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Abstract: Scientists often think of the world (or some part of it) as a dynamical system, 
a stochastic process, or a generalization of such a system. Prominent examples of 
systems are (i) the system of planets orbiting the sun or any other classical mechanical 
system, (ii) a hydrogen atom or any other quantum-mechanical system, and (iii) the 
earth’s atmosphere or any other statistical mechanical system. We introduce a simple 
and general framework for describing such systems and show how it can be used to 
examine some familiar philosophical questions, including the following: how can we 
define nomological possibility, necessity, determinism, and indeterminism; what are 
symmetries and laws; what regularities must a system display to make scientific 
inference possible; is there any metaphysical basis for invoking principles of 
parsimony such as Occam’s Razor when we make such inferences; and what is the 
role of space and time in a system? Our framework is intended to serve as a toolbox 
for the formal analysis of systems that is applicable in several areas of philosophy.   

1. Introduction 

For both scientific and philosophical purposes, we often find it useful to think of the 
world (or some part of it that we are studying) as a system evolving over time: a 
dynamical system, a stochastic process, or a suitable generalization of such a system. 
In both science and philosophy, many theories represent the world (or the part they 
are concerned with) in terms of such systems, with various structures and properties. 
Metaphysical commitments often take the form of claims about the nature of those 
structures and properties: which of them are real and not just artefacts of our models, 
which are fundamental as opposed to derivative, and which are necessary as opposed 
to contingent.  

In this paper, we introduce a simple and general framework for describing systems, 
based on the theory of dynamical systems and stochastic processes, and show how 
this framework can be used to examine and illuminate some familiar philosophical 
questions. Here are some examples: 

• What does it mean for a system to be deterministic or indeterministic, and 
which features of the system, if any, determine which others?  

• Does the present determine the future? Does it determine the past? What is the 
smallest set of facts encoding the system’s entire history?  

• How can we define nomological possibility and necessity for a system? 
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• What are the laws governing a particular system, and is there a distinction 
between laws and “brute facts”? How do laws depend on symmetries in a 
system?  

• How much regularity must a system display in order to permit generalizations 
from local observations to global laws?  

• Is there any metaphysical basis for invoking principles of parsimony such as 
Occam’s Razor when we make such generalizations? And how can we 
formulate Occam’s Razor precisely?  

• What is the role of space and time in a system? What is the relationship 
between the geometry of space and time and the system’s behaviour?  

• Is this spatiotemporal geometry exogenous, or is it somehow determined by 
the dynamics? In other words, are space and time more fundamental than the 
system’s dynamics, or the other way round?  

• How should we individuate systems? Should two structurally 
indistinguishable systems count as “the same”, or might they count as 
different? 

For each of these questions, our framework allows us to identify in simple terms what 
is at stake. We illustrate the generality of the framework by sketching how it can 
accommodate, schematically, the systems described by some standard physical 
theories, such as classical mechanics, electrodynamics, quantum mechanics, and 
special and general relativity. In principle, our framework can also be used to describe 
many systems studied in the special sciences, such as biological, social, and economic 
systems, though we do not have the space to develop these applications here. We 
make a few remarks about special-science systems at the end of the paper and hope 
that our framework will serve as a basis for future work in some of those areas. 

The paper is structured as follows. We discuss three classes of systems, in increasing 
order of generality. We call the first temporally evolving systems (Section 2), the 
second spatially extended systems (Section 3), and the third amorphous systems 
(Section 4). We offer a conceptual toolbox for describing and analysing each class of 
systems, covering notions such as states and histories, determinism and 
indeterminism, nomological possibility and necessity, constraints and probabilistic 
properties, symmetries and laws, ergodicity and its significance in making scientific 
inference possible, Occam’s Razor, and the role of space and/or time. We first explain 
all of these notions in the context of the simplest class of systems (in Section 2) and 
then generalize from there (in Sections 3 and 4).  

Although the paper presupposes a willingness to engage with technical material – and 
a basic familiarity with science will be helpful – our goal is to keep the exposition as 
self-contained and accessible as possible. One of the paper’s intended contributions is 
a pedagogical one: to present an accessible framework for the analysis of many of the 
systems studied in the sciences. Readers with a background in mathematics or physics 
will no doubt recognize much of the conceptual apparatus that we deploy, and parts of 
this apparatus appear, for instance, in works by van Fraassen (1989), Berkovitz, Frigg, 
and Kronz (2006, 2011), Werndl (2009a, 2009b), and Butterfield (2012). However, 
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while many of the ideas originate from the theory of dynamical systems and 
stochastic processes, we adapt and extend them for our purposes and systematize 
them in a way that is congenial for exploring metaphysical questions. This, in turn, 
yields a number of insights, for example concerning (i) the role of symmetries in 
distinguishing between laws and mere “brute facts”, (ii) the significance of ergodicity 
as a justification for scientific inference, (iii) the relationship between Occam’s Razor 
and the symmetries in a system, and (iv) the possibility that the topology and 
geometry of space and time may be emergent properties of the correlation structure in 
a system.  

2. Temporally evolving systems 

2.1 Basic definitions 

We begin with the simplest class of systems whose states evolve over time.2 Time is 
represented by a set of points T that is linearly ordered; we write < for the “before” 
relation. The state of such a system at each point in time is given by an element of 
some state space X. For the moment, we make no assumptions about the internal 
structure of the states in X; they are uninterpreted primitives. A history of the system 
is a path through the state space, represented by a function h from T into X. For each 
time t in T, h(t) is the state of the system at time t. In a physical system, each state 
might, for instance, be a completely specified microphysical state in which the system 
could be at a particular point in time, and histories would be possible trajectories of 
the system through its state space over time.   

We write Ω to denote the set of all histories deemed possible. Histories play the role 
of possible worlds. Thus the structure of Ω reflects the notion of possibility we wish 
to capture. If we are interested in logical possibility, then Ω is simply the set of all 
logically possible functions from T into X, which we call H. If we are interested in 
some form of nomological possibility, such as physical possibility, Ω will often be a 
proper subset of H. Unless otherwise specified, we adopt the nomological 
interpretation of possibility, since we wish to distinguish between histories that are 
permitted by the laws governing our system and histories that are not.  

Subsets of Ω are called events. We can apply logical operations to events. The 
conjunction of two events E and E' is given by their intersection E ∩ E'. The 
disjunction of two events E and E' is given by their union E ∪ E'. The negation of an 
event E is given by its complement ~E = Ω\E. Later we introduce possibility and 
necessity operators. 

To complete the formal definition of a temporally evolving system, we need to define 
probabilities on Ω. Formally, we introduce a conditional probability structure.3 This 
is a family of conditional probability functions {PrE}E⊆Ω, consisting of one PrE for 
each event E in Ω, where PrE assigns to any event in Ω the conditional probability of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 We build on the formalism in List (2014) and List and Pivato (2015). 
3 Conditional probability structures have previously been considered by several authors, e.g., Popper 
(1968), Renyi (1955), van Fraassen (1976), as reviewed in Halpern (2010). 
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that event, given E.4 The family must satisfy certain consistency conditions, such as 
compatibility with Bayesian conditionalization.5 A temporally evolving system is the 
pair consisting of the set Ω of possible histories and the conditional probability 
structure {PrE}E⊆Ω. 

For example, in a weather system, X would be the set of all possible weather states 
and Ω the set of all possible weather histories. For each particular weather event E, 
say a hot temperature on Wednesday, the function PrE then assigns to every weather 
event D, say a thunderstorm on Thursday, the conditional probability of its 
occurrence, given E.  

In principle, the probability structure admits two interpretations. Under an objectivist 
interpretation, it is a feature of the system itself and thus represents objective chance 
(see, e.g., Lewis 1986, Schaffer 2007, and List and Pivato 2015). Of course, objective 
chance could be degenerate, i.e., restricted to the extremal values 0 or 1. Degenerate 
objective chance is a much-discussed feature of deterministic systems; we return to 
this point later. Under an alternative, subjectivist interpretation, the probability 
structure is not a feature of the system itself, but represents an observer’s beliefs about 
the system, as in subjective Bayesianism (e.g., de Finetti 1972). The most natural way 
to read this paper is to assume the objectivist interpretation, even though our 
mathematical analysis does not depend on this.  

Familiar examples of temporally evolving systems are (i) the system of planets 
orbiting the sun or any other classical mechanical system, (ii) a hydrogen atom or any 
other quantum-mechanical system, (iii) the earth’s climate system or any other 
statistical mechanical system, and (iv) (arguably) the global economy or some other 
closed macroeconomic system. Generally, any classical dynamical system, as 
standardly defined, is a special case of a temporally evolving system.6 

For theoretical simplicity, we focus on closed systems, which are not subject to any 
external perturbations. However, one could also represent open systems in our 
framework, by encoding any external perturbations as additional sources of 
randomness in the system’s conditional probability structure (“random forcings”).7 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Formally, each PrE is defined on a suitable σ-algebra on Ω; we set the technicalities aside. For any 
non-empty E, PrE has all the standard properties of a probability measure. However, for technical 
reasons, Pr ∅(D) = 1 for all D. 
5 To be precise, for any subsets C ⊆ D ⊆ E ⊆ Ω, we have PrE(C) = PrE(D) × PrD(C). Also, PrE(E) = 1 
for all E ⊆ Ω. 
6 A classical dynamical system consists of a set X (the state space) and a function φ from X into itself 
that determines how the state changes over time (the dynamics). Let T={0,1,2,3,....}. Given any state x 
in X (the initial conditions), the orbit of x is the history h defined by h(0) = x, h(1) = φ(x), h(2) = φ(φ(x)), 
and so on. Let Ω be the set of all orbits determined by (X, φ) in this way. Let {Pr'E}E⊆X be any 
conditional probability structure on X. For any events E and D in Ω, we define PrE(D) = Pr'E'(D'), 
where E' is the set of all states x in X whose orbits lie in E, and D' is the set of all states x in X whose 
orbits lie in D. Then {PrE}E⊆Ω is a conditional probability structure on Ω. Thus, Ω and {PrE}E⊆Ω 
together form a temporally evolving system. However, not every temporally evolving system arises in 
this way. In Sections 3 and 4, we extend our framework to even more general classes of systems.!
7 The use of such random forcings does not imply that certain features of the world are genuinely 
random. Instead, the “randomness” of such forcings is best understood epistemically – as a shortcut for 
an explicit and detailed description of the part of the world which lies outside the model. (This is true 
whether we adopt an objectivist or subjectivist interpretation of the probability structure overall.)  
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2.2 Determinism and indeterminism 

Conventionally, a system is called deterministic if, in that system, the past always 
determines the future. Formally, for any history h and any point in time t, let ht be the 
initial segment of that history up to t. This is the function h restricted to the points in 
time up to t. The system is deterministic if, for any history h in Ω and any time t in T, 
the initial segment ht admits only one possible continuation in Ω, where a 
continuation of ht is a history h' such that h't = ht. The system is indeterministic if, for 
some h and some t, ht has more than one possible continuation in Ω.8  

For example, classical mechanical systems, such as the solar system on the 
Newtonian picture, are deterministic. By contrast, quantum-mechanical systems, such 
as a decaying uranium atom, are indeterministic (assuming no hidden variables). If 
the wave function, which encodes the state of the quantum system, collapses at time t, 
the initial segment ht of the system’s history h can admit multiple continuations. 

