
Some notes on Instrumental Variable (IV) estimation 
 

Let’s review the basic OLS estimator. Starting out with a linear form assumption: 

 

note that the linear form refers to the parameters/coefficients and not to the variables.1 

Now to obtain the OLS estimator we can use several different strategies. The most familiar one 

might be as the solution to the least squares problem, i.e. minimizing the sum of the squared 

rediuals: 

 

Minimizing by finding the two first order conditions yields  and 

 

Is this a good estimator? Well, if the Gauss-Markov assumptions hold the OLS estimator is BLUE (the 

best linear unbiased estimator). But here we will try and work with weaker assumptions (weaker in 

the sense: “less restrictive”). 

So what do we need to assume for this estimator to make sense? Well it depends on what we want 

our result to be. If we want to have OLS to be unbiased we need different assumptions than for 

consistency. Remember an unbiased estimator will get the results on average (i.e. if you draw a lot 

of independent random samples from the same population and take the average of the results) 

right, no matter the sample size. Consistency on the other hand means that as the sample size gets 

larger and larger we get closer and closer to the true value.  

Let’s start with the common assumptions: we assume the sample was randomly drawn from some 

population. We also assume that the regressor has a variance (i.e. that the population analogue of 

, let’s call it , exists2. The difference comes in when we make assumptions about the error 

term. To see why let’s have a closer look at what we are trying to achieve. We want to show that  

is a good estimator for . 

To do this we take the estimator  and substitute the initial model for our LHS variable. 

                                                           
1
 It would e.g. be perfectly valid to claim that this is a linear model: . In fact we 

could simply use  and we are back to our original model. 

2
 Exists in statistical terms means “is finite”, i.e. it does not become so large as to approach infinity. 



 

 

 

 

 

So the estimated coefficient and the true parameter are equal if the second part of the sum is equal 

to zero. Now this is not the case unless we apply some operator to the equality. If we are interested 

in bias, we take the expectation on both sides of the equation, when we are interested in 

consistency we take the probability limit instead.  

Now both  and  are random, so simply taking expectations will not get us anywhere unless we 

make some assumptions about the expected value of nonlinear combinations of the two. To avoid 

this we don’t take unconditional expectations, but the expectation conditional on our regressors. 

This allows us to treat the regressors as “fixed”.3 

 

So we need to assume that  (conditional mean independence) and the OLS estimator is 

unbiased. Alternatively we can aim at consistency: 

 

Slutsky’s theorem allows us (as opposed to the situation when taking expectations) to split the 

problem, such that we can evaluate the limit of numerator and denominator separately.  

Applying a suitable law of large numbers4 gives us the second equality. The second sum vanishes if 

 is equal to zero. This is the case if , i.e. regressor and error are uncorrelated. 
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4
 Khinchine’s weak law of large numbers if we assume that both regressors and errors are independently and 

identically distributed, Chebyshev’s weak law of large numbers if we don’t want to make the i.i.d. assumption 
but can assume that second moments exist and that a suitable speed of convergence applies. 



Using the weaker assumption  and thereby focussing on consistency, we can ask how 

realistic is this assumption? Sadly often it is not. One problem is that we cannot control for 

everything. If we think about  as the level of education a person obtains and  as (log) wages, the 

classical example for unobserved variables is “ability”. Some individual characteristics that are 

related to the level of education as well as wages but ultimately unobservable. If we use  to denote 

“ability” we can show this easily: 

 

 

 

Assuming , i.e. the left-over part of the error term (everything that is not “ability”) is 

uncorrelated with the level of education we have that 

 

Which is not what we want to have. OLS is inconsistent (we can also show that it is biased). Now an 

interesting exercise is to check what the direction (i.e. the sign) of the (asymptotic) bias is. The 

denominator  is always positive, so the sign depends on  the (partial) correlation of “ability” and 

(log) wages and , the covariance (which has the same sign as the correlation) between the level 

of education and “ability”. 

Assuming that both wages and the level of education are higher for individuals with higher “ability” 

means that the sign of the bias term is positive, we therefore have an upward bias (i.e. the 

estimated coefficient  is higher than the true value . 

There are other reasons while the assumption on zero correlation fails, but we will save that 

discussion for another session. 

It is important to note, that we do not have any problem with “ability” if at least one of the implicit 

assumptions we made does not hold. First the bias term disappears if “ability” and (log) wages are 

not correlated (that is if  is equal to zero) or second it vanishes if “ability” and the level of 

education are uncorrelated (which implies that the covariance, , is equal to zero). 

Now if neither of that is the case, we have to find another way of dealing with the problem. The 

fairly simple but ingenious idea is to find some exogenous variable that induces variation in the level 

of education (the endogenous regressor) but is otherwise unrelated to the outcome of interest, i.e. 

the (log) wages. Which means that it is uncorrelated with “ability”. 

To make it explicit, we find an exogenous variable , that satisfies: 

 and  



The first assumption we can test easily, the second we have to believe5. So IV papers usually take 

great care in explaining why the instrument can be treated as exogenous. 

Now if the assumption holds we can use an IV estimator or two stage least squares (2SLS) to 

estimate the true returns to education. 

The IV estimator is simply 

 

Consistency is easy to establish by substituting the true model for  and taking probability limits. 

Now if we have more than one regressor or more than one instrument we cannot use simple IV but 

have to rely on 2SLS instead.  

The idea is to use only the “good variation” in , i.e. some part of  that is not correlated with the 

unobserved effects in the error term. But how do we find this “good variation”? Well we assume 

that the instrument is correlated with  but not with the error term . So we can use the correlation 

between the instrument and the endogenous regressor. It will not be all of the “good variation” but 

at least some of it. 

So the first stage of 2SLS is getting the correlation between our instrument the level of education. 

Well that is easy we can use OLS for that, running a regression of  on  (and any other regressors 

we might have). This will give us: 

 

Where  contains all the “bad variation” (as well as some of the “good variation”) in . So we use 

only the predicted value . Now in the second stage we simply substitute  with the 

predicted value  

 

To show that this estimator is consistent we plug in the true model, but use that we can decompose 

 into the predicted value  and a residual term . 

 

The predicted value  is a linear function of the instrument and therefore by assumption 

uncorrelated with the error  (remember  combines  and ) and by construction  and  are 

orthogonal so the 2SLS estimator is consistent. 

                                                           
5
 We can test this assumption for additional instruments, assuming that we have one valid instrument. 


