and given by

S =
p

1
2 (1 − p)

1
2 ‖yH − yL‖

pyL + (1 − p) yH
.

A second benchmark is when the utility cost is in the range which implies a positive share of
delegation, but managers’ incentive function has a constant elasticity. That is, nA = nB . In the
following proposition we characterize the main properties of the equilibrium in this case.

Proposition 8 If the incentive function has constant elasticity, nA = nB, and ZB < 1 and β+ZB
β+1 >

λ then for any Ω∗ there is an f implying that an Ω∗-equilibrium exists. Furthermore, in any implied
Ω∗ equilibrium
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1. both direct traders and managers hold the market,

2. the Sharpe ratio is equal to the Sharpe ratio with no delegation.

The proposition illustrates that delegation has little effect on the equilibrium if the incentive
functions have constant elasticity. For any Ω∗, each agent holds the market and the Sharpe ratio
is unaffected by delegation.13 To see this, note that with constant elasticity incentives both the
individual and the aggregate shape adjusted probability is p, ξilh = ξ̃ (Ω∗) = p. Thus, (22) implies
the same strategy for all managers. Market clearing implies that this strategy must be that each
manager holds the market, and relative returns are always 1. This implies that we can create
examples, where the incentive function g (·) a group of traders is convex in levels (i.e., nA = nB =
n > 2) while the other group has standard incentives (direct traders) and still they do not take
positions against each other. This is because of the interaction of log utility and constant elasticity
incentive functions. The marginal utility from a dollar linearly increases in elasticity parameter n.
Given that n is the same across states, the marginal rate of substitution is not affected by n. Thus,
the marginal rate of substitution is the same for both agents. Hence, there are no gains from trade.
This illustrates well why we specify convexity of the flow-performance relationship in logs and not
in levels.14

3.2 Managers’ excess log-return and heterogeneity in strategies

Propositions (3)-(4) describe the trading strategies in equilibrium. We can see immediately that
when reaching the larger elasticity segment of the incentive function would be sub-optimal, because
the kink κ is too large, then in equilibrium both direct traders and fund managers hold the market.
The resulting indexed equilibrium has the same properties as our second benchmark: when fund
managers have a constant elasticity incentive function. Because in this equilibrium delegation has
little effect, in the rest of the paper, we restrict our attention to the segment of parameter space
when the equilibrium is not of this type (i.e., κ < κlow or κlow < κ < κhigh and p > p̂.).

For all remaining set of parameters, Proposition 4 implies that when share of delegation is
low, Ω∗ < Ω̂, all fund managers follow a contrarian strategy in equilibrium. To see the intuition
behind the equilibrium choice of managers, consider the first fund manager who enters a market
which is populated only by direct traders, Ω∗ ≈ 0. The manager has three choices. She can hold
a moderate portfolio, but then she will never outperform the market sufficiently to get the extra
capital flows in any of the states. Or she can hold the locally optimal aggressive portfolio leading
to gains and extra capital flow in the high state and losses in the low state, or she can hold the

13The level of delegation, Ω∗, still effects the level of the price dividend ratio. This is so, because managers and
direct traders consume a different constant fraction of their wealth.

14The importance of considering the interaction of utility function and the incentives was also pointed out by Ross
(2006).
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locally optimal contrarian portfolio leading to gains and extra capital flow in the low state and
losses in the high state. How do these two compare? Managers choose the contrarian portfolio
because of the interaction of left skewed consumption growth (p > 1

2) and convex flow-performance
function. First, the fact that the high state has higher probability to occur implies that the size of
the gain or loss compared to market return in the high state are small relative to the size of relative
gain or loss compared to market return in the low state under any locally optimal strategy. For
example, in the locally optimal contrarian strategy, large gains with small probability in the low
state compensate for small losses with large probability in the high state. Formally, as the average
relative returns under the two portfolios are equal,

p
ξAB

ξ̃ (0)
+ (1 − p)

1 − ξAB

1 − ξ̃ (0)
= p

ξBA

ξ̃ (0)
+ (1 − p)

1 − ξBA

1 − ξ̃ (0)
= 1,

p > 1
2 implies that

ξAB

ξ̃ (0)
− 1 < 1 − 1 − ξAB

1 − ξ̃ (0)
and

ξBA

ξ̃ (0)
− 1 > 1 − 1 − ξBA

1 − ξ̃ (0)
.

Second, the fact that the flow-performance relationship is convex implies that capital-flow re-
wards for gains are larger than penalties for losses of similar magnitude. As a consequence of the
two effects, the manager prefers the contrarian strategy, because the implied larger gain is rewarded
more by the convex flow-performance relationship.

Note that our argument is the classic idea of risk-shifting, but with a slight twist. Risk shifting
implies that agents with globally non-concave incentives might prefer to take on larger variance,
that is, they gamble. However, in our case this not necessarily implies a levered position. Because
managers have non-concave incentives in relative instead of absolute return, in this particular case,
the contrarian strategy is the larger gamble.15

As the share of delegation Ω∗ increases, prices increasingly work against fund managers and
they find the contrarian strategy less attractive. At some threshold Ω̂, managers become indifferent
between the optimal contrarian strategy and, depending on the parameter values, either the optimal
moderate strategy or the optimal aggressive strategy. For market clearing, as the market share of
fund managers grows above this threshold a decreasing set of managers has to choose the contrarian
strategy. Thus, the heterogeneity in strategies increases with Ω∗ in this sense. The idea is simple.
As managers start to dominate the market, the only way they can overperform the market in some
state is if they bet against each other.

Consider now the relative return of the average manager as the share of delegation increases.
We show that despite the increasing group of managers following an aggressive strategy when the

15A similar point regarding funds increasing tracking error volatility in the presence of benchmarks has been made
in Cuoco and Kaniel (2010), and Basak, Pavlova and Shapiro (2007).
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share of delegation is large, the average manager remains contrarian for any Ω∗ < 1. Also, over the
whole range of Ω∗, both managers’ overperformance in the low state and underperformance in the
high state becomes less extreme. For small share of delegation (Ω∗ < Ω̂) this is a consequence of the
fact that as prices move against managers, each one chooses a portfolio which result in less extreme
relative returns. For larger share of delegation (Ω̂ < Ω∗), the relative return of each individual
manager is constant. However, as the proportion of managers choosing the aggressive portfolio
increases, the relative return of the average manager has to increase in the high state and decrease
in the low state. Given this monotonicity and the fact that at Ω∗ = 1 the average manager has to
hold the market, the average manager must have a portfolio which overperforms in the low state
and underperforms in the high state for any Ω∗ < 1.

To translate our findings to testable implications, let us define some descriptive statistics. In
particular, we consider the excess log return of the average fund manager,∫

m∈M
ln ρt+1 (αmt , st+1) dm − ln

qt+1 (st+1) + δt+1 (st+1)
qt

,

the volatility of the excess log-return of a given fund manager is,

√
p (1 − p)

∣∣∣∣∣∣
(
ln ρt+1

(
αMt ,H

)− ln (qt+1(H)+δt+1(H))
qt

)
−
(
ln ρt+1

(
αMt , L

)− ln qt+1(L)+δt+1(L)
qt

)
∣∣∣∣∣∣ ,

and the cross sectional dispersion across fund managers’ excess log–returns in state st+1,∫
n∈M

∣∣∣∣ln ρt+1 (αnt , st+1) −
∫
m∈M

ln ρt+1 (αmt , st+1) dm
∣∣∣∣ dn.

As we show in the Appendix, the intuition discussed above translates to the following state-
ments.

Proposition 9 1. For any Ω∗ < 1, the average fund’s exposure to the market is always smaller
than 1, so it overperforms the market in recessions and underperforms in booms.

2. For Ω∗ > Ω̂, funds follow heterogeneous strategies. In each period, a fraction of managers,
1 − μAB (Ω∗) , levers up and invests more than 100% of their capital in stocks. This fraction
increases in the share of delegated capital Ω∗.

3. For Ω∗ > Ω̂, fund managers’ cross-sectional dispersion of log-returns is larger in the low state
than in the high state when the equilibrium is Cont-Agg. When the equilibrium is Cont-Mod,
this is also the case if and only if

p >

√
nA
nB

1 +
√

nB
nA

. (33)
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4. As Ω∗ increases, the excess log return of the average manager increases in the high state
and decreases in the low state. That is, both the overperformance in the low state and the
underperformance in the high state is less severe.

5. The volatility of the excess log-return of each manager is decreasing in the share of delegation
as long as Ω∗ < Ω̂.

Consistently with statement 1, evidence shows that mutual funds perform better in recessions
than in booms (e.g., Moskowitz (2000), and Glode (2010), Kacperczyk, Van Nieuweburgh and
Veldkamp (2010), Kosowski (2006), Lynch and Wachter (2007)). For example, Moskowitz (2000)
notes that the absolute performance of the average fund manager is 6% higher in recessions than
in booms.16

Regarding statement 2, there is some evidence that the heterogeneity in strategies in the money
management industry has been indeed increasing over the last decades. As argued by Adrian and
Shin (2008), one sign of this is that the total balance sheet of investment banks17, typically using
leveraged strategies, was around 40% compared to bank holding companies in 1980 and increased
over 160% by 2007. Indeed, by 2009, it has become a widely held view among policy makers that
the excessive leverage of investment banks contributed to the financial crisis (see FSA (2009), FSB
(2009)). Although we believe that our result has the potential to provide a simple and insightful
explanation of the emergence of highly leveraged financial intermediaries over the last decade and
their coexistence with more conservative institutions, we have to point out two caveats to this
interpretation. First, our framework cannot distinguish between two possible interpretations of
aggressive portfolio. An aggressive strategy can be interpreted as levered strategy, but it can be
equally interpreted as a strategy of picking stocks with higher than 1 market-beta. Second, in
our equilibrium there is no persistence in portfolios. That is, a manager who held an aggressive
portfolio in one period, might hold a conservative portfolio in the next one. This does not map
directly to the interpretation that managers holding different portfolios correspond to different type
of financial intermediaries. However, we consider this a mainly technical issue.18

16Note however, that Kosowski (2006), Lynch and Wachter (2007) and Glode (2010) find overperformance in
recessions in terms of Jensen-alpha as opposed to in terms of total returns. Given that in our model funds cannot
generate alpha, only the results in Moskowitz (2000), and Kacperczyk, Van Nieuweburgh and Veldkamp (2010)
translate to our proposition one-to-one.

17Although mutual funds typically do not use leverage, interestingly, Lo and Patel (2007) notes a large increase of
leveraged mutual funds and leveraged ETFs in the last decade before the crisis.

18There could be persistence in managers’ portfolios if we were to implement the equilibrium by heterogeneous
pure strategies as opposed to mixed strategies. The problem is that in this case, we could not find a constant share
of delegation, Ω∗, which, regardless of the dividend state, would make newborn investors indifferent between being
clients or direct traders. As a result, the share of delegation would fluctuate in equilibrium in a non-stationary way.
Thus, we could analyze the effect of the increasing share of delegation only if we provided a micro-foundation for
this increasing share. This is beyond the scope of this paper. However, in any specification the intuition that convex
incentives and large share of delegated capital results in heterogeneous strategies and, consequently, in a fraction of
managers following levered strategies ex post, should go through.
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If its conditions are satisfied, statement 3 is consistent with Kacperczyk, Van Nieuweburgh and
Veldkamp (2010) who find that both the dispersion in mutual funds return is larger in recessions.
Interestingly, Kacperczyk, Van Nieuweburgh and Veldkamp (2010) present this result as an im-
plication of optimal attention allocation across the business cycle by fund managers. Our model
suggests that this result is consistent with a set-up where information does not play any explicit
role. Instead, it is driven by competition of managers for extra capital inflows and negative skew-
ness of the consumption growth process. Note also that while (33) tends to be satisfied when the
consumption growth process is relatively skewed (large p), Proposition 4 shows that a Cont-Agg
equilibrium typically arises when the consumption growth process p is close to half. Thus, we
should expect to get larger dispersion in recessions for a wide range of parameters.19

Because of the lack of systematic evidence on the time-series pattern of managers’ return volatil-
ity, relative returns and return dispersion we think of results 4 and 5 as testable predictions for the
future.

