
B Online Appendix for He and Kondor (2015): Proofs and Deriva-

tions

In this Online Appendix we provide proofs for Lemma 1 and Proposition 1, the second part of Proposition
5, and Propositions 7, 8 and 9.

B.1 Proof of Lemma 1 and Proposition 1

We construct the proof in steps. In particular, we separate Proposition 1 into the following four Lemmas.
These four lemmas are su¢ cient to prove Proposition 1.

Lemma B.2 If the equation system (12)-(13), (7)-(9) has a solution where c�h < RK , and both v (c) and
q (c) are increasing in the range c 2 [c�l ; c�h], then Proposition 1 holds.

Lemma B.3 The system (12)-(13), (7)-(9) always has at least one solution.

Lemma B.4 If h� l is su¢ ciently small, then c�h < RK :

Lemma B.5 q (c) is decreasing in c. If h� l is su¢ ciently small, then v (c) is increasing for c 2 [c�l ; c�h] :

B.1.1 Step 1: Proof of Lemma 1 and Lemma B.2

Denote the dollar share of capital in the �rm�s asset holdings by  it, so that  
i
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tv (c) + Citq (c) stated in the Lemma. Also, we
have the wealth dynamics, expressed in terms of capital share  it, as
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And, q (c) � 1 has to hold as �rms can consume cash at the �nal date (and there is no discounting), which
implies d�it = 0, i.e., �rms do not consume in the aggregate stage.

As the �rm is choosing capital share  it, and the capital to build or dismantle dK
i
t , the Hamiltonian-

Jacobi-Bellman (HJB) of problem (3) can be written as:
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The endogenous price dynamics (using Ito�s Lemma) is

dpt =
1

2
�2p00 (c) dt+ �p0 (c) dZt + dB

p
t � dU

p
t ;

where dBpt (dU
p
t ) re�ects p at p (c

�
l ) = l (p (c�h) = h). This is because in any market equilibrium �rms will

create (dismantle) capital if pt = h (pt = l), and keep doing it until the price adjusts. We derived the
boundary conditions in the main text. Also, by risk neutrality and the initial homogeneity of �rms, before
the �nal date the price of the capital has to make �rms indi¤erent whether to hold capital or cash. Otherwise
markets could not clear. We also explained that p̂� = c� .
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Thus, inside the re�ection boundary (c�l ; c
�
h) the above HJB equation is (we drop i from now on)
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Since the problem is linear in  t; in equilibrium �rms must be indi¤erent in their choice of  t: Thus, we
can calculate the dynamics of the cash (capital) value by choosing  t = 0 ( = 1). Setting  t = 0 directly
implies (10). Choosing  t = 1 gives
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Since v (c) = p (c) q (c), v0 = q0p+p0q, and v00 = q00p+2p0q0+p00q, we can rewrite the above equation as (11).
Given that the ODEs for v (c) and q (c) were derived by substituting in  t = 1 and  t = 0; it is easy to see
that these functions can be interpreted as the value of a capital and that of a unit of cash. This implies that
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verifying both Lemma 1 and our conjecture on the form of J
�
C;K;wit

�
.

B.1.2 Step 2: Proof of Lemma B.3

First, note that for any arbitrary ch and cl from (9), we can express A1-A4 in (12)-(13) as functions of ch and
cl only. Substituting back to (12)-(13) we get our functions parameterized by ch and cl which we denote as
v (c; cl; ch) and q (c; cl; ch) : Evaluating these functions at c = cl and c = ch; we get the following expressions.
De�ne

fl (cl; ch) � e�ch (Ei[ch]� Ei[cl]) + ech (Ei[�ch]� Ei[�cl])
e(ch�cl) � e�(ch�cl) ;
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For any ch, de�ne the function H (ch) implicitly as the corresponding lower threshold cl so that at c = ch
the market price is just h, i.e.,

p (ch; cl = H (ch) ; ch) =
v (ch; cl = H (ch) ; ch)

q (ch; cl = H (ch) ; ch)
= h:

Similarly, de�ne L (ch) is de�ned implicitly by

p (cl; cl = L (ch) ; ch) �
v (cl; cl = L (ch) ; ch)

q (cl; cl = L (ch) ; ch)
= l;

which makes the market price to be l at c = cl. Obviously, once we �nd such ch that H (ch) = L (ch), then
this particular ch and the corresponding cl = H (ch) = L (ch) is a solution of (7)-(9), (12)-(13). To show
that this solution exists, we �rst establish properties of L (ch) then we proceed to the properties of H (ch).

