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Abstract

We present a general framework for representing belief-revision rules and use it to
characterize Bayes’s rule as a classical example and Jeffrey’s rule as a non-classical
one. In Jeffrey’s rule, the input to a belief revision is not simply the information that
some event has occurred, as in Bayes’s rule, but a new assignment of probabilities to
some events. Despite their differences, Bayes’s and Jeffrey’s rules can be character-
ized in terms of the same axioms: responsiveness, which requires that revised beliefs
incorporate what has been learnt, and conservativeness, which requires that beliefs on
which the learnt input is ‘silent’ do not change. To illustrate the use of non-Bayesian
belief revision in economic theory, we sketch a simple decision-theoretic application.

Keywords: Belief revision, subjective probability, Bayes’s rule, Jeffrey’s rule, axio-
matic foundations, fine-grained versus coarse-grained beliefs, unawareness

1 Introduction

A belief-revision rule captures how an agent’s subjective probabilities should change
when the agent learns something new. The standard example is Bayes’s rule. Here,
the agent learns that some event has occurred, and the response is to raise the sub-
jective probability of that event to 1, while retaining all probabilities conditional on
it. Formally, let © be the underlying set of possible worlds (where 2 is non-empty
and, for simplicity, finite or countably infinite).? Subsets of ) are called events. Be-
liefs are represented by some probability measure on the set of all events. Bayes’s
rule says that, upon learning that some event B C 2 has occurred (with p(B) # 0),
one should move from the prior probability measure p to the posterior probability
measure p’ given by

p'(A) = p(A|B) for all events A C Q.
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In economic theory, belief changes are almost always modelled in this way. The
aim of this paper is to draw attention to a more general form of belief revision, which
is seldom discussed in economics. We develop a general framework in which different
belief-revision rules — Bayesian and non-Bayesian — can be characterized. In it, the
key difference between different belief-revision rules lies in what they assume about
the nature of the input prompting the agent’s belief change. Under Bayes’s rule, the
learnt input is always the occurrence of some event, but this is more restrictive than
often recognized, and we show that there is scope for useful generalization.

We begin with a story that will resonate with any international traveller. When
Kotaro Suzumura was applying for a lectureship at the LSE in the 1970s, shortly after
arriving in the UK from Japan, he was telephoned by Terence Gorman to inform him
of the outcome. Suzumura got a vague impression that he was being offered the job,
but struggled to understand Gorman’s thick Irish accent. At the end of the call, he
was still unsure whether he had received an offer — so unsure that it took a second
call to convince him, this time with Amartya Sen, who was able to confirm the news.

This story illustrates an instance of belief revision triggered by a noisy signal.
Before the telephone conversation with Gorman, Suzumura presumably attached a
fairly low probability to the event of him being appointed to the lectureship. After
the conversation, he attached a somewhat higher probability to it, but one that still
fell short of certainty. For this, a second conversation (with Sen) was needed. Such
cases present challenges to the Bayesian modeller. If the first change in Suzumura’s
probabilities is to be modelled as an application of Bayes’s rule, then it will clearly
not suffice to restrict attention to the ‘naive’ set of possible worlds €2 = {appointed,
not appointed}. Relative to that ‘naive’ set, a Bayesian belief change could never
increase the probability of the event ‘appointed’ without raising it all the way to 1.

The modeller will need to enrich the set €2 to capture the possible sensory experi-
ences responsible for Suzumura’s shift in probabilities over the events ‘appointed’ and
‘not appointed’. So, the enriched set of worlds will have to be something like

V' = {appointed, not appointed} x A,

where A is the set of possible analogue auditory signals received by Suzumura’s
eardrums. The signal he received from Gorman will then correspond to some subset
of €, specifically one of the form B = {appointed, not appointed} x A, where A C A
is a particular ‘auditory event’. Not much less than this representation will do.
Even replacing A with a smaller set of possible verbal messages would not suffice,
since Gorman’s words were subject to a triple distortion: by his thick accent, by
imperfections of the telephone line, and by the interpretation of a non-native speaker.

Enriching the set 2 in this way, however, has definite modelling costs. First, the
agent (Suzumura) almost certainly did not have prior subjective probabilities over
the events from such a rich set. In light of the huge range of possible signals, the set
Y is of dizzying size and complexity, when compared to the ‘naive’ set {2 on which
the agent’s attention was originally focused. Second, it is doubtful that before the
conversation he was even aware of the possibility of such complex auditory signals
(probably he had never heard, or even imagined, an accent like Gorman’s). So, a
Bayesian model of Suzumura’s story, and others like it, must inevitably involve a
heavy dose of fiction. It ascribes to the agent greater prior opinionation (ability to



assign prior probabilities) and greater awareness (conceptualization or consideration
of events) than psychologically plausible. In a similar vein, Diaconis and Zabell (1982,
p. 823) have called the assignment of prior subjective probabilities to ‘many classes
of sensory experiences [...] forced, unrealistic, or impossible’ (see also Jeffrey 1957
and Shafer 1981). Of course, whether this is a problem or not will depend on the
uses to which the model is put; we are not denying the usefulness of ‘as-if” modelling
in all cases. But good scientific practice should encourage us to investigate whether
other belief-revision rules are better at capturing cases like the present one and how
these other rules relate to Bayes’s rule. This is what motivates this paper.

One of the most prominent generalizations of Bayes’s rule is Jeffrey’s rule (e.g.,
Jeffrey 1957, Shafer 1981, Diaconis and Zabell 1982, Griinwald and Halpern 2003).
Here, the agent learns a new probability of some event, for instance a 20% probab-
ility of an accident or a 75% probability of the offer of a lectureship, as perhaps in
Suzumura’s case. More generally, the agent learns a new probability distribution of
some random variable such as the level of rainfall or GDP. The response, then, is to
assign the new distribution to that random variable, while retaining all probabilities
conditional on it. Formally, let B be a partition of the set {2 into finitely many non-
empty events, and suppose the agent learns a new probability 7 for each event B
in B. The family of learnt probabilities, (75)peg, is a probability distribution over
B (i.e., consists of non-negative numbers with sum-total 1). Jeffrey’s rule says that,
upon learning (7p)gen, one should move from the prior probability measure p to the
posterior probability measure p’ given by

p'(A) = Z p(A|B)rp for all events A C Q.3
BeB

For instance, suppose the agent learns that it will rain with probability %, SNow
with probability %, and remain dry with probability %. Then the partition B (of a
suitable set §2) contains the events of rain (R), snow (S), and no precipitation (NV),
where mp = %, Ty = %, and my = %. Bayes’s rule is the special case where B
partitions ) into an event B and its complement B, with 7 =1 and 75 = 0. (The
complement of any event B is B = Q\B.)

