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Abstract

I study how endogenous information acquisition affects financial markets by mod-

elling potentially informed traders who optimally acquire variable information at in-

creasing cost. With a competitive market maker, my model can explain the dynamic

behaviour of informed trading and transaction volume. Three proxies for informed

trading derived under the exogenous information assumption (spreads, Easley O’Hara’s

PIN and blockholder interest) may not agree with each other. With a monopolistic

market maker, results also deviate from the exogenous benchmark. He can set narrower

spreads than a competitive market maker in early periods. On average, spreads can

widen over time.
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1 Introduction

In modelling financial markets, the theoretical market microstructure literature generally as-

sumes that some subset of traders are exogenously informed: they know the true value of the

asset before arriving in the market to trade. While some authors1 have considered endoge-

nous information acquisition, the empirical literature on informed trading is still based on

the exogenous assumption. For example, Dennis and Weston (2001) identify four commonly

used measures2 to capture informed trading and all of them are derived from structural

models with exogenously informed traders.

However, investors such as mutual funds, hedge funds and investment banks, clearly

rely on costly research to inform their trading decisions. There is also growing evidence to

suggest that traders need to exert effort to learn about the effect of news on asset values3.

To capture this feature, Peng (2005)4 considers traders who allocate their limited attention

between different sources of risk.

I take a more classical approach by modelling endogenously informed traders who can

acquire costly information. My model can explain various stylized features of intraday mar-

kets which exogenous models cannot. My results also suggest caution when interpreting

empirical measures based on the exogenous information assumption.

Building on the sequential trade framework of Glosten and Milgrom (1985), I replace

exogenously informed traders with ‘potentially informed’ ones. These new traders choose how

much information to acquire as a function of expected speculative profits from trading, which

depend on posted prices. They learn the true value of the asset with a higher probability if

they acquire more information and submit a trade only if they successfully learn it, doing

nothing otherwise. This setup is also different from other endogenous information acquisition

models which follow Grossman and Stiglitz (1980) in only considering a fixed amount of

information at a fixed cost.

I start with a market with a competitive market maker which corresponds well to most

financial markets we study today. Under a general specification for information acquisition,

I derive conditions for the existence of interior prices. Unlike with exogenous information,

1Starting with Grossman and Stiglitz (1980), see Section 2 for a more comprehensive review
21) bid-ask spread based on Glosten and Milgrom (1985), Glosten and Harris (1988) and Amihud and

Mendelson (1985); 2) adverse selection component of spread based on Huang and Stoll (1997); 3) price impact
of trade based on Kyle (1985), Foster and Viswanathan (1993) and Hasbrouck (1991); and 4) probability of
informed trading based on Easley et al. (1996).

3E.g. Hong et al. (2007), Hou and Moskowitz (2005) and Corwin and Coughenour (2008)
4Also Peng and Xiong (2006) and VanNieuwerburgh and Veldkamp (2010)
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prices and beliefs do not always converge to the true value in the steady state. If the cost

function is discontinuous, potentially informed traders eventually stop acquiring information.

Trades are no longer informative and market participants stop updating beliefs, an event I

call ‘information stoppage’.

I then specify a quadratic information acquisition cost function for information acquisition

under which I can characterise costs with a single parameter and solve for prices in closed

form. This setup generates two main results5.

First, my model can capture dynamics for informed trading and transaction volume

which exogenous models cannot. At an intraday level, real markets exhibit higher volume

and more informed trading after an informational event. I interpret an event as a shock

which causes market prices to deviate from their true value. Potentially informed traders

can make speculative profits if they learn the true value of the asset so they acquire more

information and trade more. Another stylized fact is that informed trading and volume fall

over time. In my model, as prices converge to the true value, there are lower speculative

profits to incentivise potentially informed traders so they acquire less information and trade

less. These dynamics are driven by endogenous information acquisition. Exogenous models

assume informed trading and volume are constant.

Empirically, there is also significant variation in informed trading and volume between

days. In my model, this corresponds to variations in the size of shocks. Large shocks lead

to large price deviations which give potentially informed traders more incentive to acquire

information and trade. In exogenous models, informed traders do not respond to prices so

this mechanism cannot operate. Instead, the effect is attributed to ad hoc variations in the

arrival rate of informed traders. For example, Easley and O’Hara (1992) introduce event

days when volume and informed trading is high, and non event days when they are low.

This yields two regimes but also requires the strong assumption that the market maker is

uncertain about whether an event has occurred6. My model can explain more variation

without event uncertainty.

Second, I find deviations in three common proxies for informed trading: bid ask spreads,

Easley et al. (1996)’s PIN and the proportion of hedge fund or block holder interest. In

competitive models, including mine, prices are set as the expected asset value conditional

on a trade. Easley et al. (1996)’s PIN is a structural estimator for the probability of an

5Although these results quantitatively depend on the quadratic specification, the qualitative features
would obtain under other cost functions.

6Easley et al. (2008) suggest a GARCH process for the arrival of informed traders. Easley et al. (2012)
scale arrival rate by volume.
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informed trade. Finally, hedge funds or block holders can be considered informed so their

participation is an indicator of informative trading. With exogenous information arrival, the

three measures always agree. When there are more informed traders, the probability of an

informed trade is high, trades reveal more information and spreads are wider. This is not

the case with endogenous information acquisition.

In my model, spreads and the probability of an informed trade may diverge with respect

to an increase in the proportion of potentially informed traders in the market. As there are

more potentially informed traders, they individually acquire less information because there

are lower informational rents available from noise traders. Beyond some point, increasing

their proportion actually leads to a fall in aggregate information acquisition. This result is

also in contrast to Grossman-Stilgitz in which traders can only acquire a fixed quantity of

information. Then more potentially informed traders always mean a higher probability of

informed trade.

On the other hand, spreads are monotonically increasing in the proportion of potentially

informed traders as in the standard case. Spreads are determined by the ratio of informed

to noise trades. While informed trades fall, noise trades are also falling. Thus, spreads can

be wide while the probability of an informed trade is low. Trades can be very informative

but occur infrequently.

The three proxies suffer from different deficiencies and should not be used interchangeably.

Spreads do not capture the frequency of trading. Under my model, the PIN structural

estimator would be misspecified and more potentially informed traders do not lead to increase

the probability of an informed trade.

Next, I examine endogenous information acquisition with a monopolistic market maker

which may be relevant in certain markets. For example Madhavan and Sofianos (1998) find

monopoly power among NYSE specialists and Massa and Simonov (2009) in the Italian

interdealer bond market. In this section the benchmark is Leach and Madhavan (1993) who

consider a monopolistic market maker, price elastic noise traders and exogenous information

arrival.

Leach and Madhavan’s main insight is that a monopolistic market maker has a new

intertemporal trade off not shared by a competitive one. He values information and can

influence the information revealed by trades through prices. Therefore he has the incentive

to induce more revelation in early periods which he can exploit in later periods. However,

inducing information revelation is costly as it entails trading with informed traders. Leach

and Madhavan find that a monopolistic market maker sets wider spreads in early periods
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relative to a competitive one, with them increasing in the total number of trading periods.

In my model, the market information structure determines how prices affect information

revelation. Prices now enter both the information acquisition decision of potentially informed

traders and the demand of price elastic noise traders. I characterise market information

structure by the effect which dominates. If ‘information acquisition dominates’, narrower

spreads increase the information revealed by trades because prices affect potentially informed

traders more than noise traders. If ‘noise dominates’, wider spreads increase the information

revealed by trades. This setup generates two main results.

First, if information acquisition dominates, a monopolistic market maker sets narrower

spreads in early periods, which are decreasing in the total number of trading periods, contrary

to Leach-Madhavan. He makes lower expected profits in those periods but is compensated

with higher profits later. He may even set narrower spreads than a competitive market

maker, thereby making a loss. If noise dominates, the result is reversed and spreads behave

as in the benchmark. Exogenous information acquisition is a special case of the market

information structure in which noise dominates.

Second, spreads may widen over time on average. Trades reveal information and the

market maker updates beliefs every period. Starting with an uninformative prior, beliefs

grow monotonically more certain on average. With exogenous information, this implies that

spreads become monotonically narrower on average. In my setup, if information acquisition

dominates, they may grow monotonically wider on average. This result is driven by the

interaction of endogenous information acquisition, which determines how prices affect the

information revealed by trades, with a monopolistic market maker, who has an intertemporal

trade off between information revelation and short term profits.

The rest of the paper proceeds as follows: Section 2 presents related literature. Section 3

introduces the setup with inelastic noise traders and a competitive market maker. Section 4

examines the specific case of quadratic information costs. Section 5 looks at the setup with

price elastic noise traders and a monopolistic market maker. Section 6 concludes. Proofs are

in the Appendix.

2 Related Literature

2.1 Exogenous Information Acquisition

Amongst the standard exogenous information acquisition literature, my model is most closely

related to Glosten and Milgrom (1985). I share their defining features: sequential trade,
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a unit of asset traded each period,a competitive market maker and price inelastic noise

traders drawn from a continuum of two types of traders. This is the exogenous information

benchmark against which I set my results.

Another basis for comparison is Easley and O’Hara (1992),the theoretical foundation

for Easley et al. (1996)’s PIN measure, one of the most widely used empirical estimators

for informed trading. They augment the sequential framework of Glosten-Milgrom with a

continuous time arrival process for traders to yield a mixed model which can be estimated

using maximum likelihood from transactions data. PIN is of interest because it is widely

used in the empirical literature as a measure for informed trading. The similarity of their

setup to mine means that my results also affect their measure.

2.2 Endogenous Information Acquisition

The benchmark for endogenous information models is Grossman and Stiglitz (1980). The

defining feature of their model is that traders can choose to observe a signal about the re-

turn of the risky asset at a constant cost, either becoming informed or staying uninformed.

In equilibrium, both traders have the same expected utility. When more traders become

informed, the price system becomes more informative and reveals more information to unin-

formed traders. My model preserves much of the intuition from Grossman-Stiglitz within a

sequential trade framework. A drawback of their setup is that traders are homogenous and

receive the same signal at a fixed cost.

Verrecchia (1982) considers heterogenous traders who can acquire variable information

whose quality is increasing in its cost. In this setup, prices perform an extra role in aggre-

gating heterogenous information. The information acquisition decision of a trader depends

on how much information is revealed through prices in equilibrium. My model also features

a transmission mechanism from prices to the amount of information acquired although it

operates through ex ante expected profits instead of information revelation.

Litvinova and Hui (2003) add variable cost and precision to Grossman-Stiglitz. They find

that some of the original results fail to hold with a different form of endogenous information

acquisition. Traders exert less effort to acquire information when more of them do so. Thus,

the equilibrium price system is not necessarily more informative when more traders acquire

information. I also find this feature in my model. Furthermore, they find that more traders

may acquire information even if the cost of acquiring information increases and equilibria do

not always exist. They conclude that endogenous information acquisition should be taken

seriously in the context of asymmetric information models.
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Ko and Huang (2007) focus on overconfident traders who face variable information acqui-

sition costs in a Grossman (1976) setup. They find that overconfidence generally improves

market efficiency by driving prices closer to true values. While behavioural agents are their

main concern, their results rely crucially on the form of endogenous information acquisition.

In contrast, Garcia et al. (2007) look at overconfidence with traders who pay fixed costs for

information. They reach the opposite conclusion that overconfidence has no effect on market

efficiency and prices. These contrasting findings underline the importance of how we model

endogenous information acquisition.

