B Online Appendix for He and Kondor (2015): Proofs and Deriva-
tions
In this Online Appendix we provide proofs for Lemma 1 and Proposition 1, the second part of Proposition

5, and Propositions 7, 8 and 9.

B.1 Proof of Lemma 1 and Proposition 1

We construct the proof in steps. In particular, we separate Proposition 1 into the following four Lemmas.
These four lemmas are sufficient to prove Proposition 1.

Lemma B.2 If the equation system (12)-(13), (7)-(9) has a solution where ¢}, < Rk, and both v (c) and
q (c) are increasing in the range c € [cf,c}], then Proposition 1 holds.

Lemma B.3 The system (12)-(13), (7)-(9) always has at least one solution.
Lemma B.4 If h — 1 is sufficiently small, then ¢} < Rk.
Lemma B.5 ¢(c) is decreasing in c. If h — 1 is sufficiently small, then v (c) is increasing for ¢ € [}, c}] .

B.1.1 Step 1: Proof of Lemma 1 and Lemma B.2

Denote the dollar share of capital in the firm’s asset holdings by 1/)%, so that wi = K}pi/wi. According to
our conjecture, the value function can be written as (recall the aggregate cash-to-capital ratio ¢ = C'/K)

J (Kt7C’t,KZ,CZ) = wi (1 — wi) q(ct) + %v (o) =J (Kt,Ct,w'ti) ,

t

is linear in w;. This is equivalent to J (C, K, K{,C}) = Kjv(c) + Ciq(c) stated in the Lemma. Also, we
have the wealth dynamics, expressed in terms of capital share 1}, as

, , , T
dwy = —doy — 0dK; + wiw;p— (dpt + 0dZ;) .
¢

And, ¢ (c) > 1 has to hold as firms can consume cash at the final date (and there is no discounting), which
implies da! = 0, i.e., firms do not consume in the aggregate stage.

As the firm is choosing capital share 9y, and the capital to build or dismantle dK}, the Hamiltonian-
Jacobi-Bellman (HJB) of problem (3) can be written as:

. 1 .
0= dm%x day + JoE [dCy] + §JCCEt [dC’f] + JuB: (dwy) + J}(dKz + Jy, By [dwdCy] .
Yy, dK}

The endogenous price dynamics (using Ito’s Lemma) is
1
dp, = 502}9” (¢)dt + op’ (¢)dZ; + dBY — dU?,

where dBY (dU}) reflects p at p(c}) =1 (p(c;) = h). This is because in any market equilibrium firms will
create (dismantle) capital if p; = h (p; = [), and keep doing it until the price adjusts. We derived the
boundary conditions in the main text. Also, by risk neutrality and the initial homogeneity of firms, before
the final date the price of the capital has to make firms indifferent whether to hold capital or cash. Otherwise
markets could not clear. We also explained that p, = c,.
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Thus, inside the reflection boundary (¢, ¢};) the above HJB equation is (we drop ¢ from now on)

0 = max T wtq° (e) +afer) wtwtﬂ +4q' (c) ((¢twti (0 +p'(ct) U))>
o +@&Lcww+( w»m>+§@y%Q+u_%ﬂ%)_ﬂw}

Dt Ct

Since the problem is linear in v,, in equilibrium firms must be indifferent in their choice of v,. Thus, we
can calculate the dynamics of the cash (capital) value by choosing ¥, = 0 (¢ = 1). Setting 1, = 0 directly
implies (10). Choosing %, = 1 gives

2 1.2 1

0= %q”(c)Jrq( )2UZ;<C)+q’(c) <; (0+p'0)0) +% (g(RKJrRCC)Q(C)P)-

Since v (¢) =p(c) q(c), v = ¢p+p'q, and v = ¢"p+2p'¢’ +p"q, we can rewrite the above equation as (11).
Given that the ODEs for v (¢) and ¢ (¢) were derived by substituting in ¢, = 1 and %, = 0, it is easy to see
that these functions can be interpreted as the value of a capital and that of a unit of cash. This implies that

lMQKw®<MO¢DM@+%ww@>q@w
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verifying both Lemma 1 and our conjecture on the form of J (C’7 K, w%)

B.1.2 Step 2: Proof of Lemma B.3

First, note that for any arbitrary ¢, and ¢; from (9), we can express A;-Ay4 in (12)-(13) as functions of ¢;, and
¢; only. Substituting back to (12)-(13) we get our functions parameterized by ¢, and ¢; which we denote as
v (e; e, en) and ¢ (c; ¢, cp) . Evaluating these functions at ¢ = ¢; and ¢ = ¢p,, we get the following expressions.
Define

e " (Ei[eny] — Eilery]) + €7 (Ei[—can] - Ei[-an])

frleen) = erlen—e) — g—(en—ei) ’
ey = € Eilon] = Bilen]) + € (Bi[-a] - Bi[ye)
Gt ) = eV(en—c) — g=v(en—ci) ’
e = €% (Eilen] = Eifen]) + €7 (i [ye) - Bi[-5a)
hASHER) = er(en—c) — g—(en—cr) '
_ e 79 (Eilepq] — Eiley]) + €7 (Ei [—ve] — Ei[—yen))
gn(cisen) = er(en—c) — g—v(en—ci) , and
evlen—c) _q
m(Cl,Ch) = m S (0,1)
Then the cash and capital values can be rewritten as
R R R R
q(c;e,cn) = 20 + Y f (cen) s q(ensanen) = 20 + 50 (cren)
c R R R c,c
vl(asayen) = Rr+ 52+ 35m(a,en) + = M —cafi(e,en) |, and
2 2y 2 v
cnR R R cl,c
v(ense,en) = Ry h2 c_ Q—Cm (ci,en) + 12(}/ (gh (’; n) —cnfn (cl,ch)> .
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For any cp, define the function H (cp) implicitly as the corresponding lower threshold ¢; so that at ¢ = ¢,
the market price is just h, i.e.,

v(ep;a = H (cp),cp)
q(cnsa = H (cn),cn)

p(en;cr = H (cn),cn) = = h.

