
C Additional Material for He and Kondor (2015)

C.1 What if cPh > RK?

Throughout the main body of the paper we have restricted our attention to the case where the equilibrium
range of cash-to-capital ratio, which is [c�l ; c

�
h], is below RK . This ensures that in the idiosyncratic stage the

price bp� = c� � RK clears the market in a way that cash (capital) �rms get all the cash (capital). Otherwise,
suppose that c�h > RK . Then, along the equilibrium path it is possible that c� > RK , and the price of capital
at the idiosyncratic stage will be capped at the capital�s �nal output RK . As a result, cash �rms sell all their
capital K�

2 to capital �rms at a price of RK , ending up with a total amount of cash of C�+RKK�

2 ; while the
capital �rms will have K� units of capital but with C��RKK�

2 units of cash in their hands. This allocation
is ine¢ cient as capital �rms are holding cash.

This concern is also relevant in the planner�s constrained e¢ cient allocation. Recall that overinvestment
requires the planner�s upper investment threshold cPh > c�h, hence it is quite likely that in a wide range of
parameters cPh > RK . Because the planner is facing the same information constraint, i.e., the planner cannot
tell a cash �rm from a capital �rm, and the constrained outcome at the idiosyncratic stage is likely to be
ine¢ cient.

To illustrate that our main results hold in this case, in this Appendix we relax our parameter restriction
to

RK > lRC , and RK < h: (C.39)

Note that we are replacing RK < hRC by RK < h; it just says that on the margin capital is better than
cash if we just consume cash (for a utility of 1).

We will fully characterize the planner�s solution when cPh > RK , which is relatively simpler than the
market solution (solving for the market solution fully is much more involved). It turns out that when

l <
RK
RC

< h

holds, then cPh > RK always holds. More importantly, this Appendix shows that when cPh > RK , then our
key Proposition 6 in the main text remains valid. It is because in Proposition 6 we show the overinvestment
result by establishing in the limit that c�h ! h < RK . Then, since cPh > RK , we know that c�h < cPh in this
case automatically, and the key overinvestment result holds.

C.1.1 Mechanism design approach: constrained e¢ cient allocation at idiosyncratic
stage

We �rst show that the mechanism design approach yields the same result as if the planner opens the trading
market at the idiosyncratic stage: as discussed above, cash �rms ends up with C�+RKK�

2 amount of cash,
while capital �rms have K� units of capital but with C��RKK�

2 amount of cash.
Recall that cash �rms cannot operate capital, but capital �rms can consume cash at its reservation value

of 1. Denote the allocations by fCC ; CK ;KC ;KKg 2 R4+ where the subscript indicates the reported type.
Given resource pair (C;K), the planner is maximizing

max
fCC ;CK ;KC ;KKg2R4+

1

2
(RCCC) +

1

2
(RKKK + CK)

s:t: CC + CK � C; (C.40)

KC +KK � K; (C.41)

CC � CK ; (C.42)

RKKK + CK � RKKC + CC : (C.43)
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Proposition C.1 The solution to the above problem is

KK = K, KC = 0, CK =
C �RKK

2
; and CC =

C +RKK

2
;

which is identical to the market solution, where the capital price is capped at bp� = RK .
Proof. We have several key observations. First, reducing KC and increasing KK until (C.41) binds

can improve objective, relax (C.43), but still satis�es (C.41). Hence KC = 0 and KK = K. Second, (C.40)
holds with equality. Otherwise, let " = (C � CC � CK) =2 > 0 and raise CC and CK by ", which improves
objective and satis�es (C.42) and (C.43). Then we guess (C.43) binds before (C.42). Solve the problem with
binding (C.42), we have CK = C�RKK

2 and CC = C+RKK
2 . Since (C.42) holds with strict inequality under

this solution, our claim follows.

C.1.2 Property of the planner�s value function jP (c)

The previous subsection shows that when c > RK , then the aggregate surplus at the idiosyncratic stage is

RK +RC

�
c+RK
2

�
+
c�RK
2

where the second (third) term captures the cash in the cash (capital) �rms. For c � RK , the surplus is still
RK + cRC . As a result, we can write the HJB equation as

0 =
�2

2
j00P (c) + �

�
RK +

RC + 1

2
c+

RC � 1
2

min (c;RK)� jP (c)
�
for c 2

�
0; cPh

�
where the �ow payo¤ f (c) � RK +

RC+1
2 c + RC�1

2 min (c;RK) is piecewise linear, increasing, and concave
in c.