My model is also related to Peng (2005) and Peng and Xiong (2006) in which traders

have capacity constraints on their ability to process information and face multiple sources

of uncertainty. In equilibrium, they endogenously allocate their capacity to learn about

these different sources to minimize wealth uncertainty and make intertemporal consumption

decisions. This mechanism captures a similar intuition to my model in which rational agents

choose the amount of information to acquire at variable cost.

Other notable contributions include Admati and Pfleiderer (1986, 1987, 1988) and Veld-

kamp (2006). In their series of papers, Admati and Pfleiderer introduce a market for infor-

mation which is parallel to the standard asset market. They study how prices are set and

how traders behave in both marekts. Veldkamp (2006) develops a competitive information

production sector that supplies information at an endogenous price. She models information

as a non rivalrous good with a novel production technology which increases its output and

lowers price following an increase in demand. This setup generates media frenzies and price

herding.

2.3 Monopolistic Market Maker

Leach and Madhavan (1993) is the closest paper to mine in structure. They examine price

discovery under various market makers in a Glosten-Milgrom framework with elastic noise

traders. They show that an optimal monopolistic market maker has an incentive to ‘exper-

iment’ by setting prices which make trades more informative. They set wider spreads in

earlier periods to crowd out elastic noise traders and increase the relative proportion of in-

formed trades. They also find conditions under which having different market makers lead to

more robust markets. They present some empirical results to support price experimentation.

I generalise their framework so that traders are endogenously informed.

Glosten (1989) is one of the first to analyse the monopolistic market maker. In contrast

to Glosten-Milgrom, trades are not restricted to unit amounts and the market maker posts
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a price schedule over different quantities of the traded asset. They find that if there are not

enough noise traders in the market, a competitive market maker is unable to set zero profit

prices across all quantities and thus the market breaks down. In contrast, the monopolistic

market maker maximises expected profits across quantities so he can subsidise losses from

trading in some quantities with profits in others. In some cases, he provides liquidity when

a competitive market maker cannot do so. This mechanism is similar to the one in my

model except that in my case, the market maker substitutes profits across time instead of

quantities.

In general, multi period models with monopolistic market makers are analytically difficult

to solve. Das and Magdon-Ismail (2009) approximate beliefs within Glosten-Milgrom by a

Gaussian distribution and then solve for the optimal sequential market making algorithm.

They find that an optimal monopolistic market maker can provide more liquidity than a

perfectly competitive market maker in periods of extreme uncertainty because he is willing

to absorb initial losses in order to learn a new valuation rapidly and extract higher profits

later. Again, I find a similar intuition.

Madrigal and Scheinkman (1997) considers a market in which traders have private and

heterogenous information. The market maker is large and acts strategically because he

understands that prices affect first, the information he learns from the order flow, and sec-

ond, the information he reveals back to other traders. This setup yields a discontinuity in

equilibrium prices which Madrigal and Scheinkman interpret as a price crash.

So far market makers have inferred information from anonymous trades. Gammill (1990)

lets the market maker learn the identity of traders. He makes small trades with informed

traders to extract information and large trades with noise traders to maximise expected

profits. This theoretical model finds support in the results of Massa and Simonov (2009)

from the Italian interdealer bond market.

3 Potentially Informed Traders and a Competitive Mar-

ket Maker

3.1 Setup

This section takes the discrete time Glosten-Milgrom trading framework and replaces ex-

ogenously informed traders with potentially informed ones who face costly information ac-

quisition. They optimally choose how much information to acquire as a function of their
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expected profits which depend on prior beliefs and posted ask and bid prices.

There is one traded asset with value v̂ which takes two possible terminal values V and

0 where V > 0. A unit of the asset is traded every period. At time t the market maker

and potentially informed traders have the same prior belief that v̂ = 0 with probability µt,

and v̂ = V with probability 1 − µt. The markets contains three agents: the market maker,

the potentially informed trader, and the noise trader. The market maker is risk neutral and

competitive. He posts ask and bid prices {at, bt} from P ⊂ R+ which contains the possible

values of v̂.

A trader is drawn to trade each period from a continuum of traders. A proportion λ of

them is potentially informed while the remaining proportion 1− λ are noise traders. Noise

traders do not maximise profits and trade for exogenous reasons. They submit trades qt

randomly, either a buy, qt = +1, or a sell, qt = −1, with equal probability 1
2
.

Potentially informed traders are constrained in their actions to be either buyers or sellers

with equal probability 1
2
. Buyers can only choose to submit a buy trade or no trade, but

not a sell, and similarly sellers can only choose to submit a sell trade or no trade, but not a

buy. This assumption is nonstandard but does not qualitatively affect any of my results and

I relax it in Section 5. I use it here for analytical simplicity because it yields closed form

solutions for ask and bid prices.

Like the standard informed trader, potentially informed traders trade for speculative

profits. However they learn the true value of the asset v̂ with some probability given by the

information arrival functions, Xa,t(at) for buyers and Xb,t(bt) for sellers, defined over prices

at ≥ bt and beliefs µt ∈ [0, 1] at time t. The functions are separate for buyers and sellers

because buyers only care about the ask price at, and sellers the bid price bt. When potentially

informed traders can do both, as in Section 5, there is only one information arrival function

and it depends on both prices.

Xa,t and Xb,t capture how prices affect the amount of information potentially informed

traders acquire. I restrict them to be consistent with this intuition. Xa,t is weakly decreasing

in the ask price at because expected profits decrease in at so potentially informed traders

acquire less information. Similarly, Xb is weakly increasing in the bid price bt. This spec-

ification nests the standard Glosten-Milgrom version of exogenously informed traders. My

model is equivalent to theirs when Xa,t and Xb,t are unity for all prices and beliefs.

Section 4 develops a microfoundation for the information arrival functions Xa,t and Xb,t.

In that setup, potentially informed traders see posted prices, at and bt, and choose how much

information to acquire at increasing quadratic cost. Xa,t and Xb,t describe the solutions for
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the optimal amount of information that potentially informed traders acquire. They are

also consistent with other interpretations. For example, potentially informed traders may

have private reservation values or be exogenously price elastic. In this paper, I maintain

the information acquisition story although my results in this section only require the weak

restrictions described above.

The introduction of potentially informed traders creates a transmission channel from

prices to the amount of information traders acquire which drives most of my later results.

It is intuitively similar to the information acquisition equilibrating mechanism in Grossman-

Stiglitz. In their model, a proportion of traders chooses to become informed while the

rest remain uninformed depending on the fixed information acquisition cost. In mine, the

proportion of uninformed traders is fixed but the increasing information acquisition cost

determines how much information potentially informed traders acquire. My specification

incorporates this information acquisition decision into Glosten-Milgrom in a tractable way

which can be used to investigate multiperiod dynamics.

The timeline for each period t is as follows: 1) the market maker posts ask and bid prices

{at, bt} based on prior beliefs µt; 2) a trader is drawn from the continuum of traders with

unit mass, potentially informed buyers with probability 1
2
λ, potentially informed sellers with

probability 1
2
λ, or noise traders with probability 1 − λ; 3) the trader submits a unit trade,

either a sell, a buy or no trade, qt ∈ {−1, 0, 1}; 4) the market maker completes the trade

and forms posterior beliefs µt+1(qt) by Bayes’ rule.

3.2 Solving the Model

The market maker solves for zero profit ask and bid prices taking into account the best

response of potentially informed traders. Let BV,t(at) be the conditional probability that a

trader submits a buy order if v̂ = V and B0,t(at) if v̂ = 0:

BV,t(at) =
1

2
λXa,t(at) +

1

2
(1− λ) (1)

B0,t(at) =
1

2
(1− λ) (2)

Here I assume that potentially informed buyers always submit a buy order if they learn

the true asset value is high, v̂ = V . This is optimal as long as at < V . Furthermore, they

do not trade if v̂ = 0. The assumption is equivalent to enforcing that the market is always

‘open’.
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Definition 1. The market is open (closed) at time t on the ask side if it allows (excludes)

profitable informed trade: at < θ2 (at ≥ θ2). The market is open (closed) at time t on the

bid side if it allows (excludes) profitable informed trade: bt > θt (bt ≤ θ1). The market is

open if it is open on at least one side.

This definition only depends on the participation of informed traders. Noise traders

continue to trade even in a ‘closed’ market. Under a competitive market maker, markets are

always open because with price inelastic noise traders, the only way to obtain the zero profit

condition is to trade with informed traders. Thus the ‘open’ assumption holds.

Analogously, let SV,t(bt) be the conditional probability that a trader submits a sell order

if v̂ = V and S0,t(bt) if v̂ = 0:

SV,t(bt) =
1

2
(1− λ) (3)

S0,t(bt) =
1

2
λXb,t(bt) +

1

2
(1− λ) (4)

The probability that a buy order is submitted in period t is:

µtB0,t(at) + (1− µt)BV,t(at) (5)

and the probability that a sell order is submitted in period t is:

µtS0,t(bt) + (1− µt)SV,t(bt) (6)

As in Glosten-Milgrom, and shown in Proposition 12 for a more general setup, under the

zero profit condition, the market maker sets the ask price act as the expected value of the

asset conditional on a buy order qt = +1 and beliefs µt:

act = E[v|qt = +1]

=
(1− µt)BV,t(at)V

µtB0,t(at) + (1− µt)BV,t(at)

=
(1− µt)[λXa,t(at) + 1− λ]V

(1− µt)λXa,t(at) + 1− λ
(7)

Analogously, he sets the bid price bct as the expected value of the asset conditional on a sell
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order qt = −1 and µt:

bct = E[v|qt = −1]

=
(1− µt)SV,t(bt)V

µtS0,t(bt) + (1− µt)SV,t(bt)

=
(1− µt)(1− λ)V

µtλXb,t(bt) + 1− λ
(8)

The market maker completes the trade qt and forms his posterior belief µt+1(qt) using

Bayes’ rule. His belief after a buy trade is:

µt+1(+1) ≡ pr(v = 0 | qt = −1, at)

=
µtB0,t(at)

µtB0,t(at) + (1− µt)BV,t(at)

=
µt(1− λ)

(1− µt)λXa,t(at) + 1− λ
(9)

After a sell trade, it is:

µt+1(−1) ≡ pr(v = 0 | qt = +1, bt)

=
µtS0,t(bt)

µtS0,t(bt) + (1− µt)SV,t(bt)

=
(1− µt)(λXb,t(bt) + 1− λ)

µtλXb,t(bt) + 1− λ
(10)

Proposition 1. Zero profit ask and bid prices (act , b
c
t) exist in the range [0, V ] if the infor-

mation arrival functions Xa,t(at) and Xb,t(bt) are continuous over at ∈ [0, V ] and bt ∈ [0, V ]

respectively.

The continuity of the information arrival functions Xa,t(at) and Xb,t(bt) is sufficient to

obtain a single crossing property which ensures the existence of prices. The most obvious

violation is if potentially informed traders face a fixed cost of information acquisition. De-

pending on prices, either all potentially informed traders acquire information or none do.

Zero profit prices do not exist in general. However, if they do not, the market maker can

still open the market by making positive profits.
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3.3 Prices, Convergence and Information Stoppage

This subsection presents some static features and convergence results from my general setup.

I find a new feature I call ‘information stoppage’ which may arise with endogenous informa-

tion acquisition.