The framework we develop allows us to define and characterize different belief-
revision rules. What is being learnt by the agent can take a variety of forms; we
call this the learnt input. It can be interpreted as the constraint that a particular
experience — say the receipt of some signal — imposes on the agent’s beliefs. Examples
of learnt inputs are event occurrences for Bayes’s rule and learnt probability distri-
butions for Jeffrey’s. But, in principle, the learnt inputs could also be very different,
such as new conditional probabilities of certain events. We show that, despite their
differences, Bayes’s and Jeffrey’s rules can be characterized in terms of the same two
axioms, simply applied to different domains of learnt inputs.

Our axioms are (i) a responsiveness axiom, which requires that revised beliefs be
consistent with the learnt input, and (i) a conservativeness axiom, which requires
that those beliefs on which the input is ‘silent’ (in a sense to be made precise) do

3For p’ to be well-defined, we must have mg = 0 whenever p(B) = 0. This ensures that if a term
p(A|B) is undefined in the displayed formula (because p(B) = 0), then this term does not matter
(because it is multiplied by mg = 0).



not change. The fact that one of most prominent non-classical belief-revision rules,
namely Jeffrey’s rule, can be justified in complete analogy to Bayes’s rule should as-
suage some economists’ worry that non-Bayesian rules automatically involve costly
departures from compelling principles of belief revision. Our characterization can be
extended to other non-classical belief-revision rules too, but for expositional simpli-
city, we set these aside in this paper.*

We hope that our framework will inspire further work on economic applications,
and behaviourial implications, of non-Bayesian forms of belief revision. To sug-
gest some steps in this direction, we conclude the paper with a discussion of how
Jeffrey revision may be introduced into decision and game theory, especially to cap-
ture ‘unforeseen learning’; we also briefly revisit the issue of unawareness.’

Prior literature. Bayes’s and Jeffrey’s rules have been axiomatically characterized
in previous work, but the approach has been less unified than ours. One approach is
a ‘distance-based’ one. This consists in showing that a given revision rule generates
posterior beliefs that incorporate the information learnt, while deviating as little as
possible from prior beliefs, relative to some notion of ‘distance’ between beliefs.
Bayes’s and Jeffrey’s rules have been characterized relative to either the wariation
distance (defined by the maximal absolute difference in probability, over all events
in the algebra), the Hellinger distance, or the relative-entropy distance (e.g., Csiszar
1967, 1977, van Fraassen 1981, Diaconis and Zabell 1982, Griinwald and Halpern
2003). The third notion of distance does not define a proper metric, as it is asymmetric
in its two arguments. These results, however, do not generally carry over to other
belief-revision rules without changing the distance metric,” and the interpretation of
different distance metrics is often controversial.

Other characterization results invoke the idea of ‘rigidity’ rather than distance-
minimization (e.g., Jeffrey 1957 and Bradley 2005 for some extensions). For example,
Bayesian belief revision is ‘rigid’ in the sense of preserving the conditional probability
of any event, given the learnt event. Although this approach is closer in spirit to ours,
it also lacks unification. Still, one might interpret our present conservativeness axiom
as a unified alternative to earlier rigidity axioms, applicable to any belief-revision rule.
For an overview of various forms of probabilistic belief and belief revision, we refer
the reader to Halpern’s handbook (2003). Since we here deal exclusively with beliefs
that are represented by subjective probability measures, we set aside the literature
on the revision of beliefs that do not take this form.

YOne such rule is Adams’s rule, inspired by Ernst Adams’s work on the logic of conditionals
(Adams 1975) and formally introduced by Bradley (2005). It takes the learnt input to be a new
assignment of conditional probabilities of some events, given some other events. Another rule is the
‘dual-Jeffrey’ rule, which stands out for its natural ‘duality’ to Jeffrey’s rule. Here, the learnt input
is a new conditional probability distribution, given a certain partition. We show in follow-up work
that these two rules uniquely satisfy our axioms on their respective domains.

SFor a brief discussion of dynamic-consistency arguments for Jeffrey’s rule, similar to classic
dynamic-consistency arguments for Bayes’s rule, see Vineberg (2011).

®Distance is represented by a function d : P xP — R, where P is the set of all probability measures
over the events from Q and d(p, p’) is interpreted as the distance between two such measures, p,p’ € P.

"For example, Douven and Romeijn (2011) characterize Adams’s rule by invoking a different
measure of distance, the inverse relative-entropy distance, which differs from ordinary relative-entropy
distance in the inverted order of its arguments.



2 A general framework

We can study belief revision in general by specifying
(i) a set P of possible belief states in which a given agent can be, and
(ii) a set Z of possible inputs which can influence the agent’s belief state.

A revision rule maps pairs (p, I) of an initial belief state p in P and an input [ in 7
to a new belief state p’ = py in P. The pair (p, I) belongs to some domain D C P x T
containing those belief-input pairs that are admissible under the given revision rule.
A revision rule is thus a function from D to P (see also Dietrich 2012).

Since we focus on beliefs that take the form of subjective probability measures, the
set P of possible belief states is the set of all probability measures over the events from
Q. Formally, a probability measure is a countably additive function p : 29 — [0, 1]
with p(Q2) = 1 (where Q is the underlying finite or countably infinite set of worlds).
How can we define the set T of possible inputs? Looking at Bayes’s rule alone, one
might be tempted to define them as observed events B C ). But Jeffrey’s rule and
the other rules introduced below permit different inputs, such as a family (75)peg
of learnt probabilities in Jeffrey’s case.

Methodologically, one should not tie the notion of a ‘learnt input’ too closely to
one particular revision rule, by defining it as a mathematical object that is tailor-made
for that rule. This would exclude other revision rules from the outset and thereby
prevent us from giving a fully compelling axiomatic characterization of the rule in
question. Instead, we need an abstract notion of a ‘learnt input’.

We define a learnt input as a set of belief states I C P, interpreted as the set
of those belief states that are consistent with the input. We can think of the input
I as the constraint that a particular experience, such as the receipt of some signal,
imposes on the agent’s belief state. The set of logically possible inputs is Z = 27.
Note that this is deliberately general. An agent’s belief change from p to p; upon
learning I € 7 is responsive to the input if p; € I. We can now define the inputs
involved in Bayesian revision and Jeffrey revision.

Definition 1 A learnt input I € T is
e Bayesian if I = {p' : p/(B) = 1} for some event B # @; we then write I = Ig;®
o Jeffrey if I ={p' : p'(B) = np for all B € B} for some probability distribution

(mB)Ben on some partition B; we then write I = Ite ) pes-

Here, and in what follows, we use the term partition to refer to a partition of €2 into
finitely many non-empty events.