Similarly, define L (cp,) is defined implicitly by

v (e =Len),cn)
o= = =1
p(Cl,Cl (Ch),ch) q(Cl§Cl = L(Ch) ,Ch) ’

which makes the market price to be I at ¢ = ¢;. Obviously, once we find such ¢, that H (¢,) = L (cp,), then
this particular ¢; and the corresponding ¢; = H (¢,) = L (¢p) is a solution of (7)-(9), (12)-(13). To show
that this solution exists, we first establish properties of L (¢p,) then we proceed to the properties of H (cp,).

Properties of L (cp,) It is useful to observe that

of _ (Emee ) AN of &b
dg (e27en — e2ver) T ¢ ) Oy ev(en—a) — ev(ei—en)
ogp 1 (P 4eM) 9 2vgn
o, q + (e27en — e27c1) 90 den T evlen—c) — evlei—en)’
1
lim f; = —, lim ¢ =0, lim m=0.
cr—cp YCp  ci—ch ci—cp

1. We show that f; (ci,¢;) is monotonically decreasing in ¢;. Its slope in ¢; is

of _ (e ) (m (cnct) — Cl> , (B.12)
l

8cl (eQ’YCh — 62"/01)
and the second derivative is

0% fi

aQCl B

1 27v¢ 2vc
o <4’y6270h e (et 62761)27 <1 —fi(en 61)> - (_?) (e2ren +e2) -
( 2 ;

e2veh — 62"/Cl)2 (eQ’YCh _ 62’701) C (62’Ych — 62’YCL)

1 (62"{Ch +62701) 1
=7 (cl — (CW”) P

Note that if the first derivative is zero, then the second derivative is positive implying that f; (cp,¢)
can have only local minima, but no local maxima in ¢;. At the limit one can check that

1 (62’)’% + e2va

o Of 1 1
lm 2= fm (2 T ) )= (- 0
Clgrgh’ Oc; Clgréh (cl (62’)’(3)1 _ 627(31) (F)/lel (C}Ly Cl) )) cn ( 270,1) <

Thus, f; (cn,c) is decreasing at ¢, = ¢;. Suppose that it is not monotonic over the range of ¢; < ¢, in
¢;. Then the largest ¢ where the first derivative is 0, would be a local maximum. But we have just
ruled out the existence of a local maximum. Thus f; (¢x, ¢;) monotonically decreasing over the whole
range of ¢; < ¢p, in ¢;. This statement is equivalent to v f; (¢p, ¢;) — }l < 0 for ¢; < ¢, for any fixed cy,.
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2. We show that X (¢;) = fi (ep,¢1) — % is increasing in ¢;. We would like to show that

(e31en + e |
Clearly, we have
X ( ) =0, X' (a0 =cn) = f (chycn) + ! ! >0
= C = = = —_— — .
C h 9 1 h 1 hyCh 'YC}% 276’21

We know that when ¢; — 0, f(cp,¢;) has the order of Ei(ve¢;) which is O (In¢;); this implies that
X (¢;) — —oo when ¢; — 0. Then, if X (¢;) is not monotone, we must have two points z1 < o closest
to (but below) ¢, so that

0> X(iEl) > X (1‘2) s X’ (:Ul) =X’ (x2) =0.
Setting (B.13) to be zero, we have (because 0 < x1 < z3)

(eQ—ych _ eQ—yzl) (62'ych _ eQ'yJ;g)

X (xl) = _72x% (62'YCh + e2vw1) < _,YQx% (627% + 62712) =X (xg) ’

in contradiction with X (1) > X (22). Thus (B.13) holds always.

. We show that the function M — ¢1f1 (cn, ) is monotonically increasing in ¢;. Its first derivative
is (all the derivatives in this part are with respect to ¢;)

’ 2ych 2vycy 2ych 2v¢
(gvz - lel> - + MQZ (c1,en) — (M (avfi(c,cn) —1) + fi(a, Ch))

v (62'ych _ 62701 (eQ'ych _ eZ'ycz

1 2’YCh+ 2v¢ 2'ych+ 2v¢
= —(e ‘ ) (‘(’}Yl _lel> + —(6 ‘ ) — fi

% v (EQ’YC}L _ eQ’ycl) (62fych _ EQ’YCl)

Whenever the first derivative is zero, at that point we have

1
g1 fl e 1
I gfp= 22 B.14
5 cfi (Fongea) o ( )
Y (gz'Y"'h _e27cl)

We also know that

/ "
1
lim &—clfl =0, and lim ﬂ—clfl =—-—— <0
g Y 3ve

Cl—Ch Cl—Ch

so for any fixed ¢y, ¢; = ¢, is a local maximum. Thus to show that %l — ¢ fi is monotone, it suffices to
li "
rule out the case of a local minimum ¢; < ¢, so that (% — clfl> =0 and (%l — clfl> > 0. In general

" 2vep, 2vey; ! 2vcp p2v¢
i 1 (e¥ren +e?7°) (g, , 4e¥rcne s (9 1
(’y lel) N ’ycl2 T (627% - eQ'YCl) o lel fl T (eQ’YCh — e?va)z’y Y lel + Y '

i 1
Thus, if there were a ¢ that (% - clfl) = 0, using (B.12) and (B.14) we have (% — clfl> to be
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equal to

4ry2e2vcn 276 fi— % 1 1 1 (eren — e2ré)
(eQ’YCh _ 62'\/61)2 (827% +e2751) - ; + ; - _Té% -7 e2vcn + e27é fl -
(627%_627&,)

)

1 , 1
Thg T T

But from (B.13) we know the above term is strictly negative, which proves the contradiction.

/
4. We show that ¢ (¢;;¢,cp) is also decreasing in ¢; for any ¢; < ¢;. Given that (% — clfl) > 0 and
a R Re (e*’Y(Ch,*Cl).pe’Y(Chfcl)_2
2 27(67(%—%)76—"%(%—%))
Thus, p(ci; ¢, cp) is increasing in ¢ for any ¢; < ¢p,. Also one can show that lim,, 1o = p(¢;¢,cn) =
—tanh(yen) - and
,-Y b)

1 e 2vent2ve 1 . s - .
) /aCl = §R0m > O, v (Cl,Cl,C}L) 1S 1creasing 1 c¢;.