Properties of L (ch) It is useful to observe that
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1. We show that fl (ch; cl) is monotonically decreasing in cl: Its slope in cl is
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and the second derivative is
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Note that if the �rst derivative is zero, then the second derivative is positive implying that fl (ch; cl)
can have only local minima, but no local maxima in cl. At the limit one can check that
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Thus, fl (ch; cl) is decreasing at ch = cl: Suppose that it is not monotonic over the range of cl < ch in
cl: Then the largest ĉl where the �rst derivative is 0, would be a local maximum. But we have just
ruled out the existence of a local maximum. Thus fl (ch; cl) monotonically decreasing over the whole
range of cl < ch in cl: This statement is equivalent to fl (ch; cl)� 1

cl
< 0 for cl < ch; for any �xed ch:
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2. We show that X (cl) � fl (ch; cl)� 1
cl

is increasing in cl. We would like to show that
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Clearly, we have
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1
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1
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> 0:

We know that when cl ! 0, f (ch; cl) has the order of Ei (cl) which is O (ln cl); this implies that
X (cl)! �1 when cl ! 0. Then, if X (cl) is not monotone, we must have two points x1 < x2 closest
to (but below) ch so that

0 > X (x1) > X (x2) , X 0 (x1) = X 0 (x2) = 0:

Setting (B.13) to be zero, we have (because 0 < x1 < x2)
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in contradiction with X (x1) > X (x2). Thus (B.13) holds always.
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We also know that

lim
cl!ch

�
gl

� clfl

�0
= 0; and lim

cl!ch

�
gl

� clfl

�00
= � 1

3c2h
< 0;

so for any �xed ch; cl = ch is a local maximum. Thus to show that
gl
 � clfl is monotone, it su¢ ces to

rule out the case of a local minimum ĉl < ch so that
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Thus, if there were a ĉl that
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But from (B.13) we know the above term is strictly negative, which proves the contradiction.

4. We show that q (cl; cl; ch) is also decreasing in cl for any cl < ch: Given that
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Thus, p (cl; cl; ch) is increasing in cl for any cl < ch: Also one can show that limcl#0 = p (cl; cl; ch) =
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which is larger than l as long as ch > l: Thus, as long as ch > l; limcl!ch p (cl; cl; ch) � l and there is
a unique solution cl for any ch of p (cl; cl; ch) = l. Therefore L (ch) exist. From the monotonicity in
cl, and continuity of p (cl; cl; ch) we also know that L (ch) is continuous.

Properties of H (ch) First, we show that for any ch 2 [l; RK ] ; H (ch) is a continuous function and
H (ch) 2 [0; ch] : Again, the notation 0 means we are taking the derivative with respect to cl. We use the
following facts:
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for any ch > cl; which implies that it can have no minimum in that range. Also
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so cl = ch must be the unique maximum in the range ch � cl, and the result follows.

3. Consequently, q (ch; ch; cl) is monotonically decreasing and v (ch; ch; cl) is monotonically increasing in
cl: Thus, p (ch; ch; cl) is monotonically increasing in cl:

4. Observe that the following hold
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Because limcl!0 p (ch; cl; ch) = �ch, hence we know that for any ch > h there is a unique cl 2 [0; ch]
which solves p (ch; cl; ch) = h: From the monotonicity of p (ch; ch; cl) in cl and the continuity in ch; the
resulting function H (ch) is continuous in ch.

Intercept of H (ch) and L (ch)
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In contrast, limch!1
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v(ch;cl;ch)
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= l; cl has to go to zero, implying
limch!1H (ch) = 0:

The two results imply that there is always an intercept ch 2 (h;1) that H (ch) = L (ch) : This concludes
the step proving that (7)-(9), (12)-(13) has a solution.

B.1.3 Step 3: Proof of Lemma B.4

We have shown that H (h) = h: Note also that if ch = cl then vh
qh
= vl

ql
: This, and the continuity of H (�) and

L (�) in l; implies that at the limit l! h; there is a solution of the system (7)-(9), (12)-(13) that c�l � c�h ! 0
and c�h; c

�
l ! h: Then, the statement comes from h < hRC < RK (as RC > 1).

B.1.4 Step 4: Proof of Lemma B.5

First we show that q (c) is always deceasing, and there exists a critical value bc 2 (cl; ch) so that q00 (c) < 0 for
c 2 (cl;bc) and q00 (c) > 0 for c 2 (bc; ch). Moreover, for c 2 (cl;bc) where q00 (c) < 0, we have that q000 (c) > 0.
1. To show that q0 < 0, we di¤erentiate the ODE 0 = �2
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Due to boundary conditions, we have at both ends c�l and c�h, the function q0 (c) equals zero and
its second derivative �2

2 q
000 = �

2
RK

c2 > 0. Suppose to the contrary that q0 (ec) > 0 for some pointec 2 (cl; ch); then we can pick ec so that q0 (ec) > 0 and q000 (ec) = 0 (otherwise the function q0 (�) is zero
at one end, is convex globally, and thus never comes back to zero at the other end). But because
�2

2 q
000 (ec) = �

2
RKbc2 + �q0 (ec) > 0; contradiction. This proves that q0 < 0.

2. We know that q00 (cl) < 0 and q00 (ch) > 0, and therefore there exists bc so that q00 (bc) = 0: We show
this point is unique. Because 0 = �2

2 q
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2
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2 q
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2
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q0000 +

�RK
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� �q00. (B.16)

Suppose we have multiple solutions for q00 (bc) = 0. Clearly, it is impossible to have q00 (bc) = 0 but
q00 (bc�) > 0 and q00 (bc+) > 0; otherwise q0000 (bc) > 0 which contradicts with (B.16). Then there must
exist two points c1 > bc and c2 > c1 > bc that q00 (c1) = 0, q00 (c2) < 0 and q0000 (c2) > 0; but q00 (c) < 0
for c 2 (c1; c2). This implies that �

2

2 q
0000 (c1) = � �RK

c31
+ �q00 (c1) < 0: As a result, there exists another

point c3 2 (c1; c2) so that q0000 (c3) = 0 with q00 (c3) < 0. But this contradicts with (B.16).