Clearly, every Bayesian input is also a Jeffrey input, while the converse is not true.
Our framework also allows us to represent many other kinds of inputs, for instance
I={p :p(AnB) > p'(A)p(B)}, which captures the constraint that the events

8The representation I = Ip is unique, because for any Bayesian input I, there exists a unique
event B such that [ = Ip.

For any Jeffrey input I, the corresponding family (75)pes is essentially uniquely determined, in
the sense that the subpartition {B € B : mp # 0} and the corresponding subfamily (75)BeB:x 50 are
unique. The subpartition {B € B : 7p = 0} is sometimes non-unique. Uniqueness can be achieved
by imposing the convention that |[{B € B: mp = 0}| < 1.



A and B are positively correlated, or I = {p' : p'(A) > 9/10}, which captures the
constraint that A is highly probable. In general, the smaller the set I, the stronger
(more constraining) the input. The strongest consistent inputs are the singleton sets
I = {p'}, which require adopting the new belief state p’ regardless of the initial belief
state. The weakest input is the set I = P, which allows the agent to retain his old
belief state.

We are now able to define Bayes’s and Jeffrey’s rules in this framework. (Of
course, the framework equally permits the definition of other belief-revision rules.)

Definition 2
o Let Dpayes be the set of all pairs (p,I) € P x I such that I = Ip is a Bayesian
input compatible with p (which means p(B) # 0). Bayes’s rule is the revision
rule on Dpgyes which maps each (p,Ig) € Dpayes to p' € P, where

p'(A) = p(A|B) for all events A C Q. (1)

o Let Dyefrey be the set of all pairs (p,I) € P XTI such that I = I, is a

BeB

Jeffrey input compatible with p (which means mp = 0 whenever p(B) = 0).

Jeffrey’s rule is the revision rule on D j.gre, which maps each (p, I(WB)BGB) €
D jefirey to p' € P, where
p'(A) = Z p(A|B)mp for all events A C €. (2)

BeB

The domains Dgayes and Djefrrey are the maximal domains for which formulas
(1) and (2) are well-defined.!? Jeffrey’s rule extends Bayes’s, i.e., it coincides with
Bayes’s rule on the subdomain Dgayes (€ Djefirey)-

3 An axiomatic characterization

We now introduce two plausible axioms that a belief-revision rule may be expected to
satisfy and show that they imply that the agent must revise his beliefs in accordance
with Bayes’s rule in response to any Bayesian input and in accordance with Jeffrey’s
rule in response to any Jeffrey input. As already noted, the same axioms can also
be used to characterize other belief-revision rules, but we relegate these extensions to
follow-up work (see footnote 4). All proofs are given in the Appendix.

3.1 Two axioms

Let D C P x Z be the domain of the belief-revision rule. For each belief-input pair
(p,I) € D, we write p;y € P to denote the revised belief state. Our first axiom says
that the revised belief state should be responsive to the learnt input.

Responsiveness: p; € I for all belief-input pairs (p, ) € D.

10The definition of each revision rule and its domain relies on the fact that each Bayesian input I
is uniquely representable as I = I and that each Jeffrey input is ‘almost’ uniquely representable as
I = Iz 5)pcys Where any residual non-uniqueness makes no difference to the revised belief state or
the criterion for including (p, I) in the domain. For details, see Lemmas 1 and 3 in the Appendix.



Responsiveness guarantees that the agent’s revised belief state respects the constraint
given by the input. For example, in response to a Bayesian input, the agent assigns
probability one to the learnt event.

The second axiom expresses a natural conservativeness requirement: those ‘parts’
of the agent’s belief state on which the learnt input is ‘silent’ should not change in
response to it. In short, the learnt input should have no effect where it has nothing to
say. To define that axiom formally, we must answer two questions: what do we mean
by ‘parts of a belief state’, and when is a given input ‘silent’ on them? To answer
these questions, note that, intuitively:

e a Bayesian input is not silent on the probability of the learnt event B, but is
silent on all conditional probabilities, given B; and

e a Jeffrey input is not silent on the probabilities of the events in the relevant
partition B, but is silent on all conditional probabilities, given these events.

So, the ‘parts’ of the agent’s belief state on which Bayesian inputs and Jeffrey
inputs are ‘silent’ are conditional probabilities of some events, given others. The
relevant conditional probabilities are preserved by Bayes’s and Jeffrey’s rules, so that
these rules are intuitively conservative.

In the next subsection, we define formally what it means for a learnt input to be
‘silent’ on the probability of one event, given another. Once we have this definition,
we can formulate our conservativeness axiom as follows.

Conservativeness (axiom scheme): For all belief-input pairs (p,I) € D, if I is
‘silent’ on the probability of a (relevant) event A given another B, this conditional
probability is preserved, i.e., pr(A|B) = p(A|B) (if p;(B),p(B) # 0).

3.2 When is a learnt input silent on the probability of one event,
given another?

Our aim is to define when a learnt input I € 7 is ‘silent’ on the probability of one
event A, given another event B (where possibly B = Q). Our analysis is fully general,
i.e., not restricted to any particular class of inputs, such as Bayesian inputs or Jeffrey
inputs. We first note that we need to define silence only for the case in which

@ ¢ AC B C Supp(l),

where Supp(I) is the support of I, defined as {w € Q: p'(w) # 0 for some p’ € I}.11

There are two plausible notions of ‘silence’, which lead to two different variants
of our conservativeness axiom. We begin with the weaker notion. A learnt input is
weakly silent on the probability of A given B if it permits this conditional probability
to take any value. Formally:

Definition 3 Input I € 7 is weakly silent on the probability of A given B (for
g C AC BC Supp(l)) if, for every value o in [0,1], I contains some belief state p’
(with p'(B) # 0) such that p'(A|B) = «.

"Here, and elsewhere, we write p’(w) as an abbreviation for p’ ({w}) when we refer to the probability
of a singleton event {w}.



For instance, the learnt input I = {p’ : p/(B) = 1/2} is weakly silent on the
probability of A given B. So is the input I = {p’ : p'(A) < 1/2}. This weak notion
of silence gives rise to the following strong conservativeness axiom:

Strong Conservativeness: For all belief-input pairs (p, I) € D, if I is weakly silent
on the probability of an event A given another B (where @ C A C B C Supp(I)),
this conditional probability is preserved, i.e., pr(A|B) = p(A|B) (if pr(B), p(B) # 0).

Although this axiom may seem plausible, it leads to an impossibility result.

Proposition 1 If #8 > 3, no belief-revision rule on any domain D 2O D jefre, s
responsive and strongly conservative.