Indeterministic systems, unlike deterministic ones, allow non-degenerate chance even 
as we move along a given history.9 Let E be the event that the initial segment ht has 
occurred. Then E is formally the set of all continuations of ht. If the system is 
deterministic, the conditional probability function PrE is always degenerate, i.e., it 
assigns probability 0 or 1 to every event D. This is because, under determinism, the 
initial segment ht has only one continuation, and so the event E that we have defined 
contains only a single history. Then PrE(D) is 1 if that history belongs to D and 0 
otherwise. In contrast, if the system is indeterministic, then PrE may be non-
degenerate, assigning probabilities strictly between 0 and 1 to some events D. This is 
because E need not be singleton here, and so PrE is less constrained. (For the moment, 
we set aside phenomena such as “higher-level” indeterminism and chance, as 
discussed in List and Pivato 2015. We make a few remarks about such phenomena at 
the end of this paper.) 

More generally, our framework allows us to formulate different notions of 
determinism. For any subset T' of T, we can ask whether the restriction of a given 
history to the points in T' uniquely determines the rest of that history. Let hT' denote 
the restriction of the function h to T'. Our question then becomes whether hT' has a 
unique extension to all of T in Ω, where an extension of hT' is a history h' such that 
h'T' = hT'. The set of points in time up to a particular time t is just one special case of 
what the set T' might be.  

In this way, we might ask, for instance, whether the complete history of a system, 
both past and future, is determined by its present state alone. Similarly, we might ask 
whether, given the states of the system at two points in time, there is a unique history 
connecting them. So, one can, in principle, consider not only the widely discussed 
idea of “past-to-future” determinism, but also various other forms of “local-to-global” 
determinism. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 On these definitions, see also List (2014) and List and Pivato (2015). 
9 For discussion, see, e.g., Schaffer (2007) and List and Pivato (2015). 
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2.3 Nomological possibility and necessity 

We can explicitly define the notions of nomological necessity and possibility in our 
framework.10 Intuitively, an event E is nomologically possible in history h at time t if 
the initial segment of that history up to t admits at least one continuation in Ω that lies 
in E; and E is nomologically necessary in h at t if every continuation of the history’s 
initial segment up to t lies in E.  

More formally, we say that one history, h', is accessible from another, h, at time t if 
the initial segments of h and h' up to time t coincide, i.e., ht = ht'. We then write h'Rth. 
The binary relation Rt on possible histories is in fact an equivalence relation 
(reflexive, symmetric, and transitive). Now, an event E ⊆ Ω is nomologically possible 
in history h at time t if some history h' in Ω that is accessible from h at t is contained 
in E. Similarly, an event E ⊆ Ω is nomologically necessary in history h at time t if 
every history h' in Ω that is accessible from h at t is contained in E.  

In this way, we can define two modal operators, !t and "t, to express possibility and 
necessity at time t. We define each of them as a mapping from events to events. For 
any event E ⊆ Ω,  

!t E = {h ∈ Ω : for some h' ∈ Ω with h'Rth, we have h' ∈ E}, 

"t E = {h ∈ Ω : for all h' ∈ Ω with h'Rth, we have h' ∈ E}. 

So, !t E is the set of all histories in which E is possible at time t, and "t E is the set of 
all histories in which E is necessary at time t. Accordingly, we say that “!t E” holds 
in history h if h is an element of !t E, and “"t E” holds in h if h is an element of "t E. 
As one would expect, the two modal operators are duals of each other: for any event 
E ⊆ Ω, we have "t E = ~!t ~E and !t E = ~"t ~E.  

Two remarks are due. First, although we have here defined nomological possibility 
and necessity, we can analogously define logical possibility and necessity. To do this, 
we must simply replace every occurrence of the set Ω of nomologically possible 
histories in our definitions with the set H of logically possible histories. Second, by 
defining the operators !t and "t as functions from events to events, we have adopted 
a semantic definition of these modal notions. However, we could also define them 
syntactically, by introducing an explicit modal logic. For each point in time t, the 
logic corresponding to the operators !t and "t would then be an instance of a 
standard S5 modal logic (on S5, see, e.g., Priest 2001).  

Our analysis shows how nomological possibility and necessity depend on the 
dynamics of the system. In particular, as time progresses, the notion of possibility 
becomes more demanding: fewer events remain possible at each time. And the notion 
of necessity becomes less demanding: more events become necessary at each time, for 
instance due to having been “settled” in the past. Formally, for any t and t' in T with 
t < t' and any event E ⊆ Ω, 

if   !t' E  then !t E,  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 We here employ a construction from List (2014). 
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 if   "t E   then  "t' E. 

Furthermore, in a deterministic system, for every event E and any time t, we have 
!t E = "t E. In other words, an event is possible in any history h at time t if and only 
if it is necessary in h at t. In an indeterministic system, by contrast, necessity and 
possibility come apart. 

Just as we previously discussed different notions of determinism – not just “past to 
future” but also “local to global” – so we can generalize the notions of possibility and 
necessity in a similar way. Let us say that one history, h', is accessible from another, 
h, relative to a set T' of time points, if the restrictions of h and h' to T' coincide, i.e., 
h'T' = hT'. We then write h'RT'h. Accessibility at time t is the special case where T' is 
the set of points in time up to time t. We can define nomological possibility and 
necessity relative to T' as follows. For any event E ⊆ Ω,  

!T' E = {h ∈ Ω : for some h' ∈ Ω with h'RT'h, we have h' ∈ E}, 

"T' E = {h ∈ Ω : for all h' ∈ Ω with h'RT'h, we have h' ∈ E}. 

Although these modal notions are much less familiar than the standard ones 
(possibility and necessity at time t), they are useful for some purposes. In particular, 
they allow us to express the fact that the states of a system during a particular period 
of time, T' ⊆ T, render some events E possible or necessary. 

Finally, our definitions of possibility and necessity relative to some general subset T' 
of T also allow us to define completely “atemporal” notions of possibility and 
necessity. If we take T' to be the empty set, then the accessibility relation RT' becomes 
the universal relation, under which every history is related to every other. An event E 
is possible in this atemporal sense (i.e., !∅E) if and only if E is a non-empty subset 
of Ω, and it is necessary in this atemporal sense (i.e., "∅E) if E coincides with all of 
Ω. These notions might be viewed as possibility and necessity from the perspective of 
some observer who has no temporal or historical location within the system and looks 
at it from the outside. 

2.4 Constraints and correlations 

Ultimately, all modal constraints governing a temporally evolving system are encoded 
by the set Ω, and all correlations, or probabilistic properties, are encoded by the 
conditional probability structure {PrE}E⊆Ω. This raises the question: which of these 
constraints and correlations qualify as “laws”, rather than as mere “brute facts” about 
the system? Further, is the distinction between laws and brute facts even meaningful? 

Intuitively, we take laws to be constraints or correlations that, in some sense, hold 
universally, as distinct from constraints or correlations that are specific to particular 
circumstances. How can we make sense of this idea in relation to a temporally 
evolving system? After all, the constraints encoded by Ω and the correlations encoded 
by {PrE}E⊆Ω seem themselves to be “timeless”. From a bird’s-eye perspective, they 
govern the behaviour of the system in its entirety. Can we still draw a distinction 
between these “overall” features of the system and the laws more specifically?  
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In what follows, we introduce two general notions – constraints on histories and 
probabilistic properties – and in each case provide a criterion for identifying which of 
them qualify as laws. Informally, a constraint on histories is a property, C, that a 
history may or may not have. Formally, C can be associated with some subset, 
denoted [C], of the set H of all logically possible histories. A history satisfies the 
constraint C if it belongs to [C]. We call [C] the extension of C. The system as a 
whole satisfies C if all histories in Ω satisfy C, i.e., if Ω is a subset of [C]. For 
example, each of Newton’s three laws of motion can be viewed as a constraint that all 
histories of a classical mechanical system satisfy. Note that, since the set Ω of all 
nomologically possible histories is itself a subset of the set H of all logically possible 
histories, we can think of Ω as the extension of the “total nomological constraint” 
governing our system. 

Let us turn to probabilistic properties. A probabilistic property, P, is a property that a 
conditional probability structure may or may not have. Formally, it is associated with 
a subset, denoted [P], of the set Π of all logically possible conditional probability 
structures on Ω. A conditional probability structure {PrE}E⊆Ω satisfies P if it belongs 
to [P]. We call [P] the extension of P. For example, we can think of the second law of 
thermodynamics as a property of the conditional probability structure of a statistical 
mechanical system. 

Our goal is to formulate conditions that allow us to distinguish between constraints or 
probabilistic properties that “hold universally” and ones that do not. The former can 
be viewed as “laws”, the latter merely as “brute facts”. We capture this distinction 
through the notion of symmetries. Informally, a symmetry is a special kind of 
transformation that acts on either the state space X or the set of time points T or both. 
We can then define laws as those constraints or probabilistic properties that are 
invariant under relevant symmetries, i.e., whose extensions are preserved by them. 
We now make these notions formally precise. 

2.5 Symmetries 

We first consider symmetries acting on the state space; we then turn to symmetries 
acting on time; and we finally consider more general symmetries. (To anticipate: in 
the most general case, a symmetry is a function that acts on the set of logically 
possible histories in such a way as to preserve certain significant features.) 

To introduce state symmetries, let us begin with some preliminary definitions. Let φ 
be any function from X into itself, i.e., a transformation on the state space. We can use 
this transformation to define a function from histories to other histories. Specifically, 
for any history h, we define the transformed history  

φ(h) = h', where, for all t in T, h'(t) = φ[h(t)]. 

For example, suppose T={1,2,3,…} and X={a,b,c,d,…,z}. Here, any history h can be 
represented as a sequence of elements in X. Suppose φ is the function that shifts every 
letter in the alphabet one place to the right, i.e., a to b, b to c, and so on, and z back to 
a. Then applying φ to the history h = (b,a,c,f,z,…) yields the history h' = (c,b,d,g,a,…). 
Note that, even when h is in Ω, its image h' might not be an element of Ω. It is simply 
some logically possible function from T into X. Thus φ induces a function from the set 
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H of logically possible histories to itself. For convenience, we use the letter φ both to 
denote the original function on X and to denote the induced function on H. 

Given any event E in Ω (or more generally any subset E of H), we define the inverse 
image of E under φ to be the set of all histories h in H such that φ(h) lies in E.11 For 
example, if E is the set of all histories whose state at time 3 is c, then the inverse 
image of E under φ is the set of all histories whose state at time 3 is b. Note that the 
inverse image of an event E could be empty, namely if none of the histories in E can 
be “reached” as transformations of other histories. 

The function φ is a symmetry of our system if 

• φ(h) is in Ω, for all h in Ω; and 
• for any events E and D in Ω, if E' and D' are the inverse images of E and D 

under φ, then PrE' [D'] = PrE[D].12 

Intuitively, a symmetry is a transformation that preserves the modal and probabilistic 
structure of a temporally evolving system. In our example, where X={a,b,c,d,…,z} 
and φ is the letter-shifting function, the first part of this definition implies that if 
(b,a,c,f,z,…) is a nomologically possible history of the system, then so is 
(c,b,d,g,a,…). To illustrate the second part, let E be the set of all histories in Ω whose 
state at time 3 is c, and let D be the set of all histories in Ω whose state at time 5 is a 
(so that E' is a suitable set of histories whose state at time 3 is b, and D' is a suitable 
set of histories whose state at time 5 is z).13 The conditional probability that the state 
of a history at time 5 is a, given that at time 3 it is c, must then equal the conditional 
probability that the state at time 5 is z, given that at time 3 it is b. 

Obviously, not all state transformations are symmetries. Whether there are any non-
trivial state symmetries and, if so, what they look like, depends very much on the 
temporally evolving system in question, i.e., it depends on the set Ω and the 
conditional probability structure {PrE}E⊆Ω. In classical mechanical systems, state 
symmetries include spatial translations, which shift everything in a certain direction 
by a certain distance, rotations and reflections, and permutations of particles with 
equal mass. Those transformations preserve the modal and probabilistic structure of 
the systems in question.  