3. Now we show that for c 2 (cl;bc) with q00 (c) < 0, we have q000 (c) > 0, i.e., q00 (c) is increasing. Suppose
not. Since q000 (cl) > 0 so that q00 (c) is increasing at the beginning, there must exist some re�ecting
point c4 for the function q00 so that q0000 (c4) = 0. But because q00 (c4) < 0, it contradicts with (B.16).
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Second, we show that v (c) is increasing if h� l is su¢ ciently small.

1. We show that if v00 (cl) > 0; then v (c) is increasing in c. Let F (c) � v0 (c), so that

0 = q00�2 +
�2

2
F 00 +

�

2
RC � �F

with boundary conditions that F (cl) = F (ch) = 0. The assumption v00 (cl) > 0 implies that F 0 (cl) >
0. Thus, if there are some points with F (c) < 0 in the range of (cl; ch) then we can �nd two points c1
and c2 (a maximum and a minimum) so that c1 < c2 but F 00 (c1) < 0 F 00 (c2) > 0, F 0 (c1) = F 0 (c2) = 0
and F (c1) > 0 > F (c2). We can apply the ODE to these two points:

0 = q00 (c1)�
2 +

�2

2
F 00 (c1) +

�

2
RC � �F (c1) ;

0 = q00 (c2)�
2 +

�2

2
F 00 (c2) +

�

2
RC � �F (c2) :

The second equation implies that q00 (c2) < 0, which implies that c1 < c2 < bc. However, the above two
equations also imply that

q00 (c1)�
2 >

�

2
RC > q00 (c2)�

2

contradiction with the previous lemma which shows that q00 is increasing over [cl;bc] :
2. Now we show that if h � l is su¢ ciently small, then v00 (cl) > 0; with the �rst result we obtain our
claim. From our ODE,

v00 (cl) = �
�

�2
2

�
(RCcl +RK)

2
� v (cl)

�
=

�

�2
2

�
RK
2
+
RC
2

h (cl; ch) +
RK�

�2

�
gl (cl; ch)


� clfl (cl; ch)

��
:

We know that as h � l ! 0; ch � cl ! 0: We will prove the statement by showing that (1)

limcl!ch

�
(RCcl+RK)

2 � v (cl)
�
= 0, because limcl!ch

�
(RCcl+RK)

2 � v (cl)
�
equals

lim
cl!ch

�
RK
2
+
RC
2

h (cl; ch) +
RK

2

�
gl (cl; ch)


� clfl (cl; ch)

��
=
RK
2
+ 0 +

RK�

�2

�
0� 1



�
= 0

and (2) limcl!ch

@

�
(RCcl+RK)

2 �v(cl)
�

@cl
= limcl!ch

@

�
RC
2 h(cl;ch)+

RK

2

�
gl(cl;ch)

 �clfl(cl;ch)
��

@cl
< 0, because

it equals

lim
cl!ch

 
� RCe

(ch�cl)�
e(ch�cl) + 1

�2 + RK

2

 
1

cl
+

�
e2ch + e2cl

�
(e2ch � e2cl) gl �

�
e2ch + e2cl

�
(e2ch � e2cl) (clfl � 1)

!!

= �RC
1

(1 + 1)
2 +

RK

2

�
1

ch
� 1

2ch
� 1

2ch

�
= �RC

4
< 0:

These two statements imply that if ch � cl is small enough then v00 (cl) > lim
cl!ch

v00 (cl) = 0.

B.2 Proof of the Second Part of Proposition 5

The result c�h > h is a consequence of the fact that we de�ned H (ch) as the unique cl solving
vh(cl;ch)
qh(cl;ch)

= h

when ch > h: (see part 4 in section B.1.2.)
For the result c�l � l; consider the possibility that c�l > l: The following lemma states that in this case

p00 (c�l ) < 0: This implies that this is not an equilibrium. To see this, we have p0 (c�l ) = 0 by the boundary
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conditions v0 (c�l ) = q0 (c�l ) = 0. Thus p
00 (c�l ) < 0, combined with p (c

�
l ) = l and p0 (c�l ) = 0, would imply that

p (c) < l for c su¢ ciently close to c�l :

Lemma B.6 The sign of p00 (c�l ) is the same as that of l � c�l :

Proof. Simple algebra implies that

p00 (c�l ) =

�
v0q � q0v

q2

�0
=
(v00q + v0q0 � (q00v + v0q0))

q2
� 2q�3 (v0q � q0v)

=
v00q � q00v

q2
=

�
� �
2 (RCc

�
l +RK) + �lq (c

�
l )
�

2
�2 q �

�
� �
2 (RCc

�
l +RK) + �c

�
l q (c

�
l )
�

2
�2c�l

v

q2

=

�
� �
2 (RCc

�
l +RK) + �lq (c

�
l ) + �c

�
l q (c

�
l )� �c�l q (c�l )

�
2
�2 q �

�
� �
2 (RCc

�
l +RK) + �c

�
l q (c

�
l )
�

2
�2c�l

v

q2

=

�
� �
2 (RCc

�
l +RK) + �c

�
l q (c

�
l )
�

2
�2

�
q � v

c�l

�
+ (l � c�l ) �q (c�l ) 2

�2 q

q2

= (l � c�l )
1
c�l

�
�
2 (RCc

�
l +RK)� �c�l q (c�l )

�
2
�2 + �q (c

�
l )

2
�2

q

which gives the lemma by noticing that q is decreasing in c and the boundary q0 (c�l ) = 0 implies that

��
2
(RCc

�
l +RK) + �c

�
l q (c

�
l ) / q00 (c�l ) < 0:

The third statement is a consequence of the following Lemma.