Proposition 2. If zero profit ask price and bid prices (act , b
c
t) exist, they are monotonically

decreasing in the prior belief µt. at and bt tend to the true value v̂ as µt tends to certainty,

i.e. µt = 1 or 0.

Proposition 2 gives the standard result that zero profit prices act and bct are a monotonic

function of beliefs and converge to the true value as beliefs tend to certainty. The mid point

of prices is the expected value of the asset conditional on beliefs at time t.

Corollary 1. If zero profit ask and bid prices (act , b
c
t) exist and potentially informed buy-

ers and sellers acquire information with strictly positive probability, i.e. Xa,t(at) ≥ 0 and

Xb,t(bt) ≥ 0 for all beliefs µt, then act and bct converge to the true value in the steady state.

Corollary 1 obtains the standard convergence result. If zero profit prices exist and po-

tentially informed traders always acquire some information, then trades always reveal infor-

mation. The market maker can update beliefs after every trade. Over time, in expectation,

beliefs update correctly and prices converge to the true value. Prices always converge with

exogenous information acquisition. However, with endogenous information acquisition, an

information stoppage can occur. The information arrival functions, Xa,t and Xb,t, for poten-

tially informed traders can be 0 and trades stop revealing information.

Definition 2. An ‘information stoppage’ occurs if the market is ‘open’ and the probability

that a trader submits an informed trade is 0.

Corollary 2. If an information stoppage occurs in any period, prices do not converge to the

true value in the steady state.

If an information stoppage occurs, the market maker stops updating beliefs because he

knows that potentially informed traders stop acquiring information. Both prices at and bt are

constant until the final period T once a stoppage occurs. By Definition 1, the market can still

be open because prices are in the interior of possible asset values (0, V ). An informed trader

could make a profitable trade if he were drawn into the market but potentially informed

traders have no incentive to acquire that information.
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An information stoppage in my model is similar to the no trade result of Grossman-

Stiglitz. In their model, if the information acquisition cost is too high, no traders acquire

information and thus there is no trade. In mine, potentially informed traders may choose

to acquire no information for a similar reason. However, unlike in their model, noise traders

continue to trade and the market remains open. Also, an information stoppage can occur in

any period so a market may start off informative but enter an information stoppage later.

It would be difficult to identify information stoppages empirically because I would need

to compare the fundamental value of the asset to a steady state price, neither of which are

observable. This model best relates to high frequency markets in which informational events

occur frequently and prices do not reach a steady state. However, markets do exhibit periods

of low transaction volume with trades having a low price impact which are consistent with

an information stoppage.

3.4 Relative to Exogenous Information Acquisition

This subsection compares prices, information revelation and transaction volume of a market

with endogenous information acquisition to the Glosten-Milgrom benchmark with exogenous

information acquisition.

Proposition 3. The zero profit spread in a market with potentially informed traders is

weakly narrower than in a market with the same proportion of exogenously informed traders.

The competitive market maker sets zero profit prices by balancing expected profits from

noise traders with losses to informed traders. In my model, only a fraction of potentially

informed traders acquire information and trade while exogenously informed traders always

trade. To meet the zero profit condition, the market maker sets narrower spreads than

the exogenous case. Narrower spreads reduce profits from noise traders and increase the

participation of potentially informed traders.

With a competitive market makers, spreads measure the information revealed by trades

because they are proportional to the change in beliefs conditional on that trade occurring.

By the zero profit condition, prices can be written as:

act = (1− µt+1(+1))V (11)

bct = (1− µt+1(−1))V (12)

Since spreads are narrower, trades reveal less information in a market with potentially in-
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formed traders compared to one with the same proportion of exogenously informed traders.

Corollary 3. Equilibrium expected transaction volume in a market with potentially informed

traders is weakly lower than in a market with the same proportion of exogenously informed

traders.

With exogenous information acquisition, expected transaction volume is fixed and con-

stant. In my case, potentially informed traders choose how much information to acquire and

thus, how often they trade. Since they acquire information with probability weakly less than

1, expected transaction volume must be lower than with exogenous information acquisition.

However, a more important feature model of my model is that transaction volume evolves

dynamically. I expand on this in the next section.

4 Quadratic cost of information acquisition

This section develops a specific microfoundation for the information arrival function of po-

tentially informed traders Xa,t(at) and Xb,t(bt). Potentially informed traders choose how

much information to acquire at increasing quadratic cost. This setup lets me characterise

information acquisition costs with a single parameter and solve for closed form solutions for

prices. I then examine the impact of information acquisition cost, beliefs and potentially

informed traders on prices, information revealed by trades, expected transaction volume and

the behaviour of potentially informed traders.

4.1 Setup

The potentially informed trader can learn the true value of the asset v̂ with probability ω by

paying the cost 1
2
Cω2, where C is a positive parameter which scales the cost of information

acquisition. As risk neutral, profit maximising agents, they optimally choose the amount of

information ω∗ to acquire. Before acquiring information, they have the same prior beliefs as

the market maker. A potentially informed buyer acquires the optimal amount of information

ω∗a,t by solving:

max
ωa,t

(1− µt)ωa,t(V − at)−
1

2
Cω2

a,t (13)

A potentially informed seller acquires ω∗b,t by solving:

max
ωb,t

µtωb,tbt −
1

2
Cω2

b,t (14)
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The solutions determine the information arrival functions Xa,t(at) and Xb,t(bt) for potentially

informed buyers and sellers:

ω∗a,t = Xa,t(at) =
1

C
(1− µ)(V − at) (15)

ω∗b,t = Xb,t(bt) =
1

C
µbt (16)

After a potentially informed trader acquires information, there is a random draw to

determine if he learns the true value. A seller submits a sell trade qt = −1 if he learns

that the true value is low, v̂ = 0, and no trade otherwise. Similarly, a buyer submits a

buy trade qt = +1 if he learns that the true value is high, v̂ = V , and no trade otherwise.

From the market maker’s perspective, a potentially informed trader submits a trade qt with

probabilities:

qt =


−1 with probability 1

2C
µ2bt

+1 with probability 1
2C

(1− µ)2(V − at)

0 with probability 1− 1
2C
µ2b− 1

2C
(1− µ)2(V − at)

The market maker knows the potentially informed traders’ best response functions and

sets competitive prices accordingly. The assumption that potentially informed traders are

either buyers and sellers means that the zero profit conditions for the ask and bid prices can

be solved separately.

Proposition 4. If C ≥ 1
4
V , a competitive market maker posts unique ask and bid prices, act

and bct , given by:

act = V − (1− λ)C

2λ(1− µt)2

[√
1 +

4µt(1− µt)2λV
(1− λ)C

− 1

]
(17)

bct =
(1− λ)C

2λµt2

[√
1 +

4µ2
t (1− µt)λV
(1− λ)C

− 1

]
(18)

Proposition 4 requires the restriction that the cost of information acquisition C is suf-

ficiently large relative to the maximum value of the asset V . This restriction implies that

buyers and sellers acquire information with probabilities weakly less than 1 across the ranges

of prior beliefs µt and proportions of potentially informed traders λ and thus prices always

take the form in the proposition. If the restriction is relaxed, C < 1
4
V , then prices may
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imply a probability of information acquisition greater than 1. Prices still exist but they

are solved like the exogenous case when traders receive information with probability 1. I

restrict C since I am interested in cases when potentially informed traders do not acquire

full information.

4.2 Spreads

This subsection derives comparative statics for the effect of information acquisition cost C

and proportion of potentially informed traders λ on spreads. In any given market, these are

fixed exogenous variable, so these statics are for comparisons between different markets with

other variables held constant, in particular, prior beliefs µt. While µt evolves endogenously

over time, for now I take them as exogenous.

Proposition 5. The competitive ask price act is monotonically decreasing, while the bid price

bct is monotonically increasing, in the information acquisition cost C. act and bct tend to the

conditional expected asset value (1− µt)V as C tends to infinity.

By Proposition 5, spreads are decreasing in the information acquisition cost C. When C

increases, information costs more so, for any set of posted prices, potentially informed traders

acquire less. Under the zero profit condition, the market maker sets narrower spreads to give

potentially informed traders more incentive to acquire information while reducing expected

profits from noise traders.

As the cost of information acquisition C grows to infinity, potentially informed traders

stop acquiring information and the model collapses to one without informed traders. Prices

are set at the unconditional expected value of the asset. Proposition 4 imposes a lower

bound for C: C ≥ 1
4
V . If I relax the restriction, as C tends to 0, prices converge those

from standard Glosten-Milgrom with no information acquisition costs in which potentially

informed agents acquire full information.

As described previously, spreads are proportional to how beliefs are updated and thus

measure the information revealed by trades. Therefore, following spreads, trades reveal

less information as the information cost C rises, in agreement with Grossman-Stiglitz. In

their model, a proportion of traders pay the cost to become informed while the rest remain

uninformed. When the cost increases, fewer traders become informed so trades are less

informative. The information revealed by trades is directly related to the proportion of

informed traders. While the intuition is similar, the transmission mechanism in my model

is different. The proportion of potentially informed traders is exogenously fixed but trades
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reveal less information because each trader acquires less information. Thus there is not

necessarily a monotonic relationship between the proportion of potentially informed traders

and the information revealed by trades.

The information acquisition cost C also affects the expected profits of traders differently in

my model compared to Grossman-Stiglitz. In their case, all traders, informed or uninformed,

make the same expected profits in equilibrium. A rise in information acquisition cost lowers

profits to all traders equally. In my case, similar to Glosten-Milgrom, potentially informed

traders make positive expected profits and noise traders make expected losses. Increasing

C lowers expected profits to potentially informed traders but also lowers expected losses to

noise traders through narrower spreads.

Grossman-Stiglitz has been tested empirically by comparing the performance of passive

index mutual funds, as a proxy for uninformed traders, to actively-managed funds, as a

proxy for informed traders. Their model predicts that the two should perform similarly. In

general, the literature studying mutual fund performance, such as Wermers (2000), Kosowski

et al. (2006) and Banegas et al. (2012), find that actively-managed funds out perform the

index. While evidence against Grossman-Stiglitz, it is consistent with the form of information

acquisition in my model.

Proposition 6. The competitive ask price act is monotonically increasing, while the bid price

bct is monotonically decreasing, in the proportion of potentially informed traders λ. act and bct

tend to the conditional expected asset value (1 − µt)V as λ tends to 0. They tend to the V

and 0 respectively as λ tends to 1.

By Proposition 6, equilibrium spreads are monotonically increasing in the proportion of

potentially informed traders λ. This result is analogous to Glosten-Milgrom’s result that

spreads are increasing in the proportion of informed traders and is driven by the zero profit

condition of a competitive market maker. When there are more potentially informed traders,

the market maker sets wider spreads to decrease expected losses to them and increase ex-

pected profits from noise traders.

When there are no potentially informed traders, only noise traders, both prices are the

unconditional expected value of the asset. No information is revealed by trades and there is

no learning. When there are only potentially informed traders, the market maker sets the

maximum spread and the standard no trade result obtains. The market maker closes the

market because all trades are with informed traders which entail expected losses.

My model predicts the same relationship between the proportion of potentially informed

traders λ and the spread as Glosten-Milgrom. However, the empirical support for this
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prediction is mixed. For example, Dennis and Weston (2001) find that the size of the spread

is negatively related to the amount of institutional ownership, a proxy for informed traders

while Heflin and Shaw (2000) find the opposite for block owners.