Similarly, we can define symmetries acting on time. Again, we begin with some 
preliminary definitions. Let ψ be any function on T, i.e., a transformation on time. For 
any history h, we define the transformed history  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Formally, we write φ–1(E) ={h in H: φ(h) is in E}. Note that the use of this notation for inverse 
images of sets does not imply that the function φ is invertible. 
12 Strictly speaking, the conditional probability structure {PrE}E⊆Ω is only defined for subsets of Ω. 
However, we can extend it to the rest of H in a straightforward way: for any subsets D, E of H, we 
define PrE(D) = PrE∩Ω(D∩Ω).   
13 Formally, E' consists of all the histories h in H such that φ(h) is in Ω and h(3) = b. Similarly, D' 
consists of all the histories h in H such that φ(h) is in Ω and h(5) = z. 



 10 

ψ(h) = h', where, for all t in T, h'(t) = h[ψ(t)].14 

For example, suppose T = {1,2,3,…}. Then any history h can be represented as a 
sequence (x1, x2, x3, …) of elements in X. If ψ(t) = t + 5 for all t in T, then 
ψ(h) = (x6, x7, x8, …). As in the case of state symmetries, ψ induces a function from 
the set H to itself. Again, the inverse image of any set E of histories under ψ is the set 
of all histories h in H such that ψ(h) lies in E.15  

In analogy to the earlier definition, the function ψ is a symmetry if 

• ψ(h) is in Ω, for all h in Ω; and 
• for any events E and D in Ω, if E' and D' are the inverse images of E and D 

under ψ, then PrE' [D'] = PrE[D]. 

In our example, where T = {1,2,3,…} and ψ(t) = t + 5, the first part of this definition 
says that if h = (x1, x2, x3,…) is a nomologically possible history of the system, then so 
is h' = (x6, x7, x8,…). To illustrate the second part, suppose that E is the set of all 
histories in Ω whose state at time 3 is c, while D is the set of all histories in Ω whose 
state at time 4 is a (so that E' is a suitable set of histories whose state at time 8 is c, 
while D' is a suitable set of histories whose state at time 9 is a). The conditional 
probability that the state in a history at time 9 is a, given that at time 8 it was c, must 
then equal the conditional probability that the state at time 4 is a, given that at time 3 
it was c.16 

Just as it is not the case that all state transformations are symmetries, so it is not the 
case that all time transformations are symmetries. In most systems arising in classical 
physics, time symmetries include time translations, such as ψ(t) = 5+t, but exclude 
non-linear transformations, such as ψ(t) = t2. In systems where the state does not 
encode explicitly “kinetic” properties (such as momentum), simple time reversals, 
such as ψ(t) = –t, can also be time symmetries. For example, the partial differential 
equations describing wave propagation in an ideal medium are invariant under simple 
time reversals. However, many other systems, such as thermodynamic systems and 
diffusion processes, do not admit time-reversal symmetries. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 Typically, we require ψ to be order-preserving, i.e., for all t and t' in T, if t < t', then ψ(t) < ψ(t'). For 
example, if T = {1,2,3,…} with the standard ordering, the functions ψ(t) = t + 5 and ψ(t) = 5t are order-
preserving. But we do not build this requirement into our definition of a time symmetry. Note that 
some time symmetries, such as time reversals in classical physical systems, are not order-preserving. 
15 Formally, we write ψ–1(E) ={h in H: ψ(h) is in E}. Again, this set could be empty. Suppose, for 
example, that T={1,2,3,…} and ψ(t) = t+5. If E is the set of all histories whose state at time 3 is c 
(where states, as before, are letters of the alphabet), then the inverse image of E under ψ is the set of all 
histories whose state at time 8 is c. This is because the third state of any history h in E must be the 
eighth state of some history h' in its inverse image E' under ψ. 
16 Note that classical dynamical systems have a particularly rich set of time symmetries. Let (X, φ) be a 
dynamical system, as defined in footnote 6. Suppose the function φ (which maps from X into itself) is 
surjective, i.e., for all x in X, there is some y in X such that φ(y)=x. Then the set Ω of orbits is invariant 
under all time-shifts. Let {Pr'E}E⊆X be a conditional probability structure on X, and let {PrE}E⊆Ω be 
the conditional probability structure it induces on Ω. Suppose that {Pr'E}E⊆X is φ-invariant, i.e., for 
any subsets E and D of X, if E' = φ–1(E) and D' = φ–1(D), then Pr'E'(D') = Pr'E(D). Then every time shift 
is a temporal symmetry of the resulting temporally evolving system. The study of dynamical systems 
equipped with invariant probability measures is the purview of ergodic theory.!
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More general symmetries include composite functions resulting from the combination 
of transformations of X and transformations of T. These are best viewed as functions 
acting on the set Ω of histories directly, with the properties introduced above. A 
familiar example in classical mechanical systems is a time reversal, which involves 
both a negation of the time index and a negation of all momentum vectors in the 
system.17 A more complex example is a Galilean transformation, which adds a 
constant vector to the momentum vectors of all particles and also a time-varying 
sequence of spatial shifts to the particle positions, thereby converting the system to a 
different inertial reference frame. For simplicity, we omit the technical details. 

When a transformation of the state space, time, or both is a symmetry of a given 
system, this encodes the fact that certain properties that hold locally (i.e., at some 
points in time, at some states, and in some histories) are more general: they are 
preserved under the transformation in question. 

In what follows, we write Γ to denote the set of all symmetries of our temporally 
evolving system. This set has the algebraic structure of a monoid. Formally, a set of 
transformations of H is a monoid if (i) it contains the identity transformation (which 
maps every history to itself) and (ii) it is closed under composition (i.e., for any two 
transformations in the set, the transformation obtained by applying first one of the two 
transformations and then the other is also in the set). An example of a monoid of 
transformations is the set of all rotations of a classical mechanical system around a 
fixed axis: the identity transformation obviously belongs to this set, being a rotation 
by an angle of zero, and the composition of any two rotations is still a rotation.  

To see that the set Γ of all symmetries of a temporally evolving system forms a 
monoid, note that (i) the identity transformation, which maps every history to itself, is 
trivially a symmetry, and (ii) if two transformations each qualify as symmetries, by 
preserving the modal and probabilistic structure of the system, then so does their 
composition. 

2.6 Laws 

As anticipated, the key difference between laws and features of our system that are 
just “brute facts” is that the former, but not the latter, are invariant under the 
symmetries of the system. The close relationship between symmetries and laws has of 
course been recognized by many physicists and philosophers of science (e.g., Wigner 
1967; van Fraassen 1989, Part III; Mainzer 1996, Section 5.3; Brading and Castellani 
2003, 2013; and Baker 2010). We here offer a formalization of this idea in our 
framework. 

We first consider constraints on histories, which are candidates for modal laws, i.e., 
laws governing what is or is not nomologically possible. We then turn to probabilistic 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 As Roberts (2013) has argued, in general, a time reversal must not only map the time coordinate t to 
–t, but also apply an appropriate transformation to the system’s state at each point in time (in special 
cases, this could be the identity transformation, as in the case of a simple time reversal). Generally, we 
can think of the state of the system at each point in time as encoding not only some “static” properties 
(such as each particle’s position), but also some “kinetic” properties (such as each particle’s 
momentum). While static properties are preserved under time reversals, kinetic properties are not 
generally preserved. Similarly, in quantum mechanics, time reversals involve not only a reversal of the 
time coordinate, but also taking the conjugate of the wave function’s values. 
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properties, which are candidates for probabilistic laws, i.e., laws governing what 
correlates with what.  

Let C be a constraint, with extension [C], and let γ be a symmetry of the system, i.e., a 
transformation on H that belongs to the set Γ. We say that C is invariant under γ if the 
set [C] is equal to its inverse image under γ. A constraint C that is satisfied by the 
system is a law if it is invariant under all symmetries in Γ.  

For example, suppose T = {1,2,3,...} and suppose that, for any positive integer r, the 
set Γ contains the time symmetry ψr defined by ψr(t) = t+r for all t in T. Suppose the 
system satisfies the constraint C which says: “if the state of the system at time 5 is x, 
then at time 6 it is y”. The inverse image of [C] under ψ2 corresponds to the constraint 
C' which says: “if the state of the system at time 7 is x, then at time 8 it is y”. Clearly, 
[C'] is not the same as [C]. Thus, C is not invariant under ψ2, and so C is not a law of 
the system. It is simply a constraint that the system happens to satisfy: a “brute fact”. 

However, suppose the system satisfies a different constraint C which says: “for any t 
in T, if the state of the system at time t is x, then at time t + 1 it is y”. It is easy to see 
that [C] is invariant under ψr for all positive integers r. If Γ consists only of the time 
symmetries {ψr : r = 1,2,3,....}, then C is invariant under all elements of Γ. Thus, C is 
a law of the system. 

For another example, consider the kinds of temporally evolving systems that arise in 
classical mechanics. These satisfy the law of conservation of energy, which says that 
the total energy (kinetic plus potential) of the system remains constant over time. This 
can be formulated as a constraint C of the form: “for any times t and t' in T, the total 
energy of the state at time t' equals the total energy of the state at time t”. Clearly, this 
constraint is invariant under the time symmetries {ψr} introduced above. As already 
mentioned, classical mechanical systems also have certain state symmetries, such as 
spatial translations, rotations, reflections, and the permutation of (equal-mass) 
particles. The total energy of a state is unchanged by such symmetries, so the 
constraint C will also be invariant under spatial translations and (equal-mass) particle 
permutations. Indeed, total energy is unchanged by every symmetry of the system, 
and for this reason, the constraint C is a law.18 

We can also use invariance under symmetries to distinguish between probabilistic 
laws and “brute facts” about a system’s probabilities. Let {Pr'E}E⊆Ω be any 
conditional probability structure, and let γ be a symmetry of the system. We define 
γ({Pr'E}E⊆Ω) to be the conditional probability structure {Pr*

E}E⊆Ω such that, for any 
events E and D, we have Pr*

E (D) = Pr'E' (D'), where E' is the inverse image of E 
under γ, and D' is the inverse image of D under γ. Let P be a probabilistic property, 
and let [P] be its extension (thus, [P] is a subset of the set Π of all possible 
conditional probability structures). We say that P is invariant under γ if [P] is equal to 
its inverse image under γ. A probabilistic property P that is satisfied by the 
conditional probability structure {PrE}E⊆Ω is a probabilistic law if it is invariant under 
all symmetries in Γ. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18 In a similar fashion one can formulate the laws of conservation of momentum, conservation of 
angular momentum, and so on. 
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For example, suppose T={1,2,3,...}, and, for any positive integer r, define the time 
symmetry ψr as before. Let Y and Z be two subsets of the state space X, and suppose 
the system satisfies the probabilistic property P which says: “conditional on the state 
being in Y at time 5, there is a 50% probability that the state will be in Z at time 8”. 
The inverse image of [P] under ψ2 corresponds to the probabilistic property P' which 
says: “conditional on the state being in Y at time 7, there is a 50% probability that the 
state will be in Z at time 10”. Clearly, [P'] is not the same as [P]. Thus, [P] is not 
invariant under ψ2, and so P is not a probabilistic law of the system. 

However, suppose the system satisfies the probabilistic property P which says: “for 
any time t in T, conditional on the state being in Y at time t, there is a 50% probability 
that the state will be in Z at time t+3”. Then it is easy to see that [P] is invariant under 
ψr for all positive integers r. If Γ consists only of the time symmetries {ψr : r = 
1,2,3,....}, then P is invariant under all elements of Γ, and so P is a probabilistic law. 

In sum, modal and probabilistic laws, as opposed to “brute facts”, are, respectively, 
those constraints on histories and those probabilistic properties that are preserved by 
all symmetries of the system. In Appendix A, we extend this account to factor 
systems, which are obtained by abstracting away from certain details of the original 
system. In Appendix B, we extend it to partial and local symmetries, which are often 
found in systems with special initial conditions and/or boundary conditions. 