3.3 Exposure to market risk and the Sharpe ratio

In the previous part we characterized the distribution of the average and individual excess returns
as the share of delegation increases. However, the change in relative returns does not map one to
one to the change in the exposure to market risk.This mapping also depends how the relative return
of the stock and the bond, that is, the price of risk changes. In this part, we focus on the change
in agents’ exposure to market risk and on the change of the Sharpe ratio, a particular measure of
the price of risk, as share of delegated capital increases.

We find that typically, as the share of delegation increases, the Sharpe ratio follows an inverse
U pattern. It increases as long as Ω∗ < Ω̂, and decreases for Ω∗ > Ω̂. As Ω∗ = 0 corresponds to the
standard Lucas model, this also implies that the presence of delegation increases the Sharpe ratio
at least as long as Ω∗ < Ω̂. In the same time, direct trader’s exposure to market risk, αD, increases
monotonically. Managers’ exposure holding a contrarian portfolio, αAB, decreases for Ω∗ > Ω̂,
and typically increases for Ω∗ < Ω̂. Managers’ exposure holding an aggressive portfolio, αBA,
monotonically increases in the only relevant range Ω∗ > Ω̂. The left column of Figure 6 and Figure
4 illustrates this for a wide range of parameters. With the only exception of the monotonicity
of αAB when Ω∗ < Ω̂, we find all these observations robust to all the parameter variations we
experimented with.20 However, analytically, we prove only the following weaker statements.

Proposition 10 For na > nb ≥ 2, the Sharpe ratio is increasing in the region Ω∗ ≤ Ω̂.

19Measuring dispersion as the ratio of relative returns implies a higher dispersion in the low state always for both
Cont− Agg and Cont −Mod equilibria.

20Typically for high ZB,
∂αAB
∂Ω∗ |Ω∗<Ω̂ < 0.
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Proposition 11 The Sharpe ratio in the region Ω∗ > Ω̂ is monotone. If ZB is small or

βI(ξ2 − ξAB)
(

1
1 − ξ̄

+
1
ξ̄

)
− (g

(
1 − ξAB

1 − ξ (Ω∗)

)
− g

(
ξAB
ξ (Ω∗)

)
) + (g

(
1 − ξ2

1 − ξ (Ω∗)

)
− g

(
ξ2

ξ (Ω∗)

)
) > 0

and

(g
(

1 − ξAB
1 − ξ (Ω∗)

)
− g

(
ξAB
ξ (Ω∗)

)
) + (g

(
1 − ξ2

1 − ξ (Ω∗)

)
− g

(
ξ2

ξ (Ω∗)

)
)
ξ̄ − ξAB
ξ2 − ξ̄

≥ 0

where ξ2 = ξBA, p in a Cont−Agg equilibrium and a Cont−Mod equilibrium respectively, then it
is decreasing.

Proposition 12 In the region Ω∗ > Ω̂, whenever the Sharpe ratio is decreasing in Ω∗, the exposure
to market risk of direct traders and managers holding an aggressive portfolio, αD, αBA is increasing,
while the exposure of managers holding a contrarian portfolio, αAB is decreasing as Ω∗ increases.

To help to understand the intuition and the connection between the equilibrium Sharpe ratio
and the exposure to market risk, the following lemma decomposes the Sharpe ratio in an intuitive
way.

Lemma 2 The state price of the low state relative to the high state is

yH
yL
X (Ω∗) ,

and the Sharpe ratio is

S (Ω∗) =
p

1
2 (1 − p)

1
2 ‖yHX (Ω∗) − yL‖

pyL + (1 − p) yHX (Ω∗)
. (34)

where X (Ω∗) is the product of the capital-flow effect and the wealth effect defined as follows.

X (Ω∗) ≡
1−ξ̃(Ω∗)

1−p
ξ̃(Ω∗)
p︸ ︷︷ ︸

capital-flow effect

1 + πH
1 + πL︸ ︷︷ ︸ .

wealth effect

(35)

The capital flow effect is 1 at Ω∗ = 0 and larger than 1 for any Ω∗ > 0. Furthermore, it is
monotonically increasing in Ω∗ for any Ω∗ < Ω̂ and constant for any Ω∗ > Ω̂.

The Lemma shows that both the deviation of relative state prices and the Sharpe ratio from
the standard model is driven by the term X (Ω∗) . In the standard model, the relative state prices
is yH

yL
, that is, X ≡ 1. The term X (Ω∗) is determined by the relative size of two effects: the capital

flow effect and the wealth effect.
The capital-flow effect is similar to the classic cash-flow effect in asset pricing. Depending on

the shape of the incentive function, a dollar return in a given state might attract more or less
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future capital flows. The first term in (35) shows the relative capital-flow generating ability of a
dollar in the low state versus the high state for the average manager. As discussed in the previous
section, for any non-trivial equilibrium the representative manager has a market exposure smaller
than 1, and her incentive function is relatively more sensitive in the low state. This implies that
she finds an additional unit of return more valuable in that state which pushes the relative state
price and the Sharpe ratio up. The comparatives statics of the capital-flow effect in Ω∗ are a direct
consequence of the fact that the aggregate shape-adjusted probability ξ̃ (Ω∗) increases in the share
of delegation Ω∗. We can conclude that the capital-flow effect always pushes the Sharpe ratio up
compared to the standard model, and it is non-decreasing in the share of delegation.

The second effect is the wealth effect. When the price dividend ratio is higher in the low state, it
increases the relative wealth of the marginal agent in the low state, which pushes both the relative
state price and the Sharpe ratio down. The comparative statics on the price dividend ratio is non-
trivial. Still, our numerical simulations show that some qualitative properties of the wealth effect
are robust across most parameterization. Namely, the wealth effect is decreasing in the share of
delegation Ω∗ when Ω∗ > Ω̂ and its change is small when when Ω∗ < Ω̂. Thus, relative state price
and the Sharpe ratio increases in Ω∗ when Ω∗ < Ω̂ because of the capital-flow effect and decreases
in Ω∗ when Ω∗ > Ω̂, because of the wealth effect.

To understand the change in exposure to market risk and its interaction with the Sharpe
ratio consider the portfolio of a manager following a contrarian strategy. We rewrite the share
a contrarian manager lends as

1 − αAB =
1 − ξAB

ξ̃(Ω∗)

1 − θ(Ω∗)
yH(1+πH(Ω∗))

. (36)

The numerator is the relative loss of this manager in the high state. To understand the denom-
inator, we write (32) as

ξ̃ (Ω∗) +
(
1 − ξ̃ (Ω∗)

) yH (1 + πH)
yL (1 + πL)

=
yH (1 + πH (Ω∗))

θ (Ω∗)
. (37)

It shows that the term yH(1+πH(Ω∗))
θ(Ω∗) is a weighted average of 1 and yH

yL
times the wealth effect. As

yH(1+πH(Ω∗))
θ(Ω∗) > 1, this term behaves similarly to the relative state-price of the low state, yH

yL
X (Ω∗) ,

as it decreases in ξ̃ (Ω∗) and increases in yH(1+πH)
yL(1+πL) .

Thus, we can interpret (36) along the following lines. A manager choosing the contrarian
portfolio wants to enter a bet providing a relative gain in the low state and a relative loss in the
high state. By borrowing more, she trades off a larger loss in the high state for larger gain in the
low state. The numerator and the denominator of (36) can be seen as the terms of the available
bet. In particular, as the numerator decreases, both the gain and the loss relative to the market
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decrease. While, if the denominator increases, as yH(1+πH(Ω∗))
θ(Ω∗) behaves similarly to the relative

state price in the low state, the lottery gets more costly in utility terms. Note also, that as ξ̃ (Ω∗)
is decreasing in the share of delegated capital, this lottery behaves as a club good: for larger share
of managers buying it in equilibrium, the less desirable it gets for each manager. In equilibrium,
the increase of the capital share of managers typically induces adjustments along each margins.
The cost, yH(1+πH(Ω∗))

θ(Ω∗) , goes up, the desirability, 1 − ξAB

ξ̃(Ω∗)
, goes down, and size of the position,

1−αAB, goes down. As cost, yH(1+πH(Ω∗))
θ(Ω∗) , behaves analogously to the relative state price in which

the Sharpe ratio is monotonic, the Sharpe ratio also increases. This explains the dynamics of the
exposure and the Sharpe ratio as long as Ω∗ < Ω̂.

In the region Ω∗ > Ω̂ there is a new margin of adjustment, the fraction of managers, 1−μ (Ω∗)
who take the opposite side of the available bet. As we described in the previous part, as the share
of delegated capital increases, an increasing fraction of managers are leveraging up by holding the
locally optimal moderate or aggressive portfolios, while the relative return of each group in each
state remains constant. The new margin of adjustment implies that the increase in Ω∗ does not
have to imply an increase in the cost of the contrarian bet and a corresponding increase in the
Sharpe ratio. Indeed, the Sharpe ratio decreases in this region. Consequently, as Proposition 12
states, the equilibrium exposures to market risk has to move away from 1 for each portfolio to
keep the corresponding relative returns constant. For example, managers following an aggressive
strategy have to increase their leverage to get the same relative yield.

3.4 Borrowing and lending, repo, derivative markets and gambling

As opposed to standard representative agent models, in our model traders typically do not hold the
market portfolio. Agents buy or sell bonds in order to gain different exposure to market risk. In
this section, we quantify the extent of this activity. We show that the gross amount of borrowing
and lending compared to the size of the economy typically increases with an increase in the share
of delegation.

Before we proceed to the formal results, it is useful to consider the empiricial counterpart of
our concepts. In our framework, buying or selling the risk-free asset is the only way agents can
change their exposure to market risk. In reality, financial intermediaries use various instruments
for this purpose. As repo agreements are one of the most frequently used tools for a large group of
financial intermediaries to manage their leverage ratio (see Adrian and Shin, 2008), one possibility
is to connect gross amount of borrowing and lending in our model with the size of repo markets.
Alternatively, as most financial intermediaries would use derivatives like S&P futures and options
to change their exposure to market risk, we can connect the amount of borrowing and lending
risk-free bonds in our model to the open interest in derivative markets.

To measure gross amount of lending and borrowing positions, we use the fact that in any
equilibrium, the only group of traders who lend are managers who follow a contrarian strategy.
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We define relative bond market size as the total long bond holding of this group compared to the
value of the economy, qt + δt. Plugging in (32) into (20) and some simple algebra shows that this
measure is

Ω∗μAB (Ω∗) (1 − αAB) = Ω∗μAB (Ω∗)
1 −

pnB
pnB+(1−p)nA

ξ̃(Ω∗)

1 − θ(Ω∗)
yH(1+πH(Ω∗))

. (38)

The following Lemma describes the relationship between the portfolio of managers, relative
bond market size and the Sharpe ratio whenever Ω∗ > Ω̂.

Lemma 3 When the share of delegation is larger than Ω̂, whenever the Sharpe ratio is decreasing
in Ω∗, amount of bond long positions relative to the size of the economy (38) increases as the share
of delegation increases.

Together with our observation that the Sharpe ratio is typically decreasing in the share of
delegation when Ω∗ > Ω̂, the lemma implies that relative bond market size also increases with Ω∗.
To interpret this result, note that risk-free bonds serve a double purpose in our economy. First,
direct traders and managers have different incentives, which implies that they prefer to share risk.
As we saw before, this leads direct traders to hold a portfolio with a larger than one exposure to
the market. We call the part of holdings explained by this motive as the risk-sharing amount of
bond holdings. Second, when the share of delegated capital is sufficiently large managers start to
trade against each other. By selling or buying bonds they increase or decrease their exposure to
the market in order to beat the market at least in one of the states. We call this part the gambling
share of bond holdings.