The general solution can be written as

jP (c) =

8<: RK +RCc+D
below
1 e�
c +Dbelow

2 e
c for c 2 (0; RK)
RC+1
2 RK +

RC+1
2 c+Dupper

1 e�
c +Dupper
2 e
c for c 2

�
RK ; c

P
h

�
where Dbelow

1 , Dbelow
2 , Dupper

1 , and Dupper
2 are coe¢ cients to be determined. Now we list all the boundary

conditions. At cPl = 0 we have the smooth pasting condition:

jP (0) = lj0P (0) : (C.44)

At c = RK we have value matching and smooth pasting conditions on both sides

jP (RK�) = jP (RK+) ; j
0
P (RK�) = j0P (RK+) (C.45)

At c = cPh we have smooth pasting condition

jP
�
cPh
�
=
�
h+ cPh

�
j0P
�
cPh
�

(C.46)

and super contact condition
j00P
�
cPh
�
= 0 (C.47)

These �ve conditions (C.44)-(C.47) pin down �ve unknowns, in which four of them are coe¢ cients for jP (c)
in two intervals, and one of them is the optimal upper threshold cPh .

Now we show that our main result hold in this case of cPh > RK . First, we the counterpart of Proposition
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2.

Proposition C.2 The planner�s value function under optimal policy jP (c) is strictly concave, and jP (c) <
f (c) = RK +

RC+1
2 c+ RC�1

2 min (c;RK).
Proof. Denote the �ow payo¤ by

f (c) = RK +
RC + 1

2
c+

RC � 1
2

min (c;RK) :

The value function jP (c) satis�es

0 =
�2

2
j00P (c) + � (f (c)� jP (c)) (C.48)

with boundary conditions jP (0) = lj0P (0) ; jP
�
cPh
�
=
�
h+ cPh

�
j0P
�
cPh
�
; j00P

�
cPh
�
= 0, and two conditions

at c = RK . Note that the boundary conditions imply that jP
�
cPh
�
= f

�
cPh
�
= RC+1

2 RK +
RC+1
2 cPh given

cPh > RK .
We show that jP (c) is concave over

�
0; cPh

�
; which implies jP (c) < f (c). First, from smooth pasting

condition at cPh we have (recall the parameter restriction of RK > h)

RC + 1

2
� j0P

�
cPh
�
=
RC + 1

2
�
jP
�
cPh
�

h+ cPh
=
RC + 1

2
�

RC+1
2 RK +

RC+1
2 cPh

h+ cPh
=
RC + 1

2

h�RK
h+ cPh

< 0:

Then, taking derivative again on (C.48) and evaluate at the optimal policy point cPh , we have

j000P
�
cPh
�
= � 2�

�2

�
RC + 1

2
� j0P

�
cPh
��
=
2�

�2
RC + 1

2

RK � h
h+ cPh

> 0; (C.49)

and as a result j00P
�
cPh�

�
< 0. Suppose that jP fails to be globally concave over

�
0; cPh

�
. Then there exists some

point j00P > 0, and pick the largest one bc so that j00P is concave over �bc; cPh � with j00P (bc) = 0 and j000P (bc) < 0. Atbc we have jP (bc) = f (c), j0P (bc) < f 0 (c) (because jP (c) cross f (c) from above), and jP (c) is strictly convex
around the vicinity of c < bc. Using standard argument one can show that jP (c) is strictly convex over [0;bc]
(if not, pick the largest point point ec so that j00P (ec) = 0. But due to convexity of j (c) and linearity of f (c)
in [ec;bc] we have f (c) < jP (c) strictly, contradicting with j00P (ec) = 0). Thus jP (c) is strictly convex over
[0;bc]. Since f (c) is concave, we have j0P (0) < j0P (bc) < f 0 (bc) < f 0 (0) = RC and jP (0) > f (0) = RK . It
contradicts with the boundary condition at c = 0, because jP (0) = lj0P (0) < lRC < RK .

To sum up, jP (c) is globally concave over
�
0; cPh

�
, which also implies that jP (c) < f (c) due to (C.48).

We now show that when RK < hRC holds, we have cPh > RK .

Corollary 1 Under parameter restriction C.39, and suppose that RK < hRC . Then cPh > RK :
Proof. Suppose that cPh < RK ; then we should have the same characterization in Proposition 2. However,

RK � hRC
RK � lRC

�
ec

P
h 
 (1 + l
)� (1� l
) e�c

P
h 

�
� 2


�
cPh + h

�
= 0

admits no solution: if RK � hRC < 0 then even the �rst term is negative.21 Hence cPh > RK . And, when
c!1 the marginal value of cash is 1 and the marginal value of capital is RK . Hence when RK < h, holding
cash is strictly dominated by holding capital when c!1, implying cPh <1.22

21Note that ec
P
h 
 (1 + l
)� (1� l
) e�cPh 
 > ecPh 
 � e�cPh 
 > 0.