While many empirical studies use the spread as a measure for information based trading,

it also includes other components such as the cost of market making and order processing

costs. My model suggests another reason why it might be a poor measure. In standard

Glosten-Milgrom, the arrival rate of informed traders is fixed. In my case, potentially in-

formed traders enter at different rates depending on how much information they acquire.

This yields another measure for information based trading: the probability of informed

trade. The two are not equivalent because a trade may cause a large revision in beliefs but

happen with low probability. The spread does not capture this dimension of how information

enters the market. In the next subsection, I characterise when the two measures deviate.

4.3 Probability of an Informed Trade and Expected Transaction

Volume

I define the probability of an informed trade Kt(at, bt) as the unconditional probability that

a potentially informed trader, buyer or seller, is drawn into the market and submits an

informed trade. It is the sum of the probability of an informed buy trade Gt(at) and an

informed sell trade Ht(bt) which are given by:

Gt(at) =
1

2
λXa,t(at) =

1

2C
λ(1− µ)(V − at) (19)

Ht(bt) =
1

2
λXb,t(bt) =

1

2C
λµbt (20)

The probability of informed trade Kt(at, bt) is empirically relevant because it is analogous

to the widely used PIN measure proposed by Easley et al. (1996). PIN is the probability

of an informed trade estimated from a structural model with exogenously informed traders.

Kt(at, bt) and PIN are the same if in a market with exogenously informed traders but they

can differ once I introduce endogenously informed traders.

Proposition 7. In equilibrium, the probability of an informed trade Kt(a
c
t , b

c
t) is at its maxi-

mum when beliefs µt are weakest, i.e. µt = 1
2
. Kt(a

c
t , b

c
t) tends to 0 as beliefs tend to certainty,

i.e. µt = 1 or 0.

By Proposition 7, the probability of an informed trade Kt(a
c
t , b

c
t) responds intuitively to

beliefs µt: it is largest when beliefs are weakest, µt = 1
2
, tending to zero as beliefs tend to
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certainty, µt = 0 or 1. When beliefs are weak, prices are far from their true value. An

informed trade yields large speculative profits so potentially informed traders acquire the

most information. As beliefs get stronger, prices move toward the true value. Expected

profits from trading fall so potentially informed traders acquire less information.

Figure 1 shows this result graphically for some choice of model parameters V = 10 and

C = 5. Figure 1(c) plots the probability of an informed trade Kt(a
c
t , b

c
t) against beliefs µt

and proportion of potentially informed traders λ. For now, I am interested in µt so fix some

proportion of λ and look across Kt(a
c
t , b

c
t). The graph is a hump, symmetric about µt = 1

2
.

Note that the value of Kt(a
c
t , b

c
t) also depends on λ but across any λ, the shape is the same.

Figures 1(a) and 1(b) plot the probabilities of an informed buy trade Gt(a
c
t) and sell trade

Ht(b
c
t) against µt and λ. Unlike the aggregate probability Kt(a

c
t , b

c
t), they are not symmetric

about µt = 1
2
. One of the advantages of separating potentially informed buyers and sellers

is that I can see their different responses to µt. Figure 1(a) corresponds to buyers. Gt(a
c
t) is

skewed towards µt = 1. Potentially informed buyers acquire more information when beliefs

tend towards the low asset value because they can make higher profits if they learn that the

true value is high. The opposite applies for sellers.

Proposition 7 also has implications for the dynamic behaviour of information acquisition.

In expectation, beliefs µt converge to certainty about the true value over time. If the market

starts with uninformative first period beliefs, µ1 = 1
2
, then in expectation, µt monotonically

increases or decreases to 0 or 1 over time. Therefore, the expected probability of an informed

trade Kt(a
c
t , b

c
t) also decreases monotonically over time. With exogenously informed traders,

it is constant. Note that while the expected paths of µt and Kt(a
c
t , b

c
t) are monotonic, they

need not be for any given realisation. µt may fluctuate over time and thus Kt(a
c
t , b

c
t) may

rise and fall.

Corollary 4. Expected transaction volume Et[|qt|] is at its maximum when beliefs µt are

weakest, i.e. µt = 1
2
. Et[|qt|] tends to 1− λ as beliefs tend to certainty, i.e. µt = 1 or 0.

Expected transaction volume Et[|qt|] follows the probability of informed trades Kt(a
c
t , b

c
t)

in response to changes in prior beliefs µt. In my setup, Et[|qt|] only depends on the partic-

ipation of potentially informed traders since noise traders always trade. When potentially

informed traders acquire less information, they trade less. Again, Corollary 4 also determines

the dynamic behaviour of Et[|qt|]. Starting from an uninformative µ1, in expectation, Et[|qt|]
falls over time, in contrast to Glosten-Milgrom.

The dynamic features of the probability of informed trade Kt(a
c
t , b

c
t) and expected trans-

action volume Et[|qt|] with endogenous information acquisition is more empirically appealing
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Figure 1: Probabilities of an informed: (a) buy trade Gt(a
c
t); (b) sell trade Ht(b

c
t); or (c) trade

of either type Kt(a
c
t , b

c
t); against prior beliefs µt and the proportion of potentially informed

traders λ for model parameters V = 10 and C = 5.
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than the standard models with exogenously informed traders. A cursory look at high fre-

quency trading data reveals periods of high volume and high participation by institutional

traders, often considered informed, which tend to occur after informational events and fall

over time. These stylised features are absent from Glosten-Milgrom.

Easley and O’Hara (1992) introduce uncertainty about whether an informational event

occurs at the beginning of each trading day. Informed traders only enter the market if it

does. This partially accounts for different levels of expected trading volume and informed

participation. Easley et al. (1996) then estimate this structural specification. However, this

model only allows two trading intensity regimes which last for a whole day. In my model,

trading intensity evolves endogenously over time, even within the same day. This seems closer

to the stylised features described above. Furthermore, I do not need another dimension of

uncertainty. The market maker knows an informational event has occurred. The dynamics

are driven by potentially informed traders acquiring different amounts of information over

time.

Proposition 8. In equilibrium, the probability of an informed trade Kt(a
c
t , b

c
t) is monotoni-

cally decreasing in the information acquisition cost C.

By Proposition 5, spreads are decreasing in the information acquisition cost C. By

Proposition 8, the probability of an informed trade Kt(a
c
t , b

c
t) responds similarly. Thus, the

market is less informative under both measures as C increases.

Corollary 5. Expected transaction volume Et[|qt|] is monotonically decreasing in the infor-

mation acquisition cost C.

A higher information cost C leads to lower expected transaction volumes. Like in

Corollary 4, expected transaction volume Et[|qt|] follows the probability of informed trade

Kt(a
c
t , b

c
t). This also agrees with Grossman-Stiglitz. Together with Proposition 5, Proposi-

tion 8 and Corollary 5 describe all the effects of C in my model.

Fang and Peress (2009) offer some empirical support for Corollary 5. They find that

media coverage affects the returns of some subset of stocks. If I can interpret media coverage

as a proxy for information acquisition costs, because it captures the availability of public

information information, then this is in line with my predictions.

Proposition 8 offers another testable prediction between information costs and the prob-

ability of an informed trade. Ideally I would estimate the probability of an informed trade

from a model with endogenous information acquisition and then compare it between assets

with different information acquisition costs.
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Proposition 9. The probabilities of an informed buy trade Gc
t and sell trade Hc

t have

their maximum at λ̃Gt = Zt+1
2Zt+1

and λ̃Ht = Yt+1
2Yt+1

where Zt ≡ (1 − µt)
√

1
C
µtV and Yt ≡

µt

√
1
C

(1− µt)V . Gc
t and Hc

t tend to 0 as the proportion of potentially informed traders λ

tends to 0 or 1.

By Proposition 9, the probability of an informed trade Kt(a
c
t , b

c
t) is not monotonically

increasing in the proportion of potentially informed traders λ. It is decreasing in λ for

λ ≥ max{Zt+1
2+z1

, Yt+1
2Yt+1

} where Zt ≡ (1− µt)
√

1
C
µtV and Yt ≡ µt

√
1
C

(1− µt)V . In this range,

increasing the proportion of potentially informed traders leads to less frequent informed

trades.

To see this result graphically, return to Figure 1(c) which plots the probability of an in-

formed trade Kt(a
c
t , b

c
t). Fix some prior belief µt and look across the proportion of potentially

informed traders λ. For µt = 1
2
, Kt(a

c
t , b

c
t) increases with λ until it reaches its maximum at

λ̃Kt = Wt+1
2Wt+1

where Wt ≡ 1
2

√
1
2C
V . Kt(a

c
t , b

c
t) then falls rapidly to 0 as λ tends to 1. Note

that the maximum λ̃Kt occurs at larger values as beliefs are more certain, i.e. µt closer to 0

or 1.

Proposition 10. The probabilities that a potentially informed buyer or seller is informed,

Xa,t(a
c
t) and Xb,t(b

c
t), are monotonically decreasing in the proportion of potentially informed

traders λ. Xa,t(a
c
t) and Xb,t(b

c
t) tend to 1

C
µt(1− µt)V as λ tends to 0. They tend to 0 as λ

tends to 1.

Recall that the probability that a potentially informed buyer or seller is informed, Xa,t(a
c
t)

and Xb,t(b
c
t) is given by the amount of they choose to acquire. It starts at 1

C
µt(1 − µt)V

and decreases monotonically to 0 with the proportion of potentially informed traders λ. The

maximum probability is always weakly less than 1 because of the restriction that C ≥ 1
4
V .

By Proposition 10, increasing λ means each trader acquires less information. However, by

Proposition 9, the probability of an informed trade Kt(a
c
t , b

c
t) is not monotonic in λ. To

understand the two results, see that λ has two effects on Kt(a
c
t , b

c
t): it 1) increases the

number of traders who can choose to acquire information; and 2) decreases the amount of

information acquired by each trader.

For low λ, the first effect dominates. An increase in λ outweighs the decrease in the infor-

mation they acquire individually, as measured by Xa,t(a
c
t) or Xb,t(b

c
t). Thus the probability

of an informed trade Kt(a
c
t , b

c
t) increases. There are sufficiently many noise traders yielding

expected profits to the market maker to offset losses from more potentially informed trades.

However, for λ larger than λ̃t, the second effect dominates and the relationship reverses. As
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λ continues to increase, Kt(a
c
t , b

c
t) begins to decrease. The market fills with potentially in-

formed traders and the market maker earns lower profits from noise traders so it can support

less information acquisition. In the limit, there are no more noise traders and thus no more

profits to offer potentially informed traders. Potentially informed traders stop acquiring

information.

A large body of empirical literature studies the effect of institutional or block ownership

on asset prices and information revelation. For example, Boehmer and Kelly (2009) look

at institutional holdings and informational efficiency of prices, measured by deviations from

a random walk. There are various theoretical reasons to examine institutional holdings

but the asymmetric information literature, to which my model belongs, interprets them as

informed traders. This implies that assets with larger institutional holdings should be more

informative. If instead institutions are potentially informed and endogenously acquire costly

information, Proposition 10 yields conditions when higher institutional holdings leads to less

informative markets, as measured by the probability of informed trade. This result might

help reconcile the mixed evidence on institutional ownership. It also cautions against using

institutional holdings as proxies for informed trading.