2.7 From local observations to global laws 

When we scientifically investigate a system, we cannot normally observe all possible 
histories in Ω, or directly access the conditional probability structure {PrE}E⊆Ω. 
Instead, we can only observe specific events. Conducting many “runs” of the same 
experiment is an attempt to observe as many histories of a system as possible, but 
even the best experimental design rarely allows us to observe all histories or to read 
off the full conditional probability structure. Furthermore, this strategy works only for 
smaller systems that we can isolate in laboratory conditions. When the system is the 
economy, the global ecosystem, or the universe in its entirety, we are stuck in a single 
history. We cannot step outside that history and look at alternative histories. 
Nonetheless, we would like to infer something about the laws of the system in 
general, and especially about the true probability distribution over histories. 

Can we discern the system’s laws and true probabilities from observations of specific 
events? And what kinds of regularities must the system display in order to make this 
possible? In other words, are there certain “metaphysical prerequisites” that must be 
in place for scientific inference to work?   

To answer these questions, we first consider a very simple example. Here 
T = {1,2,3,...}, and the system’s state at any time is the outcome of an independent 
coin toss. So the state space is X = {Heads, Tails}, and each possible history in Ω is 
one possible Heads/Tails sequence.  

Suppose the true conditional probability structure on Ω is induced by the single 
parameter p, the probability of Heads. In this example, the Law of Large Numbers 
guarantees that, with probability 1, the limiting frequency of Heads in a given history 
(as time goes to infinity) will match p. This means that the subset of Ω consisting of 
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“well-behaved” histories has probability 1, where a history is well-behaved if (i) there 
exists a limiting frequency of Heads for it (i.e., the proportion of Heads converges to 
a well-defined limit as time goes to infinity) and (ii) that limiting frequency is p. For 
this reason, we will almost certainly (with probability 1) arrive at the true conditional 
probability structure on Ω on the basis of observing just a single history and counting 
the number of Heads and Tails in it.  

Does this result generalize? The short answer is “yes”, provided the system’s 
symmetries are of the right kind. Without suitable symmetries, generalizing from 
local observations to global laws is not possible. In a slogan, for scientific inference to 
work, there must be sufficient regularities in the system. In our toy system of the coin 
tosses, there are. Wigner (1967) recognized this point, taking symmetries to be “a 
prerequisite for the very possibility of discovering the laws of nature” (as Brading and 
Castellani 2013 put it; see also French 2014).   

Generally, symmetries allow us to infer general laws from specific observations. For 
example, let T = {1,2,3,...}, and let Y and Z be two subsets of the state space X. 
Suppose we have made the observation O: “whenever the state is in the set Y at time 
5, there is a 50% probability that it will be in Z at time 6”. Suppose we know, or are 
justified in hypothesizing, that the system has the set of time symmetries 
{ψr : r = 1,2,3,....}, with ψr(t) = t + r, as defined as in the previous section. Then, 
from observation O, we can deduce the following general law: “for any t in T, if the 
state of the system is in the set Y at time t, there is a 50% probability that it will be in 
Z at time t + 1”.  

However, this example still has a problem. It only shows that if we could make 
observation O, then our generalization would be warranted, provided the system has 
the relevant symmetries. But the “if” is a big “if”. Recall what observation O says: 
“whenever the system’s state is in the set Y at time 5, there is a 50% probability that it 
will be in the set Z at time 6”. Clearly, this statement is only empirically well 
supported – and thus a real observation rather than a mere hypothesis – if we can 
make many observations of possible histories at times 5 and 6. We can do this if the 
system is an experimental apparatus in a lab or a virtual system in a computer, which 
we are manipulating and observing “from the outside”, and on which we can perform 
many “runs” of an experiment. But, as noted above, if we are participants in the 
system, as in the case of the economy, an ecosystem, or the universe at large, we only 
get to experience times 5 and 6 once, and we only get to experience one possible 
history. How, then, can we ever assemble a body of evidence that allows us to make 
statements such as O? 

The solution to this problem lies in the property of ergodicity. This is a property that a 
system may or may not have and that, if present, serves as the desired metaphysical 
prerequisite for scientific inference. To explain this property, let us give an example. 
Suppose T = {1,2,3,...}, and the system has all the time symmetries in the set 
Ψ = {ψr : r = 1,2,3,....} (and perhaps other symmetries as well, though we set these 
aside for now). Heuristically, the symmetries in Ψ can be interpreted as describing the 
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evolution of the system over time.19 Suppose each time-step corresponds to a day. 
Then the history h = (a,b,c,d,e,....) describes a situation where today’s state is a, 
tomorrow’s is b, the next day’s is c, and so on. The transformed history 
ψ1(h) = (b,c,d,e,f,....) describes a situation where today’s state is b, tomorrow’s is c, 
the following day’s is d, and so on. Thus, ψ1(h) describes the same “world” as h, but 
as seen from the perspective of tomorrow. Likewise, ψ2(h) = (c,d,e,f,g,....) describes 
the same “world” as h, but as seen from the perspective of the day after tomorrow, 
and so on.20  

Given the set Ψ of symmetries, an event E (a subset of Ω) is Ψ-invariant if the 
inverse image of E under ψ is E itself, for all ψ in Ψ. This implies that if a history h is 
in E, then ψ(h) will also be in E, for all ψ. In effect, if the world is in the set E today, 
it will remain in E tomorrow, and the day after tomorrow, and so on. Thus, E is a 
“persistent” event: an event one cannot escape from by moving forward in time. In a 
coin-tossing system, where Ψ is still the set of time translations, examples of Ψ-
invariant events are “all Heads”, where E contains only the history (Heads, Heads, 
Heads, …), and “all Tails”, where E contains only the history (Tails, Tails, Tails, …). 

The system is ergodic (with respect to Ψ) if, for any Ψ-invariant event E, the 
unconditional probability of E, i.e., PrΩ(E), is either 0 or 1. In other words, the only 
persistent events are those which occur in almost no history (i.e., PrΩ(E) = 0) and 
those which occur in almost every history (i.e., PrΩ(E) = 1).21 Our coin-tossing system 
is ergodic, as exemplified by the fact that the Ψ-invariant events “all Heads” and “all 
Tails” occur with probability 0. 

In an ergodic system, it is possible to estimate the probability of any event 
“empirically”, by simply counting the frequency with which that event occurs.22 
Frequencies are thus evidence for probabilities. The formal statement of this is the 
following important result from the theory of dynamical systems and stochastic 
processes. 

Ergodic Theorem: Suppose the system is ergodic. Let E be any event and 
let h be any history. For all times t in T, let Nt be the number of elements r 
in the set {1, 2, ..., t} such that ψr(h) is in E. Then, with probability 1, the 
ratio Nt / t will converge to PrΩ(E) as t increases towards infinity.23 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19 Mathematically, the pair (Ω, Ψ) can be interpreted as a classical dynamical system, as defined in 
footnote 6, with Ω playing the role of a state space (from an outside observer’s perspective) and the 
transformations in Ψ playing the role of state transformation rules. 
20 Note that, under this heuristic interpretation, the world “forgets” its past history: from the perspective 
of tomorrow, it is as if today never happened. This is just an artefact of the formal mathematical model 
we are using in this example and has no deeper significance. If we used the set Z of all integer numbers 
instead of the natural numbers to model time, it would obviate this issue. 
21 Note that, if Ω is infinite, there is a subtle distinction between almost no history (i.e., PrΩ(E) = 0) 
and no history (i.e., E is the empty set). Likewise, there is a subtle distinction between almost every 
history (i.e., PrΩ(E) = 1) and every history (i.e., E = Ω). 
22 This insight is the basis for Reichenbach’s (1949) “straight rule”, which is to take observed 
frequencies as the best estimates of “true” probabilities. See, e.g., Eberhardt and Glymour (2009). 
23 For simplicity, we have stated this result somewhat informally. For formal statements, see Berkovitz, 
Frigg, and Kronz (2006). Furthermore, we have here defined ergodicity with respect to a set of time 
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Intuitively, Nt is the number of times the event E has “occurred” in history h from 
time 1 up to time t. The ratio Nt / t is therefore the frequency of occurrence of event E 
(up to time t) in history h. This frequency might be measured, for example, by 
performing a sequence of experiments or observations at times 1, 2, ..., t. The Ergodic 
Theorem says that, almost certainly (i.e., with probability 1), the empirical frequency 
will converge to the true probability of E, PrΩ(E), as the number of observations 
becomes large. The estimation of the true conditional probability structure from the 
frequencies of Heads and Tails in our illustrative coin-tossing system is possible 
precisely because the system is ergodic. 

To understand the significance of this result, let Y and Z be two subsets of X, and 
suppose E is the event “h(1) is in Y”, while D is the event “h(2) is in Z”. Then the 
intersection E ∩ D is the event “h(1) is in Y, and h(2) is in Z”. The Ergodic Theorem 
says that, by performing a sequence of observations over time, we can empirically 
estimate PrΩ(E) and PrΩ(E∩D) with arbitrarily high precision. Thus, we can compute 
the ratio PrΩ(E∩D) / PrΩ(E). But this ratio is simply the conditional probability 
PrΕ(D). And so, we are able to estimate the conditional probability that the state at 
time 2 will be in Z, given that at time 1 it was in Y. This illustrates that, by allowing us 
to estimate unconditional probabilities empirically, the Ergodic Theorem also allows 
us to estimate conditional probabilities, and in this way to learn the properties of the 
conditional probability structure {PrE}E⊆Ω.  

We may thus conclude that ergodicity is what allows us to generalize from local 
observations to global laws. In effect, when we engage in scientific inference about 
some system, or even about the world at large, we rely on the hypothesis that this 
system, or the world, is ergodic.24 If our system, or the world, were what Cartwright 
(1999) calls “dappled”, then presumably we would not be able to presuppose 
ergodicity, and hence our ability to make scientific generalizations would be 
compromised. 

2.8 Occam’s Razor 

We have seen that a temporally evolving system must possess a sufficiently rich set of 
symmetries to allow us to infer general laws from a finite set of empirical 
observations. In the previous section, we took for granted that we already knew, or at 
least were justified in hypothesizing, that the system had these symmetries. But what 
justified this hypothesis? 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
symmetries. More generally, the statements in this section hold for any collection of symmetries that 
forms an amenable semi-group. See Krengel (1985, Section 6.4). 
24 One complication is that not all systems are ergodic. (For example, in systems that have conservation 
laws, such as conservation of energy or momentum, each value of the conserved variables determines a 
non-trivial invariant subset of Ω.) However, any non-ergodic system can be split up into “ergodic 
components”; heuristically, these are minimal invariant subsets of Ω, each of which (except possibly a 
set of measure zero) supports its own ergodic probability function (this is called the Ergodic 
Decomposition Theorem; see, e.g., Glasner 2003, p. 72, Theorem 3.22). If we ourselves are part of the 
system, then we are already confined to one such component. Furthermore, even if the system as a 
whole is not ergodic, many of its factor systems may be ergodic (see Appendix A). This suggests that, 
by choosing the right level of description for the system (e.g., by adopting a sufficiently coarse-
grained, higher-level description, as discussed in List and Pivato 2015), we may be able to reap the 
benefits of ergodicity. For the applicability of ergodic methods to non-ergodic Hamiltonian systems, 
see Section 4 of Berkovitz, Frigg, and Kronz (2006). 
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This question is central to the entire scientific enterprise. Why are we justified in 
assuming that scientific laws are the same in different spatial locations, or that they 
will be the same from one day to the next? Why should replicability of other 
scientists’ experimental results be considered the norm, rather than a miraculous 
exception? Why is it normally safe to assume that the outcomes of experiments will 
be insensitive to irrelevant details such as the height of the laboratory bench, or the 
orientation of the apparatus relative to the planet Jupiter? Why, for that matter, are we 
justified in the inductive generalizations that are ubiquitous in everyday reasoning? 