Rr~y (_ 1 R R
i . _ Rk +chn 2 + D) Ch ‘Y%) _ Ry + ¢, 20 — QK
im p(erser,en) = Ro | Rt 1 = Bc Ex
1—Ch 2 + ~o2 ~yen 2 + 2ch

which is larger than [ as long as ¢;, > . Thus, as long as ¢; > [, lim,, ¢, p(¢i;¢1,¢n) > | and there is
a unique solution ¢; for any ¢, of p(c¢;c,cp) = 1. Therefore L (cp) exist. From the monotonicity in
¢;, and continuity of p (¢; ¢, cp) we also know that L (cp) is continuous.

Properties of H (c¢,) First, we show that for any ¢;, € [I, Rk], H (cy) is a continuous function and
H (cp) € [0,cp]. Again, the notation ' means we are taking the derivative with respect to ¢;. We use the
following facts:

1
O fn 2 (Wfl (ens 1) = 07) agn 2vg1 (cn, 1)
de; (e’Y(Ch—Cl) — e—’Y(Ch—CL))’ de; (e’Y(Ch—Cl) — e—’Y(Ch—Cl))
T N RPN P R e e WP
aCh - (eQ’YCh — 62761) cn YJh \Ch, Ci ) 8Ch - cn (eQ'YCh — 62’701) YGn \Ci, Ch
1
lim f, = ——, lim g, =0.
Ccl—Cp ’yCh cp—cCp

2 a)—L
1. The result of 22 = (Wfl(Ch ) c’> < 0 follows from the step 1 in the previous subsection.
Ocy (ev(ch—q),e—v(ch—q))

gl*Ch'Yfl‘l’Ch%

ev(en—cr) _g=v(cn—c1)

! i
2. We show (% — fhch) > 0 for ¢; < ¢,. We have (97’“” — fhch) =2

and

0 (%~ fuen) 200 —en20f — 2%

_ i —(
0%¢; eYlen—a) — g=v(en—cr) t e

e2(=r(en—ct)) 4 1 2
ch—ct) 5 <291 —cn2vfi + h> .
(6_2’)’(Ch—cl) — 1) C

1
If the first derivative is zero at a point ¢, > ¢, then the second derivative is

2% 427l
2- + 277E62wch o) (gl (ciyen) —enyfi(ens er) + %’;) —an2z —gesa
= L < 0.

(eW(C;L—Cz) — e—’Y(Ch—Cl)) (e’Y(Ch_Cl) — e—’Y(Ch—Cl))
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for any ¢;, > ¢;, which implies that it can have no minimum in that range. Also

0 (97’” - fhch) 0? (97’ - fhch) 1
lim ————~2 =0, Ili =—
ngIgh 801 ’ ngréh 8261 3’76%

S0 ¢; = c¢p, must be the unique maximum in the range ¢, > ¢;, and the result follows.

3. Consequently, ¢ (cp; cp, ¢;) is monotonically decreasing and v (¢p; ¢, ¢;) is monotonically increasing in
¢;. Thus, p(cp;cn, ¢;) is monotonically increasing in ¢;.

4. Observe that the following hold

2R R
. . vlensa,en)  Rren +c, 55 — e ciRchRKch
lim p(ep;c,cep) = lim = = = = = ¢p.
ci—en ai—en q (cn;cr, cn) “Fop + Y Roen + Rk
Because lim, o p (cp; ¢, cn) = —cp, hence we know that for any c;, > h there is a unique ¢; € [0, cp]

which solves p (¢p; ¢, ¢p,) = h. From the monotonicity of p (¢x; cp, ¢;) in ¢; and the continuity in ¢y, the
resulting function H (¢, ) is continuous in ¢j,.

Intercept of H (cp) and L (cp)
1. Here we show that H (h) > L (h). We know that H (h) = h because

Ric +hfg + 58 (—hd)  Ric+hde + ey (—ny) .

lim — v(enser,en) Yo? R TR
- . - R R¢ R 1
e=h g (cniccn) B+ RN

However, note that

: v (Cl; Cl, Ch) 2
lim — _h
a—h q (e, cp) RTC n 1;7}1;
inquE? is increasing in ci. Since L (1) is defined by U2 — 1 < b, L (k) < h = H () must
(0]

2. Now we show that lim., oo H (cp) =0 < lim,, o0 L (cz) . It is easy to check that

lim f, = —Ei[—¢7] lim g = Ei [—v¢]

ﬁ, lim fh = 0, lim gn = 0
cp—00 evl{—a cp—00 cp— 00

e’)’(_cl) ’ cp—00

Thus, lim,, —c % takes the value of

Ry + <fic 4 Rom(even) 4 —RIQ” (7“”(0“%) —afi (Cuch))

. 2y -
lim e et
o S+ fi(asan)
alc fife] Riy [ Ei[-vya] _ . —Ei[-c9]
| Ricefie e g g (Bhoa) o By
B Rc _ Eil—en]
2 e"/(fcl)

Thus, lim,, oo L (cp) is the finite positive solution of

Ry +aflc + fo 4 B (Blol _ o —Bilen])
I

’yew(fcl) e"’(*cl)
Rc _ Ei[—an] B
2 (=)
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vlenicr,en) takes the value of

In contrast, lim., o alonicrion)

R R ,
Ry + “57¢ — %m (ci,en) + 752 (7%@ n) _ ¢y, fi (Cl,Ch))

. vy
lim R Ry~
eh 00 4 = fn (e en)
Rx | Rc _ Rc RK’Y gnlci,en) Rc | Ry (gn(ccn)

-  lim = T2 cn2y + ( ChY Fu(er; cn) — lim 3 T2 ChY —
T g oo Rc RK'Y In(ei,cn) T ep oo Ry fulci,cn) o

h + h

2ch Ch 2 Ch

v(Cch;CL,Ch)
? q(cnser,cn)

¢;. As a result, in order to have a solution of lim,,
lim,, 00 H (cp) = 0.

v(chser;ch)

q(cnseiren)
v(Cch3ci,Ch)
q(chnser,en)

Hence grows without bound for any fixed ¢;, and is monotonically increasing in

= [, ¢; has to go to zero, implying

The two results imply that there is always an intercept ¢, € (h, 00) that H (c,) = L (cp,) . This concludes
the step proving that (7)-(9), (12)-(13) has a solution.