As direct traders hold bonds only because of risk-sharing motives, we can decompose the total
size of the bond market by comparing (38) to the total bond holding of direct traders relative to
the value of the economy defined as

(1 − Ω∗)

∣∣∣∣∣∣
1 − p

ξ̃(Ω∗)

1 − θ(Ω∗)
yH(1+πH(Ω∗))

∣∣∣∣∣∣ . (39)

The following lemma shows that the ratio of the gambling share, (39), to the total size of the
credit market, (38) is increasing in the share of delegation whenever Ω∗ > Ω̂.

Lemma 4 For Ω∗ > Ω̂ in both Cont-Mod and Cont-Agg equilibria direct traders fraction of total
borrowing decreases in Ω∗ at a rate proportional to 1

(1−Ω∗)2 , where the constant of proportionality
is larger in the Cont-Agg equilibrium.

To complete our analytical results, we will argue in Section 4 that under reasonable parameter
values the value of long bond holdings relative to the size of the economy monotonically increases
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in the share of delegated capital for any Ω∗, and the implied increase in the borrowing and lending
activity is quantitatively large. Furthermore, almost all of the increase is explained by gambling
share. Thus, our model suggests that financial intermediaries increased competition for fund flows
might explain the multiple fold increase of the repo market and derivative markets like S&P futures
and options during the last decades before the financial crisis in 2007/2008.21

3.5 Systematic versus Idiosyncratic Risk

Similar to the Lucas economy, our model has systematic risk, but no idiosyncratic risk. Incorporat-
ing a source of idiosyncratic risk into the dynamic model is beyond the scope of the current paper.
However, to understand the qualitative implications of introducing a source of idiosyncratic risk we
have considered a stripped down two period example where we add the ability to take idiosyncratic
risk by entering into a zero net supply futures contract with a futures price of zero. The future is
a derivative on a sunspot: whether the long or the short positions pay-off depends on the flip of a
coin. For direct traders it is obviously sub-optimal to take a position in the futures.

When the share of delegation is small, and assuming that κ is not too large, all funds follow a
contrarian strategy and do not use the futures. The pure contrarian strategy dominates since to
increase tracking error relative to the market it takes advantage of the negative skewness in returns:
increasing tracking error by exposure to idiosyncratic risk is less efficient.

As the size of the fund industry increases funds’ trading begins to impact prices in equilibrium,
reducing the attractiveness of the contrarian strategy and skewness becomes less negative. When
the share of delegation becomes sufficiently large heterogeneity in fund strategies emerges. Some
managers start using a less conservative yet still contrarian strategy combined with a position in
the futures.22 Such a strategy allows them in addition to being above the kink in the low state,
although admittedly to a lesser extent than the pure contrarian strategy, to also be half of the time
above the kink in the high state. As the share of delegation continues to grow more and more funds
migrate to this strategy, and open interest in the futures increases.

At a higher share of delegation threshold some funds start following the aggressive strategy.23

Keeping in mind that due to the negative skewness in returns the aggressive strategy considerably
underperforms the market in the low state, the aggressive strategy does not add a position in the
futures contract. The amount of exposure to idiosyncratic risk required in order sometimes be above
the kink in the low state distorts the returns too much. As the share of delegation grows further
the fraction of funds that follow the aggressive strategy increases, and the amount of borrowing and

21See Gorton-Metrick (2010) for estimation on the change of the size of the repo market or institutional details on
this market.

22If the absolute value of skewness is small this strategy may be the one that is already used when the share of
delegation is zero.

23Similar to our model in intermediate levels of κ or if p is large instead of an aggressive strategy the moderate
strategy is used.
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lending grows. Similar to our model, for large shares of delegation in equilibrium there is always
heterogeneity in strategies.

4 Numerical examples

In this section we present some simple calibrated examples to show that the magnitude of the
effects we discuss, especially trading strategies distortions and the impact on bond markets, can be
quantitatively large.

Before proceeding with the examples it is important to keep in mind that we have constructed
our model to highlight the potential important role that delegated portfolio management has on
the equilibrium size of bond markets, and the link between the size of these markets and the
endogenous emergence of heterogeneous strategies within the money management industry. To
obtain a parsimonious and tractable setup we have made three important assumptions. First, we
use logarithmic utility. Second, we assume a piece-wise constant elasticity incentive function. The
combination of the two is helpful in delivering a tractable model. Third, to allow us to focus
on a stationary equilibrium with a constant share of delegation we impose a specific structure
of periodically reborn investors choosing to be clients or direct traders. We conjecture that our
insights paired with a more flexible model with habit formation, Epstein-Zin preferences or more
complex consumption processes might be useful in the quantitative dimension, but such an exercise
is outside of the scope of this paper.

We experiment with two sets of parameters for the consumption growth process (Table1) and
two sets of parameters for the incentive function (Table 2). Then we conduct a sensitivity analysis
with regards to the latter.

The difference between our two sets of consumption growth parameters is that the first is implied
by the full post-war sample, 1946-2008, while the second one is implied by the second half of the
full sample 1978-2008. We consider the moments from the shorter sample also to entertain the
possibility that the distribution of the consumption growth process has changed over time. Using
consumption growth data from Shiller’s website we estimate the mean, standard deviation and
skewness of consumption growth, and then solve for p, yH , and yL to match these three moments.
It is apparent that the biggest impact of the change on the sample is on the skewness of the process.
This implies a different value of p in our model.

For the incentive function we consider two specifications. The first is a minimal deviation
from a constant elasticity incentive function. As shown in Proposition 8, a constant elasticity
incentive function implies that managers and direct traders all hold the market portfolio and that
the Sharpe ratio is identical to the one in the Lucas model benchmark. This illustrate the effect
of small convexities in incentives. The second is based on estimating the incentive function using
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Table 1: Consumption Growth

Data

Period 1946-2008 1978-2008
Mean 0.0216 0.0210
Standard deviation 0.0175 0.0154
Skewness -0.220 -0.605

Model Estimated Parameters

p 0.555 0.645
yH 1.038 1.033
yL 1.002 1

data on mutual funds.24 25

Using Equation (9) We can rewrite the flows as

FLt = ln
wMt+1

ρt+1

(
αMt
) (

1 − ψMt
)
wMt

=

= ln ΓtZB + 1Re,t≥lnκ lnκnB−nA +
[
(nB − 1) 1υt<lnκ + (nA − 1) 1Re,t≥lnκ

]
Re,t

= ln ΓtZB + (nB − 1)Re,t + (nA − nB) 1Re,t≥lnκ (Re,t − lnκ)

where Re,t is the excess log return above the market:

Re,t =
(

ln ρt+1

(
αMt
)− ln

qt+1 + δt+1

qt

)
.

To estimate nA, nB lnκ we therefore estimate the model

FLt = αt + β1Re,t + β21Re,t≥lnκ(Re,t − lnκ).

Our strategy is to run a large number of panel regressions with a different fix lnκ in each and
search for the best fit. Details on the procedure and the results are in Appendix D 26.

In all specifications we set the discount rate to β = 0.98, which implies a reasonable 2% annual
management fee for managers. We set λ = 0.5 and ZB = 0.01 to make sure that the equilibrium

24In our model managers should represent the whole financial intermediary sector including mutual funds, com-
mercial banks, hedge funds, retirement funds etc. Our choice to use mutual fund data is based on data availability,
and the fact that most empirical work on the estimation of flow-performance relationships is on mutual funds.

25We would like to thank Dong Lou for providing us with mutual fund performance and flow data and Eszter Nagy
for providing research assistance.

26Appendix D is for the publication on web only, and it is provided as a separate file.
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Table 2: Incentive Function

Minimal Deviation Estimated from Fund Data
nA 1.01 1.9
nB 1 1.4

κ 1 1.05

exists under all sets of parameters.
For the interpretation of the figures as implied time-series, note that the Ω∗ values corresponding

to the share of direct equity holdings in 1960, 1980 and 2007 would be Ω∗
60 = 0.15,Ω∗

80 = 0.52,Ω∗
07 =

0.78.

4.1 Quantitative results

Consider first the minimal deviation scenario. As shown in the first row of Figure 2, even slight
convexities lead to the emergence of heterogeneous fund strategies: 50% of managers hold 85% of
their capital under management in stocks, while the other 50% hold 115%. Given these strategies,
naturally the size of the bond market relative to total investment increases as the share of delegation
increases. Even if, as shown in the top row of Figure 3 this increase seems small (from zero to 7%),
considering that we deviate only slightly from linear incentives it is still a significant effect. The
impact on the Sharpe ratio relative to the one in the Lucas economy is negligible. Why strategies
react so strongly to little convexity? The reason is that for managers the cost of gambling is second
order as they come from risk aversion, while the benefits in flows in the good state are first order
because of the kink in the incentive function.

The second (third) row of Figure 2 display the strategies for the incentive function implied by
the data, for the long (short) sample. It is apparent that the large convexity imply very large
absolute positions in bonds. Focusing on the consumption process from the long sample,when
the share of delegated capital is close to zero managers following the contrarian strategy invest 9
times their capital into the bond and short-sell the stock. They decrease this ratio to 7 as the
share of delegated capital reaches Ω̂, and then increase it again to 9 as the share of delegated
capital approaches one. Managers following the aggressive strategy exist in the market only if the
share of delegation exceeds Ω̂. At Ω = Ω̂ they borrow up to 10 times the size of their capital under
management to invest in stocks and increase this ratio to over 11 when they approach the point that
only managers populate the market. The right panel shows that the fraction of managers following
the contrarian strategy decreases from 100% below Ω̂ to 50% when the share of delegation is close to
1. Using moments from the short sample, strategy patterns are similar but more extreme. However,
aggressive managers start entering the market at a higher share of delegation and the rate at which
they enter, as a function of the share of delegation, is slower. While these numbers are perhaps
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unrealistic at the industry level, they illustrate well the strengths of incentive to deviate from the
market portfolio induced by convexities in the flow-performance relationship.

Corresponding to these extreme positions, the left panels of the bottom two rows of Figure 3
show that the size of the bond market increases considerably as the share of delegation increases.
The gross amount of long bond positions is around 100% of total net investment in the economy
when the share of delegation is 25%, increases to about 2 times total net investment in the economy
when the share of delegation is around 40%, and increases considerably as the share of delegation
increases further. The initial small increase in the region Ω∗ < Ω̂ is due to non-gambling positions.
Beyond Ω̂ managers start to utilize heterogeneous strategies, and gambling positions start to emerge
as an important contributing factor that increases the size of bond markets as the share of delegation
increases. The fact that the percentage of managers following the aggressive strategy increases from
zero to 50% throughout this region combined with the fact that in this region both contrarian and
aggressive fund strategies become more extreme as the share of delegation increases amplify the
expansion of bond markets even further.

Interestingly, as is evident in the figure with these parameter values the effect of delegation on
the Sharpe ratio relative to the level in the Lucas model is significant.27 Considering the share of
delegation in 1960, 1980 and 2007, our model suggests that the Sharpe ratio should have maxed
between 1960 and 1980 and should have decreased since then.

The graphs in the right hand side panels show the skewness of equity returns. When the share
of delegation is low the skewness of market returns is close to that of the consumption growth
process. Keeping in mind that contrarian managers strategies take advantage of negative skewness,
in the region where all managers follow contrarian strategies an increase in the share of delegation
increases skewness, as a result of the price impact of their trades. Above Ω̂∗ aggressive funds with
aggressive trading strategies start to emerge, and the impact of their trades more than offsets that
of the contrarian funds leading to a decline in skewness.28

Finally, we conduct sensitivity analysis of our results to the parameters by considering a wide
range around the benchmark parameters k, nA and p under the short sample scenario. The corre-
sponding graphs are in Figures 4-6. Consider first an increase in the convexity by increasing nA. As
expected, an increase in the convexity leads to more extreme strategies both for managers holding a
contrarian portfolio and those holding the levered portfolio. This also leads to a sharper increase in
the amount of outstanding bonds as the share of delegation increases. The effect of increasing κ is
a bit more subtle. On one hand, for large enough changes in κ, the system moves between different
type of equilibria. This is why we see a break around κ = 1.1 in all of the graphs in the second

27The state price of the low state relative to the high state increases by 2% (5%) between a share of delegation of
0 and Ω∗ < Ω̂ for the long (short) sample, where 70% (30%) is due to the capital-flow (wealth) effects; results not
shown.It then declines to 1% (3.5%) in the long (short) sample as the share of delegation approaches one.