In effect, we are assuming that the scientific phenomena under investigation are 
invariant under certain symmetries – both temporal, as discussed earlier, and spatial, 
as discussed later, including translations, rotations, and so on. But where do we get 
this assumption from? The answer lies in the principle of Occam’s Razor. 

Roughly speaking, this principle says that, if two theories are equally consistent with 
the empirical data, we should prefer the simpler theory.25 In the present framework, 
the hypothesis of a symmetry-rich system is simpler than the hypothesis of a 
symmetry-poor system, other things being equal. The following provisional 
formulation of the principle of Occam’s Razor captures this idea: 

Occam’s Razor: Given any body of empirical evidence about a 
temporally evolving system, always assume that the system has the largest 
possible set of symmetries consistent with that evidence. 

We must now make this more precise. We begin by explaining what it means for a 
particular symmetry to be “consistent” with a body of empirical evidence. Formally, 
our total body of evidence can be represented as a subset E of H, i.e., namely the set 
of all logically possible histories that are not ruled out by that evidence. Note that we 
cannot assume that our evidence is a subset of Ω; when we scientifically investigate a 
system, we do not normally know what Ω is. Hence we can only assume that E is a 
subset of the larger set H of logically possible histories.  

Now let ψ be a transformation of H, and suppose that we are testing the hypothesis 
that ψ is a symmetry of the system. For any positive integer n, let ψn be the 
transformation obtained by applying ψ repeatedly, n times in a row. For example, if 
ψ is a rotation about some axis by angle θ, then ψn is the rotation by the angle nθ.26 
For any such transformation ψn, we write ψ–n(E) to denote the inverse image in H of E 
under ψn. We say that the transformation ψ is consistent with the evidence E if the 
intersection  

E ∩ ψ–1(E) ∩ ψ–2(E) ∩ ψ–3(E) ∩ ... 

is non-empty. This means that the available evidence (i.e., E) does not falsify the 
hypothesis that ψ is a symmetry of the system.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25 The literature contains many proposals on how to formalize Occam’s Razor precisely. See, e.g., 
Baker (2013) and Fitzpatrick (2015). For an efficiency argument for Occam’s Razor, see Kelly (2007). 
26 In the present terms, rotations must be represented as transformations of the state space X. In Section 
3.5, we represent rotations more explicitly, relying on a formal representation of space.  
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For example, suppose we are interested in whether cosmic microwave background 
radiation is isotropic, i.e., the same in every direction. Suppose we measure a 
background radiation level of x1 when we point the telescope in direction d1, and a 
radiation level of x2 when we point it in direction d2. Call these events E1 and E2. 
Thus, our experimental evidence is summarized by the event E = E1∩E2. Let ψ be a 
spatial rotation that rotates d1 to d2. Then, focusing for simplicity just on the first two 
terms of the infinite intersection above,  

E ∩ ψ–1(E) = E1 ∩ E2 ∩ ψ–1(E1) ∩ ψ–1(E2). 

If x1 = x2, we have E1 = ψ–1(E2), and the expression for E ∩ ψ–1(E) simplifies to 
E1 ∩ E2 ∩ ψ–1(E1), which has at least a chance of being non-empty, meaning that the 
evidence has not (yet) falsified isotropy. But if x1 ≠ x2, then E1 and  ψ–1(E2) are 
disjoint. In that case, the intersection E ∩ ψ–1(E) is empty, and the evidence is 
inconsistent with isotropy. As it happens, we know from recent astronomy that x1 ≠ x2 
in some cases, so cosmic microwave background radiation is not isotropic, and ψ is 
not a symmetry. 

Our version of Occam’s Razor now says that we should postulate as symmetries of 
our system a maximal monoid of transformations consistent with our evidence. 
Formally, a monoid Ψ of transformations (where each ψ in Ψ is a function from H 
into itself) is consistent with evidence E if the intersection 

 ∩   ψ–1(E) 
ψ∈Ψ 

is non-empty. This is the generalization of the infinite intersection that appeared in 
our definition of an individual transformation’s consistency with the evidence. 
Further, a monoid Ψ that is consistent with E is maximal if no proper superset of Ψ 
forms a monoid that is also consistent with E. 

Occam’s Razor (formal): Given any body E of empirical evidence about 
a temporally evolving system, always assume that the set of symmetries 
of the system is a maximal monoid Ψ consistent with E.  

What is the significance of this principle? Recall that we earlier defined Γ to be the 
set of all symmetries of our temporally evolving system. In practice, we do not know 
Γ. A monoid Ψ that passes the test of Occam’s Razor, however, can be viewed as our 
best guess as to what Γ is.  

Furthermore, if Ψ is this monoid, and E is our body of evidence, the intersection  

 ∩   ψ–1(E) 
ψ∈Ψ 

can be viewed as our best guess as to what the set of nomologically possible histories 
is. It consists of all those histories among the logically possible ones that are not ruled 
out by the postulated symmetry monoid Ψ and the observed evidence E. We thus call 
this intersection our nomological hypothesis and label it Ω(Ψ,E). 
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To see that this construction is not completely far-fetched, note that, under certain 
conditions, our nomological hypothesis does indeed reflect the truth about 
nomological possibility. If the hypothesized symmetry monoid Ψ is a subset of the 
true symmetry monoid Γ of our temporally evolving system – i.e., we have postulated 
some of the right symmetries – then the true set Ω of all nomologically possible 
histories will be a subset of Ω(Ψ,E). So, our nomological hypothesis will be 
consistent with the truth and will, at most, be logically weaker than the truth. 

Given the hypothesized symmetry monoid Ψ, we can then assume provisionally 
(i) that any empirical observation we make, corresponding to some event D, can be 
generalized to a Ψ-invariant law, as explained in Section 2.6; 27  and (ii) that 
unconditional and conditional probabilities can be estimated from empirical frequency 
data using a suitable version of the Ergodic Theorem, as explained in Sections 2.7 
and 3.7.   

2.9 Inferential modesty, informational parsimony, and the nomological hypothesis 

Occam’s Razor requires us to assume that the symmetries of our system are given by 
a maximal monoid of transformations consistent with the evidence E. Under natural 
assumptions, at least one such maximal consistent monoid will indeed exist.28 
However, there may be more than one. In this case, we need a criterion to choose one 
maximal symmetry monoid rather than another. We now develop such a criterion.   

Let us begin with an example. Consider a very simple temporally evolving system, 
where the set T of times contains only a single element. So, histories can be identified 
with states at that single time; this expositional simplification has no substantive 
consequences. Suppose that the state of the system is described by a two-dimensional 
grid of zeros and ones, which is infinite in every direction. Let X be the set of all 
logically possible grids of this kind. Then the set H of all logically possible histories 
can be identified with X. In this system, one elementary kind of nomological 
constraint is one that constrains the values of one or more cells, for example the 
constraint “In any possible history, the cell (2,3) must have the value zero”.29 Suppose 
we have obtained evidence that any possible history must satisfy the constraints 
shown in Figure 1. This evidence would be represented by the subset E of H 
consisting of all single-period histories in which the grid coincides with Figure 1 in all 
non-empty cells. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27 Formally, the Ψ-invariant law in question is the intersection, over all ψ in Ψ, of ψ– 1(D). 
28 For example, if (i) H has a topology, (ii) E is a compact subset of H, and (iii) all the transformations 
in question are continuous, then Zorn’s lemma implies the existence of a maximal consistent monoid.   
29!Formally, this constraint corresponds to the set E = {h ∈ H : h(2,3) = 0}. Of course, we have chosen 
this rather artificial example only for expositional simplicity. Typically, we would be interested not so 
much in nomological constraints on single coordinates, but in constraints on the relationships between 
two or more coordinates, such as the constraint “No two adjacent cells can both contain a zero”.!
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 : : : : : :  

...  1     ... 

...       ... 

...  1     ... 

...  1     ... 

...    0 0  ... 

...  1     ... 
 : : : : : :  

Figure 1 

Now, for any integer n, let ψn
# be the transformation that shifts the entire grid to the 

right by n spaces.30 Let Ψ# :={ …, ψ–1
#, ψ0

#, ψ1
#, ψ2

#,...} denote the monoid of all 
such horizontal shifts. Meanwhile, let ψn

$ be the transformation that shifts the entire 
grid upwards by n spaces, and let Ψ$ :={ …, ψ–1

$, ψ0
$, ψ1

$, ψ2
$,...} denote the 

monoid of all such vertical shifts. Consider two hypotheses: 

Hypothesis 1: All transformations in Ψ# are symmetries of the system. 

Hypothesis 2: All transformations in Ψ$ are symmetries of the system. 

Note that the evidence represented in Figure 1 is consistent with either of these 
hypotheses. However, it cannot accommodate both of them simultaneously. If 
Hypothesis 1 were true, then the evidence represented in Figure 1 would entail the 
constraints shown in Figure 2. By contrast, if Hypothesis 2 were true, then the 
evidence would entail the constraints shown in Figure 3. In each figure, the 
constraints that were part of the initial evidence are highlighted in boldface; 
extrapolated constraints (based on the postulated symmetries) appear in normal, non-
bold font. Clearly, Hypotheses 1 and 2 cannot both be true, since they yield mutually 
contradictory constraints on the values of the grey cells. 

 : : : : : :  

... 1 1 1 1 1 1 ... 

...       ... 

... 1 1 1 1 1 1 ... 

... 1 1 1 1 1 1 ... 

... 0 0 0 0 0 0 ... 

... 1 1 1 1 1 1 ... 
 : : : : : :  

Figure 2 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 Of course, if n is negative, then ψn

# is actually a shift to the left.!
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 : : : : : :  

...  1  0 0  ... 

...  1  0 0  ... 

...  1  0 0  ... 

...  1  0 0  ... 

...  1  0 0  ... 

...  1  0 0  ... 
 : : : : : :  

Figure 3 

Let Ψ be some maximal consistent monoid of transformations that we postulate as the 
symmetry monoid, in accordance with Occam’s Razor. Hypothesis 1 then asserts that 
Ψ#  ⊆ Ψ, while Hypothesis 2 asserts that Ψ$  ⊆ Ψ. Since both hypotheses cannot 
simultaneously be true, it follows that there are at least two distinct ways in which we 
could specify Ψ: one including Ψ# and another including Ψ$. So even in this very 
simple example, there is no unique maximal consistent monoid. 

At first sight, the choice between these two maximal symmetry monoids seems 
arbitrary. But it is not. To see this, note that both hypotheses could have entailed the 
same constraints they did, using less initial evidence. For example, Hypothesis 1 
would have entailed the same constraints from the evidence represented in Figure 4. 

 : : : : : :  

...  1     ... 

...       ... 

...  1     ... 

...  1     ... 

...    0   ... 

...  1     ... 
 : : : : : :  

Figure 4 

The original evidence in Figure 1 constrained six cell values (i.e., six “bits” of 
information). But Hypothesis 1 can make do with only five of them (in particular, the 
second zero is redundant). Meanwhile, Hypothesis 2 would have entailed the same 
constraints from only three bits of information, as represented in Figure 5. 
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 : : : : : :  

...       ... 

...       ... 

...       ... 

...       ... 

...    0 0  ... 

...  1     ... 
 : : : : : :  

Figure 5 

In other words, Hypothesis 2 could have entailed all of its original constraints, using 
less information than Hypotheses 1 needed to obtain its original constraints. Thus 
Hypothesis 2 can be viewed as more informationally parsimonious than Hypothesis 1. 
Hypothesis 2 stands out in another way too: from the same initial evidence, it 
constrains fewer cell values than Hypothesis 1. So, Hypothesis 2 is also more 
inferentially modest than Hypothesis 1. 