22This result is also consistent with condition (C.49) which says that postponing liquidating for c > cPh gives
j00P
�
cPh+

�
> 0.
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Intuitively, when accumulated cash (relative to the capital stock) is below RK , then the marginal value
of cash is RC . If RK < hRC , then the bene�t of capital is below the cost of building capital, it is never
optimal to build the capital for c < RK . When c > RK , the marginal value of cash is just its consumption
value 1. As RK > h says the bene�t of capital exceeds the cost, then the planner starts building capital
when c = cPh > RK for su¢ ciently high cPh .

C.1.3 Welfare results

Now we have the counterpart of Proposition 3, which gives the key result about investment ine¢ ciency. The
argument is almost identical to Proposition 3 which only relies on the concavity of jP for all policy c 2 [cl; ch]
if ch < cPh and cl > 0.

Proposition C.3 For any ch < cPh and cl > 0, we have

@jP (c; cl; ch)

@cl
< 0, and

@jP (c; cl; ch)

@ch
> 0 of all c 2 [cl; ch] :

Proof. Suppose that we are given the policy pair (cl; ch) with 0 < cl < ch < cPh where cPh satis�es
the super-contact condition j00P

�
cPh ; 0; c

P
h

�
= 0: To avoid cumbersome notation we denote the social value

jP (c; cl; ch) given the policy pair (cl; ch) by j (c; cl; ch), and denote the social value under the optimal policy
jP
�
c; 0; cPh

�
by jP (c). We need to show that

@j (c; cl; ch)

@cl
< 0 and

@j (c; cl; ch)

@ch
> 0.

This result further implies that for 0 < c2l < c1l < c1h < c2h < cPh , we have j
�
c; c1l ; c

1
h

�
< j

�
c; c2l ; c

2
h

�
:

As preparation, we �rst show that j00 (ch; cl; ch) < 0 and j00 (cl; cl; ch) < 0: Because (cl; ch) is suboptimal,
we must have j (c; cl; ch) < jP (c) � f (c) (recall the above proposition). Then 0 = �2

2 j
00 (c) + � (f (c)� j (c))

implies that j (c) is strictly concave at both ends. Second, for any policy pair (cl; ch) (including the market
solution or the planner�s solution), the smooth pasting condition (not optimality condition!) at the regulated
ends implies that

j (ch; cl; ch)� (ch + h) j0 (ch; cl; ch) = 0; (C.50)

j (cl; cl; ch)� (cl + l) j0 (cl; cl; ch) = 0: (C.51)

Now we start proving the properties for the top policy ch. De�ne Fh (c; cl; ch) � @
@ch

j (c; cl; ch), which is
the marginal impact of changing the top investment policy on the social value. Di¤erentiating the basic ODE
by the policy ch, we have �2

2
@
@ch

j00 (c; cl; ch)� � @
@ch

j (c; cl; ch) = 0, or

�2

2
F 00h (c; cl; ch)� �Fh (c; cl; ch) = 0: (C.52)

Moreover, take the total derivative with respect to ch on the equality (C.50), i.e., take derivative that a¤ects
both the policy ch and the state c = ch, we have

@

@ch
j (ch; cl; ch) + j

0 (ch; cl; ch) = j0 (ch; cl; ch) + (ch + h)

�
@

@ch
j0 (ch; cl; ch) + j

00 (ch; cl; ch)

�
) @

@ch
j (ch; cl; ch)� (ch + h)

@

@ch
j0 (ch; cl; ch) = (ch + h) j

00 (ch; cl; ch) < 0

) Fh (ch; cl; ch)� (ch + h)F 0h (ch; cl; ch) < 0: (C.53)

which gives the boundary condition of Fh (�) at ch. At cl we can take total derivative with respect to ch on
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the equality (C.51), we have the boundary condition of Fh (�) at cl:

@

@ch
j (cl; cl; ch) = (cl + l)

@

@ch
j0 (cl; cl; ch)) Fh (cl; cl; ch)� (cl + l)F 0h (cl; cl; ch) = 0: (C.54)

With the aid of these two boundary conditions, the next lemma shows that Fh (�) has to be positive always.
Because of the de�nition of Fh (c; cl; ch) � @

@ch
j (c; cl; ch), it implies that raising ch given any state c and any

lower policy cl improves the social value. The argument for the e¤ect of cl is similar and thus omitted.

Lemma B.1 We have Fh (c) > 0 for c 2 [cl; ch].
Proof. We show this result in three steps.
First, Fh (c) cannot change sign over [cl; ch]. Suppose that Fh (cl) > 0; then from (C.54) we know that

F 0h (cl) > 0. Then simple argument based on ODE (C.52) implies that Fh (�) is convex and always positive.
Now suppose that Fh (cl) < 0; then the similar argument implies that Fh is concave and negative always.
Finally, suppose that Fh (cl) = 0 but Fh changes sign at some point. Without loss of generality, there must
exist some point bc so that F 0h (bc) = 0, Fh (bc) > 0 and F 00h (bc) < 0. But this contradicts with the ODE (C.52).