Note that, on the small domain Dpgyes, there is no such impossibility, because
Bayes’s rule is responsive as well as strongly conservative. On that domain, the
present strong conservativeness axiom is equivalent to our later, weaker one. The im-
possibility occurs on domains on which the two conservativeness axioms come apart.

We weaken strong conservativeness by strengthening the notion of silence. The key
insight is that even if a learnt input [ is weakly silent on the probability of A given B,
it may still implicitly constrain the relationship between this conditional probability
and others. Suppose, for instance, that = {0,1}2, where the first component of a
world (g, j) € €2 represents whether Richard has gone out (g=1) or not (¢9=0), and the
second whether Richard is wearing a jacket (j=1) or not (j=0). Consider the event
that Richard has gone out, G = {(g,7) : ¢ = 1}, and the event that he is wearing
a jacket, J = {(g,7) : 7 = 1}. Some inputs are weakly silent on the probability of
J (given Q) and yet require this probability to be related in certain ways to other
probability assignments, especially those conditional on J. Consider, for instance,
the Jeffrey input which says that G is 90% probable, formally I = {p’ : p'(G) = 0.9}.
It is compatible with any probability of J and is thus weakly silent on the probability
of J, given ). But it requires this probability to be related in certain ways to the
probability of G, given J. If this conditional probability is 1 (which is compatible
with I), then the probability of J can no longer exceed 0.9. If it did, the probability
of G would exceed 0.9, which would contradict the learnt input I. In short, although
I does not directly constrain the agent’s subjective probability for J, it constrains it
indirectly, i.e., after other parts of the belief state have been fixed.

A learnt input is strongly silent on the probability of A given B if it permits this
conditional probability to take any value even after other parts of the agent’s belief
state have been fized. Let us first explain this idea informally. What exactly are
the ‘other parts of the agent’s belief state’? They are those probability assignments
that are ‘orthogonal’ to the probability of A given B. In other words, they are all
the beliefs of which the belief state p’ consists, over and above the probability of A
given B. More precisely, assuming again that A is included in B, they are given by
the quadruple consisting of the unconditional probability p’(B) and the conditional
probabilities p'(-|4), p'(-|B\A), and p/(-|B).'? This quadruple and the conditional

"2 This informal discussion assumes that p’(A),p'(B\C),p'(B) # 0.



probability p/(A|B) jointly determine the belief state p’, because

P =p(lA) p(A) +p(I1B\A) p'(B\A)  +0'(|B)p'(B).
—— —— ——
P (A[B)Y (B) P (B)—p' (A|B)p'(B) 1-p/(B)

If an input [ is strongly silent on the conditional probability of A given B, then this
probability can be chosen freely even after the other parts of the agent’s belief state
have been fixed in accordance with I (which requires them to match those of some
belief state p* in I). This idea is illustrated in Figure 1, where a learnt input I is
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thetbeliefBtate thebeliefBtate thefbeliefBtate
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Figure 1: An input’s weak or strong silence on some conditional probability

represented in the space whose horizontal coordinate represents the probability of
A given B and whose vertical) coordinate represents the other parts of the agent’s
belief state (collapsed into a single dimension for illustration). In part (a), input
(represented by the circular region) is not silent at all on the probability of A given B,
since many values of this probability, such as «, are ruled out by I. In part (b), input
I (represented by the ‘oval’ region) is weakly but not strongly silent on the probability
of A given B. This is because [ is consistent with any value of that probability, but
to combine it with a particular value, such as «, other parts of the belief state can no
longer be freely chosen. In part (c), input I (represented by the rectangular region)
is strongly silent on the probability of A given B. It is consistent with any value of
that probability, even after other parts of the belief state have been fixed.

To define strong silence formally, we say that two belief states p’ and p* coin-
cide outside the probability of A given B if the other parts of these belief states
coincide, i.e., if p’(B) = p*(B) and p'(-|C) = p*(:|C) for all C € {A, B\A, B} such
that p'(C),p*(C) # 0. Clearly, two belief states that coincide both (i) outside the
probability of A given B and (ii) on the probability of A given B are identical.

Definition 4 Input I € T is strongly silent on the probability of A given B
(for @ C A C B C Supp(l)) if, for all o € [0,1] and all p* € I, the set I contains
some belief state p’ (with p'(B) # 0) which

(a) coincides with « on the probability of A given B, i.e., p'(A|B) = «,

(b) coincides with p* outside the probability of A given B (if p*(A),p*(B\A) #0).




In this definition, there is only one belief state p’ satisfying (a) and (b), given by

p':=p"(|A)ap"(B) + p*(|B\A)(1 — a)p"(B) + p*(- N B), (3)

so that the requirement that there exists some p’ in I satisfying (a) and (b) reduces
to the requirement that I contains the belief state (3).1?

For example, the inputs I = {p’ : p is uniform on B} and I = {p’ : p’(B) > 1/2}
are strongly silent on the probability of A given B, since this conditional probability
can take any value, independently of other parts of the agent’s belief state (e.g.,
independently of the probability of B). This strengthened notion of silence leads to
a weaker conservativeness axiom, which we call just ‘conservativeness’.

Conservativeness: For all belief-input pairs (p,I) € D, if I is strongly silent on
the probability of an event A given another B (for @ C A C B C Supp(I)), this
conditional probability is preserved, i.e., pr(A|B) = p(A|B) (if p;(B),p(B) # 0).

3.3 An alternative perspective on weak and strong silence

Before stating our characterization theorem, we note that there is an alternative and
equivalent way of defining weak and strong silence, which gives a different perspective
on these notions. Informally, weak silence can be taken to mean that the learnt input
implies nothing for the probability of A given B. Strong silence can be taken to mean
that all its implications are ‘outside’ the probability of A given B (i.e., the input
constrains only parts of the agent’s belief state that are orthogonal to the probability
of A given B). To make this more precise, we first define the ‘implication’ of a learnt

otherBarts®f
thefbeliefBtate

probability
of A given B

0 1

Figure 2: The implications I4p and Iz derived from input I

|B

input I for the probability of A given B and for other parts of the agent’s belief state.
Again, we assume that @ C A C B C Supp(I).

e The implication of I for the probability of A given B is the input,
denoted I4p, which says everything that I says about the probability of A
given B, and nothing else (see Figure 2). So, I4p contains all belief states p’

3To be precise, this is true whenever p*(A), p*(B\A) # 0.
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which are compatible with I on the probability of A given B. Formally, 14 p is
the set of all p’ in P such that p’(A|B) = p*(A|B) for some p* in I (modulo a
non-triviality constraint).!

e The implication of I outside the probability of A given B is the input,
denoted IATB? which says everything that I says outside the probability of A
given B, and nothing else (see Figure 2). So, IATB contains all belief states which
are compatible with I outside the probability of A given B. Formally, IATB is
the set of all p’ in P which coincide with some p* in I outside the probability

of A given B (modulo a non-triviality constraint).!®

Clearly, I C Iy pand I C IATB' The inputs I, p and IATB capture two orthogonal
components (‘sub-inputs’) of the full input /. Each component encodes part of the
information conveyed by I. Weak and strong silence can now be characterized (and
thereby alternatively defined) as follows.