This simple example illustrates two general points. First, different symmetry monoids 
may lead to different nomological hypotheses – hypotheses about what the 
nomologically possible histories are – even starting from the same evidence. 
Formally, we may have Ω(Ψ1,E) ≠ Ω(Ψ2,E) where Ψ1 and Ψ2 are two distinct 
symmetry monoids that are each consistent with evidence E. Second, one symmetry 
monoid could generate the same nomological hypothesis from two different bodies of 
evidence. Formally, we may have Ω(Ψ,E1) ≠ Ω(Ψ,E2) for the same symmetry monoid 
Ψ and two distinct bodies of evidence E1 and E2. 

Thus, given two symmetry monoids Ψ1 and Ψ2, which are each compatible with the 
same body of evidence E, we can compare them along two dimensions: 

Inferential modesty: If Ω(Ψ2,E) ⊆ Ω(Ψ1,E), then we say that Ψ1 is (at 
least weakly) more inferentially modest than Ψ2. 

Informational Parsimony: Let E1 be the largest superset31 of E such that 
Ω(Ψ1,E1) = Ω(Ψ1,E). Let E2 be the largest superset of E such that 
Ω(Ψ2,E2) = Ω(Ψ2,E). If E2 ⊆ E1, then we say that Ψ1 is (at least weakly) 
more informationally parsimonious than Ψ2. 

Returning to our earlier example with the infinite grid, let E be the evidence described 
by Figure 1. Then Ω(Ψ#,E) is the set of single-period histories satisfying the 
constraints described by Figure 2, and Ω(Ψ$,E) is the corresponding set for Figure 3. 
Meanwhile, if E# is the evidence described by Figure 4, then we have 
Ω(Ψ#,E#) = Ω(Ψ#,E). Likewise, if E$ is the evidence described by Figure 5, then we 
have Ω(Ψ$,E$) = Ω(Ψ$,E). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
31 Recall that larger subsets of H  encode less information. In particular, if E1 is a superset of E, then E1 
encodes less information than E. 
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In this example, neither Ω(Ψ#,E) nor Ω(Ψ$,E) includes the other, so neither monoid 
is more inferentially modest than the other, according to our definition. Likewise, 
neither E# nor E$ includes the other, so neither monoid is more informationally 
parsimonious. So our formal definitions up to this point are not sensitive enough to 
capture the plausible intuition that Ψ$ is both more inferentially modest and more 
informationally parsimonious than Ψ#.  

One possible way of capturing this intuition – though this is not central to this paper – 
is to use concepts from information theory, such as entropy. To do this, we must 
introduce a prior probability distribution Pr0 on the set H of all possible histories. In 
the example with the infinite grid, this could be the uniform Bernoulli distribution, 
which treats all the cells in the grid as independent, identically distributed random 
variables, where zero and one each appear with probability ½. Given two different 
symmetry monoids Ψ1 and Ψ2 that are compatible with the same body of evidence E, 
we can use Pr0 to compare them as follows: 

Inferential modesty (relative to Pr0): If Pr0[Ω(Ψ2,E)] ≤ Pr0[Ω(Ψ1,E)], 
then we say that Ψ1 is (at least weakly) more inferentially modest than Ψ2, 
relative to Pr0. 

Informational Parsimony (relative to Pr0): Let E1 be the largest 
superset of E such that Ω(Ψ1,E1) = Ω(Ψ1,E). Let E2 be the largest superset 
of E such that Ω(Ψ2,E2) = Ω(Ψ2,E). If Pr0[E2] ≤ Pr0[E1], then we say that 
Ψ1  is (at least weakly) more informationally parsimonious than Ψ2, 
relative to Pr0.  

Do these criteria enable us to prefer Ψ$ to Ψ#, as intuition suggests? Let us begin 
with the second criterion. Comparing Figures 4 and 5, we see that Pr0[E#] = 2–5, 
whereas Pr0[E$] = 2–3, and so Ψ$ is indeed more informationally parsimonious than 
Ψ#, relative to the uniform Bernoulli distribution. The first criterion, by contrast, does 
not help. Comparing Figures 2 and 3, we see that Pr0[Ω(Ψ#,E)] and Pr0[Ω(Ψ$,E)] are 
each zero, because they constrain an infinite number of cells. So, they do not differ in 
inferential modesty relative to Pr0. They do differ in more sensitive measures of 
inferential modesty, computed using more advanced notions from information theory, 
such as “entropy density”. But the details are beyond the scope of this paper. 

Note that, if Ψ1 is more inferentially modest than Ψ2 in the original sense, which did 
not refer to any prior probability, then Ψ1 is more inferentially modest than Ψ2 in the 
information-theoretic sense, relative to any prior Pr0. This is because if 
Ω(Ψ2,E) ⊆ Ω(Ψ1,E), then Pr0[Ω(Ψ2,E)] ≤ Pr0[Ω(Ψ1,E)]. Likewise, if Ψ1 is more 
informationally parsimonious than Ψ2 in the original sense, then Ψ1 is more 
informationally parsimonious than Ψ2 in the new sense, relative to any prior Pr0. The 
reason is that if E2  ⊆ E1, then Pr0[E2] ≤ Pr0[E1].  

2.10 The role of time 

What is the significance of the linear order of the set T of times? Why is time ordered 
in one way, and not in another? Do the laws of a given system “care” about the 
ordering of time? To put it another way: what does it mean to say that today comes 
between yesterday and tomorrow? Intuitively, it means this: the events that happened 
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yesterday cannot “directly influence” the events that will happen tomorrow; their 
influence must be “mediated” by the events that happen today. We now make this 
claim precise using a standard notion from probability theory: the Markov property.32  

To explain this property, we first introduce the notion of conditional independence. 
Let {PrE}E⊆Ω be a conditional probability structure, and let D and E be two events 
(i.e., subsets of Ω). We say that D and E are independent if PrD(E) = PrΩ(E) and 
PrE(D) = PrΩ(D).33 Informally, if we interpret probabilities as encoding “information”, 
this means that learning whether or not D has occurred provides no information about 
whether or not E will occur, and vice versa.  

To illustrate, recall the simple coin-tossing system from Section 2.7. Let E and D be 
the events “the outcome at time 1 is Heads” and “the outcome at time 2 is Tails”. 
Then PrΩ(E) = ½ and PrΩ(D) = ½, assuming for simplicity that p = 0.5. Here, the 
outcome at time 1 has no effect on the outcome at time 2. So, even if we tossed Heads 
at time 1, this would not change the probability of obtaining Tails at time 2, and so 
PrE(D) = ½. Likewise, the outcome at time 2 tells us nothing about what happened at 
time 1. If we had not observed the outcome at time 1 but obtained the outcome Tails 
at time 2, we would still assign probability ½ to Heads at time 1. So, PrD(E) = ½. 
Thus, the events E and D are independent. 

Now let C, D, and E be three events. We say that C and E are conditionally 
independent, given D, if PrC∩D(E) = PrD(E) and PrE∩D(C) = PrD(C). Again, if we 
interpret probabilities as encoding “information”, this means the following. Suppose 
you already know that D has occurred. Then learning whether or not C has occurred 
provides no further information about whether or not E will occur, and vice versa.  

To illustrate, return again to the coin-tossing example (where T = {1,2,3,....}) with 
p = 0.5, but suppose that we use the tosses of the fair coin to determine the position of 
a token on an infinite line. We move the token after each coin toss: if we toss Heads, 
we move the token one space to the right, and if we toss Tails, we move it one space 
to the left. Let us represent the position of the token by an integer (either positive or 
negative); in other words, X = {...,–3,–2,–1,0,1,2,3,...}. Let xt denote the position of 
the token at time t. Then the rule becomes the following: “if you toss Heads at time t, 
then xt+1 = xt + 1. If you toss Tails at time t, then xt+1 = xt –1”. For simplicity, suppose 
the coin always starts at position 0 (i.e., x1 = 0).34  

If D is an event describing the position of the token at time t, and E is an event 
describing its position at time t+1, then these two events are not independent. For 
example, suppose E is the event, “x6 = 3”. Then a simple calculation shows that 
PrΩ(E) = 5/32. However, suppose D is the event “x5 = 2”. Then PrD(E) = ½ (because 
the token now has a 50% probability of moving from position 2 to position 3 in one 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
32 The importance of Markov properties in understanding causality has been emphasized by Pearl 
(2000) and Spirtes, Glymour, and Scheines (2000). 
33 If PrΩ(D)>0, the first equation is equivalent to PrΩ(E ∩ D) = PrΩ(D) PrΩ(E). If PrΩ(E)>0, the 
second equation is equivalent to PrΩ(E ∩ D) = PrΩ(D) PrΩ(E). Thus, if PrΩ(D) > 0 and PrΩ(E) > 0, the 
two equations are equivalent. But if PrΩ(D) = 0 or PrΩ(E) = 0, the equations must be stated separately. 
34 Technically, the system just described is a simple random walk. 
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time step). Thus, E and D are not independent. The location of the token at time 5 
tells us a great deal about its probable location at time 6. 

However, once we know the position at time 5, learning the position at time 4 tells us 
nothing further about the position at time 6. Continuing the previous example, let C 
be the event “x4 = 1”. Then straightforward calculations show that 
PrC∩D(E) = ½ = PrD(E) and PrE∩D(C) = ½ = PrD(C). In other words, if we already 
knew that the token’s position was 2 at time 5 (so that it had a 50% probability of 
moving to position 3 at time 6), then learning its position at time 4 tells us nothing 
further about where it might be at time 6. Likewise, if we already knew that the 
token’s position was 2 at time 5 (so that it has a 50% probability of having been at 
position 1 at time 4), then learning its position at time 6 tells us nothing further about 
where it might have been at time 4.  

In this example, the conditional independence of the events C and E, given D, is due 
to the fact that D concerns the state of the system at a point in time between the times 
described by C and E and that D provides us with complete information about the 
state of the system at this intermediate time. If D provided only partial information 
about that state, we would not get the same result. For example, suppose D' is the 
event, “x5 = 0, 2, or 4”, which does not fully specify the state at time 5. Then it can be 
shown that PrC∩D' (E) > PrD' (E). Here, learning additional information about the state 
at time 4 can still tell us something about where the coin is likely to be at time 6. 

Now let us generalize this example. Let T be any linearly ordered set, let X be any set 
of states, and consider a temporally evolving system given by a collection Ω of 
possible histories (i.e., functions from T into X) and a conditional probability structure 
{PrE}E⊆Ω. For any time t in T, and any state x in X, let Ex

t denote the event, “the state 
of the system at time t is x”. More generally, for any subset Y of X, let EY

t denote the 
event, “the state of the system at time t is an element of Y”. We say that the system 
satisfies the Markov property if, for any times r < s < t in T, any subsets Y and Z of X, 
and any state x in X, the events EY

r and EZ
t are conditionally independent, given the 

event Ex
s. In other words, if you have complete information about the state of the 

system at some time s (you know that the state is x), then learning something about its 
state at some earlier time (e.g., that it was an element of Y at time r) tells you nothing 
further about its probable state at some later time (e.g., about how probable it is that it 
will fall into the set Z at time t). Roughly speaking, this means that the state of the 
system at time r cannot “directly influence” the state of the system at time t. It can 
only influence that state “indirectly”, via influencing the state at the intermediate time 
s. Any system with this property is called Markovian. 