Corollary 6. The probability of an informed trade Kt(a
c
t , b

c
t) is decreasing, while the spread

is increasing, in the proportion of potentially informed traders λ for λ ≥ max{Xt+1
2X+1

, Yt+1
2Yt+1

}

where Xt ≡ (1− µt)
√

1
C
µtV and Yt ≡ µt

√
1
C

(1− µt)V .

Corollary 6 describes the exact conditions when spreads and the probability of an in-

formed trade Kt(a
c
t , b

c
t) deviate from each other. As noted previously, they need not comove

and here I show that they respond differently to changing the proportion of potentially in-

formed traders λ. For λ beyond a certain threshold, increasing it further means that trades

cause a larger revisions in belief but occurs less frequently.

The empirical literature uses both spreads and the probability of an informed trade as

measures for information revelation. Standard theoretical models suggest they can be used

interchangeably. I show when they cannot under the quadratic cost function. While this

result is not general to all cost functions, I can show it arises for at least some subset of cost

functions.

To better understand the divergence, recall that competitive prices, given by Equations

(17) and (18), are set as the expected value of the asset conditional on a trade. They are

proportional to the ratio of expected informed trades to total trades, both informed and

noise. Total expected trades or expected transaction volume, denoted Et[qt = +1] for buys,
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Et[qt = −1] for sells, and Et[|qt|] for all trades, are given by:

Et [qt = +1] = (1− µt)Gt(a
c
t) +

1

2
(1− λ) (21)

Et [qt = −1] = µtHt(b
c
t) +

1

2
(1− λ) (22)

Et [|qt|] = Et [qt = +1] + Et [qt = −1]

= (1− µt)Gt(a
c
t) + µtHt(b

c
t) + 1− λ (23)

In Glosten-Milgrom, the only determinant of spreads is the proportion of informed traders

because total expected transaction volume Et[|qt|] is constant. In my model, Et[|qt|] is

endogenous.

Corollary 7. Total expected transaction volume Et[|qt|] is decreasing, while spreads are

increasing in the proportion of potentially informed traders λ if λ ≥ max{ Zt+1
2Z+1

, Yt+1
2Yt+1

} where

Zt ≡ (1− µt)
√

1
C
µtV and Yt ≡ µt

√
1
C

(1− µt)V .

By Corollary 7, when the probability of an informed trade Kt(a
c
t , b

c
t) is decreasing, ex-

pected transaction volume Et[|qt|] is also decreasing in λ. This drives the deviation between

spreads and Kt(a
c
t , b

c
t) from Corollary 6. Although informed trades occur less frequently,

they make up a larger proportion of total trades.

Corollary 7 also predicts that, like Kt(a
c
t , b

c
t), Et[|qt|] is not monotonic in λ. In contrast,

Et[|qt|] is constant in Glosten-Milgrom. Easley and O’Hara (1992) has two regimes for Et[|qt|]
but more informed traders still implies higher Et[|qt|].

Again the empirical support for the relationship between institutional holdings and trans-

action volume is mixed. The difficulty for these studies is the endogeneity of holdings. Insti-

tutional traders prefer liquid stocks which have higher expected transaction volumes. These

stocks then have more institutional investors so it is difficult to determine causality.

5 Elastic noise traders and a monopolistic market maker

5.1 Setup

This section explores endogenous information acquisition in a model with both price elastic

noise traders and a monopolistic market maker. Leach and Madhavan (1993) provide the

baseline setup by extending standard Glosten-Milgrom with these two features but they keep

exogenously informed traders. Here, I replace them with potentially informed traders.
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The model setup is similar to Section 3. There are three agents: potentially informed

traders, noise traders and a market maker. Potentially informed traders see posted prices

and choose how much information to acquire. They are informed with probabilities given by

an information arrival function X(at, bt, µt). For this general setup, I drop the assumption

of separate buyers and sellers.

In Section 4, the two information arrival functions are given by the solutions of the

maximisation problems for potentially informed buyers and sellers facing quadratic costs.

Similarly, you can think of X(at, bt, µt) as the solution to:

max
ωt

ωt(µtbt + (1− µt)(V − at))−D(ωt) (24)

where D(ω) is some increasing cost function. X(at, bt, µt) describes the optimal ωt chosen

by potentially informed traders. For the rest of this paper, I abstract away from the cost

function D and concentrate on X. X preserves the intuition of costly information acquisition

under some restrictions: it needs to be bounded [0, 1], decreasing in at and increasing in bt.

I use it because it can account for general cost functions and yields a neater characteristion

of market information structure, being analogous to the price elasticity of noise traders.

If a potentially informed trader is drawn to the market, he learns the true value of the

asset with probability X. He then submits a sell order if the bid price is higher than the

true value, a buy order if the ask price is lower than the true value, and no trade otherwise.

If he does not learn the true value, he does not trade. He submits a trade:

qt =


−1 if bt > v̂

+1 if at < v̂

0 otherwise

From the market maker’s point of view, a potentially informed trader submits a trade qt

with probabilities:

qt =


−1 with probability µtX(at, bt, µt)

+1 with probability (1− µt)X(at, bt, µt)

0 with probability 1−X(at, bt, µt)

Noise traders are now price elastic. While arguably this is more realistic than the price

inelastic assumption, it is also essential for deriving interior prices with a monopolistic market
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maker. If noise traders are price inelastic, a monopolistic market maker maximises profits by

setting the maximum spread. Informed traders do not participate and he trades only with

noise traders. Such a market is always closed. However, if noise traders are price elastic, he

may find it optimal to set interior prices, a more interesting case to analyse.

Following Leach-Madhavan, when a noise trader is drawn into the market, he receives a

private reservation value r drawn from a distribution with cumulative density function F (r)

where the average
∫
r dF (r) is in (0, V ). He submits a sell order qt = −1 if the bid price

is higher than his reservation value, a buy order qt = +1 if the ask price is lower than his

reservation value, and no trade qt = 0 otherwise:

qt =


−1 if bt > r

+1 if at < r

0 otherwise

These occur with probabilities:

qt =


−1 with probability F (bt)

+1 with probability 1− F (at)

0 with probability F (at)− F (bt)

As before, after the market maker completes a trade qt, he forms posterior beliefs µt+1(qt)

using Bayes’ rule. After a sell, the posterior belief µt+1(−1) is:

µt+1 (−1) ≡ pr
(
θ̃ = θ1 | qt = −1, at, bt

)
=
µt [λX(at, bt, µt) + (1− λ)F (bt)]

µtλX(at, bt, µt) + (1− λ)F (bt)
(25)

After a buy, it is:

µt+1(+1) ≡ pr
(
θ̃ = θ1 | qt = +1, at, bt

)
=

µt(1− λ)(1− F (at))

(1− λ)(1− F (at)) + (1− µt)λX(at, bt, µt)
(26)
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And after no trade:

µt+1(0) ≡ pr
(
θ̃ = θ1 | qt = 0, at, bt

)
= µt (27)

Now I define another measure for how much the market learns from a trade. Let the ‘in-

formativeness’ of a trade Nt(qt|at, bt, µt) be the expected change in prior belief µt after a trade

qt conditional on that prior and a set of posted prices: Nt(qt|at, bt, µt) = E[|µt+1(qt)− µt|]. A

trade is more informative if it leads to a larger expected revision of the prior. A buy always

leads to a downward revision, µt+1(+1) ≤ µt, while a sell always leads to an upward revision,

µt+1(−1) ≥ µt. Under a competitive market maker, Nt(+1) and Nt(−1) are proportional to

ask and bid prices. They are analogous to the spread. I define this new measure because

with a monopolistic market maker, the spread no longer captures how trades affect beliefs.

5.2 Information and Market Structure

There are two transmission channels from prices to the informativeness of trades: the ‘in-

formation acquisition’ and ‘noise’ channels. I differentiate ‘market structure’ by whether

wider or narrower spreads increase informativeness. Consider the effect of prices on the

informativeness of a sell trade Nt(qt = −1|at, bt, µt).
First, the ‘information acquisition’ channel captures the impact of prices on the amount

of information acquired by potentially informed traders. Consider the posterior belief after

a sell trade µt+1(−1) given by Equation (25). Both ask and bid prices, at and bt, enter

the information arrival function X(at, bt, µt). Thus, I further distinguish between a ‘direct’

and ‘indirect’ information acquisition channel. The ‘direct information acquisition’ channel

affects a sell trade through the bid price bt. It has a direct effect because it raises profits from

selling the asset when its true value is low. Thus potentially informed traders acquire more

information when bt is high, (recall that X(a, b, µt) is increasing in bt). This channel makes

a sell trade more informative with higher bt. With the assumption of separate buyers and

sellers in Section 3, this is the only channel which operates because sellers can only trade at

bt.

The ‘indirect information acquisition’ channel affects a sell trade through the ask price

at. While it has no impact on profits from selling the asset, it does affect profits from

buying the asset when its value is high. Thus, lowering the ask price raises profits and

potentially informed traders acquire more information (recall that the information arrival
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function X(at, bt, µ) is decreasing in at). This is the ‘direct information acquisition’ channel

of at on a buy trade. However, it also has an indirect effect on a sell trade because when

potentially informed traders acquire more information in expectation of the high asset value,

they are also more likely to discover that the true value is low.

Second, the ‘noise’ channel captures the impact of prices on the participation of noise

traders. Returning to the expression for the posterior belief after a sell trade µt+1(−1) in

Equation (25), the bid price bt also enters the density function of noise trader reservation

values F (bt). Raising bt increases the probability that a noise trader has a reservation value

below bt, the criteria to submit a sell order, F (bt) is increasing in bt. Thus, raising bt

decreases the proportion of uninformed sell trades in the market and makes a sell trade more

informative. The lower bid price crowds out noise traders so a larger proportion of trades

are informed.

The two channels operate symmetrically on the informativeness of a buy trade Nt(qt =

+1|at, bt, µt). First, the direct information acquisition channel makes the informativeness of

a buy trade decreasing in the ask price at and the indirect channel makes it increasing in

the bid price bt. Second, the noise channel makes it increasing in at.

Finally, I characterise market structure by how spreads affect the informativeness of

trades. The first market structure is characterised by narrower spreads increasing the infor-

mativeness of trades. The information acquisition channel makes narrower spreads increase

the informativeness of both buy and sell trades. The noise channel does the opposite, de-

creasing the informativeness of trades. The aggregate impact on informativeness depends

on which channel dominates. When the first effect to be stronger, I get the definition of a

market structure in which ‘information acquisition dominates informativeness’.

Definition 3. ‘Information acquisition dominates informativeness’ if ∂µt+1(−1)
∂bt

−∂µt+1(−1)
∂at

> 0

and ∂µt+1(+1)
∂at

− ∂µt+1(+1)
∂bt

> 0 ∀ µt ∈ [0, 1], at > bt.

The first inequality refers to the informativeness a sell trade. The term ∂µt+1(−1)
∂bt

captures

both the direct information acquisition and noise channels of the bid price bt on a sell trade.

The information acquisition channel acts to make it positive while the noise channel, negative,

so the net sign depends on the relative sizes of the two channels. The other term ∂µt+1(−1)
∂at

captures the indirect information acquisition channel of the ask price at on a sell trade. This

term is always negative. In aggregate, I want narrower spreads to increase informativeness

of a sell trade, which is equivalent to increasing the posterior after a sell µt+1(−1). Hence

the inequality: ∂µt+1(−1)
∂bt

− ∂µt+1(−1)
∂at

> 0. The second inequality captures the analogous effect

of prices on the informativeness of a buy trade.
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The second market structure is characterised by wider spreads increasing the informative-

ness of trades. Now, the noise channel is stronger than the information acquisition channel,

which yields the definition of a market structure in which ‘noise dominates informativeness’.