Second, de�ne Wh (c) � Fh (c) � (l + c)F 0h (c) so that W 0
h (c) = � (l + c)F 00h (c) = �

2�(l+c)
�2 Fh (c). As a

result, W 0
h (c) cannot change sign. Because we have Wh (cl) = 0, Wh (c) cannot change sign either.

Third, suppose counterfactually that Fh (c) < 0 so that W 0
h (c) > 0. Step 2 implies that Wh (c) > 0, and

F 0h (ch) =
h�l
l+c (Fh �Wh) < 0. But we then have

Wh (ch) = Fh (ch)� (l + c)F 0h (ch) = Fh (ch)� (h+ c)F 0h (ch) + (h� l)F 0h (ch) < 0;

where we have used (C.53), contradiction. Thus we have shown that Fh (c) > 0.

The next proposition naturally follows.

Proposition C.4 When 
 ! 1 then in the market solution c�h ! h < RK . For planner�s solution, we
have cPh > RK when either RK �hRC > 0 is su¢ ciently small or when RK �hRC < 0. It implies that �rms
overinvest in capital in booms in the market solution.

C.1.4 A Model without Idiosyncratic Investment Opportunities

Suppose that at the �nal date, every �rm with holdings (K;C) can produce RKK + RCC units of �nal
consumption goods. This formulation is also equivalent to the base model but with complete market, i.e.,
introducing some Arrow-Debrew securities contingent on �rms� idiosyncratic type realization�either K or
C� which obviously complete the market. Ex ante, each �rm will fully hedge using these Arrow-Debrew
contracts, so that each unit of capital pays o¤ RK units of consumption goods while each unit of cash pays
o¤RC units of consumption goods. This is exactly identical to the hypothetical precautionary-saving-motive
model without idiosyncratic investment opportunities.

We show that the precautionary-saving-motive model is constraint e¢ cient, a reminiscent of the �rst
welfare theorem. To prove this result formally, denote the value functions in the complete market equilibrium
by vcm (c) and qcm (c). The HJB equation for value functions become

0 =
�2

2
q00cm (c)| {z }

volatility of dct

+ � (RC � qcm (c))| {z }
�nal date realization

(C.55)

0 =
�2

2
v00cm (c)| {z }

volatility of dct

+ q0cm (c)�
2| {z }

expected value of dividends

+ � (RK � vcm (c))| {z }
�nal date realization

(C.56)
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In contrast, in our model the valuation equations for q and v given idiosyncratic investment opportunities
are

0 =
�2

2
q00cm (c)| {z }

volatility of dct

+
�

2
(RC � qcm (c))| {z }

becoming a cash �rm

+
�

2

�
RK
c
� qcm (c)

�
| {z }
becoming a capital �rm

(C.57)

0 =
�2

2
v00cm (c)| {z }

volatility of dct

+ q0cm (c)�
2| {z }

expected value of dividends

+
�

2
(RCc� vcm (c))| {z }

becoming a cash �rm

+
�

2
(RK � vcm (c))| {z }

becoming a capital �rm

(C.58)

Take q equation as example. In (C.55), the term "�nal date realization" captures that with intensity �, the
�rm can use its cash holding to obtain RC units of consumption goods. While in (C.57), this term has two
components: if becoming a cash �rm with intensity �

2 , then it obtains RC ; while if becoming a capital �rm
with intensity �

2 , it obtains
RKbp = RK

c by purchasing capital (which generates RK) at the price of bp = c.
Comparing (C.55)-(C.56) to the planner�s solution in Section 3.1.1, we see that

jP (c) = vcm (c) + cqcm (c) :

Denote the new endogenous (dis)investment boundaries by ccmh and ccml . Because we knew that the con-
strained e¢ cient solution features ccml = 0, we need to be careful in the associated boundary conditions at
the lower bound boundary. At upper boundary, we have

v (ccmh )

q (ccmh )
= h, v0 (ccmh ) = 0, and q0 (ccmh ) = 0: (C.59)

At the lower boundary, taking into account of possibility that c�l = 0 binds at zero, we have the complementary-
slack condition:

v (ccml )

q (ccml )
= l, v0 (ccml ) = 0, and q0 (ccml ) � 0 with strict inequality if ccml = 0: (C.60)

The �rst condition v(c��l )

q(c��l )
= l have to hold because in equilibrium only a fraction of �rms are liquidating their

capital at ccml , who must be indi¤erent between selling or liquidating their capital. The intuition behind
v0 (ccml ) = 0 and q0 (ccml = 0) < 0 is as follows. Note that c in the functions v (�) and q (�) capture the
aggregate cash liquidity. Loosely speaking, if the aggregate liquidity is strictly negative say �", then the
value of cash is higher (relative to q (c = 0)) because cash can be used to reduce the amount of capital that
needs to be liquidated. In contrast, given c = �" or 0, the optimal policy with regard to existing capital is
unchanged (think about those capitals that end up not to be liquidated), which explains v0 (ccml = 0) = 0.