B.1.3 Step 3: Proof of Lemma B.4

We have shown that H (h) = h. Note also that if ¢, = ¢; then & = 2L. This, and the continuity of H (-) and
L (-) in {, implies that at the limit { — h, there is a solution of the system (7)-(9), (12)-(13) that ¢ — ¢}, — 0
and ¢, ¢ — h. Then, the statement comes from h < hRc < Rk (as R¢ > 1).

B.1.4 Step 4: Proof of Lemma B.5

First we show that ¢ (c) is always deceasing, and there exists a critical value ¢ € (¢, ¢p,) so that ¢” (¢) < 0 for
¢ € (¢, ¢) and ¢” (c¢) > 0 for ¢ € (¢, cy). Moreover, for ¢ € (¢;,¢) where ¢” (¢) < 0, we have that ¢’ (¢) > 0.

1. To show that ¢’ < 0, we differentiate the ODE 0 = "2—2q” + % (RC + RTK) — £q again to reach

2
g f RK

0= 24" _ S _ £, B.15

5 52 & (B.15)

Due to boundary conditions we have at both ends ¢ and ¢}, the function ¢’ (¢) equals zero and

its second derivative —q = %Iz—f > 0. Suppose to the contrary that ¢’ (¢) > 0 for some point

¢ € (¢, ¢p); then we can pick ¢ so that ¢/ (¢) > 0 and ¢’ (¢) = 0 (otherwise the function ¢’ (-) is zero
at one end, is convex globally, and thus never comes back to zero at the other end). But because

%Qq"’ (¢) = %%( + &4’ (€) > 0, contradiction. This proves that ¢ < 0.

C
2. We know that ¢” (¢;) < 0 and ¢” (¢p) > 0, and therefore there exists ¢ so that ¢” (¢) = 0. We show
2 2
this point is unique. Because 0 = %-¢" + g (RC + RTK) —&q, we have 0 = %-¢" — gR—Q —&q', and

C

0= q//// E K

5 — &g (B.16)

Suppose we have multiple solutions for ¢” (¢) = 0. Clearly, it is impossible to have ¢” (¢) = 0 but
q" (c—=) > 0 and ¢” (c+) > 0; otherwise ¢""” (¢ ) > 0 which contradicts with (B.16). Then there must
exist two points ¢; > ¢ and ¢y > c1 > ¢ that ¢ (¢1) =0, ¢"” (c2) < 0 and ¢ (c2) > 0, but ¢" (¢) < 0
for ¢ € (c1,c2). This implies that Z-¢"" (¢1) = ERK +£¢" (c1) < 0. As a result, there exists another

point ¢3 € (e1,¢2) so that ¢ (cd) = 0 with ¢” (65) < 0. But this contradicts with (B.16).

3. Now we show that for ¢ € (¢, ¢) with ¢” (¢) < 0, we have ¢"’ (¢) > 0, i.e., ¢ (¢) is increasing. Suppose
not. Since ¢’ (¢;) > 0 so that ¢” (c) is increasing at the beginning, there must exist some reflecting
point ¢4 for the function ¢” so that ¢ (c4) = 0. But because ¢” (¢4) < 0, it contradicts with (B.16).
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Second, we show that v (¢) is increasing if h — [ is sufficiently small.

1. We show that if v” (¢;) > 0, then v (¢) is increasing in ¢. Let F' (¢) = v’ (¢), so that

" _2 0-2 /! £
0=q"0*+ZF"+2Re — €F
2 2
with boundary conditions that F (¢;) = F (¢) = 0. The assumption v” (¢;) > 0 implies that F' (¢;) >
0. Thus, if there are some points with F'(¢) < 0 in the range of (¢, ¢p) then we can find two points ¢;
and ¢y (a maximum and a minimum) so that ¢; < ¢a but F”’ (¢1) < 0 F" (¢c2) > 0, F' (¢1) = F' (¢2) =0
and F'(c1) > 0> F (c2). We can apply the ODE to these two points:

2
0 = g (@)o? + SF () + SRo — €F (@),

2
¢ ()" + T () + SRo — €F (e2).

o
Il

The second equation implies that ¢” (c2) < 0, which implies that ¢; < co < ¢. However, the above two
equations also imply that

q" (c1) o > ch > q" (c3) 0?

contradiction with the previous lemma which shows that ¢” is increasing over [¢;, ] .

2. Now we show that if h — [ is sufficiently small, then v (¢;) > 0; with the first result we obtain our
claim. From our ODE,

v (¢) = —%2 <W —v (cl)> = %2 (RK + R—f;h(cl,ch) + Ijgf (W —afi (cl,ch)>> .

We know that as h — 1 — 0, ¢, — ¢ — 0. We will prove the statement by showing that (1)

lim,, e, ((Rcclzi‘f‘) —v (cl)) = 0, because lim,, _,, (M —v (cl)> equals

: Rk  Rc Riy (g1 (ci,cn) _ Rk Rk& 1y
Cllgriﬁ( 5 + th(cl,ch)—i— 5 < 5 afi (cl,ch) ) +0+ o2 0 5 =0

o (RCCl2+RK) 7,0(61))

ey

o5 hier ey 25 (L) e fr(aren) ) )
ey

and (2) lim,,_..,
it equals

= lim,,_,, < 0, because

) Reev(en—ci) R 1 e2reh 4 e27C e2ren 4 g2va
lim <— ¢ 4 2D ( + ( ggl _{ g (avfi—1)

cp—chp (e’y(ch—cl) + 1)2 2 Y (62V0h — e2va (627071 — e2va
1 R 1 1 1 R
= —Rciz sl <——> =_=C < 0.
(1+41) 2 \ven  2ven 2vycn 4

These two statements imply that if ¢;, — ¢; is small enough then v’ (¢;) > lim v” (¢;) = 0.