Lemma B.7 We have the following limiting results:

lim
!1

fl =
1

cl
; lim
!1

fh =
1

ch
, lim
!1

gh = 0, lim
!1

gl = 0;

and lim
!1

c�h = h, lim
!1

c�l = l:

Proof. The �rst four results are based on L�Hopital rule. Take the �rst result for illustration:

lim
!1

fl = lim
!1

 (Ei[�ch]� Ei[�cl])
e(�cl)

= lim
!1

Ei[�ch]� Ei[�cl]
1
 e
(�cl)

= lim
!1

e�ch

 � e�cl



� 1
2 e

(�cl) + (�cl)
 e(�cl)

= lim
!1

�e�cl=
(�cl)
 e(�cl)

=
1

cl
:

These four results imply that

lim
!1

vh
qh
= lim
!1

RK +
chRC

2 � RC

2 m (cl; ch) +RK

2

�
gh(cl;ch)

 � chfh (cl; ch)
�

RC

2 +RK

2 fh (cl; ch)

=
RK +

chRC

2 �RK 1
2

RC

2 +RK
1
2ch

Thus, in the limit the solution of vhqh = h is the solution for the equation of

RK +
chRC

2 �RK 1
2

RC

2 +RK
1
2ch

= h;
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which gives lim!1 c�h = h: Similarly, the following calculation implies that lim!1 c�l = l:

lim
!1

vl
ql
= lim
!1

RK +
clRC

2 + RC

2 m (cl; ch) +RK

2

�
gl(cl;ch)

 � clfl (cl; ch)
�

RC

2 +RK

2 fl (cl; ch)

=
RK +

clRC

2 +RK
1
2

RC

2 +RK
1
2cl

:

B.3 Proof of Proposition 7

The proofs of the two statements follow the same logic. Thus, we prove the �rst statement in detail and
explain the necessary modi�cations for the second statement at the end of the proof.

Consider the functions ~q (c; q0; v0; ch) and ~v (c; q0; v0; ch) of c parameterized by q0; v0; and ch:

0 =
�2

2
~q00 (c) +

�

2
(RC � ~q (c)) +

�

2

�
RK
c
� ~q (c)

�
(B.17)

0 = ~q0 (c)�2 +
�2

2
~v00 (c) +

�

2
(RCc� ~v (c)) +

�

2
(RK � ~v (c)) : (B.18)

and the boundary conditions

~v0 (ch) = ~q0 (ch) = 0; (B.19)

~q (c0) = q0; ~v (c0) = v0: (B.20)

The general solution is

eq (c) =
RC
2
+ e�cA1 + e

cA2 +
RK

2

�ec Ei (�c) + e�c Ei (c)
2

(B.21)

ev (c) = RK +
cRC
2

+ ec (A3 � cA2)� e�c (A4 + cA1) +
cRK

2

ec Ei (�c)� e�c Ei (c)
2

(B.22)

= RK +RCc+ e
cA3 � e�cA4 � ceq (c) : (B.23)

where A1-A4 (may di¤er from those in (12) and (13)) are pinned down by (B.19)-(B.20). We have

eq0 (c) = �e�cA1 + ecA2 �
RK

2 (e�c Ei[c] + ec Ei[�c])
2

;

ev0 (c) =
RC
2
+
RK (�e�c Ei[c] + ec Ei[�c])

2
+
RKc

2 (e�c Ei[c] + ec Ei[�c])
2

+ec ((�c� 1)A2 + A3) + e�c ((c� 1)A1 + A4) :

De�ne the function ch (q0; v0) implicitly by ~v (ch; q0; v0; ch) = h~q (ch; q0; v0; ch), and we are interested in
the derivatives

@ch
@q0

= �
~v0q0 � h~q

0
q0

~v0ch � h~q0ch
;
@ch
@v0

= �
~v0v0 � h~q

0
v0

~v0ch � h~q0ch
:

We proceed as follows. First we show that @ch
@q0

> 0 and @ch
@v0

< 0: This proves that if q� (c0) � q (c0) and
v� (c0) � v (c0) then c�h < c�h; that is, such policies make the overinvestment problem worse. Then we show
that this is true even if q� (c0) � q (c0) and v� (c0) � v (c0) ; as long as the policy increases the price at c0;
i.e. v�(c0)q�(c0)

> v(c0)
q(c0)

.
We start with the following lemmas.
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Lemma B.8 We have

@~q (ch; q0; v0; ch)