The following proposition formally shows that ccml = 0 and ccmh = cPh , which coincide with the planner�s
solution.

Proposition C.5 In the complete market economy, there is an equilibrium for any set of parameters where

1. �rms do not consume before the aggregate stage,

2. each �rm in each state c 2 [0; ccmh ] is indi¤erent in the composition of her portfolio,

3. each �rm holding capital use every positive cash shock to build capital if and only if c = ccmh and �nance
the negative cash shocks by liquidating the capital if and only if c = 0;

4. the value of holding a unit of cash and the value of holding a unit of capital are described by

qcm (c) = RC + e
�c
L1 + e

c
L2; (C.61)

vcm (c) = RK + e
�c
 �DP

1 � cL1
�
+ ec


�
DP
2 � cL2

�
: (C.62)
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where constants L1; L2; DP
1 ; D

P
2 and ccmh are determined by boundary conditions from (C.59) and

(C.60):
vcm (c

cm
h )

qcm (ccmh )
= h;

vcm (0)

qcm (0)
= l, v0cm (c

cm
h ) = q0cm (c

cm
h ) = v0cm (0) = 0: (C.63)

In this equilibrium, vcm (c) is increasing in c; qcm (c) is decreasing in c. Hence pcm (c) � vcm(c)
qcm(c)

is
increasing in c, implying the optimality of ccml = 0,

5. �nally, we have ccmh = cPh , D
P
1 = D1 and DP

2 = D2 given in the planner�s solution, so that jP (c) =
vcm (c) + cqcm (c) for all c 2

�
0; cPh

�
.

Proof. Given (C.61)-(C.62), the boundary conditions in (C.63) are

RK +RCc
cm
h + ec

cm
h 
DP

2 + e
�ccmh 
DP

1

RC + e�c
cm
h 
L1 + ec

cm
h 
L2

= h+ ccmh ; (C.64)

RK +D
P
2 +D

P
1

RC + L1 + L2
= l; (C.65)


ec
cm
h 


�
DP
2 � ccmh L2

�
� L2ec

cm
h 
 � 
e�c

cm
h 


�
DP
1 � ccmh L1

�
� L1e�c

cm
h 
 = 0; (C.66)

�
e�c
cm
h 
L1 + 
e

ccmh 
L2 = 0; (C.67)


DP
2 � L2 � 
DP

1 � L1 = 0: (C.68)

Adding ccmh times (C.67) to (C.66) gives

ec
cm
h 


�

DP

2 � L2
�
� e�c

cm
h 


�

DP

1 + L1
�
= 0:

Together with (C.68), this implies


DP
2 = L2; and � L1 = 
DP

1 : (C.69)

Substituting this into (C.67) gives
e�c

cm
h 
DP

1 + e
ccmh 
DP

2 = 0: (C.70)

Also, as L1 + L2 = 
L3 � 
L4, (C.65) implies that

RK +D
P
2 +D

P
1 = l

�
RC + 
D

P
2 � 
DP

1

�
(C.71)

and by (C.69), (C.64) is equivalent to

RK +RCc
cm
h + ec

cm
h 
DP

2 + e
�ccmh 
DP

1 = (h+ c
cm
h )

�
RC � 
DP

1 e
�ccmh 
 + 
DP

2 e
ccmh 


�
: (C.72)

Then, we observe that the system (C.70)-(C.72) is equivalent with the following system for the planner�s
problem with DP

2 = D2, DP
1 = D1 and ccmh = cPh :

RK +D1 +D2 = l (RC � 
D1 + 
D2) ;

RK +RCc
P
h +D1e

�
cPh +D2e

cPh =

�
h+ cPh

� �
RC � 
D1e

�
cPh + 
D2e

cPh

�
;

D1e
�
cPh +D2e


cPh = 0:

with D1 = � (RK�lRC)e
2
cPh

(1+l
)e2
c
P
h �(1�l
)

, D2 =
RK�lRC

(1+l
)e2
c
P
h �(1�l
)

.

Finally, to show that price is monotonically increasing in this economy we show that v0cm (c) > 0 and
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q0cm (c) < 0 for every c 2 (0; ccmh ). It is easy to check that

q0cm (c) = �
e�c
L1 + 
ec
L2 = 
2e�c
D1 + 

2ec
D2 =

= 
2 (RK � lRC) ec

1� e2
(c

P
h�c)

e2
c
P
h + l


�
e2
c

P
h � 1

�
+ 1

< 0:

This also veri�es the complementarity-slackness condition in (C.60). And,

v0cm (c) = 
ec
 (D2 � cL2)� L2ec
 � 
e�c
 (D1 � cL1)� L1e�c


= �c
2D2e
c
 � c
2D1e

�c
 = c
2 (RK � lRC) ec

e2
(c

P
h�c) � 1

e2
c
P
h + l


�
e2
c

P
h � 1

�
+ 1

� 0:

Q.E.D.