Note that the Markov property does not say that the future evolution of the system is 
unconditionally independent of its past. It just says that the dependency of the future 
upon the past is mediated through the present. This property is fundamental to the 
way we normally think about time. To see this, imagine a universe where the Markov 
property was not true. Then there would exist some times r < s < t in T, some subsets 
Y and Z of X, and some state x in X, such that the conditional probability 
Pr(EZ

t | EY
r∩Ex

s) is not the same as Pr(EZ
t | Ex

s).35 In other words, even with a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
35 Here, to avoid cumbersome subscripts, we are using the notation Pr(A | B) to denote the conditional 
probability PrB(A). 
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complete specification of the present state x, the probability of some future event Z 
would depend on whether or not some past event Y had occurred. This would suggest 
that the state specification x does not, in fact, contain all the information about the 
present state of the system; somehow, information about the past history is bypassing 
the present and “leaking” directly into the future. This, in turn, suggests that this so-
called “past” is not really in the past at all; our model of the time structure of the 
system is incorrect. 

We take the Markov property to be a necessary condition for the “correct” ordering of 
time. To be “well-behaved”, a temporally evolving system must be Markovian. What 
the present must do at any point in time in order to count as the present is “separate” 
the past from the future. If this property is violated, the set T does not properly play 
the role of time.  

Two points are worth noting. First, some systems may admit multiple time orderings 
with respect to which they are Markovian. An extreme limiting case is given by our 
original coin-tossing system without the moving token, which is Markovian with 
respect to every ordering of T. Here, the precise order of time is irrelevant. By 
contrast, in the modified coin-tossing system with the token, the order of time matters, 
as we have seen. In fact, the temporal order with respect to which the system satisfies 
the Markov property is essentially unique; it is unique up to time reversals. This 
brings us to our second point. Although the Markov property says something about 
the linear “topology” of time, it tells us nothing about the direction of time. As 
illustrated by the modified coin-tossing system, the Markov property is completely 
invariant under time reversals. In other words, the Markov property only says that the 
present separates the past from the future. But it does not tell us on which side of the 
present lies the past, and on which side lies the future.  

What, then, can we say about the directionality of time? Using the concepts 
introduced earlier, we can say that a condition for time to have a direction in a system 
is that time reversals are not symmetries of the system. Since time reversals are 
symmetries of classical mechanical systems (in the sense explained in footnote 17), it 
follows that, in those systems, there is no real direction of time: temporal orders are 
unique at most up to time reversal. By contrast, in thermodynamic systems, time 
reversals are not symmetries, and hence these systems meet the condition for time to 
have a direction. To the extent that the world, as seen from our perspective, is best 
understood as a system in which time reversals are not symmetries, there is then a 
coherent basis for the directionality of time (for further discussion, see Roberts 2013).  

3. Spatially extended systems 

3.1 Basic definitions 

We now turn to a more richly described class of systems whose state evolves over 
time. As before, we represent time by a linearly ordered set T. We now also 
incorporate an explicit notion of space, represented by a set S of spatial locations. Let 
S × T be the set of all ordered pairs of the form (s, t), where s is an element of S, and t 
is an element of T. We refer to S × T as space-time. Again, let X denote a set of 
possible states, called the state space. Unlike in our earlier model, the elements of X 
are no longer “global” states, in which the system can be at specific points in time, but 
“local” states, in which the system can be at specific points in space and time. Again, 
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we treat the elements of X as primitives of our model. Histories are now functions 
from space-time (rather than merely time) into the state space. Formally, a spatially 
extended history is a function h from S × T into X. For each point (s, t) in S × T, h(s, t) 
is the state of the system in spatial location s at time t. 

In analogy to our earlier model, we write Ω to denote the set of all spatially extended 
histories deemed possible, which, as before, play the role of possible worlds. Again, 
this is a subset – often a proper one – of the set H of all logically possible such 
histories (here, all functions from S × T into X). So, membership in Ω is best 
interpreted as nomological possibility. Subsets of Ω are called events. 

Finally, we define a conditional probability structure on Ω. As before, this is a family 
of conditional probability functions {PrE}E⊆Ω, one PrE for each event E in Ω, 
satisfying standard consistency conditions. Recall that PrE assigns to any event in Ω 
the conditional probability of that event, given E. A spatially extended system is the 
pair consisting of the set Ω of possible spatially extended histories and the conditional 
probability structure {PrE}E⊆Ω.  

For example, in a classical mechanical system, T is the set R of real numbers, S is the 
three-dimensional Euclidean space (formally, S = R3), and each state h(s,t) in X is 
given by the set of particles present at spatial location s at time t, along with 
their physically relevant properties (e.g., masses and momenta) and the values of any 
force fields (e.g., gravity) acting on these particles.36 In a classical electrodynamical 
system, the state h(s, t) must also specify the particles’ charges, along with the electric 
and magnetic field vectors at (s, t). In that sense, electrodynamics relies on a richer 
ontology than classical mechanics.   

In a quantum-mechanical system, it might be tempting to suppose that S = R3, and to 
suppose that h(s, t) is given by the values of the wave functions of each of the 
particles in the system at space-time location (s, t). But this is not correct, because the 
wave functions of interacting particles in a quantum system cannot generally be 
defined independently of each other. Instead, we must define a joint wave function for 
the entire multi-particle system. So, in a quantum-mechanical system with n particles, 
we would define space to be S = (R3)n, with three coordinates representing the spatial 
“position” of each of the n particles in an underlying ordinary Euclidean space;37 and 
we would define the set X of possible states of the system to be the set of complex 
numbers, capturing amplitudes, whose squared absolute values behave formally like 
probabilities. Thus a spatially extended history h is a function from (R3)n × T into the 
set of complex numbers, representing the joint wave function of the whole ensemble 
of particles. 

For instance, if there are two particles, labeled 1 and 2, then h(x1, y1, z1, x2, y2, z2, t) 
represents the joint state at time t of particles 1 and 2 at positions x1, y1, z1 and x2, y2, 
z2 in the underlying three-dimensional Euclidean space. This joint state of the two 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
36 We are not saying that this is the most parsimonious or computationally convenient way to represent 
a classical mechanical system. It is only one way of representing such a system in our framework. 
37 Strictly speaking, particles in quantum systems do not have “positions”, so we are using this term 
rather loosely. Also, there is a dual representation of the wave function (obtained via Fourier 
transform), where the coordinates in (R3)n represent the “momenta” (again, loosely) of the n particles. 
These two representations are equally valid. 
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particles is a complex number whose squared absolute value can be interpreted, under 
some assumptions, as the probability of particles 1 and 2 being observable at positions 
x1, y1, z1 and x2, y2, z2, respectively, at time t. 

3.2 Determinism and indeterminism 

As with our original, simple class of temporally evolving systems, we can define 
different notions of determinism and indeterminism for spatially extended systems. 
For any subset L of locations in S × T, we write hL to denote the restriction of the 
function h to the points in L. We can then ask for which proper subsets L of S × T, if 
any, it is true that hL has a unique extension to all of S × T in Ω. Again, an extension 
of hL is a history h' such that h'L = hL. When hL is uniquely extendible to all of S × T, 
we say that the history h is L-deterministic. 

For example, the histories of classical mechanical systems are L-deterministic for any 
subset L of S × T that has the form S × T', where T' is any non-empty subset of T. 
Information about the system for even a single “time slice” of space-time, i.e., a set of 
the form S × {t} for some t in T, is sufficient to determine the full spatially extended 
history. In contrast, the histories of quantum-mechanical systems (assuming the 
possibility of wave-function collapses) are not generally L-deterministic for time 
slices or collections of time slices. 

The present definitions allow us to explore some interesting possibilities not captured 
by standard definitions that focus exclusively on past-to-future determination. For 
example, some systems might encode their entire spatially extended history in each 
individual space-time location. Histories would then be L-deterministic for every 
singleton set L={(s,t)}, where (s,t) is in S × T. Here, we would have an extreme form 
of local-to-global determinism. Alternatively, some systems might encode their entire 
spatially extended history in some collection of “spatial slices of time”, i.e., some 
subset L of S × T which has the form S' × T, where S' is a non-empty subset of S, 
possibly singleton. This would be a kind of spatial, rather than temporal, 
determinism.38 Other systems might never be L-deterministic for any proper subset L 
of S × T.  

There may also be some intermediate forms of determination, for instance when a 
history restricted to some set L of locations is uniquely extendible to a history 
restricted to some superset L* of L, which is still smaller than S × T in its entirety.39 
We might imagine, for instance, systems that are deterministic strictly “across space” 
but not “across time”. In such a system, a history restricted to some set L of the form 
S' × {t}, where S' is a non-empty subset of S and t a point in time, might determine the 
entire “time slice” of that history across L* = S × {t}, but not the rest of the history. 
Some crystals and other chemical or physical systems involving highly regular spatial 
structures might have this feature. Similarly, for suitable specifications of L and L*, 
we can represent the phenomenon that, in systems in which “information” travels with 
finite speed, events at particular space-time locations determine events within their 
“light cones”, but not outside them.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 This sort of determinism occurs in expansive cellular automata, a class of spatially extended systems 
discussed in the theory of dynamical systems. See Pivato (2009). 
39 For example, this phenomenon arises frequently in the solution of boundary value problems in 
mathematical physics. See Pivato (2010). 
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3.3 Nomological possibility and necessity 

In analogy to the case of temporally evolving systems, we can define two modal 
operators for each set L of space-time locations, namely nomological possibility and 
necessity relative to L. For each set L ⊆ S × T, call one history, h', accessible from 
another, h, relative to L, if the restrictions of h and h' to L coincide, i.e., h'L = hL. We 
then write h'RLh. For any event E ⊆ Ω, we define  

!L E = {h ∈ Ω : for some h' ∈ Ω with h'RLh, we have h' ∈ E}, 

"L E = {h ∈ Ω : for all h' ∈ Ω with h'RLh, we have h' ∈ E}. 

Here, !L E and "L E are, respectively, the sets of all histories in which E is 
nomologically possible and nomologically necessary once the system’s history within 
space-time region L is given. Important special cases are (i) L = S × T', where S is all 
of space and T' is the set of all points in time up to some time t, (ii) L = S' × T, where 
T is all of time and S' is some spatial region, and (iii) L = ∅ for possibility and 
necessity in the “atemporal” sense. Since the present definitions are completely 
analogous to their counterparts in Section 2.3 for temporally evolving systems, we 
will not say more about them here. 

3.4 Constraints and correlations 

We now turn again to the question of how to distinguish between those constraints 
and correlations that are “brute facts”, and those that are genuine “laws” of a system. 
As in the original case of temporally evolving systems, our analysis is based on the 
notion of symmetry, only now with the additional ingredient that these symmetries can 
involve space as well as time. 

In analogy to our earlier definition, we define a constraint to be a property, C, that a 
spatially extended history may or may not have. As before, any constraint C can be 
associated with some subset [C] of the set H of all logically possible histories, 
where [C] is called the extension of C. A spatially extended history satisfies C if it 
belongs to [C]. The spatially extended system as a whole satisfies C if all histories in 
Ω satisfy C.  

Likewise, as before, any probabilistic property, P, is associated with its extension, 
which is a subset, denoted [P], of the set Π of all logically possible conditional 
probability structures on Ω. A conditional probability structure {PrE}E⊆Ω satisfies P if 
it belongs to [P]. 

3.5 Symmetries 

The notion of a state symmetry for spatially extended systems is virtually identical to 
the one defined in Section 2.5 for temporally evolving systems, so we do not discuss 
it further.40 Instead, we turn directly to symmetries acting on space-time.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
40 Technically, given any function φ from X into itself, and any spatially extended history h in Ω, we 
can define a transformed history φ(h)=h', where, for all (s,t) in S × T, h'(s,t) = φ[h(s,t)]. As before, φ is a 
state symmetry if (i) φ(h) is in Ω, for all h in Ω, and (ii) for any events E' and D' in Ω, if E and D are 
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Let ψ be a function from S × T into itself (i.e., a transformation of space-time). Again, 
ψ induces a function from the set H of logically possible histories into itself. For any 
spatially extended history h, we define the transformed history  

ψ(h) = h', where, for all (s,t) in S × T, h'(s,t) = h[ψ(s,t)]. 