Proposition 2 For all inputs I € T and events A, B (where @ C A C B C Supp(I)),
(a) I is weakly silent on the probability of A given B if and only if Iyp =P (i.e.,
I implies nothing for the probability of A given B),

(b) I is strongly silent on the probability of A given B if and only if I

E=1 (i.e.,

I implies only something outside the probability of A given B).

We can illustrate this proposition by combining Figures 1 and 2. According to part
(a), weak silence means that the sub-input I A|B, which pertains to the probability of
A given B, is vacuous. Graphically, it covers the entire area in the plot. According
to part (b), strong silence means that the input I conveys no information beyond
the sub-input IATB? which pertains to those parts of the agent’s belief state that
are orthogonal to the probability of A given B. Graphically, the input I covers a
rectangular area ranging from the far left to the far right.

3.4 The theorem

We have seen that the strong version of our conservativeness axiom, defined in terms
of weak silence, leads to an impossibility result. By contrast, its weaker counterpart,
defined in terms of strong silence, yields a characterization of Bayes’s and Jeffrey’s
rules.

Theorem 1 Bayes’s and Jeffrey’s rules are the only responsive and conservative
belief-revision rules on the domains Dpgyes and D jefrrey, respectively.

Corollary 1 Every responsive and conservative belief-revision rule on some domain
D C P x I coincides with Bayes’s rule on D N Dpgyes and with Jeffrey’s rule on
Dn DJeﬁrcy-

"In full precision, I4p is the set of all p’ in P such that if p’(B) # 0 then p’(A|B) = p*(A|B) for
some p* in [ satisfying p*(B) # 0.

15Tn full precision, IATB is the set of all p’ in P such that if there is a belief state p* in I satisfying
[p*(C) #£ 0 for all C € {A, B\A} such that p'(C) # 0], then p’ coincides with some such p* outside
the probability of A given B.
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It is easier to prove that if a belief-revision rule on one of these domains is
responsive and conservative, then it must be Bayes’s or Jeffrey’s rule, than to prove the
converse implication, namely that each of these rules is responsive and conservative
on its domain. To illustrate the easier implication, note, for instance, that if a belief-
input pair (p,I) belongs to Dgayes, such as I = {p' : p/(B) = 1}, then the new belief
state pr equals pr(:|B) (since p;(B) = 1, by responsiveness), which equals p(:|B) (by
conservativeness, as [ is strongly silent on probabilities given B). The reason why the
converse implication is harder to prove is that one must take care to identify all the
conditional probabilities on which a given input is strongly silent; there are more such
conditional probabilities than one might expect. Once we have identified all those
conditional probabilities, however, we can verify that the corresponding belief-revision
rule does indeed preserve all of them, as required by conservativeness.

4 A decision-theoretic application

To show that there is room for non-Bayesian belief-revision rules in economic theory,
we now sketch an illustrative application of Jeffrey revision to decision and game
theory. Standard dynamic decision and game theory is inherently Bayesian. As is
widely recognized, this sometimes entails unrealistic assumptions of forward-looking
rationality, which limit the ability to model real-life learning, reasoning, and beha-
viour. We give an example which illustrates some of these difficulties and shows how
a non-Bayesian model can avoid them. The example suggests a new class of dy-
namic decision problems or games, those ‘with surprises’ or ‘with unforeseen learning
inputs’.

Ann, an employer, must decide whether to hire Bob, a job candidate. There is
no time for a job interview, since a quick decision is needed. Ann is uncertain about
whether Bob is competent or not; both possibilities have prior probability % It would
help Ann to know whether Bob has previous work experience, since this is positively
correlated with competence, but gathering this information takes time. Bob’s type is
thus a pair («, ) whose first component indicates whether he is competent (a = ¢) or
not (o = ¢) and whose second component indicates whether he has work experience
(8 =€) or not (8 = e€). To apply a belief-revision model, let the set of worlds be
the set of possible types of Bob, i.e., @ = {c¢,¢} x {e,€}. Ann’s initial beliefs about
Bob’s type are given by the belief state p € P in which p(c,e) = p(¢,€) = 0.4 and
p(c,€) = p(¢,e) = 0.1. Note the positive correlation between competence and work
experience.

Ann initially seems to face the dynamic decision problem shown in Figure 3:

e First, a chance move determines Bob’s type in €2 according to the probability
measure p.

e Next, Ann, uninformed of the chance move, can hire Bob (h) or reject him (h)
or gather information about whether he has previous work experience (g).

e Finally, if Ann chooses g, she faces a subsequent choice between hiring Bob (h)
or rejecting him (h), but now she has information about f, i.e., about whether
he has work experience.

12



Chance
Bob’s type (a, ) € Qis drawn >
according to the distribution p

(a.p)
Ann
Ann maoves, h _
uninformed of Bab's type / h \Q«
Ann

Ann moves, (@) 0 5 —
informed of  but not a { / \h
via) — 1 -1

Figure 3: Ann’s decision problem in its initial form

Ann is an expected-utility maximizer, and her utility function is as follows: hiring
Bob, who is of type (a, 3), contributes an amount v(«) to her utility, where v(a) =5
if @ = ¢ and v(a) = =5 if @ = ¢ and gathering information about 8 reduces her
utility by 1. Not hiring Bob yields a utility of 0. Ann has only one rational strategy:
first she gathers information (g), and then she hires Bob if and only if she learns that
Bob has work experience (8 = ). To see why, note the following. Immediately hiring
Bob yields an expected utility of v(c)p(c) + v(¢)p(c) = 55 + (—5)5 = 0. Immediately
rejecting Bob also yields an expected utility of 0. Gathering information leads Ann
to a Bayesian belief revision:

e If she learns that he has work experience, she raises her probability that he is

p}S(CS) = % = %. So, she hires Bob, since this yields an

expected utility of (v(c) — 1)p(cle) + (v(c) — 1)p(cle) = 42 + (—6)1 = 2, while
rejecting Bob would have yielded an expected utility of —1.

competent to p(cle) =

e If she learns that Bob has no work experience, she lowers her probability that

p(ce) _ 0.1

he is competent to p(c|e) = oG = 05 = % So, she rejects him as this yields

an expected utility of —1, whereas hiring him would have yielded an expected
utility of (v(c) — 1)p(cle) + (v(e) — 1)p(ele) = 4% + (—6)2 = —4.