28In the region Ω∗ > Ω̂ and increase in the share of delegation always implies an increase in the difference between
the capital delegated to non-contrarian and contrarian managers. That is, Ω∗(1−μAB(Ω∗))−Ω∗μAB(Ω∗) is increasing
in Ω∗.
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row of Figures 4-6. The system moves at that point from a Cont-Agg equilibrium to a Cont-Mod
equilibrium, because reaching the high-elasticity segment by an aggressive portfolio becomes too
costly. On the other hand, note from (17) that the locally optimal portfolios are effected by κ only
through prices. As we see on the corresponding plots, a higher κ increases the return on risk in a
Cont-Agg equilibrium which leads to less extreme portfolios and smaller increase in gross amount
of bond borrowing and lending. Finally, making the consumption process even more skewed by
increasing p, leads to complex comparative statics. It is so, because p effects portfolios both directly
and indirectly through prices. The plots suggest that a larger p typically decreases the amount
of outstanding long bond positions. Also, it increases the Sharpe ratio and makes the contrarian
portfolio less extreme whenever the aggressive portfolio is held in equilibrium and has an opposite
effect otherwise.

5 Conclusion

In this paper we have introduced delegation into a standard Lucas exchange economy, where in
equilibrium some investors trade on their own account, but others (clients) decide to delegate
trading in financial assets to funds. Flow-performance incentive functions describe how much
capital fund clients provide to funds at each date as a function of past performance.

Given the significantly increased fraction of capital that is managed by delegated portfolio
management intermediaries over the past 30 year, our analysis has focused on the interactions
of the increased share of delegated capital and the empirically observed convex flow-performance
relationship. We have been especially interested on the effects of this interaction on asset prices and
on agents’ optimal portfolios. The basic setup of our economy is intentionally close to the original
Lucas model, allowing us a clear comparison of how delegation changes equilibrium dynamics in
the Lucas economy.

Our model implies that with convex flow-performance relationship the average fund outper-
forms the market in recessions and underperforms in expansions; consistent with empirical evi-
dence. When the share of capital that is delegated is low, all funds follow the same strategy.
However, when the equilibrium share of delegated capital is high funds with identical incentives
utilize heterogeneous trading strategies, trade among themselves, and fund returns are dispersed
in the cross-section. As the share of delegated capital increases, so does the fraction of managers
holding levered portfolios. Thus, the gross amount of borrowing and lending increases. We connect
this fact to the sharpe increase in the size of repo markets and outstanding open interest in futures
markets over the last decades. We also show that delegation affects the Sharpe ratio through two
channels: discount rate and capital flow. The two work in opposite directions leading in general to
an inverse U-shape relation between the share of capital that is delegated and the Sharpe ratio.

Our methodological contribution is to simplify the flow-performance relationship into a piece-

37



wise constant elasticity function. The combination of log utility and piece-wise constant elasticity
enables us to derive explicit expression for different model quantities. Arguably, we do not use our
modelling framework to its full potential, because we impose a structure which implies a constant
share of delegated capital for a given set of parameters. Although, we consider this framework
a natural first step, our framework is well suited for the analysis of a truly dynamic structure
where the share of delegated capital is a time-varying state variable. With such an extension we
could investigate the changing role of different financial intermediaries over the business cycle. This
extension is left for future work.
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6 Appendix

A Existence and characterization of equilibria

In this part we prove all statements in section 2. We largely follow the logic described in the main
text.

A.1 Equilibrium portfolios

First, we focus on the consistency of the described equilibrium portfolios and the market clearing
interest rate. In particular, we show that for any given Ω∗ ∈ (0, 1) and a pair of price-dividend
ratios πH , πL > 0 defined in (31) Propositions 3-4, Proposition 6 and Lemmas 2-1 describe a set
of equilibrium strategies for managers and direct traders and prices which are consistent with the
problem of managers and direct traders and the market clearing condition of the bond market.

We separate the proof in two parts. First, we consider a modified economy where managers’ in-
centives are smooth. In particular, for the given parameters consider the set of μlh = μBA, μAB , μBB

described in Proposition 3-4 . We allocate managers into groups of size μlh and call each group
the group lh. We replace the actual incentive function, (8), of each manager in group lh by

glh (υ) =

{
Zh (υ)nh−1 if st+1 = H

Zl (υ)nl−1 if st+1 = L

}
.

We show that in this modified economy, the expressions in Propositions 3-4, Proposition 6 are
consistent with an equilibrium.

Second, we show that the statements also hold in the original economy.

A.1.1 Equilibrium portfolios (Proposition 6, Lemma 1 Proposition 3) in the modified

problem

First we show that the market clearing conditions of the asset markets

Ω∗α1 + (1 − Ω∗)α2 = 1. (40)

imply that in the modified economy Proposition 6 has to hold. By simple substitution

Ω∗∑
lh
μlhξlh+(1−Ω∗)p

1− yL(1+πL)
θ

+
Ω∗∑

lh
μlh(1−ξlh)+(1−Ω∗)p

1− yH(1+πH)
θ

=

= ξ̃ (Ω∗)
1

1 − yL(1+πL)
θ

+
(
1 − ξ̃ (Ω∗)

) 1

1 − yH(1+πH)
θ

= 1
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which gives (32).
Second, we show that in the modified economy Lemma 1 holds. We show the statement for a

low shock. The proof for the high shock is analogous.
The return of a manager holding portfolio αlh at the end of the period is

ρt+1 (αlh, L) = αlh

(
δt+1 + qt+1

qt
−Rt

)
+Rt = Rt

⎛
⎝(1 − ξlh)

(
yL(1+πL)

θ − 1
)

1 − yH(1+πH)
θ

+ (1 − ξlh)

⎞
⎠ =

= Rt

(
(1 − ξlh)

(
yH (1 + πH) − yL (1 + πL)

yH (1 + πH) − θ

))

where we used the definition of πH , πL, θ and αlh and that (32) implies

αlh = 1 −
1 − ξlh

ξ̃(Ω∗)

1 − θ(Ω∗)
yH(1+πH(Ω∗))

.

. Using (32) we can rewrite this as

(1 − ξlh)
1 − ξ̃ (Ω)

δt
qt
yL (1 + πL) =

(1 − ξlh)
1 − ξ̃ (Ω)

qt+1 + δt+1

qt
. (41)

This gives (26).

Finally, we show that in the modified economy, prices implied by πH , πL and (32) imply that
any manager or direct trader has a value function of the form (11)-(12) and her consumption and
portfolio choices are as described in Proposition 3.

We show the proof for a manager. The case for the direct trader follows very similarly. For any
t ≥ 1, conjecture that the value function for a manager in group lh has the form of

V lh
(
wMt , st,Ω

∗) =
1

1 − β
lnwMt + Λlh (st,Ω∗) .

Under our conjecture we can write problem as

V lh
(
wM , st,Ω∗) = max

α,ψM
lnψMwM +

β

1 − β
p ln ΓtZh (υ)nh−1wMt+1,− + (1 − p) ln ΓtZl (υ)

nl−1wMt+1,−

+ βE
(
ΛMlh (st+1,Ω∗)

)
for the given group lh. Let us fix an arbitrary α. The first order condition in ψM gives

1 − ψM = β.
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We rewrite the problem as

V lh
(
wM , st,Ω∗) = max

α
ln (1 − β)wM+

+
β

1 − β
p lnZh

⎛
⎝ ρt+1 (α,H)

qt+1(H)+δt+1(H)
qt

⎞
⎠nh−1

ρt+1 (α,H)βwM+

+
β

1 − β
(1 − p) lnZl

⎛
⎝ ρt+1 (α,L)

qt+1(L)+δt+1(L)
qt

⎞
⎠nl−1

ρt+1 (α,L) βwM

+ β
(
pΛlh (Ω∗

t ,H) + (1 − p) Λlh (Ω∗
t , L)

)
Note that this problem is strictly concave in α.in the modified economy. The first order condition
is

pnh

qt+1(H)+δt+1(H)
qt

−Rt

α
(
qt+1(H)+δt+1(H)

qt
−Rt

)
+Rt

+

(1 − p)nl

(
qt+1(L)+δt+1(L)

qt
−Rt

)
α
(
qt+1(L)+δt+1(L)

qt
−Rt

)
+Rt

= 0

which is equivalent to

ξlh

qt+1(H)+δt+1(H)
qt

−Rt

αi
(
qt+1(H)+δt+1(H)

qt
−Rt

)
+Rt

+ (42)

+ (1 − ξlh)

(
qt+1(L)+δt+1(L)

qt
−Rt

)
αi
(
qt+1(L)+δt+1(L)

qt
−Rt

)
+Rt

= 0.

Solving for α gives αlh. Substituting back αlh and ψM into the value function implies that our
conjecture is correct with the choice of function Λlh (st,Ω∗) solving

Λlh (st,Ω∗) = ln (1 − β)+ (43)

+ β
1

1 − β
p lnZh

(
ξlh

ξ̃ (Ω∗)

)nh 1
πst

yH (1 + πH) β+

+ β
1

1 − β
(1 − p) lnZl

(
1 − ξlh

1 − ξ̃ (Ω∗)

)nl 1
πst

yL (1 + πL) β

+ β
(
pΛlh (H,Ω∗) + (1 − p)Λlh (L,Ω∗)

)
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which has the conjectured form.

A.1.2 Equilibrium portfolios in the original problem (Proposition 4 and Lemma 2)

In this part, we show that the strategies described by Propositions 3-4 for given price dividend
ratios πH , πL and interest rate given in Proposition 6 which we have found to be optimal in the
modified economy, they are still optimal in the original economy.

To make sure that the prescribed portfolios remain optimal in the original economy, we prove
the following statements.

1. Whenever μl1h1
> 0 for a given lh = l1h1 in Proposition 4 then

V l1h1
(
wMt , st,Ω

∗) ≥ V l2h2
(
wMt , st,Ω

∗) (44)

for any l2h2 with strict equality if μl2h2
> 0. That is, deviation to an other locally-optimal

portfolio from the equilibrium portfolios is suboptimal.

2. Whenever μl1h1
> 0 for a given lh = l1h1 in Proposition 4 then

ξl1h1

ξ̃ (Ω∗)
> (<)κ (45)

if h1 = A(B) and
1 − ξl1h1

1 − ξ̃ (Ω∗)
> (<)κ (46)

if l1 = A (B) . This ensures that the prescribed portfolios remain locally optimal in the original
economy. This also implies Lemma 2.

Thus, first we introduce the analytical formulas for deviations from the prescribed equilibrium
portfolios. Second, we show that condition (44) holds for Ω∗ = 0. Third, we show that condition
(44) holds for Ω∗ > 0. Finally, we show that conditions (45)-(46) holds for any Ω∗.