C]—Ch

B.2 Proof of the Second Part of Proposition 5
vnlenen) _ gy

The result ¢; > h is a consequence of the fact that we defined H (cj) as the unique ¢; solving anleron

when ¢p, > h. (see part 4 in section B.1.2.)
For the result ¢j <[, consider the possibility that ¢j > [. The following lemma states that in this case
p” (¢f) < 0. This implies that this is not an equilibrium. To see this, we have p’ (¢j) = 0 by the boundary
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conditions v’ (¢f) = ¢’ (¢f) = 0. Thus p” (¢) < 0, combined with p (¢j) =1 and p’ (¢) = 0, would imply that
p (¢) <1 for ¢ sufficiently close to ¢} .

Lemma B.6 The sign of p’ (¢}') is the same as that of | — c;.

Proof. Simple algebra implies that

o) = <v’qq—2 q’U)' _ Werv'd ;z(q”v VD) 58 (g — gt
g—qt (5 (Reei + Ric) + €la(e)) Za— (=5 (Reej + R) + €cfa(e))) 72z
7 7
(—% (Roc] + Ric) + &lq (cf) + &cfq () — &cjq (ﬁ)) 54— <—§ (Reef + Ri) +&cq (C?)) Fr
q2
(=5 (Roei + Bie) +€ca(e) & (a— %) + (- ) €a () Za
q2
L (§ (Rocp + Bic) — &cia () 2 +€a(eh) 2
= (=) .

which gives the lemma by noticing that ¢ is decreasing in ¢ and the boundary ¢’ (¢j) = 0 implies that

S (Roe + Rie) +&cfa () o (cf) < 0.

]
The third statement is a consequence of the following Lemma.

Lemma B.7 We have the following limiting results:

1 1
lim vf; = —, lim vyf,=—, lim g, =0, lim ¢; = 0;
y—00 Cc y—00 cp  Y—o© y—00
and lim ¢; = h, lim ¢ =1
y—00 y—00

Proof. The first four results are based on L’Hopital rule. Take the first result for illustration:

7 (Ei[=cny] = Ei[-cn]) Ei[—ciy] = Ei[-a]

lim = lim = lim
yﬂoo’}/fl y—00 e'Y(fcl) y—00 le’y(—cl)
Y
e~ Ch7Y e~y _
. ¥ - lo% . —€ 017/7 1
= lim = lim ————— = —.

y—00 12 e’Y(—Cl) (=c1) e’y(—cl) y—00 (=c1) e'y(—cl) C|
¥ ¥ ¥
These four results imply that

cnR R v [ gnleiscn)

o Rk + 959 —3¢m(a,cn) + Riy (f_chfh(clach) R + @fic — Ryl
lim — = lim o = = o 1
y—00 qp, y—00 T+RK§fh (cl,ch) T‘FRKE

Thus, in the limit the solution of Z—Z = h is the solution for the equation of

R
Ry + ch *RK%

R¢ 1
5 T Rk 2¢h

:h’
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which gives lim,_, ¢j, = h. Similarly, the following calculation implies that lim,_,o ¢ = I

i v i Ry + E?zlzzg + %m (ciyen) + RK% (9z(cz7,c;1) —qfi (cl,ch)) Ry + czI;C +RK%
im — = lim =

RC v RC 1
Y=o g v X+ R 3 fila,cn) ot Risg

B.3 Proof of Proposition 7

The proofs of the two statements follow the same logic. Thus, we prove the first statement in detail and
explain the necessary modifications for the second statement at the end of the proof.
Consider the functions ¢ (¢; qo, vo, cn) and o (c; o, vo, cp) of ¢ parameterized by go, vo, and c¢p:

2
T+ S (Re— )+ & (R
0 = FT@+§Re-a0)+ 5 (M -q0) (B.17)
~/ 2 0-2 ~1I 5 ~ g ~

0 = ¢ (e)o”+ 50 (c)+ B (Rec—10(c)) + 3 (Rx — 7 (). (B.18)

and the boundary conditions
V() = @)=0, (B.19)
q(co) = qo,v(co) = vo. (B.20)

The general solution is
— eV Ri (— —ev Bj
i) = % b e TAL 4 e Ag + R;” e Bl ”C); 7 Eiley) (B.21)
Yyc 1(__ _ —cy 3

T(c) = Rg+ CR% F e (Ay — cA) — e~ (Ag + cAy) + CR;W Ei(=7¢) . B0 (5 99)
= R+ Rcc+eVA3—e Ay —cq(c). (B.23)

where A;1-A, (may differ from those in (12) and (13)) are pinned down by (B.19)-(B.20). We have

Ry~? (e~ Ei[ey] + e Ei[—cy])

qc) = —ye T Ai+7e Ay - - |
i (¢) = % n Ryry (—e™7 Ei[c;} + e Ei[—¢v]) N RKC’YQ (e=c7 Ei[c;] + eV Ei[—c])

+e ((—ye = 1) Ag + 7 As) +e77 ((ve — 1) Ay +744).

Define the function ¢, (go,vo) implicitly by @ (cu; o, vo, cn) = hqG (cr; o, vo, cr), and we are interested in

the derivatives -, i o "
Och _ Voo = Mgy Ocn _ Tuy = My,

“Ch _ 240 _ Tvo
0qo v, — hq.,  Ovo o, — hq.

Ch
We proceed as follows. First we show that % > 0 and g% < 0. This proves that if g (co) < q(co) and

vx (co) > v (co) then ¢} < ¢}, that is, such policies make the overinvestment problem worse. Then we show

that this is true even if g, (co) < g (co) and v, (¢p) < v (cp), as long as the policy increases the price at cg,
vr(co) v(co)

g (co) q(co) )

We start with the following lemmas.

ie.
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Lemma B.8 We have

0q (cp; . 2
q(chaquv();C],) _ 0’ (B24)
6(]0 echYe—coY + e~ ChYerc
617 (Ch;QO7UOaCh) 2 8q(ch;q07v07ch)
Ovg e (en—co) 4 ev(en—co) >0, Ovg =0 (B-25)

Proof. We show (B.24) first. We know that §(cp) = qo, which based on (B.21) can be written as
eOT Ay + eV Ay + 1, = qo (where [, is independent of gp) which implies