Definition 4. ‘Noise dominates informativeness’ if ∂µt+1(−1)
∂bt

− ∂µt+1(−1)
∂at

< 0 and ∂µt+1(+1)
∂at

−
∂µt+1(+1)

∂bt
< 0 ∀ µt ∈ [0, 1], at > bt.

The inequalities are reversed relative to the first market structure. The noise channel

must be sufficiently large to overcome both the direct and indirect information acquisition

channels. This market information structure nests Leach-Madhavan which corresponds to an

information arrival function X(a, b, µ) of unity. Then, potentially informed traders always

receive the true value of the asset and trade, regardless of prices or beliefs. The information

acquisition channels do not operate so prices only affect the informativeness of trades through

the noise channel. Under my characterisation, noise dominates informativeness and wider

spreads increase the informativeness of trades.

Lemma 1. If X and F are differentiable, information acquisition dominates informativeness

if F (bt)(
∂X
∂bt
− ∂X

∂at
)−X(at, bt, µt)

∂F
∂bt

> 0, and (1− F (at))(
∂X
∂bt
− ∂X

∂at
)−X(at, bt, µt)

∂F
∂at

> 0, ∀
µt ∈ [0, 1], at > bt.

Lemma 2. If X and F are differentiable, noise dominates informativeness if F (bt)(
∂X
∂bt
−

∂X
∂at

) − X(at, bt, µt)
∂F
∂bt

< 0 and (1 − F (at))(
∂X
∂bt
− ∂X

∂at
) − X(at, bt, µt)

∂F
∂at

< 0, ∀ µt ∈ [0, 1],

at > bt.

The inequalities in Lemmas 1 and 2 can be separated into the two transmission channels.

The first inequality in both Lemmas refer to the informativeness of a sell trade. The term

F (bt)(
∂X
∂bt
− ∂X

∂at
) captures the information acquisition channel. It can be further separated

into two parts: F (bt)
∂X
∂bt
− F (bt)

∂X
∂at

. F (bt)
∂X
∂bt

captures the direct information acquisition

channel of the bid price bt and F (bt)
∂X
∂at

, the indirect information acquisition channel of the

ask price at.
∂X
∂bt

is always positive while ∂X
∂at

is always negative so the combined term shows

the two channels working in the same direction. The level of bt enters through F (bt) so the

information acquisition channel is stronger when there is greater noise trader participation.

Only bt appears because it has a direct effect on the profitability of a sell trade while at has

no affect on sells. The term X(at, bt, µt)
∂F
∂bt

captures the noise channel. ∂F
∂bt

is always positive

so the noise channel always operates counter to the two information acquisition channel.

The level of information arrival enters through X(at, bt, µt) so the noise channel is stronger

when more potentially informed traders acquire information. Again, the second equality in

the Lemmas refer to the informativeness of a buy trade.
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This characterisation of market structure is not exhaustive. I concentrate on market

structures which are consistent across all prior beliefs µt ∈ [0, 1] and prices at > bt. In general,

it is possible for one channel to dominate informativeness for some range of prior beliefs

and prices while the other dominates for a different range. Such markets exhibit changing

informational regimes and prices do not have a consistent effect on the informativeness of

trades.

5.3 Market Maker Objective Functions

Following Leach and Madhavan, I consider three types of market maker: an optimal monop-

olistic, a myopic monopolistic, and a competitive market maker. Price discovery under each

market maker is determined by their respective objective functions. In all cases, the market

maker’s one period expected profit is given by:

π(at, bt;µt) = λX(at, bt, µt) [µt(θ1 − bt) + (1− µ)(at − θ2)]

+ (1− λ) [F (bt)(θ2 − bt) + (1− F (at))(at − θ2)] (28)

An optimal monopolistic market maker maximises profits from trading over every period

up to time T . This is not a static problem because the market maker can influence the

information revealed by trades. His belief in later periods depends on the prices he posted

earlier. He may forgo some profits from earlier periods to increase information revelation

and increase expected profits in later periods. His maximisation yields total expected profits

given by:

V ∗n (µ1) = sup
{at,bt}

E

[
T∑

t=T−n+1

π(at, bt;µt)

]
(29)

for n remaining trading rounds. The choice variables are at and bt which are history depen-

dent. The prior belief µt evolves by Bayes’ rule as described previously. The expectation

is taken over all random variables. Current period prices are set to extract information

optimally. Equation (29) can be written in its Bellman form:

V ∗T (µ1) = sup
{a1,b1}

{
π(a1, b1;µ1) + E

[
V ∗T−1(µ2(q̃))

]}
(30)

with terminal condition

V ∗1 (µT ) = sup
{aT ,bT }

{π(aT , bT ;µT )} (31)
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The function V ∗n (µ1) is the stochastic dynamic programming problem for the market maker

with n periods left to trade before θ̃ is revealed. The state variable is the prior belief about

the true value of the asset µt, the control variables are the ask and bid prices, at and bt, and

the transition equation is Bayes’ rule.

Proposition 11. For µt ∈ (0, 1) the optimal monopolist’s value function V ∗T−1(µ) is convex

and nonnegative.

Nonnegativity is obvious because the market maker can post prices at which no trades

occur. Convexity of the value function is the key property for later results. By the Law

of Iterated Expectations, the expected posterior belief under any set of prices must be the

prior belief: E[µt+1|µt] = µt. Together with convexity of the value function, it implies that

future information is valuable. For any given prior belief, the market maker expects to be

better off in the next period after learning from another trade. Therefore, in non terminal

periods, a monopolist market maker never closes the market (by setting at ≥ θ2 and bt ≤ θ1)

as trading weakly reveals more information. In non terminal periods, prices which close the

market are weakly dominated by those which open it (at < θ2 and bt > θ1).

Definition 5. An optimal monopolistic market maker’s first period price choice p∗1 = (a∗1, b
∗
1) ∈

P is the solution to the Bellman equation, Equation (30).

An optimal monopolist market maker recognises that learning is endogenous to the prices

he posts. He has the incentive to set prices to encourage learning because he trades over

multiple periods. Unlike a competitive market maker, he is not constrained in his ability to

set prices. Leach Madhavan call this ‘active learning’ through ‘experimentation’. In contrast,

a competitive market maker only learns passively.

Definition 6. A myopic monopolist’s first period price choice pm1 = (am1 , b
m
1 ) ∈ P is the

solution to:

maxπ(a1, b1;µ1)

A myopic market maker is only concerned with maximising one period profits and does

not consider the impact of prices on information revealed by trades. The term may suggest a

behavioural story in which the market maker does not recognise the full extent of his actions.

However, it is also consistent with a rational market maker facing constraints. Perhaps he

only has limited monopoly power because competitors may enter in the next period.
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Definition 7. A competitive first period price choice pc1 = (ac1, b
c
1) ∈ P satisfies:

(ac1, b
c
1) = inf{a− b ∈ P : π(a, b) ≥ 0}

In contrast to a monopolist, a competitive market maker cannot trade at all possible

prices. Instead, imagine multiple market makers involved in a Bertrand price setting game

in which other traders only submit orders at the narrowest spread. Competitive equilibrium

prices minimize expected profits subject to nonnegativity. Under this definition, a compet-

itive market maker can always open the market even if zero profit prices do not exist. By

a simple extension of Proposition 1 to include elastic noise traders, zero profit prices do

not generally exist if the information arrival function X is not continuous. In that case, a

competitive market maker would set the narrowest possible spread while making some non

zero profit.

Proposition 12. If zero profit prices exist, competitive ask and bid prices are given by:

act = E
[
θ̃ |qt = +1, act , b

c
t ;µt

]
bct = E

[
θ̃ |qt = −1, act , b

c
t ;µt

]
where act ≥ bct .

Like Glosten-Milgrom, competitive prices are ex post regret free. The posted ask price

is the expected value of the asset conditional on the next trade being a buy while the bid is

the expected value conditional on the next trade being a sell. Competition drives expected

profits in every period to zero so there is no incentive for the market maker to induce learning.

Information still enters the market passively because potentially informed traders acquire

information before trading but the value of information does not affect price setting.

5.4 Prices and Volumes

The main result in this section is that endogenous information acquisition affects how an

optimal monopolistic market maker sets prices. He sets narrower spreads than the my-

opic monopolist when information acquisition dominates informativeness, and wider spreads

when noise dominates informativeness. The inverse relation holds for expected transactions

volume. My model nests Leach-Madhavan as a special case of the second market information

structure. In the following propositions, the market maker sets prices in the first of T trading

periods. I suppress the subscript for t = 1 for clarity.
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Proposition 13. If markets are open under both competitive and monopolistic market mak-

ers and information acquisition dominates informativeness, then spreads are narrower under

an optimal monopolist than under a myopic monopolist. They are also narrower under a

competitive market maker than under a myopic monopolist. Specifically: b∗ ≥ bm, bc ≥ bmand

a∗ ≤ am, ac ≤ am.

Proposition 14. If markets are open under both competitive and monopolistic market mak-

ers and noise dominates informativeness, then spreads are wider under an optimal monopolist

than under a myopic monopolist, which are wider than under a competitive market maker.

Specifically: bc ≥ bm ≥ b∗ and ac ≤ am ≤ a∗.

The relationship between prices set by a myopic monopolistic market maker and those

set by a competitive one is the same in both markets. A myopic monopolistic market maker

never sets narrower spreads than a competitive one because by definition, he makes negative

expected profits by doing so. However, the prices set by an optimal monopolistic market

maker relative to a myopic one depend on the market information structure. If information

acquisition dominates informativeness, an optimal monopolist market maker facing multiple

trading periods sets narrower spreads while if noise dominates informativeness, he sets wider

spreads.

The intuition for this price setting result is that an optimal monopolist market maker

who trades over multiple periods has the incentive to increase informativeness of trades in

the early periods because stronger beliefs yield higher expected profits in later periods. By

Proposition 11, the monopolist market maker’s value function is convex in the prior belief µ

so increasing the change of that prior, increases the expected profit of the market maker. The

next insight is that how the market maker can change prices to increase the informativeness

of trades depends on the market information structure.

Propositions 13 and 14 describe the price setting of different market makers within a

market. However, I cannot use them to compare prices between markets because my charac-

terisation of market structure is insufficient to determine price levels. It only describes how

price changes affect the informativeness of trades. In general, price levels are determined

by the exact relationship between the information arrival function of potentially informed

traders X and the density function of noise trader reservation values F .

Corollary 8. If markets are open and information acquisition dominates informativeness,

the first period spreads set by an optimal monopolistic market maker are weakly decreasing

in the number of trading periods T .
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Corollary 9. If markets are open and noise dominates informativeness, first period spreads

set by an optimal monopolistic market maker are weakly increasing in the number of trading

periods T .

Increasing the number of trading periods increases the incentive for the market maker to

increase informativeness in early periods because by Proposition 11, the market maker has

a convex value function. Then the market maker affects prices through spreads depending

on the market information structure as described by Propositions 13 and 14.

Corollary 10. If markets are open with both competitive and monopolistic market makers

and information acquisition dominates informativeness, then expected transaction volume is

higher under an optimal monopolist than under a myopic monopolist, and it is higher under

a competitive market maker than under a myopic monopolist, specifically: E[|q∗|] ≥ E[|qm|]
and E[|qc|] ≥ E[|qm|].