We also show that in Proposition 4,

κ̂high ≡ exp

⎛
⎝ ln nA

nB(
1 − nB

nA

) + 1

⎞
⎠ (47)

κ̂low = exp

(
nB lnnB + nA lnnA − (nA + nB) ln nB+nA

2

nA − nB

)
(48)

and p̂ is given by the unique solution in
[

1
2 , 1
]

of

ΔAB−BB (p̂) = 0 (49)
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where

Δl1h1−l2h2 (p) ≡ p ln
Zh1

Zh2

(
ξl1h1
p

)nh1

(
ξl2h2
p

)nh2
+ (1 − p) ln

Zl1
Zl2

(
1−ξl1h1

1−p
)nl1

(
1−ξl2h2

1−p
)nl2

,

while p̄ is given by the unique solution in
[

1
2 , 1
]

of

p̄ exp
(

ΔBA−BB (p̄)
p̄ (nA − nB)

)
+ (1 − p̄) exp

(
ΔAB−BB (p̄BA−AB)
(nA − nB) (1 − p̄)

)
= 1. (50)

Useful expressions for comparing value functions Define Ṽ l1h1−l2h2 (Ω∗) as

Ṽ l1h1−l2h2 (Ω∗) ≡ 1 − β

β

(
V l1h1

(
wMt , st,Ω

∗)− V l2h2
(
wMt , st,Ω

∗)) = (51)

p ln
Zh1

Zh2

(
ξl1h1

ξ̃(Ω∗)

)nh1

(
ξl2h2

ξ̃(Ω∗)

)nh2
+ (1 − p) ln

Zl1
Zl2

(
1−ξl1h1

1−ξ̃(Ω∗)

)nl1

(
1−ξ1l2h2

1−ξ̃(Ω∗)

)nl2
=

= Δl1h1−l2h2 (p) + p (nh1 − nh2) ln
p

ξ̃ (Ω∗)
+ (1 − p) (nl1 − nl2) ln

1 − p

1 − ξ̃ (Ω∗)
,

the difference in the value of following the locally optimal l1h1 and l2h2 strategies.
Note also that both in a Cont-Mod and a Cont-Agg equilibrium, we can rewrite the second part

of the above expression as

p (nh1 − nh2) ln
p

ξ̃ (Ω∗)
+ (1 − p) (nl1 − nl2) ln

1 − p

1 − ξ̃ (Ω∗)
= (52)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(nh1 − nh2) p ln
(

Ω∗nB
(1−p)nA+pnB

+ (1 − Ω∗)
)

− (nl1 − nl2) (1 − p) ln
(

nA
(1−p)nA+pnB

Ω∗ + (1 − Ω∗)
) for Ω∗ < Ω̂

(nh1 − nh2) p ln
(

Ω̂nB
(1−p)nA+pnB

+
(
1 − Ω̂

))
− (nl1 − nl2) (1 − p) ln

(
nA

(1−p)nA+pnB
Ω̂ +

(
1 − Ω̂

)) otherwise

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

However, the value of Ω̂ depends on the type of the equilibrium. Denoting the type of the
equilibrium in the subscript, Ω̂Cont−Mod and Ω̂Cont−Agg are defined as the solution of

ΔAB−BB (p) = (1 − p) (nA − nB) ln
(

Ω̂Cont−Mod
nA

(1 − p)nA + pnB
+
(
1 − Ω̂Cont−Mod

))
. (53)
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and

ΔAB−BA (p) = (nA − nB) (1 − p) ln
(

Ω̂Cont−Agg
nA

(1 − p)nA + pnB
+
(
1 − Ω̂Cont−Agg

))
(54)

− (nA − nB) p ln

(
nBΩ̂Cont−Agg

(1 − p)nA + pnB
+
(
1 − Ω̂Cont−Agg

))
, (55)

respectively.

Global optimality (Proposition 4) when Ω∗ = 0 In this part, we show that under the
classification in Proposition 4, condition (44) holds at least when Ω∗ = 0.Note that ξ̃ (0) = p by
definition, so 51 implies that

Ṽ l1h1−l2h2 (0) = Δl1h1−l2h2 (p) .

The following Lemmas characterize Δl1h1−l2h2 (p) , thus, together with expressions (47)-(48), imply
the result.

Lemma 5 ΔBA−AB (p) < 0.

Proof. Consider that

ΔBA−AB (p) ≡ (nA − nB) ((1 − p) − p) lnκ+ ln

(
nB

((1−p)nB+pnA)

)(1−p)nB
(

nA
((1−p)nB+pnA)

)pnA

(
nA

((1−p)nA+pnB)

)(1−p)nA
(

nB
((1−p)nA+pnB)

)pnB
.

Observe that

ΔBA−AB (1) = − (nA − nB) lnκ < 0

ΔBA−AB
(

1
2

)
= 0.

and
∂2ΔBA−AB (p)

∂2p
= (nA − nB)3

2p − 1
((1 − p)nA + pnB) (nB (1 − p) + pnA)

> 0.

Thus, there cannot be a maximum in the range
(

1
2 , 0
)
. As ΔBA−AB (p) must decrease at some

range by continuity, its slope cannot be positive at any point. Thus, ΔBA−AB (p) < 0 for all p.

Lemma 6 ΔAB−BB (p) < 0 for all p, if

κ > κ̂high.

If
κ̂low > κ.
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then ΔAB−BB (p) > 0 for all p > 1
2 . If κ̂low < κ < κ̂high then there is p̂ > 1

2 that ΔAB−BB (p) < 0
iff p < p̂ and ΔAB−BB (p̂) = 0.

Proof. Note that

ΔAB−BB (p) ≡ − (1 − p) (nA − nB) lnκ− (pnB + (1 − p)nA) ln (pnB + (1 − p)nA)+

+ pnB lnnB + (1 − p)nA lnnA.

The statement comes from simple analysis observing that

ΔAB−BB (0) = − (nA − nB) lnκ < 0

ΔAB−BB (1) = 0
∂ΔAB−BB (p)

∂p
= (nA − nB) (lnκ+ 1) + (nA − nB) ln (pnB + (1 − p)nA) + nB lnnB − nA lnnA

∂ΔAB−BB (p)
∂p

|p=1 = (nA − nB) (lnκ+ 1) + nA ln
nB
nA

∂2ΔAB−BB (p)
∂2p

= − (nB − nA)2

(pnB + (1 − p)nA)
< 0

and that

ΔAB−BB
(

1
2

)
= −1

2
(nA − nB) lnκ+

[
1
2

(nB lnnB + nA lnnA) − (nB + nA)
2

ln
nB + nA

2

]

where the term in the bracket is positive as x lnx is a convex function.

Lemma 7 If
κ > κ̂high

then ΔBA−BB (p) < 0 for all p. If κ̂low < κ < κ̂high then ΔBA−BB (p) > 0 iff p < p̂BA−BB, where
p̂BA−BB is given by

Δ (p̂BA−BB) = 0

and it is in the range
[
0, 1

2

]
. If κ̂low > κ then ΔBA−BB (p) > 0 iff p < p̂BA−BB and p̂BA−BB ∈[

0, 1
2

]
.

Proof. Note that

ΔBA−BB (p) = − (nA − nB) p lnκ− nAp ln
((1 − p)nB + pnA)

nA
− (1 − p)nB ln

((1 − p)nB + pnA)
nB

.
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The Lemma comes from the following observations.

ΔBA−BB (0) = 0

ΔBA−BB (1) = − (nA − nB) lnκ

∂2ΔBA−BB (p)
∂2p

=
− (nA − nB)2

((1 − p)nB + pnA)
< 0

and

∂ΔBA−BB (p)
∂p

= − (nA − nB) lnκ− (nA − nB) ln ((1 − p)nB + pnA) +

+ nA lnnA − nB lnnB − (nA − nB)

and
∂ΔBA−BB (p)

∂p
|p=0 = − (nA − nB) (lnκ+ 1) + nA ln

nA
nB

.

Finally,

ΔBA−BB
(

1
2

)
= − (nA − nB)

1
2

lnκ+
[
1
2

(nB lnnB + nA lnnA) − (nA + nB)
2

ln
nB + nA

2

]

where the term in the bracket is positive as the function x lnx is convex .

Global optimality (Proposition 4) when Ω∗ > 0 In this part, we prove that condition (44)
holds for any Ω∗ > 0 under the classification in Proposition 4. We start with two Lemmas.

Lemma 8 If either κ̂low < κ < κ̂high and p > p̂ or κ < κ̂low, there is Ω̂ ∈ (0, 1) which solves

ΔAB−BB (p) = (1 − p) (nA − nB) ln
(

Ω̂
nA

(1 − p)nA + pnB
+
(
1 − Ω̂

))

Proof. We have shown in Lemma 6 that under the conditions of this Lemma ΔAB−BB (p) > 0.
As the left hand side is zero for Ω̂ = 0, we only have to prove that

ΔAB−BB (p) < (1 − p) (nA − nB) ln
(

Ω̂
nA

(1 − p)nA + pnB
+
(
1 − Ω̂

))
|Ω̂=1.

Substituting in the expression ΔAB−BB (p) from Lemma 6 shows that the inequality is equivalent
to

0 < (1 − p) (nA − nB) lnκ+ nB (ln (pnB + (1 − p)nA) − p lnnB − (1 − p) lnnA)

which holds by the concavity of the logarithmic function.
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Lemma 9 Consider the system in p and Ω

ΔAB−BB (p) = (nA − nB) (1 − p) ln
(

Ω
nA

(1 − p)nA + pnB
+ (1 − Ω)

)

ΔBA−BB (p) = (nA − nB) p ln
(

nBΩ
(1 − p)nA + pnB

+ (1 − Ω)
)
.

It has no solution if
κ̂low < κ (56)

and it has a single solution
(
p̄, Ω̄
)

for which p̄ > 1
2 otherwise.

Proof. Note that the system is equivalent to

exp
(

ΔAB−BB (p)
(nA − nB) (1 − p)

)
≡
(

Ω
nA

(1 − p)nA + pnB
+ (1 − Ω)

)

exp
(

ΔBA−BB (p)
(nA − nB) p

)
=
(

nBΩ
(1 − p)nA + pnB

+ (1 − Ω)
)
,

hence, any solution of the system has to satisfy

Π̃ (p) ≡ (1 − p) exp
(

ΔAB−BB (p)
(nA − nB) (1 − p)

)
+ p exp

(
ΔBA−BB (p)
(nA − nB) p

)
= 1.

From

ΔBA−BB (p)
p (nA − nB)

= − lnκ− nA
nA − nB

ln
((1 − p)nB + pnA)

nA

−(1 − p)
p

nB
nA − nB

ln
((1 − p)nB + pnA)

nB

ΔAB−BB (p)
(1 − p) (nA − nB)

= − lnκ− nA
nA − nB

ln
(pnB + (1 − p)nA)

nA

− p

1 − p

nB
nA − nB

ln
pnB + (1 − p)nA

nB

observe that this function is symmetric in the sense that if

Π (p) ≡ p exp
(

ΔBA−BB (p)
p (nA − nB)

)

then
Π̃ (p) = Π (p) + Π (1 − p)

which implies
Π̃ (p) = Π̃ (1 − p) .
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Also

∂Π(p)
∂p

= e
ΔBA−BB (p)

p(nA−nB)

⎛
⎝1 + p

∂
(

ΔBA−BB(p)
p(nA−nB)

)
∂p

⎞
⎠ =

= e
ΔBA−BB (p)

p(nA−nB)
1
p

nB
nA − nB

ln
((1 − p)nB + pnA)

nB
> 0.

and
lim
p→0

Π̃ (p) = lim
p→1

Π̃ (p) =
1
κ
< 1.

Thus, Π̃ (p) is increasing for p < 1
2 and decreasing for p > 1

2 and its maximum is at p = 1
2 . If

κ̂low < κ holds, then

Π̃
(

1
2

)
= 2Π

(
1
2

)
< 1,

which implies that Π̃ (p) = 1 does not have a solution. However, if κ̂low > κ holds, then Π̃ (p) = 1
has two solutions. If we denote the first by p̄ > 1

2 then the second one is (1 − p̄) . Note that nA > nB

implies that a given p′ can be the part of the solution of our system only if ΔBA−BB (p′) < 0 and
ΔAB−BB (p′) > 0. Also, by Lemmas 7-6, this is possible only if p′ > 1

2 . Thus, the only relevant
solution is

(
p̄, Ω̄
)

where Ω̄ solves

ΔBA−BB (p̄) = (nA − nB) p̄ ln
(

nBΩ̄
(1 − p)nA + pnB

+
(
1 − Ω̄

))
.