A = ez €A+ 00

(B.26)

e—CcoY

and ¢’ (cp) = 0 which can be rewritten as —e~“7yA; + e“*7yAs + s, = 0 (where s, is independent of g)
which implies

_ - —1,—e7°0 Ag+ _ —l,+
A = € Cth’YAl _ sq = € Ch’y’y% _ Sq = A = c Ch”y’ye*qf'ozo _ Sq (B 27)
2 ech"/"y eCh“/’y 2 (1 + Q*QChVe’YQCO) ech"{fy : :
Thus, (B.27) and (B.26) imply that
0A e~y
= = , (B.28)
dqo eChYe—C0Y 4 e—Ch7 Yo
0A4r 1 s e _ e (B.29)
Oqo e—coY eChTe—C0Y 4 e—Ch7 Y eChYe—C0Y + e—ChYeYC0 ’

Using (B.21) we obtain our result.
The first result in (B.25) follows similarly. The second result 2Znid0-20-) — ( comes from the fact that

(B.17) and the boundary conditions ¢’ (¢;) = 0 and G (co) = qo are indeqf)oendent of vg. m
Lemma B.9 We have

00 (ci o, vo,cn) _ €)= ) — (g — ) (€7 e0) - r(en )

= 2 ) <0,
aqg ¥ (e’YCOe_"/Ch + e—’YCOe’YCh)
90 (cn; o, vo, cn) haa(c,,; qo0,v0,Cn) 267(0’1_00) —e ) —q(ep + h —co) (e m0) 4 e2(en0)) <0
dqo dqo N v (eYcoe=ren 4 e~ VC0eVCh )2

Proof. We show the first result. We rewrite v (co) and ¥’ (¢;) as (as before here l,, and s,, are
independent of ¢gq)

5(80) = %7 (Ag — CoAQ) — e 7 (A4 + CoAl) + lvq,
V' (ch) = sug e ((—yen — 1) Az +7A3) +e 7 ((yen — 1) A+ vAs)

Thus, the boundary conditions v (¢g) = vy and ¥’ (¢,) = 0 imply that
A3 = CoAg + eicowl}o — eico’ylvq + 67260’y (A4 + C()Al) y
(—eer (yep —yeo + 1)) Ag + (e_'YCh (yen — 1) + ,YCOe—nycoe’yc;l) Aq

+ (767“/00 e'YCh,) vy + (qu — e co eWCh,lqv)

e~V + ye~2YCeYCh
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Thus, using the result in (B.28) and (B.29) one can derive that

8A4 ~en 2eVC0e=VCh ~co (e'yco e~ 4 e~ e’YCh)
= e'" )

dqo 7 (eveoe=ven 4 e—’YCOe'YC}L)2

Similarly it implies that

0As; 0A 0A 0A 2e770 4 ycq (€70 2Ch gm0
0As _ 0A1 seoy, | OA2  OAs acy _ veo ( : )
9o o 9o qo v (e7C0e=7Ch 4 e~ VC0eYCR )

Consequently, using (B.23), we have (where we have used (B.24))

dv (cp) ecm% B efch'y% . 9q (cp)
dqo 9o Qo 0qo

eY(en—co) _ g—v(en—co) _ v (en — co) (e*V(Ch*CO) + eW(Ch*CU))

= 2 < 0.

v (evcoe=ven + e*’YCOe'YCh)Q

The last inequality comes from the fact that the function e* —e~*—z (e~* + €”) is negative and monotonically

decreasing for all x > 0. The second statement comes directly from the expression for %{;’L). ]

Lemma B.10 If ZT? < hv then © (y7 CIO»U(va) - hq (y7 QOﬂ)an) > 0.
Proof. We parameterize ¢, by y. The idea is that if the function o (y;qo,vo,y) — hq (y; qo,vo,y) is
negative at y = ¢y and positive as y — 0o, then there is a y = ¢, so that this function is zero (satisfying the

definition of ¢j,) and where the slope of this function is positive, which is the claim of our lemma.
The function 7 (y; go, vo,y) — hq (y; go, vo,y) can be solved by imposing the boundary conditions

o' (y) =4 (y) = 0,4 (co) = qo, ¥ (co) = vo. (B.30)

for all y > ¢¢. Thus, by setting y = ¢¢, we must have

0 (o3 g0, v0, c0) — hG (co; qo,v0, o) = vo — hgo < 0,

by the condition of the proposition.
Now we show that ¥ (y; go, vo, ¥)—h§ (y; g0, vo,y) — 00 asy — oo. We first show calculate lim, .o G (y; 90, v0, y)
in (B.21). For this, we solve for e7¥7A4; and e¥Y As from (B.21)-(B.22) and (B.30):

do — % +e(00_y)7 Rxl\gl(y) _ RgvM(CO) Qo — 1{270 — ey—co)y RKnyQW’(y) _ RgVM(CO)

e VA = LT Ay =

e(—co)y 4 ev(co—y) e—co)y 4 ev(co—y)

where M (y) = —e" Ei [—yy]+e " Ei[yy]. Using lim,_.. M’ (y) = 0, it is easy to show that lim, .., e¥7 Ay =

lim, .. e ¥YA; = 0, which implies that lim,_,o ¢ (y; go,v0,y) = RQ—C in (B.21). A similar argument implies

that lim.—, o ¥ (¢; go, vo, ¢) = 0o. Thus, 0 (¢; o, vo, ¢) — hq (¢; qo, Vo, ¢) = oo. This prove the statement. m
Putting together the above three lemmas, we have

8Ch — _ 171/]0 - h‘d{l]o > 0 and ach _ _’l’}’i)o - h’qv’:)g < O
dqo oL, — hq., dvg oL, — hq.