@q0
=

2

eche�c0 + e�chec0
> 0; (B.24)

@~v (ch; q0; v0; ch)

@v0
=

2

e�(ch�c0) + e(ch�c0)
> 0;

@~q (ch; q0; v0; ch)

@v0
= 0: (B.25)

Proof. We show (B.24) �rst. We know that ~q (c0) = q0, which based on (B.21) can be written as
e�c0A1 + e

c0A2 + lq = q0 (where lq is independent of q0) which implies

A1 =
�lq � ec0A2 + q0

e�c0
: (B.26)

and ~q0 (ch) = 0 which can be rewritten as �e�chA1 + echA2 + sq = 0 (where sq is independent of q0)
which implies

A2 =
e�chA1 � sq

ech
=
e�ch

�lq�ec0A2+q0
e�c0

� sq
ech

) A2 =
e�ch

�lq+q0
e�c0

� sq
(1 + e�2che2c0) ech

: (B.27)

Thus, (B.27) and (B.26) imply that

@A2
@q0

=
e�ch

eche�c0 + e�chec0
; (B.28)

@A1
@q0

=
1

e�c0
� e2c0 e�ch

eche�c0 + e�chec0
=

ech

eche�c0 + e�chec0
: (B.29)

Using (B.21) we obtain our result.
The �rst result in (B.25) follows similarly. The second result @~q(ch;q0;v0;ch)@v0

= 0 comes from the fact that
(B.17) and the boundary conditions ~q0 (ch) = 0 and ~q (c0) = q0 are independent of v0.

Lemma B.9 We have

@~v (ch; q0; v0; ch)

@q0
= 2

e(ch�c0) � e�(ch�c0) �  (ch � c0)
�
e�(ch�c0) + e(ch�c0)

�
 (ec0e�ch + e�c0ech)

2 < 0;

@~v (ch; q0; v0; ch)

@q0
� h@eq (ch; q0; v0; ch)

@q0
= 2

e(ch�c0) � e�(ch�c0) �  (ch + h� c0)
�
e�(ch�c0) + e(ch�c0)

�
 (ec0e�ch + e�c0ech)

2 < 0

Proof. We show the �rst result. We rewrite ev (c0) and ev0 (ch) as (as before here lvq and svq are
independent of q0)

ev (c0) = ec0 (A3 � c0A2)� e�c0 (A4 + c0A1) + lvq;ev0 (ch) = svq + e
ch ((�ch � 1)A2 + A3) + e�ch ((ch � 1)A1 + A4)

Thus, the boundary conditions ev (c0) = v0 and ev0 (ch) = 0 imply that
A3 = c0A2 + e

�c0v0 � e�c0 lvq + e�2c0 (A4 + c0A1) ;

A4 = �

(�ech (ch � c0 + 1))A2 +
�
e�ch (ch � 1) + c0e�2c0ech

�
A1

+(e�c0ech) v0 + (sqv � e�c0ech lqv)
e�ch + e�2c0ech
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Thus, using the result in (B.28) and (B.29) one can derive that

@A4
@q0

= ech
2ec0e�ch � c0 (ec0e�ch + e�c0ech)

 (ec0e�ch + e�c0ech)
2 :

Similarly it implies that

@A3
q0

=
@A1
q0

e�2c0c0 +
@A2
q0

c0 +
@A4
q0

e�2c0 =
2e�c0 + c0

�
ec0e�2ch + e�c0

�
 (ec0e�ch + e�c0ech)

2

Consequently, using (B.23), we have (where we have used (B.24))

@ev (ch)
@q0

= ech
@A3
q0

� e�ch @A4
q0

� ch
@eq (ch)
@q0

= 2
e(ch�c0) � e�(ch�c0) �  (ch � c0)

�
e�(ch�c0) + e(ch�c0)

�
 (ec0e�ch + e�c0ech)

2 < 0:

The last inequality comes from the fact that the function ex�e�x�x (e�x + ex) is negative and monotonically
decreasing for all x > 0: The second statement comes directly from the expression for @eq(ch)@q0

:

Lemma B.10 If v0q0 < h; then ~v (y; q0; v0; y)� h~q (y; q0; v0; y) > 0:

Proof. We parameterize ch by y. The idea is that if the function ~v (y; q0; v0; y) � h~q (y; q0; v0; y) is
negative at y = c0 and positive as y !1; then there is a y = ch so that this function is zero (satisfying the
de�nition of ch) and where the slope of this function is positive, which is the claim of our lemma.