Corollary 11. If markets are open with both competitive and monopolistic market makers

and noise dominates informativeness, then expected transaction volume is lower under an

optimal monopolist than under a myopic monopolist, which is lower than under a competitive

market maker, specifically: E[|q∗|] ≤ E[|qm|] ≤ E[|qc|].

The relationship between transaction volume and informativeness of trades is not always

the intuitive one. By Corollary 10, when information acquisition dominates informativeness,

higher transaction volume corresponds to more informative trades. However, by Corollary

11, when noise dominates informativeness, the opposite holds and lower transaction volume

corresponds to more informative trades. With exogenous information acquisition, Leach and

Madhavan find only the second case.

Corollary 11 for the general model with elastic noise traders and a monopolistic market

maker shares the intuition of Corollary 3 for the model with inelastic noise traders and a

competitive market maker. By Corollary 3, for some range of the proportion of potentially

informed traders λ, lower expected transaction volume E[|q|] coincides with more informative

trades. The two results are driven by the participation of potentially informed traders relative

to noise traders. Under the conditions given by the corollaries, trades are more informative

despite there being fewer expected trades because a larger proportion of them are informed.

5.5 Dynamics of Prices

In Glosten-Milgrom, spreads always narrow after a trade which strengthens beliefs and widen

after a trade which weakens them. I find conditions under which spreads can behave in the
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opposite direction, widening after a trade which strengthens beliefs and narrowing after a

trade which weakens them.

The price schedule is the function of equilibrium ask and bid prices {at, bt} set by a market

maker at time t for every possible prior belief µt. Price schedules are characterised by whether

for a given time t, spreads are symmetric and monotonically narrowing or widening in the

strength of beliefs, |µt − 1
2
|. I concentrate on the standard case the price schedules imply

spreads which narrow in the strength of beliefs although in general, they need not be. The

following results refer to the evolution of spreads over time, from time t to t+ 1.

Corollary 12. If information acquisition dominates informativeness, optimal monopolistic

spreads widen after a trade which strengthens beliefs, i.e. µt + 1 closer to 0 or 1. If crowding

out dominates informativeness, optimal monopolistic spreads may narrow after a trade which

weakens beliefs, i.e. µt + 1 closer to 1
2
.

Although Corollaries 8 and 9 describe the relationship between first period spreads and

the total number of trading periods, this does not translate into the dynamic behaviour of

spreads because beliefs evolve endogenously between periods. By Corollary 12, spreads may

behave counterintuitively, widening after a trade which strengthens beliefs, or narrowing

after a trade which weakens them.

Figure 2 shows an example of each case. It plots the spreads at− bt for periods t = 1 and

t = 2 across beliefs µt. In Figure 2(a), information acquisition dominates informativeness so

spreads at t = 1, drawn with a solid line, are narrower than at t = 2, drawn with a broken

line, across beliefs µt. Consider an uninformative prior belief in period 1, µ1 = 0.5 and a

sell trade which strengthens beliefs in period 2 to µ2 = 0.65. In this example, the spread in

period 2 is wider than in period 1.

In Figure 2(b), noise dominates informativeness so spreads at t = 1, solid line, are wider

than at t = 2, broken line, across beliefs µt. Now consider a prior belief in period 1 at

µ1 = 0.65 and a buy trade which weakens beliefs in period 2 to µ2 = 0.5. In this example,

the spread in period 2 is narrower than in period 1. Note that neither of these outcomes are

necessary. For example, in Figure 2(a), a larger µ2 could mean a narrower spread in period

2.

The counterintuitive spread dynamics are driven by the interaction of an optimal monop-

olistic market maker and market information structure. The optimal monopolistic market

maker sets price schedules which change over time and the market information structure

determines the direction of the change. The evolution of spreads then depends on relative
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Figure 2: Dynamic behaviour of spread at − bt after a trade which (a) strengthens beliefs
when information acquisition dominates informativeness; and (b) weakens beliefs when noise
dominates informativeness.

effects of the change in beliefs after a trade and the difference in optimal spreads between

each period.

While the examples above apply to realised trades over two periods, the results also

apply to expected trades over multiple periods. Starting from an uninformed prior µ1 = 1
2
,

expected beliefs grow monotonically stronger over time. If each period’s price schedule

implies sufficiently wider spreads each period, it is possible for expected spreads to widen

every period from t = 1 to T .

6 Conclusion

This paper makes two main contributions. First, I study the effect of endogenous information

acquisition with price inelastic noise traders and a competitive market maker. In this setup,

spreads and the probability of an informed trade do not always comove. In particular, over

some range, increasing the proportion of potentially informed traders leads to wider spreads

but a lower probability of an informed trade. I also find dynamic features for expected

transaction volume which better capture the stylised facts.

Second, I take endogenous information acquisition to market with price elastic noise

traders and a monopolistic market maker. I find that market information structure deter-

mines how the market maker sets prices to influence information revealed by trades. If

information acquisition dominates, he sets narrower spreads with more trading periods. If
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noise dominates, he sets wider spreads with more trading periods. Spreads may also widen

over time on average.

In both cases, endogenous information acquisition significantly affects market properties

relative to the exogenous information benchmarks. My results suggest caution when inter-

preting empirical results from structural models under the exogenous assumption. For future

work, I aim to follow Easley et al. (1996) in deriving a maximum likelihood estimator for the

probability of an informed trade. My model offers a natural extension to their framework

because we share the same discrete time setup. By incorporating endogenous information

acquisition, I hope to improve on their measure for informed trading.

A Appendix

I suppress the time subscript in proofs of Proposition 1 to 10. I only present proofs for the

ask side. The bid side follows analogously. As shorthand, Zc refers to any function Z(a, b)

which takes arguments (ac, bc).

Proof of Proposition 1. Let Z(a) = (1−µ)BV (a)V
µtB0(a)+(1−µ)BV (a)

so that the equilibrium ask price is

given by ac = Z(ac) from Equation (7). Z(a) is given by:

Z(a) =
(1− µ)(λXa(a) + (1− λ))V

(1− µ)λXa(a) + (1− λ)

Let Xa be a continuous, monotonic, increasing in a and bounded [0, 1]. Therefore the

numerator of Z is continuous. The denominator of Z is also continuous and bounded [0, 1]

under the same conditions. Therefore Z is also continuous. Taking the first derivative of Z

with respect to a yields:
∂Z

∂a
=
µ(1− µ)λ(1− λ)V

(µλXa + 1− λ)2
∂Xa

∂a

∂Xa
∂a
≥ 0 by earlier assumption. Now I need to show that Z : R→ [0, V ]. The lower bound of

Z is at Xa = 0: Z = (1−µ)V : R→ [0, V ] when µ ∈ [0, 1]. The upper bound of Z is at F = 1:

Z = (1−µ)V
1−µλ : R → [0, V ] when µ ∈ [0, 1] and λ ∈ [0, 1]. Therefore the function Y = Z(a)

must cross Y = a once in the range [0, V ] and the solution to Equation (7) must exist in the

range [0, V ]. For uniqueness, I need to rule out the only other alternative: a continuum of

solutions. It is easy to see there are no parameter values such that a = Z(a) ∀ a. a = Z(a)

occurs at a single crossing.
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Proof of Proposition 2. From Equation (7), differentiate ac implicitly with respect to µ to

obtain:
∂ac

∂µ
=
−V (1− λ)(1− λ(1−Xc

a + µ(1− µ)(∂X
c
a

∂µ
+ ∂ac

∂µ
∂Xc

a

∂ac
)))

(1− λ(1− (1− µ)Xc
t ))

2

Rearrange and see that ∂ac

∂µ
≤ 0 when µ ∈ [0, 1], λ ∈ [0, 1], Xc

a ∈ [0, 1], ∂Xc
a

∂µ
≤ 0, ∂Xc

a

∂ac
≤ 0 and

ac ≤ V .

Substituting into Equation (7), ac(µ = 0) = V and ac(µ = 1) = 0.

Proof of Proposition 3. Exogenously informed traders have Xa = 1 always. Equilibrium ask

price in this market is given by:

āc =
(1− µ)V

µ(1− λ) + 1− µ

Compare with ac from Equation (7). Let Z = 1 − λ(1 − g). Z ≤ 1 when λ ∈ [0, 1] and

Xc
a : R → [0, 1]. Then āc = (1−µ)V

µ(1−λ)+1−µ = (1−µ)V X
µ(1−λ)X+(1−µ)X ≥

(1−µ)V X
µ(1−λ)+(1−µ)X = ac when Z ≤ 1.

Proof of Proposition 4. From Equation (7) the competitive market maker sets the ask price

as the expected value of the asset conditional on a buy occuring:

a =
(1− µ)[λ 1

C
((1− µ)(V − a)) + 1− λ]V

(1− µ)λ 1
C

(1− µ)(V − a) + 1− λ

The expression is quadratic in a and the two roots are given by:

a = V ± (1− λ)C

2λ(1− µ)2

[√
1 +

4µ(1− µ)2λV

(1− λ)C
− 1

]

To obtain a unique solution, one of the roots is ruled out. Under the parameter restrictions,

p ∈ [0, 1], λ ∈ [0, 1], V > 0 and C > 0, the expressions
√

1 + 4µ(1−µ)2λV
(1−λ)C − 1 and (1−λ)C

2λ(1−µt)2 are

both larger than 0 so the first root is larger than V . This is ruled out because the potentially

informed trader would always make a loss trading at this price, regardless of the true value.

The remaining root ac has to satisfy two other restrictions: 1) it implies an information

arrival probability, Xa(a
c), which is bounded [0, 1], and 2) it is bounded [0, V ]. For the first
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part, substitute the root into the expression for Xa:

Xa(a
c) =

(1− λ)

2λ(1− µ)

[√
1 +

4µ(1− µ)2λV

(1− λ)C
− 1

]

Under the same parameter assumptions, Xa(a
c) ≥ 0. It also needs to be shown that Xa(a

c) ≤
1. Taking partial derivatives, it can be shown that ∂Xa(ac)

∂λ
< 0. Since λ is bounded [0, 1],

arg max
λ

Xa(a
c) = 0. By l’Hopital’s rule, lim

λ→0
X(ac) = 1

C
µ(1−µ)V . The maximum value this

can take is V
4C

given arg max
µ

1
C
µ(1− µ)V = 1

2
. To satisfy Xa(a

c) ≤ 1 requires the restriction

C > 1
4
V . This completes the first part.

For the second part, it remains to be shown that ac ≥ 0. ac < 0 is ruled out because the

potentially informed trader would always make a profit trading at this price, regardless of the

true value. Taking partial derivatives, ∂ac

∂λ
> 0 under the parameter restrictions above. Since

λ is bounded [0, 1], arg min
λ

ac = 0. By l’Hopital’s rule, lim
λ→0

ac = (1 − µ)V . The minimum

value this can take is 0 given arg min
µ

(1− µ)V = 1 for µ ∈ [0, 1]. Therefore, ac is the unique

root to Equation (7).