So ex ante the expected utility of gathering information is the average 2p(e) +

(—-1)p(€) = 23 + (—1)4 = I, which exceeds the zero expected utility of the two

other choices.

So far, everything is classical. Now suppose Ann follows her rational strategy.
She writes to Bob to ask whether he has work experience. At this point, however,
something surprising happens. Bob’s answer reveals right from the beginning that
his written English is poor. Ann notices this even before figuring out what Bob
says about his work experience. In response to this unforeseen learnt input, Ann
lowers her probability that Bob is competent from % to %. It is natural to model
this as an instance of Jeffrey revision. Formally, Ann learns the Jeffrey input I =
{p e P:pe) = %}, and by Jeffrey’s rule her revised belief state p; is given by

pr(c,e) = %0, pr(c,€) = 4%, pr(c,e) = %, and py(c,e) = %. As she reads the
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(a) Refined classical decision problem (b) Decision problem with an unforeseen input

Chance Chance
(@p) (@ B)
Ann Ann
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v(a) 0 Chance v(a) 0 Surprise
bw W input 7 nolinput
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Ann
Ann Ann Ann
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h/ \H h/ \E / \ / \
v)-1 -1 va)-1 -1 v-1 -1 ve-1 -

Figure 4: Two ways of refining Ann’s decision problem

rest of Bob’s letter, Ann eventually learns that he has previous work experience,
which prompts a Bayesian belief revision, so that her final belief state is p;(-|e) (or

equivalently, (p7); where I’ is the Bayesian input I’ = {p’ € P : p'(e) = 1}). Since

pr(ce) _ 4

Ann’s posterior probability for Bob’s competence is only pr(cle) = e S = 11

she decides not to hire him, despite his work experience.

Can classical decision theory explain this? Of course, the dynamic decision prob-
lem shown in Figure 3 is no longer adequate, as it wrongly predicts that Ann hires
Bob after learning that he has work experience. The natural response, from a clas-
sical perspective, would be to refine the decision problem as shown in Figure 4(a).
After Ann’s information-gathering move g an additional chance move is introduced,
which determines whether Bob’s written English is normal (w) or poor (w), where
the probability of w, denoted t, g, is larger if Bob is competent than if he is not, i.e.,
tes > teg. After observing this chance move, Ann makes her hiring decision.

Although this refined classical model predicts that Ann turns down Bob after
receiving his poorly written letter, it is inadequate in many ways. It ignores the fact
that Ann is initially unaware of — or does not consider — the possibility that Bob’s
written English is poor (suppose, for instance, that based on her initial information,
she had no reason to doubt, or even to think about, Bob’s literacy). It treats the
event of a poorly written letter from Bob as a foreseen rather than an unforeseen
contingency. As a result, Ann’s reasoning at each of her decision nodes is modelled
in an inadequate manner:

(i) In her first decision (between h, h, and g), Ann is falsely taken to foresee the
possibilities of learning w or learning w, i.e., to reason along the tree displayed
in Figure 4(a) rather than that in Figure 3. This artificially complicates her
expected-utility maximization exercise, for instance by assuming awareness of
the four parameters t, g, for all values of o and (.
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(ii) In her second decision, in case Bob’s written English is normal, Ann is taken
to have learnt not just the parameter 3, but also the chance move w (normal
written English), so that her posterior probability for Bob’s competence is now
p(c|B,w) rather than p(c|3). The additional conditionalization on w misrep-
resents Ann’s beliefs, since the absence of linguistic errors in Bob’s letter goes
unnoticed: it is not an unforeseen event (she had taken Bob’s normal literacy
for granted). In fact, Ann continues to conceptualize her decision problem as
the one shown in Figure 3 rather than the one in 4(a). The additional belief
revision (upon learning w) departs from, and complicates, Ann’s true reasoning.

(iii) In her second decision, in case Bob’s written English is poor, Ann’s reason-
ing is again misrepresented. Although it is true that the unforeseen news that
Bob’s written English is poor implies that Ann cannot uphold her original con-
ceptualization of the decision problem (Figure 3), it does not follow that Ann
re-conceptualizes her decision problem in line with Figure 4(a). Our informal
description of Ann’s reasoning takes her to perform a Jeffrey revision of her be-
liefs over Q = {c, ¢} x{e, €}, whereas Figure 4(a) takes her to perform a Bayesian
revision of beliefs over the refined set of worlds Q' = {¢,¢} x {e,e} x {w,w}.

Arguably, the Bayesian model of Ann’s behaviour is not only psychologically inad-
equate, but its predictive adequacy is also far from clear. Whether the model correctly
predicts Ann’s behaviour at the various decision nodes depends on the exact calib-
ration of the parameters ¢, g, for all values of o and 3. Their most plausible (e.g.,
‘objective’) values might not imply Ann’s true decision behaviour, since that beha-
viour has a rather different psychological origin, which does not involve the parameters
ta,p at all.

We propose to model Ann’s decision problem non-classically as a decision prob-
lem with unforeseen inputs or surprises. As illustrated in Figure 4(b), instead of
introducing a chance move (selecting w or w), we introduce a surprise move, which
determines whether or not Ann receives a particular unforeseen input (here, the Jef-
frey input I = {p' € Q: p/(c) = 3}). Then the problems in (i), (ii), and (iii) no longer
arise:

e Problem (i) is avoided because Ann does not foresee or conceptualize the sur-
prise move before its occurrence, so that she initially still reasons along the
simple decision tree of Figure 3.

e Problem (ii) is avoided because in her second decision, without receiving the
unforeseen input (the right branch at the surprise node), Ann only learns /3
and hence reasons like in her second decision in the simple decision problem of
Figure 3.

e Problem (iii) is avoided because in her second decision, after receiving the un-
foreseen input (the left branch at the surprise node), Ann revises her beliefs in
response to the Jeffrey input I.

In follow-up work, we formally define decision problems (or more generally games)
with unforeseen inputs and introduce a corresponding equilibrium notion.'® The

16 Ann’s equilibrium strategy in her decision problem with unforeseen inputs has the intended form:
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details are beyond the scope of the present paper. Our aim in this section has simply
been to illustrate that there is useful room for non-Bayesian belief-revision rules in a
decision-theoretic model.

5 Concluding remarks

We have developed a unified framework for the study of belief revision and shown
that Bayes’s and Jeffrey’s rules can be characterized in terms of the same two axioms:
responsiveness to the learnt input and conservativeness. The only difference between
those rules lies in the domains of learnt inputs to which they apply.