Ch

This implies that ¢} < ¢}, whenever ¢, (co) < ¢ (co) and vx (co) > v (co).
i ~/

—h
For the last step, as en — _ Zvo= Mo 0, it suffices to show that this result holds for the worst vy drop

Ovg v’ § —hq’

to maintain py, i.e., vp and gy decrease proportionally so vg/qo remains at constant.
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To this end, we consider decreasmg go to §o = qo — € where ¢ is very small. To make sure that 2 “—",
we need that vg = vy — ae where a = qo Let us refer to all the objects after the change with the bar Our
goal is to show that v (c) /¢ (cn) would increase; then o, — hg, > 0 implies that ¢ < c;. Using the first
two Lemmas above, we have (denoting = = (¢, — ¢p) )

2
e—-
et 4 e %
T _ =T __ —x €T 2
T(ch) = #(cp)— 28" z(e 2+e) D=
v (e” +e77)

q(cn) = Glen)—

qoe* +e %

Hence for sufficiently small € we have (up to the first order)

S]]
—
Q

>
N
<
—
(9]
>
S~—
[\
™

~ (€% 4 e=)? qe*+e® G*(cp) e +e @

_ B (ez —e T —zx(eTT 4 ") L% 1 ) N 0 (cn) 2e
7 (on) (

, v(cp)
0 (cn) 2e et —e T —x (e +e") (q*ﬁ - zj(c;,)) 0 (cn)
qlen)  qf(en) v (e* + e—%)? et e q(en)

Here, the third inequality in (B.31) is because the term e” —e™ "~z (e™* + €%) < O forall z > 0 and 7* — ggz:g

is strictly negative because Zg < ZE;’”; = h; hence the first order impact of decreasing gy is an increase in

¥ (cn) /qd (cp). Because the above argument holds for any vy and go, tracing out the first-order effect implies
U((h

that any intervention which lowers cash value but keeps capital price unchanged will lower =
to that change, an increase in vy just decreases cj further. That concludes our proof.
The second statement follows the same steps with the following modifications. Each ¢, has to be changed

to ¢; and each h has to be changed to [ at every point of the proof. Then the first lemma remains the same,

99(¢;590,v0, .
W > 0, while the second statement does not

change. Also, in the proof of the first statement we use that e —e " —z (e”* +e*) > 0 for all z < 0, and
the proof of the second statement we use that e* —e ™ — (z+y) (e *+€”) <0forall z <0 and y > 0. In
the last part we follow the same steps, but the inequality (B.31) in the modified version is switched. This
gives that ¢ > ¢ under the conditions of the statement.

. Compared

the first statement in the second lemma changes to

B.4 Solution for Price Floor Policy and Proof of Proposition 8

B.4.1 Characterizing the equilibrium with price floor policy

We first derive the solutions for price floor policy. A price floor policy 7 (c) is defined as

0 = ¢ (c)o*+ %211” (c) —wv(e) + £ (Rcc + Rg) +cm (), (B.32)
0 = %Qq” —q(e) + ] <Rc + RK> —7(c). (B.33)

so that 1) for ¢ € (cp,c]], 7 (¢) = 0, and at the upper investment threshold p (cj) = h; and 2) for ¢ € [¢], o],
v(c) = (14 9)q(c) always. Here, v (c), q(c), m(c), co and ¢}, are endogenous. We have the following lemma.

Lemma B.11 Given the lower disinvestment threshold cj, the solution to the price floor policy can be
calculated as follows.

1. Given the upper investment threshold ¢, first calculate the welfare function j, (c¢) = Rk + Rcc +
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D1e™7¢ + Doe¥¢, where the constants D1-Dsy are given by the boundary conditions
Jg (i) = (cf +1) g (cf), and j(ci;cf) = (cj + h)dg (c}).-

2. For c € (co,c}], the capital price and cash price is given by

R i VR () — o=
v(c) = RK+TCC+6°7(A3—CA2)—e_CV (A4+cA1)+cRK%(e i 70)2 e 1(70))7
&Y E _ —cy E
q(c) = @+6707A1+607A2+RK1 eV Ei(—c) +e 1(c'y).
2 2 2
Here, Ay = —Dy and As = D>. The other four constants, i.e., Ai-As, ¢o and cj, are determined by

the following four boundary conditions
V' (¢])=0,¢'(¢]) =0,v(co) = (I +0)q(co),v (co) = (1 +8) ¢ (co)

3. For c € ¢, o, we have
e

fjg(c)
q(c) = andv(c)—l+cjg

(c) (B.34)

and the taxation is given by

2
()= T —Ea(e)+ (Rwa) -0

Proof. The total welfare function j(c) = v (c) + cq(c) given in the step 1 of Lemma B.11 only depends
on the investment/disinvestment policies ¢j and cj, (see explanations around equation (18) and (19)). For
¢ € (co,c]], there is not tazation and the derivation is the same as before, except that at the endogenous
intervention point ¢y we are value-matching and smooth-pasting so that the price is the implemented floor
price l + 0. Note that by construction we have v (cj) = hq(c}) (due to j(cj) = (cj +h)j' (c})). Force
[c], col, notice that v (c) = (I +6) q(c) always; (B.34) follows because of jq (¢) = v (c) +cq(c) = (I +¢)q(c).
The endogenous tazation m(c) follows from (B.33). m

B.4.2 Proof of Proposition 8

Now we set § = 0 and prove Proposition 8. There are three steps.

Step 1. Rewrite the problem Clearly, for ¢ € (co,c]] the same structure solution applies without
policy, with the only difference at the lower end ¢j so that v’ (¢p) = lq' (¢p) might not be zero. This allows us
to draw connection between the equilibrium with policy and the one without. We first show that for ¢ < ¢,
the resulting slope at ¢y has to be negative, i.e.

v’ (co) = 1q' (co) < 0. (B.35)

To show this, focus on ¢ € [¢f, ¢p]. By v (c) = H%jg (¢) and boundary condition of j, (c), we have

gy () (T4 e) = g (e])]
(I+c)?

=0.
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Moreover, since j;/ (¢) < 0 (see Proposition 2 and its proof), we have [j7 (¢) (I + ¢) — jg (c)]/ =jg (c)(I4c¢) <
0. As a result, since ¢o > ¢/, we have

sign[v' (co)] = sign [j; (co) (I + co) — jg (co)] <O.

This proves (B.35).
This suggest us to introduce {v (-), ¢ (), co, cj;x} indexed by z as the solution to the ODE system (10)
and (11), with modified boundary conditions

v () = () =0,v(ch) =hq(cp),
v'(co) = —xl,q' (co) = —x,v(co) = lg(co).
Here, the parameter x > 0 captures the negative slope of v’ (cg) = ¢’ (cg) < 0. As shown shortly, our
key result does not depend on the exact value of x, which will be determined by pre-determined lower
disinvestment threshold ¢;.