Proof of Proposition 5. Take the derivative of ac from Equation (17) with respect to C and

simplify to obtain:

∂ac

∂C
= − 1− λ

2(1− µ)2λ

 1 + 2
(1−λ)C (1− µ)2µλV√

1 + 4
(1−λ)C (1− µ)2µλV

− 1


Let Z = 2

(1−λ)C (1 − µ)2µλV . Z ≥ 0 when µ ∈ [0, 1], λ ∈ [0, 1] and V > 0. Then 1 +

2
(1−λ)C (1−µ)2µλV = 1 +Z and

√
1 + 4

(1−λ)C (1− µ)2µλV =
√

1 + 2Z. Comparing these two

expressions in Z, 1 + Z ≥
√

1 + 2Z. Therefore 1+Z√
1+2Z

> 1. 1−λ
2(1−µ)2λ ≥ 0 when λ ∈ [0, 1].

Therefore ∂ac

∂C
≤ 0.

Take the expression for ac from Equation (17). Let Y (C) = 4µ(1−µ)2λV
(1−λ)C . The expression√

1 + 4µ(1−µ)2λV
(1−λ)C can be written as (1 + Y )

1
2 . Using a Taylor expansion: (1 + Y )

1
2 − 1 ≈

(1 + 1
2
Y − 1

8
Y 2 + ...) − 1 ≈ 1

2
Y − 1

8
Y 2 + .... Also the expression (1−λ)C

2λ(1−µ)2 can be written

as 2
Y
µV . Using this expression with the Taylor expansion, ac can be written as: ac ≈

V − 2
Y
µV (1

2
Y − 1

8
Y 2 + ...) ≈ V − µV +O(Y ). lim

C→∞
Y (C) = 0. Therefore ac ≈ (1− µ)V .

Proof of Proposition 6. Take the derivative of ac from Equation (17) with respect to λ and
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simplify to obtain:

∂ac

∂λ
=

C

2(1− µ)2λ2

 1 + 2
(1−λ)C (1− µ)2µλV√

1 + 4
(1−λ)C (1− µ)2µλV

− 1


1+ 2

(1−λ)C (1−µ)2µλV√
1+ 4

(1−λ)C (1−µ)2µλV
≥ 0 as shown in the Proof of Proposition 5. Also, C

2(1−µ)2λ2 ≥ 0 when

µ ∈ [0, 1], λ ∈ [0, 1] and C > 0. Therefore ∂ac

∂λ
≥ 0.

Use L’Hopital’s rule to evaluate ac from Equation (17) as λ → 0. Let X(λ) = (1 −
λ)C

[√
1 + 4µ(1−µ)2λV

(1−λ)C − 1
]

and Y (λ) = 2(1−µ)2λ. Then ∂X(0)
∂λ

= −2µ(1−µ)2V and ∂Y (0)
∂λ

=

2(1 − µ)2. Therefore lim
λ→0

X(λ)
Y (λ)

= −µV and so lim
λ→0

ac = (1 − µ)V . From Equation (17)

ac(λ = 1) = V .

Proof of Proposition 7. To find the maximum of K with respect to µ, solve the first order

condition ∂Kc

∂µ
= 0. Taking the derivative of Kc:

∂Kc

∂µ
=

1− λ
4(1− µ)2

1−
1− λ+ 2

C
(1− µ)3λV√

1 + 4
(1−λ)C (1− µ)2µλV


−1− λ

4µ2

1−
1− λ+ 2

C
µ3λV√

1 + 4
(1−λ)Cµ

2(1− µ)λV


The first order condition is satisfied when µ = 1

2
.

Use L’Hopital’s rule to evaluate Gc(µ) from Equation (19) as µ → 1. Let X(µ) =

(1 − λ)
(√

1 + 4µ(1−µ)2λV
(1−λ)C − 1

)
and Y (µ) = 4(1 − µ). Then ∂X(1)

∂µ
= 0 and ∂Y (1)

∂µ
= 4.

Therefore lim
µ→0

X(µ)
Y (µ)

= 0 and lim
µ→0

Gc(µ) = 0. From Equation (19) Gc(µ = 0) = 0. Similarly

for Hc(µ). Combining them, I get the result for Kc(µ).

Proof of Proposition 8. Take the derivative of Gc from Equation (19) with respect to C and

simplify to obtain:
∂Gc

∂C
= − µ(1− µ)λV

2C2
√

1 + 4
(1−λ)Cµ(1− µ)2λV

µ(1 − µ)λV ≥ 0 and 1 + 4
(1−λ)Cµ(1 − µ)2λV ≥ 0 when µ ∈ [0, 1], λ ∈ [0, 1] and V > 0.

Therefore ∂Gc

∂C
≤ 0.
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Proof of Proposition 9. Take the derivative of Gc from Equation (19) with respect to λ and

solve for the first order condition ∂Gc

∂λ
= 0. Following some tedious algebra, the two roots to

the first order condition are given by: (1 − µ)(1 − 2λ)
√

1
C
µV + 1 − λ = 0 and (1 − µ)(1 −

2λ)
√

1
C
µV − 1 + p = 0. These roots are µ = Z+1

2Z+1
and µ = Z−1

2Z−1 where Z = (1− µ)
√

1
C
µV .

Z ≥ 0 when µ ∈ [0, 1], V ≥ 0 and C ≥ 0. The second root is ruled out because it implies

µ > 1 when µ ∈ [0, 1]. Therefore, arg max
µ

Gc = Z+1
2Z+1

.

Substituting into the expression for Gc, Gc(λ = 0) = 0 and Gc(λ = 1) = 0.

Proof of Proposition 10. Take the derivative of Xc
a with respect to λ and simplify to obtain:

∂Xc
a

∂λ
= − 1

2(1− µ)λ2

 1 + 2
(1−λ)C (1− µ)2µλV√

1 + 4
(1−λ)Cµ

2(1− µ)λV
− 1


1+ 2

(1−λ)C (1−µ)2µλV√
1+ 4

(1−λ)C (1−µ)2µλV
≥ 1 as shown in the Proof of Proposition 5. 2(1−µ)λ2 ≥ 0 when µ ∈ [0, 1],

λ ∈ [0, 1]. Therefore ∂Xc
a

∂λ
≤ 0.

Use L’Hopital’s rule to evaluateXc
a(λ) as λ→ 0. Let Z(λ) = (1−λ)

(√
1 + 4µ(1−µ)2λV

(1−λ)C − 1
)

and Y (λ) = 2(1 − µ)λ. Then ∂Z(0)
∂λ

= 2
C

(1 − µ)2µV and ∂Y (0)
∂λ

= 2(1 − µ). Therefore

lim
λ→0

Xc
a(λ) = 1

C
(1− µ)µV . Substituting into the expression for Xc

a, X
c
a(λ = 1) = 0.

Proof of Proposition 11. To establish nonnegativity, I use the fact that the market maker

can post prices outside of the interval [θ1, θ2] in all periods and earn zero expected profits.

This sets the lower bound on the value function for all beliefs µ. To establish convexity,

consider a µ′ ∈ [µ, µ′′] for µ, µ′′ ∈ [0, 1] and µ′′ ≥ µ. I can then write:

µ′ = φµ+ (1− φ)µ′′

where

φ = (µ′′ = µ′)/(µ′′ − µ)

Starting from the prior µ′, suppose there is a set of prices that could induce a posterior of µ

with probability φ and µ′′ with probability 1− φ. This is more informative than prices that

do not change the posterior because it could lead to a revision in beliefs. Since the market

maker cannot be worse off on average by learning the outcome from these prices, it must be

that:

φV ∗T−1(µ) + (1− φ)V ∗T−1(µ
′′) ≥ V ∗T−1(µ

′)
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which is the requirement for convexity.

Proof of Proposition 12. By Bayes’ rule:

E
[
θ̃ |q = +1; a, b

]
=

λX(a, b)(1− µ)θ2 + (1− λ)(1− F (a))Eµ[θ̃]

λX(a, b)(1− µ) + (1− λ)(1− F (a))

E
[
θ̃ |q = −1; a, b

]
=

λX(a, b)µθ1 + (1− λ)F (b)Eµ[θ̃]

λX(a, b)µ+ (1− λ)F (b)

Solve for (1 − λ)(1 − F (a))Eµ[θ̃] and (1 − λ)F (b)Eµ[θ̃], substitute into Equation (28) and

rearrange to obtain:

π(a, b) =
(
a− E

[
θ̃ |q = +1; a, b

])
[λX(a, b)(1− µ) + (1− λ)(1− F (a))] +(

E
[
θ̃ |q = −1; a, b

]
− b
)

[λX(a, b)µ+ (1− λ)F (b)]

Since Pr(q = +1) = λX(a, b)(1−µ) + (1−λ)(1−F (a)) and Pr(q = −1) = λX(a, b)µ+ (1−
λ)F (b), the the market maker’s profit in Equation (28) can be written as:

π(a, b) = Pr(q = +1)
(
a− E

[
θ̃ |q = +1; a, b

])
+ Pr(q = −1)

(
E
[
θ̃ |q = −1; a, b

]
− b
)

and the result follows immediately.

Proof of Proposition 13. This proof closely follows the one for Proposition 3 in Leach and

Madhavan. First I show that ac < am with all market structures. Suppose the opposite,

ac > am. By definition of ac, the expected profits of am must be negative, which contradicts

the definition of am.

The next results hinge on the impact of prices on beliefs with different market structures.

I begin with the case when information acquisition dominates informativeness. Then, by

Definition 3, ∂µ2(−1)
∂b

> 0 and ∂µ2(+1)
∂a

> 0 for all µ ∈ [0, 1] when markets are open. Now

suppose that am is the unique solution to the myopic monopolistic market maker’s problem

and that am < a∗. By the definition of am, it must be that π(am, b, µ) > π(a∗, b, µ). Since

µ2 is increasing in a, the expected value functions yield:

E
[
V ∗T−1(µ2(a

m, b, q̃(am)))
]
≥ E

[
V ∗T−1(µ2(a

∗, b, q̃(a∗)))
]

However, this relation contradicts the definition of a∗. Therefore, if information acquisition

dominates informativeness, then ac ≤ am and a∗ ≤ am. The bid side is analogous and spread
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implications follow immediately.

Proof of Proposition 14. When crowding out dominates informativeness, by Definition 4,
∂µ2(−1)

∂b
< 0 and ∂µ2(+1)

∂a
< 0 for all µ ∈ [0, 1] when markets are open. Fix a b and suppose

that ac > a∗. Then µ2(+1, a∗) ≥ µ2(+1, ac) while µ2(−1) is the same for either a. From

Proposition 11, convexity of the value function implies:

E
[
V ∗T−1(µ2(a

c, b, q̃(ac)))
]
≥ E

[
V ∗T−1(µ2(a

∗, b, q̃(a∗)))
]

for any b. To satisfy the definition of a∗, it must also be that 0 ≤ π(ac, b, µ) ≤ π(a∗, b, µ).

But this means that a∗ is lower than ac and yields non negative profits, contradicting the

definition that ac is the lowest ask price yielding non negative profits. Therefore, it must be

that a∗ ≥ ac.

Now suppose that am is the unique solution to the myopic monopolistic market maker’s

problem and that am > a∗. By the definition of am, π(am, b, µ) > π(a∗, b, µ). Since µ2 is

decreasing in a the expected value functions yield:

E
[
V ∗T−1(µ2(a

m, b, q̃(am)))
]
≥ E

[
V ∗T−1(µ2(a

∗, b, q̃(a∗)))
]

However this relation contradicts the definition of a∗. Therefore, if crowding out domi-

nates informativeness, then ac ≤ am ≤ a∗. The bid side is analogous and spread implications

follow immediately.
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