Beyond offering a novel formal framework, the programmatic aim of this paper
has been to put non-Bayesian belief revision onto the map for economic theorists. No
doubt, skeptics will still wonder, ‘why bother about non-Bayesian belief revision’. By
suitably refining the set 2 of possible worlds, so the objection goes, we can always
remodel Jeffrey inputs (as well as other non-Bayesian inputs) in a Bayesian manner.
However, as we have noted in our discussions of Suzumura’s story and ‘Ann the
employer’, such Bayesian remodelling comes at a cost:

Over-ascription of opinionation: A key drawback of the Bayesian remodelling
is that we must assume that the agent is able to assign prior probabilities to many
complex events. In Suzumura’s story, the agent must assign prior probabilities to the
various possible auditory signals that he might receive over the phone. Similarly, Ann
the employer must assign prior probabilities to the various possible Jeffrey inputs she
might receive. These may include not only learning that Bob’s written English is poor,
but also that he is a poetic writer, that he comes across as communicatively awkward
in a way that she had not anticipated, and so on. To accommodate the possibility of
belief changes in response to such inputs, we would have to ascribe to the agent beliefs
over an ever more refined algebra of events, whose size grows exponentially with the
number of belief changes to be modelled. This is not very plausible, since typical
real-world agents either have no beliefs about such events or have only imprecise
ones. Even on a pure ‘as-if’ interpretation of the Bayesian model, taking an agent to
have highly sophisticated beliefs is dubious, given the complexity of their behavioural
implications, which may be hard to test empirically. By contrast, once we restrict the
complexity of the event-algebra, we may have to invoke non-Bayesian belief revision
to capture the agent’s belief dynamics adequately.

Over-ascription of awareness: The literature on unawareness suggests that a belief
in an event (the assignment of a subjective probability to it) presupposes awareness of
this event, where awareness is understood, not as knowledge of the event’s occurrence
or non-occurrence, but as conceptualization, mental representation, imagination, or
consideration of its possibility (e.g., Dekel et al. 1998; Heifetz et al. 2006; Modica
and Rustichini 1999). But as we have noted, it is far from clear whether, prior to
the telephone conversation with Gorman, Suzumura even considered the possibility of
receiving incomprehensible auditory signals, or whether Ann the employer would have

she first gathers information (g), and then hires Bob if and only if she does not receive the unforeseen
input I (Bob’s poor written English) and learns that he has work experience (8 = e).
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considered the possibility that Bob’s written English was so poor. In these examples,
the agents plausibly lacked not only knowledge but also awareness of the ‘surprise
events’. Arguably, many real-life belief changes involve the observation or experience
of something that was previously not just unknown, but even beyond awareness or
imagination.

In sum, an economic modeller often faces a choice between

(i) ascribing to an agent Bayesian revision of beliefs over a very complex, fine-
grained algebra of events and

(ii) ascribing non-Bayesian revision of beliefs over a simpler, more coarse-grained
algebra of events.

Perhaps because of the elegance of Bayes’s rule, many economists tend to assume that
the first of these routes is more parsimonious than the second. But this overlooks
the loss of parsimony at the level of the event-algebra. If all non-Bayesian belief-
revision rules were ad hoc or otherwise unsatisfactory, the choice of route (i) might
be understandable. But as we have shown, there are perfectly well-behaved non-
Bayesian alternatives. This should make option (ii) at least a contender worth taking
seriously.
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A Appendix: Proofs

A.1 Well-definedness of each revision rule

Our two belief-revision rules are well-defined because the mathematical object used
in the definition of the new belief state and the rule’s domain — i.e., the learnt event
B or the learnt family of probabilities (7p) — is uniquely determined by the relevant
input I (in the case of Bayes’s rule) or sufficiently determined (in the case of Jeffrey’s
rule) so that the definition does not depend on non-unique features. The following
two lemmas, which the reader can easily verify, make this precise:

Lemma 1 FEvery Bayesian input is generated by exactly one event B C ().

Lemma 2 For every Jeffrey input I,
(a) all families (T)pen generating I have the same subfamily (7p)BeBxg+0 (€5-
pecially, the same set {B € B:mwp # 0});
(b) in particular, for every (initial) belief state p € P, the (revised) belief state (2)
is either (i) defined and identical for all families (7p)pep generating I, or (ii)
undefined for all these families.'”

A.2 Proposition 1

Proof of Proposition 1. Suppose that #{ > 3. Suppose, for a contradiction, that
there exists a responsive and conservative revision rule on a domain D 2O Djefirey-
Since #£ > 3, we can find events A, B C Q such that AN B,B\A, A\B # @.
Consider an initial belief state p such that p(AN B) = 1/4 and p(A\B) = 3/4, and
define the Jeffrey input I := {p’ : p/(B) = 1/2}. Note that (p,I) € D. What is the
new belief state p;?

First, note that I is weakly silent on the probability of A N B given B. So, by
strong conservativeness, we have p;(A N B|B) = p(A N B|B) (using the fact that
p(B) # 0 and that pr(B) # 0 by responsiveness), i.e., (*) pr(4|B) = 1.

Similarly, (**) p;(A|B) = 1. (This is trivial if AN B = B, and can otherwise be
shown like (*), using the fact that I is weakly silent on the probability of AN B given

B.) By (*) and (**), pr(A) = 1.

"Footnote 1 specifies when (2) is defined.
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Further, I is weakly silent on the probability of A N B given A, so that we
have p;(A N B|A) = p(AN B|A), by strong conservativeness (using the fact that
pr(A),p(A) # 0). Since pr(A) = 1 and given the definition of p, it follows that
pr(B) = 1/4. But, by responsiveness, we have p;(B) = 1/2, a contradiction. l

A.3 Proposition 2

We begin by offering a convenient reformulation of strong silence; we leave the proof
to the reader.

Lemma 3 For all inputs I and all events @ C A C B C Supp(I), I is strongly silent
on the probability of A given B if and only if
o [ contains a belief state p* with p*(A),p*(B\A) # 0, and
e for every such p* € I and every a € [0,1], I contains the belief state p' which
coincides with o on the probability of A given B and with p* outside that con-
ditional probability, formally

p' € I where p' = p*(-]A)ap*(B) + p*(-|B\A)(1 — a)p*(B) + p*(- N B).

Proof of Proposition 2. Consider I CP and @ C A C B C Supp(I).