The function ~v (y; q0; v0; y)� h~q (y; q0; v0; y) can be solved by imposing the boundary conditions

~v0 (y) = ~q0 (y) = 0; ~q (c0) = q0; ~v (c0) = v0: (B.30)

for all y � c0. Thus, by setting y = c0, we must have

~v (c0; q0; v0; c0)� h~q (c0; q0; v0; c0) = v0 � hq0 < 0;

by the condition of the proposition.
Now we show that ~v (y; q0; v0; y)�h~q (y; q0; v0; y)!1 as y !1. We �rst show calculate limy!1 ~q (y; q0; v0; y)

in (B.21). For this, we solve for e�yA1 and eyA2 from (B.21)-(B.22) and (B.30):

e�yA1 =
q0 � RC

2 + e(c0�y) RKM
0(y)

2 � RK
2 M (c0)

e(y�c0) + e(c0�y)
; eyA2 =

q0 � RC

2 � e(y�c0) RKM
0(y)

2 � RK
2 M (c0)

e(y�c0) + e(c0�y)
:

whereM (y) � �ey Ei [�y]+e�y Ei [y]. Using limy!1M 0 (y) = 0, it is easy to show that limy!1 eyA2 =
limy!1 e�yA1 = 0, which implies that limy!1 ~q (y; q0; v0; y) =

RC

2 in (B.21). A similar argument implies
that limc!1 ~v (c; q0; v0; c) =1. Thus, ~v (c; q0; v0; c)� h~q (c; q0; v0; c) =1. This prove the statement.

Putting together the above three lemmas, we have

@ch
@q0

= �
~v0q0 � h~q

0
q0

~v0ch � h~q0ch
> 0; and

@ch
@v0

= �
~v0v0 � h~q

0
v0

~v0ch � h~q0ch
< 0

This implies that c�h < c�h whenever q� (c0) � q (c0) and v� (c0) � v (c0).

For the last step, as @ch@v0
= � ~v0v0�h~q

0
v0

~v0ch
�h~q0ch

< 0, it su¢ ces to show that this result holds for the worst v0 drop

to maintain p0, i.e., v0 and q0 decrease proportionally so v0=q0 remains at constant.
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To this end, we consider decreasing q0 to �q0 = q0 � " where " is very small. To make sure that �v0
�q0
= v0

q0
;

we need that �v0 = v0 � a" where a = v0
q0
. Let us refer to all the objects after the change with the bar. Our

goal is to show that �v (ch) =�q (ch) would increase; then ~v0ch � h~q0ch > 0 implies that c
�
h < c�h. Using the �rst

two Lemmas above, we have (denoting x � (ch � c0) )

�q (ch) = ~q (ch)� "
2

ex + e�x

�v (ch) = ~v (ch)� 2"
ex � e�x � x (e�x + ex)

 (ex + e�x)
2 � v0

q0

2"

ex + e�x

Hence for su¢ ciently small " we have (up to the �rst order)

�v (ch)

�q (ch)
=

~v (ch)

~q (ch)
� 2"

~q (ch)

 
ex � e�x � x (e�x + ex)

 (ex + e�x)
2 +

v0
q0

1

ex + e�x

!
+
~v (ch)

~q2 (ch)

2"

ex + e�x

=
~v (ch)

~q (ch)
� 2"

~q (ch)

0@ex � e�x � x (e�x + ex)
 (ex + e�x)

2 +

�
v0
q0
� ~v(ch)

~q(ch)

�
ex + e�x

1A >
~v (ch)

~q (ch)
: (B.31)

Here, the third inequality in (B.31) is because the term ex�e�x�x (e�x + ex) < 0 for all x > 0 and v0
q0
� ~v(ch)
~q(ch)

is strictly negative because v0
q0
< ~v(ch)

~q(ch)
= h; hence the �rst order impact of decreasing q0 is an increase in

�v (ch) =�q (ch). Because the above argument holds for any v0 and q0, tracing out the �rst-order e¤ect implies
that any intervention which lowers cash value but keeps capital price unchanged will lower �v(ch)

�q(ch)
. Compared

to that change, an increase in v0 just decreases c�h further. That concludes our proof.
The second statement follows the same steps with the following modi�cations. Each ch has to be changed

to cl and each h has to be changed to l at every point of the proof: Then the �rst lemma remains the same,

the �rst statement in the second lemma changes to
@~v(cl ;q0;v0;cl)

@q0
> 0, while the second statement does not

change. Also, in the proof of the �rst statement we use that ex � e�x � x (e�x + ex) > 0 for all x < 0, and
the proof of the second statement we use that ex � e�x � (x+ y) (e�x + ex) < 0 for all x < 0 and y > 0: In
the last part we follow the same steps, but the inequality (B.31) in the modi�ed version is switched. This
gives that c�l > c�l under the conditions of the statement.

B.4 Solution for Price Floor Policy and Proof of Proposition 8

B.4.1 Characterizing the equilibrium with price �oor policy

We �rst derive the solutions for price �oor policy. A price �oor policy � (c) is de�ned as

0 = q0 (c)�2 +
�2

2
v00 (c)� v (c) + �

2
(RCc+RK) + c� (c) ; (B.32)

0 =
�2

2
q00 � q (c) + �

2

�
RC +

RK
c

�
� � (c) : (B.33)

so that 1) for c 2 (c0; cgh], � (c) = 0, and at the upper investment threshold p (c
g
h) = h; and 2) for c 2 [cgl ; c0],

v (c) = (l + �) q (c) always. Here, v (c), q (c), � (c), c0 and c
g
h are endogenous. We have the following lemma.

Lemma B.11 Given the lower disinvestment threshold cgl , the solution to the price �oor policy can be
calculated as follows.