C.2 The role of Cobb-Douglas technology in Section 5.1

In Section 5.1 we introduce a Cobb-Douglas technology which combines cash and capital to produce some
�nal goods; and recall in the base model this technology is not needed. This note explains why we introducing
this technology.

It is a tradition in the pecuniary externality literature to think about distortionary tax scheme as small
transfer which results in some �rst-order incentive/welfare implications. But, because the linear production
technology used in the main model may well push individual �rms to take some cornered solution (as we
�nd in our numerical solution), �rms are insensitive to marginal tax transfers. In other words, the linear
technology implies a cornered solution on the lower side, and as a result distortionary tax schemes which
only a¤ect incentives slightly have a hard time to induce some real e¤ect.

We introduce the Cobb-Douglas technology �K�C1�� in the aggregate stage in order to break the corner
solution for the disinvestment threshold. Cobb-Douglas technology naturally implies a higher marginal value
of cash when the aggregate cash level is lower. This can be seen here:

0 = q0 (c)�2 + v0 (c)
�

2

�
�p (c) + c2

p (c)

�
+
�2

2
v00 (c) + �

�
RCp (c) +RK

2
� v (c)

�
+ ��c1��| {z }
extra mv of capital

(C.73)

0 = q0 (c)
�

2

�
�p (c) + c2

p (c)

�
+
�2

2
q00 (c) + �

�
1

2

�
RC +

RK
p (c)

�
� q (c)

�
+ � (1� �) c��| {z }

ex mv of cash

(C.74)

relative to (12), there is an extra �ow � (1� �) c�� in the cash value equation which increases when c drops.
In fact, because it features the Inada condition so that the marginal value of cash goes to in�nity when
Ct = 0, it automatically guarantees that the equilibrium disinvestment threshold take an interior solution
with a zero-order �rst condition (rather than be cornered at c = 0 with non-zero �rst-order condition).

As a result, with Cobb-Douglas technology, in the market solution �rms are taking interior solutions
on both the upper investment and lower disinvestment thresholds, both with zero �rst-order conditions.
Because policy interventions are in the form of small distortionary tax schemes, this helps us illustrate the
pecuniary externality with small policy interventions, an exercise that we are performing in Section 5.

C.3 The model with collateralized borrowing and proof of Proposition 9

As a preparation we �rst analyze the model with collateralized borrowing; we then give the proof of Propo-
sition 9 in Section 5.2.

We highlight three parameters with superscript b which have special roles in characterizing the equilib-
rium. In the economy with collateralized borrowing, we use RbK to denote the productivity of capital; and,
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per unit of capital �rms get lb units of cash when liquidating while need to invest hb units of cash when
investing.

We conjecture that �rms always max out their borrowing capacity (and verify later this holds in equi-
librium). In the idiosyncratic stage after the heterogenous technology shocks hit, there are K�=2 units of
capital to be sold. On the cash side, in addition to C�=2 units of the cash, collateralized borrowing implies
that there are bK� units of extra cash in aggregate from external creditors. Hence the equilibrium capital
price is bp� = bK�+C�=2

K�=2
= 2b+ c� : For capital �rms being willing to purchase capital, we require

RbK > 2b+ c� ; (C.75)

which, as in the base model, can hold in equilibrium because c� will be bounded endogenously.
For assets that can be used as collateral, it is useful to note that bp� � b is the �e¤ective�capital price.

This is because each unit of capital can be used to borrow b units of cash, and �rms with their own cash ofbp� � b = b + c� can buy a unit of capital. When c� = �b which is lower bound of the aggregate net cash
holding, the e¤ective price of capital drops to zero.

For capital �rms with capital K� and cash C� , they will use their cash holding C� , together with credit
K� b, to purchase capital from the market at the e¤ective capital price b+ c� . The �nal consumption goods,
net of borrowing payment, is

K�

�
RbK � b

�| {z }
own capital holdings

+
C� +K� b

b+ c�

�
RbK � b

�
| {z }

purchasing capital from market

= K�

(2b+ c� )
�
RbK � b

�
b+ c�| {z }

marginal payo¤ of capital

+ C�
RbK � b
b+ c�| {z }

marginal payo¤ of cash

(C.76)

Note, under condition (C.75), it is optimal to exhaust the borrowing capacity (at a marginal cost of 1) to

puchase the capital from the market (at a marginal bene�t of R
b
K�b
b+c�

). For cash �rms, their payo¤ is

C�RC| {z }
net cash holdings

+ K� (2b+ c� )RC| {z }
selling capital to the market

: (C.77)