To see that Proposition 4 holds, first note from (51)-(52) that

Ṽ AB−l2h2 (Ω∗)

is monotonically decreasing for l2h2 = BA,BB for any Ω∗ < Ω̂ and constant for Ω∗ > Ω̂ regardless
of the type of the equilibrium. This monotonicity together with Lemmas 7 and 6 imply that if
either κ > κ̂high or κ̂low < κ < κ̂high and p ∈ (1

2 , p̂
)
, then

Ṽ AB−BB (Ω∗) < 0

Ṽ BA−BB (Ω∗) < 0

for all Ω∗. Thus, the locally optimal moderate portfolio is globally optimal.
Our observations also implies that for all other cases of Proposition 4 it is sufficient to show

that Ω̂Cont−Mod always exist in the range (0, 1) and whenever both Ω̂Cont−Mod < (>)Ω̂Cont−Agg
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exist and Proposition 4 describes a Cont-Mod (Cont-Agg) equilibrium then

Ω̂Cont−Mod < (>)Ω̂Cont−Agg.

The existence of Ω̂Cont−Mod under the relevant parameter restrictions is ensured by Lemma 8.
To compare Ω̂Cont−Mod and Ω̂Cont−Agg consider expression

ΔAB−BB (p) = (1 − p) (nA − nB) ln
(

Ω
nA

(1 − p)nA + pnB
+ (1 − Ω)

)
.

as an implicit function giving a p for any given Ω whenever Ω̂Cont−Mod exists. Let us call this
function p1 (Ω) . By definition, in a Cont-Mod equilibrium, p = p1

(
Ω̂Cont−Mod

)
. Similarly,

ΔBA−BB (p) = (nA − nB) p ln
(

nBΩ
(1 − p)nA + pnB

+ (1 − Ω)
)
,

determine a function p2 (Ω) which gives a p for any given Ω, whenever Ω̂Cont−Agg exists. From (53)
and (54) and the identity ΔAB−BB (p) − ΔAB−BA (p) = ΔBA−BB (p) in a Cont-Agg equilibrium,
p = p2

(
Ω̂Cont−Agg

)
.

If κ̂low < κ < κ̂high then Lemmas 6-7 imply

p2 (0) <
1
2
< p1 (0)

and Lemma 9 ensures that the functions p1 (Ω) ,p2 (Ω) do not cross in the space [0, 1]X [0, 1] . That
is,

Ω̂Cont−Mod < Ω̂Cont−Agg

for all possible p. This implies a Cont-Mod equilibrium when Ω∗ > Ω̂Cont−Mod.

If κ̂low > κ then Lemmas 6-7 imply that

p1 (0) <
1
2
< p2 (0)

and Lemma 9 ensures that the functions p1 (Ω) ,p2 (Ω) cross exactly once in the space [0, 1]X
[

1
2 , 1
]
.

The intersection is given by the pair
(
p̄, Ω̄
)
. Thus, whenever 1

2 < p < p̄,

Ω̂Cont−Agg < Ω̂Cont−Mod

while the relationship reverses if p > p̄. This concludes the proof of Proposition 4.
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Conditions (45)-(46) (Proposition 2) In this part we show that if a locally optimal portfolio
αlh is preferred to the locally optimal moderate portfolio, αBB , then this implies that αlh satisfies
conditions (45)-(46). Thus, the Lemmas below proves Proposition 2

Lemma 10 Suppose that Ω∗ > Ω̂. ThenṼ BA−BB (Ω∗) > 0 implies

ξBA

ξBA

(
Ω̂
) =

nA
pnA+(1−p)nB

Ω̂ nA
pnA+(1−p)nB

+
(
1 − Ω̂

) > κ.

Proof.

0 < Ṽ BA−BB (Ω∗) =

= Ṽ BA−BB (0) − p (nA − nB) ln
(

Ω̂
pnA

pnA + (1 − p)nB
+ p
(
1 − Ω̂

))
=

= (nA − nB) p ln
nA

((1−p)nB+pnA)

κ
+ nB ln

npAn
(1−p)
B

((1 − p)nB + pnA)

− p (nA − nB) ln
(

Ω̂
nA

pnA + (1 − p)nB
+
(
1 − Ω̂

))
=

= (nA − nB) p ln
nA

((1−p)nB+pnA)

κ
(
Ω̂ nA
pnA+(1−p)nB

+
(
1 − Ω̂

))+

+ nB ln
npAn

(1−p)
B

((1 − p)nB + pnA)

As np
An

(1−p)
B

((1−p)nB+pnA) < 1 because of the inequality of arithmetic and geometric means,

nA
((1−p)nB+pnA)(

Ω̂ nA
((1−p)nB+pnA) +

(
1 − Ω̂

)) > κ

must hold.

Lemma 11 Ṽ AB−BB (Ω∗) > 0 implies

1 − ξAB
1 − ξAB (Ω∗)

> κ.
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Proof. For Ω∗ < Ω̂

0 < Ṽ AB−BB (Ω∗) =

= Ṽ AB−BB (0) − (1 − p) (nA − nB) ln
(
1 − ξ̃AB (Ω∗)

)
=

= − (1 − p) (nA − nB) lnκ− pnB ln
pnB + (1 − p)nA

nB
− (1 − p)nA ln

(pnB + (1 − p)nA)
nA

−

− (1 − p) (nA − nB) ln
(

Ω∗ nA
((1 − p)nB + pnA)

+ (1 − Ω∗)
)

=

= (1 − p) (nA − nB) ln
nA

(pnB+(1−p)nA)

κ
(
Ω∗ nA

((1−p)nB+pnA) + (1 − Ω∗)
) + nB ln

npBn
(1−p)
A

(pnB + (1 − p)nA)

the second part is negative, so
nA

(pnB+(1−p)nA)(
Ω∗ nA

pnA+(1−p)nB
+(1−Ω∗)

) > κ must hold. For Ω∗ > Ω̂ the proof is

analogous by exchanging Ω∗ to Ω̂ in the above expressions.

A.2 Finding Ẑ, λ̂, f, Γs, πs implying a Ω∗ equilibrium (Proposition 5, Proposition

7, Proposition 1)

Let us conjecture that there is an f which makes investors indifferent whether to be clients or direct
traders for a given Ω∗. We will verify this in the following part.

The proof for the expressions of Proposition 5 are given in the main text. The expression for
χ̄s is a direct consequence of (30).

We get the expression for the price-dividend ratio in Proposition 7 by the market clearing
condition for the good market

δt =
(
(1 − λ)

(
1 − βI

)
+ λ
(
Υ̃s − ḡs

)
+ λ
(
1 − Υ̃s

) (
1 − βI

)
+ (1 − β) Γsḡs

)
(δt + qt)

where the terms in the bracket on the right hand side are the consumption share of newborns, the
consumption share of old clients, the consumption share of old direct traders and the consumption
share of managers respectively. Simple algebra gives πH and πL.

To complete the proof of Proposition 1, we have to find thresholds Ẑ and λ̂. Threshold Ẑ

comes from the requirement that the delegated share of capital for any of the managers following
equilibrium strategies in any of the states always have to be smaller than 1, i.e.

g1H ≡ g

(
ξAB

ξ̃ (Ω∗)

)
, g1L ≡ g

(
1 − ξAB

1 − ξ̃ (Ω∗)

)
, g2H ≡ g

(
ξ2

ξ̃ (Ω∗)

)
, g2L ≡ g

(
1 − ξ2

1 − ξ̃ (Ω∗)

)
< 1

where ξ2 = ξBA, p in a Cont − Agg equilibrium and a Cont −Mod equilibrium respectively.
As all these expressions are proportional to ZB such Ẑ clearly exists. While the threshold λ̂ comes
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from the requirement that χ̄js is between zero and 1. Such λ̂ exists by the following arguments. For
any other parameters Ω∗ = 1 implies χ̄s = 1, and Ω∗ = 0 implies χ̄s = 0 by simple substitution,
while for any Ω∗ ∈ (0, 1)

lim
λ→0

χ̄s = lim
λ→0

ḡs
Γs − λ

(1 − λ) βI
=

Ω∗

β (1 − Ω∗) + Ω∗ ∈ (0, 1).

Thus, sufficiently low λ pushes χ̄s into [0, 1] for any Ω∗ by continuity.
To conclude the proof, in next part we verify that for any Ω∗, there is an f which makes investors

indifferent between being direct traders or clients and that this relationship is continuous.

A.2.1 Equilibrium value functions

Suppose the equilibrium strategies of managers where a measure μ follows a strategy leading to
relative return

υ1H ≡ ξ1

ξ̃ (Ω∗)
, υ1L ≡ 1 − ξ1

1 − ξ̃ (Ω∗)
.

while a measure (1 − μ) follow strategies leading to

υ2H ≡ ξ2

ξ̃ (Ω∗)
, υ2L ≡ 1 − ξ2

1 − ξ̃ (Ω∗)

Let also denote the corresponding absolute returns in period t as ρ2t,H , ρ2t,L, ρ1t,H , ρ1t,L respectively.
Write

ΛC1st
≡ ΛC

(
υ1st

,Ω∗, st
)

ΛC2st
≡ ΛC

(
υ2st

,Ω∗, st
)

for st = H,L and let

EΛC ≡ μ (Ω∗)
(
pΛC1H + (1 − p)ΛC1L

)
+ (1 − μ (Ω∗))

(
pΛC2H + (1 − p)ΛC2L

)
Conjecture that in equilibrium we can write the lifetime utility of a client with initial wealth w

as

V C (w, υ1, s) =
1

1 − βI
lnw + ΛC1s

V C (w, υ2, s) =
1

1 − βI
lnw + ΛC2s

then for υs = υ1s, υ2s and gs = g1s, g2s and ρt,s = ρ1t,s, ρ2t,s
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V C (w, υ, s) = lnw (1 − gs) + βIEV C (wt+1, υt,Ωt, st) =

= lnw (1 − gs) + βI
1

1 − βI
(
p ln ρt,Hwtβgs + (1 − p)

(
ln ρt,Lwtβgs

))
+ βIEΛC

=
1

1 − βI
lnwt + ln (1 − gs) + βI

1
1 − βI

lnβgs + βI
1

1 − βI
ln

1
πt

+βI
1

1 − βI
((
p lnπtρt,H

)
+ (1 − p)

(
lnπtρt,L

))
+

+βIEΛC

Note that in our equilibrium
πtρt,s = υsys (1 + πs) .