1. Given the upper investment threshold cgh, �rst calculate the welfare function jg (c) = RK + RCc +
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D1e
�c +D2e

c, where the constants D1-D2 are given by the boundary conditions

jg (c
g
l ; c

g
h) = (c

g
l + l) j

0
g (c

g
l ) ; and j (c

g
h; c

g
h) = (c

g
h + h) j

0
g (c

g
h) :

2. For c 2 (c0; cgh], the capital price and cash price is given by

v (c) = RK +
RCc

2
+ ec (A3 � cA2)� e�c (A4 + cA1) + cRK



2

(ec Ei (�c)� e�c Ei (c))
2

;

q (c) =
RC
2
+ e�cA1 + e

cA2 +RK


2

�ec Ei (�c) + e�c Ei (c)
2

:

Here, A4 = �D1 and A3 = D2. The other four constants, i.e., A1-A2, c0 and c
g
h, are determined by

the following four boundary conditions

v0 (cgh) = 0; q
0 (cgh) = 0; v (c0) = (l + �) q (c0) ; v

0 (c0) = (l + �) q
0 (c0)

3. For c 2 [cgl ; c0], we have

q (c) =
jg (c)

l + c
and v (c) =

l + �

l + c
jg (c) (B.34)

and the taxation is given by

� (c) =
�2

2
q00 � �q (c) + �

2

�
RC +

RK
c

�
> 0

Proof. The total welfare function j (c) = v (c) + cq (c) given in the step 1 of Lemma B.11 only depends
on the investment/disinvestment policies cgl and c

g
h (see explanations around equation (18) and (19)). For

c 2 (c0; cgh], there is not taxation and the derivation is the same as before, except that at the endogenous
intervention point c0 we are value-matching and smooth-pasting so that the price is the implemented �oor
price l + �. Note that by construction we have v (cgh) = hq (cgh) (due to j (c

g
h) = (cgh + h) j

0 (cgh)). For c 2
[cgl ; c0], notice that v (c) = (l + �) q (c) always; (B.34) follows because of jg (c) = v (c) + cq (c) = (l + c) q (c).
The endogenous taxation � (c) follows from (B.33).

B.4.2 Proof of Proposition 8

Now we set � = 0 and prove Proposition 8. There are three steps.

Step 1. Rewrite the problem Clearly, for c 2 (c0; cgh] the same structure solution applies without
policy, with the only di¤erence at the lower end c0 so that v0 (c0) = lq0 (c0) might not be zero. This allows us
to draw connection between the equilibrium with policy and the one without. We �rst show that for cgl < c�l ,
the resulting slope at c0 has to be negative, i.e.

v0 (c0) = lq0 (c0) < 0: (B.35)

To show this, focus on c 2 [cgl ; c0]. By v (c) = l
l+cjg (c) and boundary condition of jg (c), we have

v0 (cgl ) =
l
�
j0g (c

g
l ) (l + c

g
l )� jg (c

g
l )
�

(l + cgl )
2 = 0:
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Moreover, since j00g (c) < 0 (see Proposition 2 and its proof), we have
�
j0g (c) (l + c)� jg (c)

�0
= j00g (c) (l + c) <

0. As a result, since c0 > cgl , we have

sign [v0 (c0)] = sign
�
j0g (c0) (l + c0)� jg (c0)

�
< 0:

This proves (B.35).
This suggest us to introduce fv (�) ; q (�) ; c0; cgh;xg indexed by x as the solution to the ODE system (10)

and (11), with modi�ed boundary conditions

v0 (cgh) = q0 (cgh) = 0; v (c
g
h) = hq (cgh) ;

v0 (c0) = �xl; q0 (c0) = �x; v (c0) = lq (c0) :

Here, the parameter x > 0 captures the negative slope of v0 (c0) = lq0 (c0) < 0. As shown shortly, our
key result does not depend on the exact value of x, which will be determined by pre-determined lower
disinvestment threshold cgl .

It is easy to show that if cgl = c�l , i.e., the policy sets the lower disinvestment threshold as the one in
the market solution, then x = 0 and we have c0 = c�l = cgl and c

g
h = c�h. Given this result, the claim in

Proposition 8 is equivalent to show that

lim
!1

@ch
@x

> 0:

Step 2. Solve the new ODE system For simplicity, we denote cgh by ch. Given c0 and ch, the
boundary conditions v0 (ch) = q0 (ch) = 0 and v0 (c0) = �xl; q0 (c0) = �x imply that

q (c0; c0; x; ch) = q (cl; cl; ch) jcl=c0 +
x
�
e2c0 + e2ch

�
 (e2ch � e2c0)

q (ch; c0; x; ch) = q (ch; cl; ch) jcl=c0 +
2xe(c0+ch)

 (e2ch � e2c0) ;

v (c0; c0; x; ch) = v (cl; cl; ch) jcl=c0 +
x
�
e2c0(l + 1) + e2ch(l � 1)

�
2 (e2ch � e2c0) ;

v (ch; c0; x; ch) = v (ch; cl; ch) jcl=c0 +
2xe(c0+ch)(c0 � ch + l)

 (e2ch � e2c0) :

where q (cl; cl; ch) ; q (ch; cl; ch) ; v (cl; cl; ch) ; v (ch; cl; ch) has been de�ned above. Then, c0 and ch solve
Fh (c0; x; ch) = Fl (c0; x; ch) = 0 where we de�ne