Hence, the marginal payo¤ for capital is K� (2b+ c� ), while for cash it is RC .
Now we move on to aggregate stage, and denote the value of capital and cash by vb (c) and qb (c),

respectively. The similar structure for the market equilibrium as in the base model prevails, i.e. �rms build
(dismantle) capital when the aggregate cash-to-capital ratio ct reaches an endogenous upper (lower) threshold
c�bh (c�bl ). In the inaction region c

b 2
�
cb�l ; c

�b
h

�
, we have the same evolution of state variable dct = �dZt, and

the values of capital and cash satisfy

0 = qb0 (c)�2 +
�2

2
vb00 (c)� �vb (c) + �

2

"
(2b+ c)

�
RbK � b

�
b+ c

+RC (c+ 2b)

#
;

0 =
�2

2
qb00 (c)� �qb (c) + �

2

�
RC +

RbK � b
b+ c

�
:

Here, we have used the marginal payo¤s of capital and cash for either capital or cash �rms given in (C.76)
and (C.77). The boundary conditions are the same as the base model:

qb0
�
c�bl
�
= vb0

�
c�bl
�
= 0, vb0

�
c�bl
�
= lbqb

�
c�bl
�
; (C.78)

qb0
�
c�bh
�
= vb0

�
c�bh
�
= 0, vb

�
c�bh
�
= hbqb

�
c�bh
�
: (C.79)

We now show that there is a simple relationship between the economy with and without borrowing both
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in the planner�s case and in the decentralized case. de�ne three �translated�parameters as

RK = RbK � b, h = hb � b, and l = lb � b; (C.80)

and consider the no-borrowing economy with the above three parameters. For the market equilibrium, denote
the resulting capital and cash value functions v (c) and q (c) respectively, with equilibrium thresholds (c�l ; c

�
h).

Analogously, denote j (�) and cPh as the social planner�s solution. We have the following proposition.

Proposition C.6 Consider the economy with borrowing. For the social planner, we have jb (c) = j (c+ b),
cP;bl = �b and cP;bh = cPh � b. For the market equilibrium the capital and cash value functions are given by

vb (c) = v (c+ b) + bq (c+ b) ; and qb (c) = q (c+ b) : (C.81)

Hence the capital price is pb (c) = p (c+ b) + b, and the investment and disinvestment thresholds are given
by cb�l = c�l � b and cb�h = c�h � b:

Proof. Recall that in the base model without borrowing, if R = Rb � b, our value functions satisfy

0 =
�2

2
q00 (c) +

�

2
(RC � q (c)) +

�

2

�
RbK � b

c
� q (c)

�
; (C.82)
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2
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�
: (C.83)

We only show qb. If qb (c) = q (c+ b), we have

0 =
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2
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2

�
RC � qb (c)

�
+
�

2

�
RbK � b
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� qb (c)
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, 0 =
�2
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q00 (c+ b) +
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2
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2

�
RbK � b
c+ b

� q (c+ b)
�

which holds always as we can view c + b as c in (C.82). Similarly we can show the result for vb (c). The
investment and disinvestment thresholds and the social planner�s solution are obvious given this result.

C.3.1 Proof of Proposition 9

For simplicity we set 
 = 1. Our results rely on two lemmas. The �rst lemma gives the market solution.

Lemma B.2 For any a > 1; cl = x; ch = ax is an equilibrium in the limit x! 0; if

3 (a� 1)� (a+ 1) ln a
ln a

x = l;

3 (a� 1)� (a+ 1) ln (a)
ln (a)

x+ o (x) = h.

Proof. One can show limx!0 xfl (x; ax) =
ln(a)
4(a�1) ; lim"!0 gl (x; ax) = 1� a ln(a)

a�1 . Thus, we have
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:
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Hence if l = 3(a�1)�(a+1) ln a
ln a x then x = L (ax) in the limit. Similarly

lim
x!0

axfh (x; ax) =
a ln (a)


 (a� 1) ; limx!0
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a� 1 :

Thus, for
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Then x = H (ax) in the limit. QED.

Because l (k) = O
�
"k
�
, h (k) = O

�
"k
�
+ " and k < 1, " = o

�
O
�
"k
��
, which implies the above lemma

applies. Hence the market solution has

c�l = O
�
"k
�
, c�h = aO

�
"k
�

where a > 1 is the solution to 3 (a� 1) = a ln a. The next lemma gives the planner�s solution.

Lemma B.3 For x being su¢ ciently small, suppose that

l = x, and h = x+O
�
x3(1+�)

�
where the constant � can be either positive or negative. Then the social planner�s solution satis�es
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It is easy to show cPh ! 0 as x! 0. Then Taylor expansion implies that
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the LHS of (C.84) is
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and (C.84) therefore is
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Now, we write the above equation as
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Here, term (1) on LHS is dominated by (a) on RHS, term (2) on LHS is dominated by (c) on RHS, and the
term (3) on LHS is dominated by (b) on RHS. As a result, it must be that cPh is determined by LHS=0 when
x is su¢ ciently small. We have the following three cases to consider.