Thus, the conjecture is correct if

ΛC1H = ln (1 − g1H) + βI
1

1 − βI
lnβg1H + βI

1
1 − βI

ln
1
πH

+

βI
1

1 − βI
(p ln υ1HyH (1 + πH) + (1 − p) ln υ1LyL (1 + πL)) + βIEΛC

ΛC2H = ln (1 − g2H) + βI
1

1 − βI
lnβg2H + βI

1
1 − βI

ln
1
πH

+

βI
1

1 − βI
(p ln υ2HyH (1 + πH) + (1 − p) ln υ2LyL (1 + πL)) + βIEΛC

ΛC1L = ln (1 − g1L) + βI
1

1 − βI
lnβg1L + βI

1
1 − βI

ln
1
πL

+

βI
1

1 − βI
(p ln υ1HyH (1 + πH) + (1 − p) ln υ1LyL (1 + πL)) + βIEΛC

ΛC2L = ln (1 − g2L) + βI
1

1 − βI
lnβg2L + βI

1
1 − βI

ln
1
πL

+

βI
1

1 − βI
(p ln υ2HyH (1 + πH) + (1 − p) ln υ2LyL (1 + πL)) + βIEΛC
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which implies

EΛC
(
1 − βI

)2
= μ

(
p
((

1 − βI
)
ln (1 − g1H) + βI lnβg1H + βI ln υ1H

)
+

(1 − p)
((

1 − βI
)
ln (1 − g1L) + βI lnβg1L + βI ln υ1L

)
)

+ (1 − μ)

(
p
((

1 − βI
)
ln (1 − g2H) + βI lnβg2H + βI ln υ2H

)
+ (1 − p)

((
1 − βI

)
ln (1 − g2L) + βI lnβg1L + βI ln υ2L

)
)

+ βI
(
p ln

yH (1 + πH)
πH

+ (1 − p) ln
yL (1 + πL)

πL

)

Similarly, writing the value function of direct traders as

V D (w, st−1) =
1

1 − βI
lnw + ΛDst−1

then

ΛDH = ln
(
1 − βI

)
+ βI

1
1 − βI

lnβI + βI
1

1 − βI
ln

1
πH

+

βI
1

1 − βI
p
(
lnπHρt,H

(
αD
)

+ (1 − p) lnπHρt,L
(
αD
))

+ βI
(
pΛDH + (1 − p)ΛD

)
ΛCL = ln

(
1 − βI

)
+ βI

1
1 − βI

lnβI + βI
1

1 − βI
ln

1
πL

+

βI
1

1 − βI
p
(
lnπLρt,H

(
αD
)

+ (1 − p) lnπLρt,L
(
αD
))

+ βI
(
pΛDH + (1 − p)ΛDL

)

implying

EΛD(1 − βI)2 =
(
pΛDH + (1 − p)ΛDL

) (
1 − βI

)2
=
(
1 − βI

)
ln
(
1 − βI

)
+ βI lnβI + βI

(
p ln

p

ξ̃ (Ω)
+ (1 − p) ln

1 − p

1 − ξ̃ (Ω)

)

+βI
(
p ln

yH (1 + πH)
πH

+ (1 − p) ln
yL (1 + πL)

πL

)
.

Thus, using the definitions of υ1s, υ2s, the expected value of a new born if he becomes a client
is
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EV C
(
ρ
(
αMt
)
ββIwt,Ωt, s

)
=

1
1 − βI

lnββIwt

+
1

1 − βI

⎛
⎝ μ

(
p ln ξ1

ξ̃(Ω)
+ (1 − p) ln 1−ξ1

1−ξ̃(Ω)

)
+ (1 − μ)

(
p ln ξ2

ξ̃(Ω)
+ (1 − p) ln 1−ξ2

1−ξ̃(Ω)

)
⎞
⎠+

+
1

1 − βI

(
p ln

yH (1 + πH)
πH

+ (1 − p) ln
yL (1 + πL)

πL

)
+ EΛC

if he becomes a direct trader it is

EV D
(
ρ
(
αDt
)
wtβ

I ,Ωt, s
)

=
1

1 − βI
ln βIwt +

1
1 − βI

(
p ln

p

ξ̃ (Ω)
+ (1 − p) ln

1 − p

1 − ξ̃ (Ω)

)

+
1

1 − βI

(
p ln

yH (1 + πH)
πH

+ (1 − p) ln
yL (1 + πL)

πL

)
+EΛD

Thus,

(
EV D − EV C

) (
1 − βI

)2
= − lnβ + βI lnβI +

(
1 − βI

)
ln(1 − βI)

− μ

⎛
⎝ p

((
1 − βI

)
ln (1 − g1H) + βI ln g1H + βI ln ξ1

p

)
+

+ (1 − p)
((

1 − βI
)
ln (1 − g1L) + βI ln g1L + βI ln (1−ξ1)

1−p
)
⎞
⎠

− (1 − μ)

⎛
⎝ p

((
1 − βI

)
ln (1 − g2H) + βI ln g2H + βI ln ξ2

p

)
+ (1 − p)

((
1 − βI

)
ln (1 − g2L) + βI ln g2L + βI ln (1−ξ2)

1−p
)
⎞
⎠ (57)

Picking f =
(
EV D − EV C

)
satisfies our conditions.

B Other proofs

B.1 Proof of Proposition 8

For the existence note that in this case,

ΥH = ΥL = Ω∗

ḡH = ḡL = Ω∗ZB < 1.

Following the logic of the proof of finding Ẑ, λ̂ in the general case, we have to show that under
our conditions as ḡs < 1 and χ̄s ≤ 1. For the first condition ZB < 1 is sufficient. For the second
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condition note that

χ̄s = ḡs
Γs − λ

(1 − λ)βI
=

Ω∗ βI(1−λΥs)+ḡsλ
(β(1−Ω∗)+Ω∗) − ḡsλ

(1 − λ) βI
= Ω∗ 1 − ZB (1 − Ω∗) − λΩ∗

(1 − λ) (β + Ω∗ (1 − β))
=

and

χ̄s|Ω∗=1 =
1 − λ

1 − λ
= 1

∂χ̄s
∂Ω∗ =

β (1 − ZB) + Ω∗ (ZB − λ) (Ω∗ (1 − β) + 2β)
(1 − λ) (−Ω∗ − β + Ω∗β)2

.

Thus, ∂χ̄s
∂Ω∗ > 0 would imply the result, which is guaranteed if

β (1 − ZB) + Ω∗ (ZB) (Ω∗ (1 − β) + 2β)
Ω∗ (Ω∗ (1 − β) + 2β)

> λ.

It is easy to check that the left hand side of this equation is decreasing in Ω∗. Thus, choosing Ω∗ = 1
is a sufficient condition and it gives β+ZB

β+1 > λ.

The rest of the proposition comes by direct substitution of nA = nB into our expressions on the
optimal strategies and Sharpe ratio.

B.2 Proof of Proposition 9

Note that Lemma 1 and Proposition 3-4 imply that the average funds’ excess log-return is

∫
ln ρt+1 (αmt , st+1) dm− ln

qt+1 (st+1) + δt+1 (st+1)
qt

=

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln ξAB

ξ̃(Ω∗)
if st+1 = H and Ω∗ < Ω̂

ln μAB(Ω∗)ξAB+(1−μAB(Ω∗))ξ2
ξ̄

if st+1 = H and Ω∗ ≥ Ω̂

ln 1−ξAB

1−ξ̃(Ω∗)
if st+1 = L and Ω∗ < Ω̂

ln 1−μAB(Ω∗)ξAB−(1−μAB(Ω∗))ξ2
1−ξ̄ if st+1 = L and Ω∗ ≥ Ω̂

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

where ξ2 = ξBA in a Cont−Agg equilibrium and ξ2 = p in a Cont−Mod equilibrium. This implies
that the volatility of the average funds’ excess log return is

p (1 − p)

⎧⎨
⎩

(
ln ξAB

ξ̃(Ω∗)
− ln 1−ξAB

1−ξ̃(Ω∗)

)2
if Ω∗ < Ω̂

μAB (Ω∗)
(
ln 1−ξ̄

ξ̄
ξAB

1−ξAB

)2
+ (1 − μAB (Ω∗))

(
ln ξ̄

1−ξ̄
1−ξ2
ξ2

)2
if Ω∗ ≥ Ω̂

⎫⎬
⎭
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while the cross-sectional dispersion of managers excess log-return is proportional to{
μAB (Ω∗) (1 − μAB (Ω∗)) ln ξ2

ξAB
if st+1 = H and Ω∗ ≥ Ω̂

μAB (Ω∗) (1 − μAB (Ω∗)) ln 1−ξAB
1−ξ2 if st+1 = L and Ω∗ ≥ Ω̂

}

and 0 otherwise.
Statement 1 and 4 comes directly from the facts that ξAB < ξ̃ (Ω∗) and ∂μAB(Ω∗)

∂Ω∗ < 0 and
1−μAB(1)ξAB−(1−μAB(1))ξ2

1−ξ̄ = 1. Statement 2 is direct consequence of Proposition 3-4 and that
∂μAB(Ω∗)

∂Ω∗ < 0. For Statement 3, it is sufficient that

ξ2
ξAB

<
1 − ξAB
1 − ξ2

.

In a Cont-Mod equilibrium this is equivalent to

(1 − p)nA + pnB
nB

<
nA

(1 − p)nA + pnB

or

p >

√
nA
nB√

nA
nB

+ 1
.

Substituting for Cont-Agg equilibrium shows that the condition always holds. Statement 5 is a
consequence of ∂ξ̃(Ω∗)

∂Ω∗ < 0.

B.3 Proof of Lemma 2

Observe that reading (32) as πE (φs) = π
R where φs is the state price, one can see that

φH =
ξ̃ (Ω∗)
p

1
1
πyH (1 + πH (Ω∗

t ))

φL =

(
1 − ξ̃ (Ω∗)

)
1 − p

1
1
πyL (1 + πL (Ω∗

t ))
= .

By definition, X (Ω∗) = φL
φH

which gives our decomposition..Also, the Sharpe ratio is

S (Ω∗) =

√
V ar (φs)
E (φs)

=
p

1
2 (1 − p)

1
2

∥∥∥∥(1−ξ̃(Ω∗))
1−p yH (1 + πH (Ω∗)) − ξ̃(Ω∗)

p yL (1 + πL (Ω∗))
∥∥∥∥

ξ̃ (Ω∗) yL (1 + πL (Ω∗)) +
(
1 − ξ̃ (Ω∗)

)
yH (1 + πH (Ω∗))

=
p

1
2 (1 − p)

1
2 ‖yHX (Ω∗) − yL‖

pyL + (1 − p) yHX (Ω∗)
.
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B.4 Proof of Propositions 10

1 + πs =
1

1 − βI (1 − λΥs) − λḡs + (1 − β) Γsḡs

Plugging in

ḡsΓs = Ω∗β
I (1 − λΥs) + ḡsλ

β (1 − Ω∗) + Ω∗

and simplifying gives

1 + πs =
(β + (1 − β)Ω∗)

(β + (1 − β) Ω∗) − β
(
βI (1 − λΥs) + λḡs

)
In the region Ω∗ < Ω̂ we have

ΥH = Ω∗ ξAB

ξ̃ (Ω∗)
ΥL = Ω∗ 1 − ξAB

1 − ξ̃ (Ω∗)

and

ḡH = Ω∗g
(
ξAB

ξ̃ (Ω∗)

)
ḡL = Ω∗g

(
1 − ξAB

1 − ξ̃ (Ω∗)

)
,

which implies that

1 + πH
1 + πL

=
(β + (1 − β)Ω∗) − β

(
βI
(
1 − λΩ∗ 1−ξAB

1−ξ̃(Ω∗)

)
+ λΩ∗g

(
1−ξAB

1−ξ̃(Ω∗)

))
(β + (1 − β)Ω∗) − β

(
βI
(
1 − λΩ∗ ξAB

ξ̃(Ω∗)

)
+ λΩ∗g

(
ξAB

ξ̃(Ω∗)

))

=

β(1−βI )
Ω∗ + (1 − β) + β

(
βIλ

1−ξAB

1−ξ̃(Ω∗)
− λg

(
1−ξAB

1−ξ̃(Ω∗)

))
β(1−βI)

Ω∗ + (1 − β) + β
(
βIλ ξAB

ξ̃(Ω∗)
− λg

(
ξAB

ξ̃(Ω∗)

))
Therefore,

61



X (Ω∗) =
1−ξ̃(Ω∗)

1−p
ξ̃(Ω∗)
p

β(1−βI)
Ω∗ + (1 − β) + β

(
βIλ 1−ξAB

1−ξ̃(Ω∗)
− λg

(
1−ξAB

1−ξ̃(Ω∗)

))
β(1−βI)

Ω∗ + (1 − β) + β
(
βIλ

ξAB

ξ̃(Ω∗)
− λg

(
ξAB

ξ̃(Ω∗)

))

=
1−ξAB

1−p
ξAB
p

(
β(1−βI)

Ω∗ + (1 − β)
)

1−ξ̃(Ω∗)
1−ξAB

+ βI
(
βI − g

(
1−ξAB

1−ξ̃(Ω∗)

)
/ 1−ξAB

1−ξ̃(Ω∗)

)
(
β(1−βI)

Ω∗ + (1 − β)
)
ξ̃(Ω∗)
ξAB

+ βI
(
βI − g

(
ξAB

ξ̃(Ω∗)

)
/
ξAB

ξ̃(Ω∗)

)
Which can be written as(

β(1−βI)
Ω∗ + (1 − β)

)
ξ̃(Ω∗)
p +

(
β(1−βI)

Ω∗ + (1 − β)
)(

1−ξ̃(Ω∗)
1−p − ξ̃(Ω∗)

p

)
+ 1−ξAB

1−p βI
(
βI − g

(
1−ξAB

1−ξ̃(Ω∗)

)
/ 1−ξAB

1−ξ̃(Ω∗)

)
(
β(1−βI )

Ω∗ + (1 − β)
)
ξ̃(Ω∗)
p + ξAB

p βI
(
βI − g

(
ξAB

ξ̃(Ω∗)

)
/ ξAB

ξ̃(Ω∗)

)
(58)

A couple of things to note: Since ξ̃ (Ω∗) is decreasing in Ω∗, and keeping in mind that p >
ξ̃ (Ω∗) > ξAB it is easy to see that for na > nb ≥ 2

• The right hand side term in the denominator is non increasing in Ω∗ (using nb ≥ 2), and the
right hand side term in the numerator is increasing in Ω∗ (using na > 2). Thus, the effect of
these two terms is to increase X(Ω∗) as one increases Ω∗.