Fh (c0; x; ch) � v (ch; c0; x; ch)� hq (ch; c0; x; ch)

= RK +
(ch � h)RC

2
� RC
2

m (c0; ch) +
RK

2

�
gh (c0; ch)


� (ch + h) fh (c0; ch)

�
+
2xe(c0+ch)(c0 � ch + l)

 (e2ch � e2c0) � h 2xe(c0+ch)

 (e2ch � e2c0) ; and

Fl (c0; x; ch) � v (c0; c0; x; ch)� lq (c0; c0; x; ch)

= RK +
(c0 � l)RC

2
+
RC
2

m (c0; ch) +
RK

2

�
gl (c0; ch)


� (c0 + l) fl (c0; ch)

�
+

 
x
�
e2c0(l + 1) + e2ch(l � 1)

�
2 (e2ch � e2c0) � l

x
�
e2c0 + e2ch

�
 (e2ch � e2c0)

!
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Simple derivation reveals

@Fl
@c0

=
RC
2
� RC

2

2e(c0+ch)

(ec0 + ech)
2 +

RK

2

 
1

c0
+

�
e2ch + e2c0

�
(e2ch � e2c0) gl � fl � (c0 + l)

�
e2ch + e2c0

�
(e2ch � e2c0)

�
fl �

1

c0

�!

@Fh
@c0

=
RC
2

2e(c0+ch)

(ec0 + ech)
2 +

RK

2

0@ 2gl (ch; c0)�
e(ch�c0) � e�(ch�c0)

� � (ch + h) 2
�
fl � 1

c0

�
�
e(ch�c0) � e�(ch�c0)

�
1A

+
2xe(c0+ch)

 (e2ch � e2c0)

 
(c0 � ch + l � h)

�
e2c0 + e2ch

�
(e2ch � e2c0) + 1

!
@Fl
@ch

=
RC
2

2e(c0+ch)

(ec0 + ech)
2 +

RK

2

 
� 2gh
e(ch�c0) � e(c0�ch) � 2 (c0 + l)

1
ch
� fh

e(ch�c0) � e(c0�ch)

!

@Fh
@ch

=
RC
2
� RC

2

2e(c0+ch)

(ec0 + ech)
2 +

RK

2

0B@ 1
ch

� (e2ch+e2c0)
(e2ch�e2c0)

gh (c0; ch)�

(ch + h)
(e2ch+e2c0)
(e2ch�e2c0)

�
1
ch
� fh (ch; c0)

�
� fh (c0; ch)

1CA
� 2xe(c0+ch)

 (e2ch � e2c0)

 
(c0 � ch + l � h)

�
e2c0 + e2ch

�
(e2ch � e2c0) + 1

!

Step 3. Prove the claim Now we are ready to show our desired result lim!1
@ch
@x > 0. First of all, it

is easy to show that when  !1, ch ! h and c0 ! l are bounded. The Cramer�s rule (or implicit function
theorem) implies

lim
!1

@ch
@x

= � lim
!1

������
@Fh
@x

@Fh
@c0

@Fl
@x

@Fl
@c0

������
,������

@Fh
@ch

@Fh
@c0

@Fl
@ch

@Fl
@c0

������ = lim
!1

�@Fh
@x

@Fl
@c0

+ @Fh
@c0

@Fl
@x

@Fh
@ch

@Fl
@c0

� @Fl
@ch

@Fh
@c0

:

Focus on the denominator �rst. It is easy to show that

lim
!1

@Fl
@c0

=
RC
2
+
RK
2

l

c20
; lim
!1

@Fh
@ch

=
RC
2
+
RKh

2c2h
; and lim

!1

@Fh
@c0

= lim
!1

@Fl
@ch

= 0;

implying

lim
!1

@ch
@x

=
lim
!1

�
@Fh
@c0

@Fl
@x �

@Fh
@x

@Fl
@c0

�
�
RC

2 + RKh
2c2h

��
RC

2 + RK

2
l
c20

� (B.36)

For the numerator, since @Fl
@x = � 1

2 and
@Fh
@x = � 2e(c0+ch)(h�l+(ch�c0))

(e2ch�e2c0)
; we can show the following two

limiting results:

lim
!1


�
e(ch�c0) � e�(ch�c0)

� @Fh
@x

@Fl
@c0

= �2 (h� l + (ch � c0))
�
RC
2
+
RK
2

l

c20

�
; (B.37)
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and

lim
!1


�
e(ch�c0) � e�(ch�c0)

� @Fh
@c0

@Fl
@x

= lim
!1

1



0B@ RC

2
2(ech�ec0 )
(ec0+ech) +

RK
2

�
2gl (ch; c0)� (ch + h) 2

�
fl � 1

c0

��
+ 2x



�
(c0�ch+l�h)(e2c0+e2ch)

(e2ch�e2c0)
+ 1

� 1CA = 0: (B.38)

Hence, applying (B.37) and (B.38) to (B.36), we have

lim
!1


�
e(ch�c0) � e�(ch�c0)

� @ch
@x

=
2 (h� l + (ch � c0))

�
RC

2 + RK

2
l
c20

�
�
RC

2 + RKh
2c2h

��
RC

2 + RK

2
l
c20

� > 0:

QED.
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