1. If � > 0, we conjecture that term (b) is at a higher order so it is negligible. Thus cPh is determined by

x
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2. If � = 0, then we LHS=0 implies that
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which implies that cPh = O (x).

3. If � < 0, we conjecture that term (a) is at a higher order so it is negligible. Then cPh is determined by

RK
3
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cPh
�3�� 2RKO �x3(1+�)� = 0

which implies that cPh =
3
p
6 (x)

1+�.

Recall that l (k) = O
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�
, h (k) = O
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+ "; applying the above lemma, we know that
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Because c�l (k) = O
�
"k
�
and c�h (k) = aO

�
"k
�
, for k > 1=3 we have cPh (k) > c�h (k), i.e. overinvestment in

booms.

C.4 An alternative equilibrium

In the main text we showed that an equilibrium exist when h� l is su¢ ciently small; it is possible that the
type of equilibrium presented in the main text does not exist. In this subsection we provide some insights
on the type of equilibrium that arises instead.

While the system (12)-(13), (7)-(9) always have a solution, for some parameters this solution implies that
for a c su¢ ciently close to c�l ; the price is below the threshold l: This obviously cannot be an equilibrium�
�rms would dismantle whenever the price drops below the liquidation bene�t l. For that set of parameters
we can construct the equilibrium as follows. There exists a cx 2 (c�l ; c�h), so that for every c 2 [c�l ; cx] we
have p (c) = v(c)

q(c) = l, and an endogenous fraction of capital are dismantled at every instant. That is, in this
range the price is constant in c and �rms dismantle an increasing fraction of their capital as c drops further
from cx. The following proposition describes this equilibrium.

Proposition C.7 Suppose that there is a c�h < RK ; cx 2 (l; c�h) ; q0; A1; A2; A3; A4 solving (12)-(13), (31)

�

2�2

�
RC +

RK
cx

�
(l � cx) = q0 (cx)

l
�

2�2

�
RC +

RK
cx

�
(l � cx) = v0 (cx)

v (cx)

q (cx)
= l;

v (c�h)

q (c�h)
= h; v0 (c�h) = q0 (c�h) = 0:

Then there exists a market equilibrium with partial liquidation where

1. �rms do not consume before the �nal date,

2. each �rm in each state c 2 [l; c�h] is indi¤erent in the composition of its asset holdings,

3. �rms do not build or dismantle capital when c 2 (cx; c�h) and, in aggregate, �rms spend every positive
cash shock to build capital i¤ c = c�h and cover the negative cash shocks by liquidating a fraction of
capital i¤ c 2 [l; cx] : When c = l; �rms �nance every negative cash shock by liquidating capital.
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4. the value of cash and the value of capital are given by q (c) and v (c) are the same as in the base model
for c 2 (cx; c�h); for c 2 (l; cx) they are

q (c) = q0 +
�

2�2

�
(RC l �RK) (c� l)�

RC
2

�
c2 � l2

�
+ lRK (ln c� ln l)

�
; v (c) = lq (c)

and the price in the aggregate stage is p = l when c 2 [l; cx].

5. In the idiosyncratic stage, each cash �rm sells all its capital to the cash �rms who are not hit by the
shock of the price p̂� = c:

Proof. Under the conditions of the Proposition, �rms start to disinvest whenever p (c) = l. Given the
liquidation rate y (c) dt = �dK=K, then its impact on the aggregate cash-to-capital ratio c is

x (c) dt � dC

K
� C

K

dK

K
= � ldK

K
� C

K

dK

K
= (l + c) y (c) dt;

so c evolves as dc = x (c) dt+ �dZt: We must have v (c) = lq (c) as �rms are always indi¤erent in liquidating
the capital, and v and q satis�es:
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Using v (c) = lq (c), we obtain
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Eliminating identical terms, we get
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As q0 (cl) = 0 has to hold, cl = l: The closed-form solution is
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And, we have q00 (c) = � �
2�2

�
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lRK

c2

�
< 0: We know that of c 2 [l; cx] we have v (c) = lq (c) which allows

us to back out the endogenous drift of c:

x (c) =
��2

2 q
00 (c)� �

2

�
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RK

c

�
+ �q (c)

q0 (c)
;

and thus the endogenous liquidation rate y (c) = x(c)
l+c . For c > cx we have the ODE as usual. We then search

of the cx; ch pair that satis�es the conditions of the proposition.
Plotting v, q and p give very similar graphs to Figure 2 with the main di¤erence that at the range

c 2 [l; cx] the price is �at at the level l: In the same range q (c) is decreasing implying that v (c) = lq (c) is
also decreasing.
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