• The middle term in the in the numerator is increasing in Ω∗. This follows from the fact that(
1 − ξ̃ (Ω∗)

1 − p
− ξ̃ (Ω∗)

p

)
=
p− ξ̃ (Ω∗)
p(1 − p)

=
Ω∗(p − ξAB)
p(1 − p)

• The left hand side term in the denominator and in numerator is the same and is decreasing
in Ω∗

Since decreasing a numerator and denominator of a fraction that is bigger than 1 by the same
amount increases the number if X(Ω∗) > 1, the joint effect of the first term in the denominator
and the first term in the numerator is to increase X(Ω∗), if X(Ω∗) > 1.

The above imply that if at some Ω̄ X(Ω̄) > 1, then it is above 1 for all Ω > Ω̄, and is increasing
in Ω∗.

The proof follows by noting X(0) = 1 and showing that at Ω = 0 X(Ω) is increasing in Ω:
X(0) = 1 implies that at zero the two right terms in the numerator equal the term on the right of
the denominator. Since the two right hand side terms in the numerator are increasing in Ω, and
the right hand side term in the denominator is non increasing in Ω the proof follows.
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B.5 Proof of Propositions 11

In the region Ω∗ > Ω̂ the capital flow effect is constant and the wealth effect takes the form

β(1 − βI) + (1 − β)Ω∗ + βI
(
βI
(

p−ξ̄
1−ξ̄

+ Ω∗ 1−p
1−ξ̄

)
−
((

p−ξ̄
ξ2−ξ1

+ Ω∗ ξ2−p

ξ2−ξ1

)
g
(

ξ1
ξ̄

)
−
(

p−ξ̄
ξ2−ξ1

− Ω∗ p−ξ1
ξ2−ξ1

)
g
(

ξ2
ξ̄

)))
β(1 − βI) + (1 − β)Ω∗ + βI

(
βI
(
Ω∗ p

ξ̄
− p−ξ̄

ξ̄

)
−
((

p−ξ̄
ξ2−ξ1

+ Ω∗ ξ2−p

ξ2−ξ1

)
g
(

1−ξ1
1−ξ̄

)
−
(

p−ξ̄
ξ2−ξ1

− Ω∗ p−ξ1
ξ2−ξ1

)
g
(

1−ξ2
1−ξ̄

)))

Taking a derivative with respect to Ω∗ and simplifying shows that the sign of the derivative is
constant and independent of Ω∗.

Define for Ω∗ ∈ [0, 1] WEF as

β(1 − βI) + (1 − β)Ω∗ + βI
(
βI
(

p−ξ̄
1−ξ̄

+ Ω∗ 1−p
1−ξ̄

)
−
((

p−ξ̄
ξ2−ξ1

+ Ω∗ ξ2−p
ξ2−ξ1

)
g
(

ξ1
ξ̄

)
−
(

p−ξ̄
ξ2−ξ1

− Ω∗ p−ξ1
ξ2−ξ1

)
g
(

ξ2
ξ̄

)))
β(1 − βI) + (1 − β)Ω∗ + βI

(
βI
(
Ω∗ p

ξ̄
− p−ξ̄

ξ̄

)
−
((

p−ξ̄
ξ2−ξ1

+ Ω∗ ξ2−p

ξ2−ξ1

)
g
(

1−ξ1
1−ξ̄

)
−
(

p−ξ̄
ξ2−ξ1

− Ω∗ p−ξ1
ξ2−ξ1

)
g
(

1−ξ2
1−ξ̄

)))

By construction, for Ω∗ ∈ [Ω̂, 1] WEF = 1+πH
1+πL

, the wealth effect component of the Sharpe
ratio.29

Given that the Sharpe ratio is monotone it is decreasing in this region iff WEF (0) > WEF (1) .
Observe that

WEF (0) =
β(1 − βI) ξ2−ξ1

p−ξ̄ − βI(g1L − g2L − βI ξ2−ξ1
1−ξ̄ )

β(1 − βI) ξ2−ξ1
p−ξ̄ − βI(g1H − g2H + βI ξ2−ξ1

ξ̄
)

and

WEF (1) =
((1 − β + β(1 − βI) + (βI)2)(ξ2 − ξ1) − βI(g2L(ξ̄ − ξ1) + g1L(ξ2 − ξ̄)))
((1 − β + β(1 − βI) + (βI)2)(ξ2 − ξ1) − βI(g2H(ξ̄ − ξ1) + g1H(ξ2 − ξ̄)))

Given that g() converges to 0 as ZB goes to zero and ξ1, ξ2, and ξ̄ are independent of ZB it is
easy to see that when ZB is sufficiently small WEF (0) > WEF (1) .

Finally, the first condition implies WEF (0) > 1, and the second implies 1 > WEF (1) .

B.6 Proof of Proposition 12

Expression (35) shows that the Sharpe ratio is monotonic in the wealth effect for Ω∗ > Ω̂ given

that ξ̃ (Ω∗) is constant in this region. Expression (37) shows that
∂

yH(1+πH(Ω∗))
θ(Ω∗)

∂Ω∗ has the same sign

29Note that in the region Ω∗ ∈ [0, Ω̂] WEF �= 1+πH
1+πL
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as
∂

yH(1+πH)
yL(1+πL)
∂Ω∗ . Thus, rewriting the equilibrium strategies as

αlh = 1 −
1 − ξlh

ξ̄

1 − θ(Ω∗)
yH(1+πH(Ω∗))

gives the result.

B.7 Proof of Lemma 3

We already showed in the proof of Proposition 12 that (1 − αAB) is increasing in Ω∗ in the re-
gion Ω∗ > Ω̂ whenever the Sharpe ratio is decreasing. Note also that using (27) in a Cont-Mod
equilibrium

∂μAB (Ω∗) Ω∗

∂Ω∗ = 0

while in a Cont-Agg equilibrium

∂μAB (Ω∗) Ω∗

∂Ω∗ =
ξBA − p

ξBA − ξAB
> 0.

Putting together these two points gives the result.

B.8 Proof of Lemma 4

Dividing (38) by (39), using the facts that p > ξ̃(Ω∗) > ξAB and that for Ω∗ > Ω̂ ξ̃(Ω∗) = ¯̃ξ, and
simplifying gives

Ω∗μAB (Ω∗)
1 − Ω∗

ξ̄ − ξAB
p− ξ̄

Plugging in (27) for μAB gives

1
1 − Ω∗

(
p− ξ̄

p− ξAB

)
ξ̄ − ξAB
p− ξ̄

for Cont-Mod and

1
1 − Ω∗

(
ξBA − ξ̄

ξBA − ξAB
− (1 − Ω∗)

ξBA − p

ξBA − ξAB

)
ξ̄ − ξAB
p− ξ̄

for Cont-Agg.
The result follows by taking a derivative with respect to Ω∗ and noting that

ξBA − ξ̄

ξBA − ξAB
>

p− ξ̄

p− ξAB
> 0
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Figure 1: The graph plots the expected utility of a representative manager as function of her portfolio
choice, α, for two different set of prices. The dashed line corresponds to the case when the invested capital
share of managers, Ω∗, is zero. In this case all other traders hold the market. The solid line corresponds
to the case when Ω∗=1. The parameters are set to λ = 0.5, β = 0.95, p = 0.7, yH = 1.2, yL = 0.8, ZB =
0.3, nA = 3, and nB = 2.
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Figure 2: The graphs plot the equilibrium strategies as a function of the share of delegation. In each row
the first panel plots funds’ portfolios, the second direct traders’ portfolio, and the third the fraction of fund
managers’ who are contrarian. The first row corresponds to a minimal deviation scenario where consumption
parameters are taken from the full sample 1946-2008, i.e.,p = 0.555, yH = 1.038, yL = 0.002, nA = 1.01, κ =
1 + 10−13 and nB = 1. The second and third row corresponds to the parameters implied by the Chevalier-
Ellison estimation,i.e., κ = 1.05, nA = 1.9, and nB = 1.4. The second row uses the consumption parameters
from the full sample, while the third row uses the consumption parameters from the shorter sample 1978-2008
(p = 0.645, yH = 1.033 and yL = 1). In each example β = 0.98, λ = 0.5 and ZB = 0.01.
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Bond Market Size
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Figure 3: The graphs plot the ratio of the value of the total long bond holdings relative to the value of the
economy qt + δt (left panels), the Sharpe ratio (middle panels), and the equity return skewness (right panel)
as a function of the share of delegation. The credit market graphs plot both the total size of the credit market
(solid line), and the non-gambling component of the credit market (dotted line). The first row corresponds
to a minimal deviation scenario where consumption parameters are taken from the full sample 1946-2008,
i.e.,p = 0.555, yH = 1.038, yL = 0.002, nA = 1.01, κ = 1 + 10−13 and nB = 1. The second and third row
corresponds to the parameters implied by the Chevalier-Ellison estimation,i.e., κ = 1.05, nA = 1.9, and nB =
1.4. The second row uses the consumption parameters from the full sample, while the third row uses the
consumption parameters from the shorter sample 1978-2008 (p = 0.645, yH = 1.033 and yL = 1). In each
example β = 0.98, λ = 0.5 and ZB = 0.01.

67



Contrarian Funds’ Strategy Non-Contrarian Funds’ Strategy

Figure 4: The graphs plot equilibrium stock position of managers following the contrarian strategy. In each
of the graphs we vary the share of delegation Ω∗ and one additional parameter. The parameters are set to
λ = 0.5, β = 0.98, p = 0.645, yH = 1.033, yL = 1, ZB = 0.01, , nA = 1.9, and nB = 1.4.
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Bond Market Size Bond Market Size, gambling Share

Figure 5: The graphs plot the relative size of the outstanding credit compared the value of the economy
(left panels) and the risk sharing component of the outstanding credit compared to the value of the economy
(right panels). In each of the graphs we vary the share of delegation Ω∗ and one additional parameter. The
parameters are set to λ = 0.5, β = 0.98, p = 0.645, yH = 1.033, yL = 1, ZB = 0.01, nA = 1.9, and nB = 1.4.
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Sharpe Ratio Skewness

Figure 6: The graphs plot the Sharpe ratio(left panels) and Skewness of the market portfolio (right panels).
In each of the graphs we vary the share of delegation Ω∗ and one additional parameter. The parameters are
set to λ = 0.5, β = 0.98, p = 0.645, yH = 1.033, yL = 1, ZB = 0.01, nA = 1.9, and nB = 1.4.
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