It is easy to show that if ¢ = ¢}, i.e., the policy sets the lower disinvestment threshold as the one in
the market solution, then z = 0 and we have ¢y = ¢} = ¢/ and ¢] = ¢j. Given this result, the claim in
Proposition 8 is equivalent to show that

Step 2. Solve the new ODE system For simplicity, we denote ¢j by ¢;. Given ¢ and ¢, the
boundary conditions v’ (¢) = ¢’ (¢p,) = 0 and v’ (¢p) = —zl, ¢’ (¢p) = —z imply that

T (62700 + eQ’ych)

~y (627/0;1 _ 62700)

q(cosco,zen) = qlesc,cn)le=c +

e (cotcn)

q(cnico,z,cn) = qlenser,cn)le=co m,
2 (2103 4+ 1) + ¢ (71— 1))
v (co;co,z,cn) = vl(cscr,cn) ‘Cz:co e (6270" — 62"/00) ’
2zev(coten) (¢ — ¢p 41
v(cnico,xen) = wvlensa,cn)le=c + (e )

~ (62'ych _ 62750)

where ¢ (c;c,cn),q (cnicr,en),v(cscr,en),v(cn;c,cn) has been defined above. Then, c¢o and ¢ solve
Fy, (co,x,cp) = Fy (co,x,cp) = 0 where we define

Fyy (co,z,cn) = v (cns co,w,cn) — hq (cn; co, x, cn)

cn—h)R R R co, C
— Re+ % _ Tf;m(co,ch) + 12” <gh (70 W) (en + 1) fo (co,ch))
2zev(coten) (¢g — ¢ + 1) 2xeY(coten) d
~y (62'ych _ 62700) - ol (627/0;1 _ eQVCO)’ an

Fy (co,z,cn) = v (co; 0,2, cn) — lg(co; co, x, cn)

co— R R R o, C
= RKJF(O2)C+2§m(COaCh)+ ;{7 (gz( g ) —(co+1) fi (Co,Ch))
z (270 (vl + 1) + €2 (vl — 1)) .z (e?re0 + e?ren)
+ 72 (e27en — e27¢0) B ~ (e27en — ¢27¢0)
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Simple derivation reveals

8Fl RC RC 26(Co+ch)’)’ RK'Y 1 (eQ’YCh, +62’Yco) (6270;,, +62’YCO) 1

9 9 T o 2 — ﬁgz—ﬁ—(c()-&-l)ﬁ vfi— —

dcg 2 2 (eCO’Y + ech’Y) 2 Yo (e < 'YCO) (6 Yen — e 'yco) o
1

OF, _ Rg 2eloten 4 Bxy 2g1 (cn, co) ~(en+h) 2 (Pm B 5)

dey 2 (eco” + ecw)Q 2 (eW(Ch*CO) — e*V(Ch*Co)) Ch (e'Y(Ch*CO) — e*’Y(Ch*CO))

9pe(coten) v(co —cp +1—h) (62"/60 + 62"/6h,) .
~ (EQ’YC}L _ eQ’yco) (eQ’YCh _ 62700) +

oF @ 2¢lcoten)y N Ri~ B 2gn —2(co+1) i —fn
den = B (660“/ I 60h7)2 9 ev(ch—co) — ev(co—cn) Co ev(cn—co) — gv(co—cn)
1 (e?ych +e2'yco
oF Ro _Re 2640 Ry Ser = (e —emea) Ih (€0:cn) =
= — - — p . 5 e27¢h 4270
e 2 2 (e07 +e) 2 (cn+h) W (i —/n (Chyco)) — fn(co,cn)

2xeY(coten) Y(co — cn + 1 — h) (€27%0 4 e21%) )
_,-Y (62’76’1 _ 62750) (eZ'ych _ eZ'yco) +

Step 3. Prove the claim Now we are ready to show our desired result lim,_, % > 0. First of all, it
is easy to show that when v — 00, ¢, — h and ¢y — [ are bounded. The Cramer’s rule (or implicit function
theorem) implies

9¢ OF, OF OF,  OF __OF, 0F + OF, 9F;
1- h — 1 ox 8C[) 8Ch 660 _ 1 ox 860 (9(:0 ox
1m =—am = M 5F, 0F _ 0F 0F, -
y—00 ax y—o0 OF; OF; OF; OF; y—oo ZER O O OLh
Ox Oco cy, dco Ocp Oco Ocyp, Oco
Focus on the denominator first. It is easy to show that
. O0F, Rc Rkl . 0F, Rc Rgkh . O0Fy . 0F
lim ~—=-—+—F——5, lim —=—+ —%-,and lim — = lim =0,
y—o0 Ocg 2 2 ¢’ v—oo Ocp 2 2y, y—o0 dcy y—o0 dey,
implying
: OFy OF, _ OFy, 0F,
dcy, VILHC}O (aco ox oz 8(:0)

lim — =
y—oo O Bc | Rih) (Bc | Ri 1
2 2¢3 2 2 ¢

(B.36)

9FL _ _ 1 and 0B — _ 2e(0T M (hol(en—co))
y2 ox

GrS (@ —ev2e0 )y , we can show the following two

For the numerator, since

limiting results:

OF, OF, el fel).

lim ~ (67(0”_00) - 6_7(0"_60)) 9z Beg —2(h =1+ (cn — o)) ( 5 Ty =
0

y—00
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and

lim (67(%*00) _ e*W(Ch*CO)> %@

y—00 Ocy Ox
2(e7°h —e7°0 R
1 e (e e — (@t m2 (i - ) )
= m — 2v¢, 2vc = 0 B38
s 25 (co—cntl=h)(e*7°0fe*%n)
K i +7 ( (eQ’YCh —62“/60) + 1>

Hence, applying (B.37) and (B.38) to (B.36), we have

% 2(}1714’(6}1700)

)
or (Ric_i'_RKh) (Ri_A'_RiK )
2 2c2 2 2 2

lim ~ (eV(Chch) _ e*’Y(Ch*Co)>

y—00

QED.
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