(a) First suppose I4p = P. Consider any a € [0,1]. As & C A C B, there
exists a belief state p’ such that p'(B) # 0 and p'(A|B) = a. As I4p = P, we have
p’ € Iy B, so that I contains a p* (with p*(B) # 0) such that p*(A|B) = p'(A|B), i.e
such that p*(A|B) = a, as required for weak silence.

Now assume that I is weakly silent on the probability of A given B. Trivially,
Ty € P. We show that P C Iy 5. Let p' € P. If p(B) = 0, then clearly p’ € I4p.
Otherwise, by weak silence, applied to a := p/(A|B), I contains a p* such that
p*(B) # 0 and p*(A|B) = p'(A|B), so that p’ € I4p.

(b) First, in the trivial case in which I contains no p’ such that p'(A4), p'(B\A4) # 0,
the equivalence holds because strong silence is violated (see Lemma 3) and moreover

g # I because I ] but not I contains a belief state p’ such that p'(A), p'(B\A4) # 0.
Now consider the less trivial case in which I contains a p such that p(A), p(B\A4) # 0.

First suppose I = I. To show strong silence, consider any o € [0,1] and any
p* € I with p*(A),p*(B\A) # 0. By Lemma 3, it suffices to show that the belief
state p’ which coincides with p* outside the probability of A given B and satisfies
p’(z?|B) = « belongs to I. Clearly, p’ belongs to IA| Hence, as [ = IA\B’ 9’ belongs
to 1.

Conversely, assume that [ is strongly silent on the probability of A given B.
Trivially, I C I+ A To show the converse inclusion, suppose that p’ € IE' Then
there exists p* € I such that p’ and p* coincide outside the probability of A given B
and such that p*(C) # 0 for all C' € {A, B\A} with p/'(C) # 0.

We distinguish two cases. First suppose p*(A),p*(B\A) # 0. Then p/(B) =
p*(B) # 0. By I's strong silence on the probability of A given B, I contains a belief
state p (with p(B) # 0) which satisfies p(A|B) = p/(A|B) and coincides with p*
outside the probability of A given B. Note that, since p*(A), p*(B\A) # 0, there can
be only one belief state that coincides with p* outside the probability of A given B
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and such that the probability of A given B takes a given value. Therefore, p’ = p,
and so p’ € I, as required.

Next consider the special case in which p*(C') = 0 for at least one C € {4, B\ A}.
As p*(C) =0=p/(C) =0 for each C € {A, B\A} and as p'(A) +p'(B\A) =p/'(B) =
p*(B) = p*(A) + p*(B\A), it follows that p'(C) = p*(C) for each C € {A, B\A, B}.
This and the fact that p/(:|C) = p*(-|C) for all C € {4, B\A, B} for which p'(C)
(= p*(C)) is non-zero imply that p’ = p*. So again p’ € I. B

A.4 The main theorem

As a key step towards proving our main theorem, we now answer the following ques-
tion: on which conditional probabilities are the learnt inputs under Bayes’s and Jef-
frey’s rules strongly silent?

Lemma 4 Any Bayesian input I (of learning that some event B’ has occurred) is
strongly silent on any conditional probability of A given B such that @ C A C B C B'.

Lemma 5 For all Jeffrey inputs I (of learning a new probability distribution on a
partition B) and all events @ C A C B C Supp(l), I is strongly silent on the
conditional probability of A given B if and only if B C B’ for some B’ € B.

Since Lemma 4 is a special case of Lemma 5, we turn directly to the proof of the
latter.

Proof. Let I, B, A, and B be as specified, and let (7 ) pep be the learnt probability
distribution on B. First, if B C B’ for some B’ € B, then I is strongly silent on the
probability of A given B, as one can easily check, using Lemma 3. Conversely, suppose
that B ¢ B’ for all B’ € B. For each D C Q, we write Bp := {B’' € B: B'ND # &}.
Note that Bp = Ba U Bp\ 4, where #B4 > 1 (as A # @), #Bp\a > 1 (as B\A # 9),
and #Bp > 2 (as otherwise B would be included in a B’ C B). It follows that there
are B' € By and B" € Bp\4 with B’ # B”. Note that [ contains a p* such that
p*(B'NA) = 7p and p*(B"”" N (B\A)) = mpr. Since each of B’ and B” has a non-
empty intersection with B, and hence with Supp(I) (2 B), we have wp/, mgr # 0.
Now p*(B" N A) = p*(B" N B) = 0, since

p*((B'NA)U(B" N B)) = p(B") — p"(B" N (B\A)) = mpn — mpn = 0.

By Lemma 3, if I were strongly silent on the probability of A given B, I would
also contain the belief state p’ which coincides with p* outside the probability of
A given B and satisfies p’(A|B) = 1; i.e., I would contain the belief state p’ :=
p*(:]A)p*(B) + p*(- N B). But this is not the case because

p'(B") = p"(B"|A)p*(B) + p"(B"N B) = 0 # mpr,

where the second equality uses the fact that p*(B” N A) = p*(B"” N B) = 0, which we
have shown. Hence, I is not strongly silent on the probability of A given B. B

We can now complete the proof of our characterization theorem.
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Proof of Theorem 1. 1Tt suffices to consider Jeffrey’s rule, since Bayes’s rule is
extended by Jeffrey’s. We first prove one direction of implication, and then prove the
other direction.

Part 1: We consider a responsive and conservative revision rule on the domain
Djesirey and show that the rule is indeed Jeffrey’s rule. Suppose (p,I) € Dyefirey, say
I ={p : p(B) = g VB € B}. Then p; is given by Jeffrey’s rule, because we may
expand pr as

pr= Y  pilIB)pi(B), (4)

BeB:pr(B)#0

where pr(B) reduces to mp by responsiveness, and py(-|B) reduces to p(:|B) by con-
servativeness. (Note that, by Lemma 5, I is strongly silent on the probability, given
B, of any event strictly between @ and B.)

Part 2: Conversely, we now show that Jeffrey’s rule is responsive and conservative.
Responsiveness is obvious. To establish conservativeness, consider any (p, /) in the
domain Djegirey and any events @ C A C B C Supp(I) such that I is strongly
silent on the probability of A given B and p;(B),p(B) # 0. We have to show that
pr(AlB) = p(A|B).

As a Jeffrey input, I takes the form {p' : p/(B) = 7 VB € B} for some learnt
probability distribution (7p)pep on some partition B. Since I is strongly silent on
the probability of A given B, we must have B C B’ for some B’ € B, by Lemma 5.
It follows that pr(A|B) = p(A|B), because

_pr(4) _ p(AB)me _ p(A)/p(B))
pi(B) ~ p(BIB)rs  p(B)/p(B)

where the second identity holds by the definition of Jeffrey revision. H

p(A|B) = p(A|B),
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