As before, given any set E of histories in H, the inverse image of E under ψ, written 
ψ–1(E), is the set of all histories h in H such that ψ(h) lies in E. The function ψ is a 
symmetry if 

• ψ(h) is in Ω, for all h in Ω; and 
• for any events E and D in Ω, if E' and D' are the inverse images of E and D 

under ψ, then PrE'[D'] = PrE[D].41 

For example, if T is the set of real numbers (i.e., T = R), and S is the three-
dimensional Euclidean space (i.e., S = R3), we can consider a spatially extended 
system in classical mechanics. The following transformations of S × T are space-time 
symmetries of such a system, each defined for all (s,t) in S × T:  

• Time translation: ψ(s,t) = (s, t+r), where r is a fixed real number; 
• Spatial translation: ψ(s,t) = (s+v, t), where v is a fixed three-dimensional 

vector (an element of R3); and 
• Space-time rescaling: ψ(s,t) = (r s, r t), where r > 0 is a fixed real number.  

More general symmetries of spatially extended systems include composite functions 
resulting from the combination of a transformation φ of the state space (X) with a 
transformation ψ of space-time (S × T).42 Examples in classical mechanical systems 
are spatial rotations, spatial reflections, spatial rescalings, and Galilean 
transformations.43 Crucially, it is possible that neither the transformation φ of the state 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
the inverse images of E' and D' under φ, then PrE[D] = PrE'[D']. For example, consider an n-particle 
quantum system, where S = (R3)n, X is the set of complex numbers, and a spatially extended history h is 
a wave function. Let φ be a phase rotation map on the complex plane; formally, there is some angle θ 
such that, for all x in X, φ(x) = eiθx. Then φ is a state symmetry of the quantum system. 
41 As before, for any subsets D, E of H, we define PrE(D) = PrE∩Ω(D∩Ω). 
42 An additional property we might require of a space-time transformation ψ is time preservation: ψ is 
time-preserving if, for any points (s1,t1) and (s2,t2) in S × T, with ψ(s1,t1) = (s'1,t'1) and ψ(s2,t2) = (s'2,t'2), 
if t1 ≤ t2, then t'1 ≤ t'2. In particular, this implies that if t1 = t2, then t'1 = t'2. A time-preserving 
transformation acts on S×T such that the set of all space-time points “at time t1” gets moved en bloc to 
the set of all space-time points “at time t'1”. All of the transformations described above are time-
preserving, but technically, we do not need to include it in our formal definition. 
43 These are defined as follows. Spatial rotation: Fix a line L in S and an angle θ. For any point s in S, 
let s' be the point obtained by rotating s by an angle of θ around L. For all (s,t) in S × T, define ψ(s,t) = 
(s', t). Let L' be the line parallel to L, but passing through the origin. For all x in X, define φ(x) by 
rotating all the momentum vectors in x by the angle θ around L'. Spatial reflection: Fix a plane P in S. 
For any point s in S, let s' be the point obtained by reflecting s across P. For all (s,t) in S × T, define 
ψ(s,t) = (s', t). Let P' be the plane parallel to P, but passing through the origin. For all x in X, define 
φ(x) by reflecting all the momentum vectors in x across P'. Spatial rescaling: Fix some real number 
r > 0, and define ψ(s,t) = (rs, t) for all (s,t) in S × T. Meanwhile, let φ be a transformation of X that 
multiplies the momentum vector of every particle by r, and also multiplies all force field vectors by r. 
Galilean transformation: For all (s,t) in S × T, define ψ(s,t) = (s + t v, t), where v is a fixed three-
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space nor the transformation ψ of space-time alone is a symmetry, and yet, when 
combined, the two transformations form a symmetry.44  

Of course, any combination of symmetries is also a symmetry. An example is a 
spatiotemporal translation, which is a combination of a time translation and a spatial 
translation. In a classical electrodynamical system, only the spatiotemporal 
translations are space-time symmetries. Galilean transformations are not space-time 
symmetries of classical electrodynamics; indeed, this was the original impetus for the 
development of special relativity theory. 

3.6 Laws 

Let C be a constraint on a spatially extended system, with extension [C], and let γ be a 
symmetry of the system. Recall that C is invariant under γ if the set [C] is equal to its 
inverse image under γ. Let Γ be the set of all symmetries of the spatially extended 
system. As in Section 2.6, a constraint C that is satisfied by the system is a law if it is 
invariant under all symmetries in Γ. Likewise, a probabilistic property P that is 
satisfied by the conditional probability structure {PrE}E⊆Ω is a probabilistic law if it is 
invariant under all symmetries in Γ. 

For example, let S = R3 and T = R, and suppose that Γ contains all the spatiotemporal 
translations defined in the previous section. Suppose the system satisfies the 
constraint C which says: “if the state of the system at space-time position (3,7,2,14) is 
x, then at position (4,8,1,17) it is y”. If ψ is a spatial translation by the vector (1,2,3), 
then the inverse image of [C] under ψ corresponds to the constraint C' which says: “if 
the state of the system at (4,9,5,14) is x, then at position (5,10,4,17) it is y”. Clearly, 
[C'] is not the same as [C]. Thus, C is not invariant under ψ, and so C is not a law of 
the system; it is simply a constraint the system happens to satisfy. 

However, suppose C is the constraint: “for any location (s1, s2, s3) in S and any time t 
in T, if the state of the system at space-time position (s1, s2, s3, t) is x, then at position 
(s1+1, s2+1, s3–1, t+3) it is y”. It is easy to see that [C] is invariant under all 
spatiotemporal translations. Suppose that Γ consists only of the spatiotemporal 
translations. Then C is invariant under all elements of Γ, and so C is a law of the 
system. 

An illustration is Gauss’s Law in an electrodynamical system. This states, roughly, 
that the net “flux” of the electric field passing through the walls of any closed 
compartment is proportional to the net charge contained inside that compartment. 
This constraint is invariant under both spatiotemporal translations and rotations, 
because both the net flux and the net charge are unchanged by these sorts of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
dimensional vector (an element of R3). Meanwhile, for all x in X, define φ(x) by adding the vector v to 
all momentum vectors in x. 
44 In all three examples just given, neither ψ nor φ is itself a symmetry of classical mechanics. But 
when combined, they do form a symmetry. For another example, in the setting of classical 
electrodynamics, let ψ be a spatial reflection acting on S × T, and let φ be a transformation of X which 
applies the corresponding reflection to all momentum vectors and field vectors, and which furthermore 
negates the magnetic field vector. Neither one of these transformations alone is a symmetry of classical 
electrodynamics, but when combined together, they do form a symmetry. 



 32 

transformations. Indeed, Gauss’s Law is preserved by every symmetry of an 
electrodynamical system; that is why it is a law. 

3.7 From local observations to global laws 

Extending the ideas from Section 2.7, we now discuss how space-time symmetries 
allow us to infer general laws from specific observations. For example, let S = R3 and 
T = R, and let Y and Z be two subsets of the state space X. Suppose we have made the 
observation O: “whenever the state is in the set Y at space-time position (3,7,2,14), 
there is a 50% probability that it will be in the set Z at position (4,8,1,17)”. If we can 
assume that all the spatiotemporal translations defined in Section 3.5 are symmetries 
of the system, we are able to deduce the following general law: “for any location 
(s1, s2, s3) in S and any time t in T, if the state of the system is in the set Y at space-
time position (s1, s2, s3, t), then there is a 50% probability that it will be in the set Z at 
position (s1+1, s2+1, s3 –1, t+3)”.  

Again, however, we may not be able to make many observations of possible histories 
at space-time position (3,7,2,14), perhaps because we cannot “re-run” history many 
times, so that we may not really be able to observe O. The solution to this problem, as 
before, lies in the property of ergodicity.  

Recall that, for some collection Ψ of symmetries, an event E (a subset of Ω) is 
Ψ-invariant if the ψ-inverse image of E is E itself, for all ψ in Ψ. For illustrative 
purposes, let Ψ be the collection of all spatiotemporal translations, as defined in 
Section 3.5, and suppose all of them are symmetries of the system.45 The system is 
spatiotemporally ergodic if, for any Ψ-invariant event E, we have either PrΩ(E) = 0 or 
PrΩ(E) = 1, where PrΩ(E) is the unconditional probability of E. 

Since Ψ consists of spatiotemporal translations, Ψ-invariant events are events one 
cannot escape from either by travelling through space, or by travelling forwards or 
backwards through time. Returning to our example, let ψ be a spatiotemporal 
translation in Ψ such that, for all (s1, s2, s3) in S (=R3) and t in T (=R), we have 
ψ(s1, s2, s3, t) = (s1+5, s2–7, s3+10, t+3). If we interpret the spatially extended history 
h as describing a possible world “from the perspective of position (0,0,0,0)”, then the 
transformed history ψ(h) describes the same world “from the perspective of position 
(5,–7,10,3)”. Here a Ψ-invariant event E has the property that whenever a history h is 
in E, then so is ψ(h). Roughly speaking, this means that, if the world described by h 
appears to be in the set E “from the perspective of position (0,0,0,0)”, then it will also 
appear to be in E “from the perspective of position (5,–7,10,3)”, and so on. Ergodicity 
requires such events to occur either almost always (with probability 1) or almost 
never (with probability 0). 

In a spatiotemporally ergodic system, it is possible to estimate the probability of any 
event “empirically”, by simply counting the spatiotemporal frequency with which that 
event occurs.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
45 Again, the statements in this section hold for any collection of symmetries that forms an amenable 
group.  
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Spatiotemporal Ergodic Theorem: Suppose the system is 
spatiotemporally ergodic. Let E be any event and let h be any spatially 
extended history. For all r > 0, let Ψr be the set of all spatiotemporal 
translations by any vector (v1, v2, v3, v4) with integer coordinates, all of 
which are between 1 and r. Let Nr be the number of translations ψ in Ψr 
such that ψ(h) is in E. Then, with probability 1, the ratio Nr / r4 will 
converge to PrΩ(E) as r increases towards infinity.46 

Intuitively, Nr is the number of times the event E has “occurred” in the spatially 
extended history h from time 1 to time r and inside a three-dimensional box with side-
length r. The ratio Nr / r4 is therefore the frequency of occurrence of event E, up to 
time r inside this box, in the spatially extended history h. This frequency might be 
measured, for example, by performing a sequence of experiments or observations 
inside this box. The Spatiotemporal Ergodic Theorem says that, almost certainly (i.e., 
with probability 1), the empirical frequency will converge to the true probability of E 
as the number of observations becomes large.47 As explained in Section 2.7, we can 
use this procedure to estimate conditional probabilities and in this way learn the 
properties of the conditional probability structure {PrE}E⊆Ω. Once again, the Ergodic 
Theorem justifies generalizations from local observations to global laws. 

3.8 The role of space 

What is the significance of “space” in a spatially extended system? As we will now 
see, its significance lies in the fact that the structure of space affects the way the 
system evolves over time. To make this precise, we first introduce a formal 
representation of the topology of space and then discuss the role that it plays in the 
system’s dynamics. 

The topology of space can be represented by a binary relation → between subsets of 
S. Heuristically, if R and R' are two subsets of S, say two “regions” of space, then 
R→R' means that information from R can flow “directly” into R', without needing to 
pass through some intervening points “between” R and R'. Later, we explain exactly 
what we mean by “information flow”, but for the purposes of our initial heuristic 
discussion, we leave it unexamined. We refer to → as the adjacency structure of 
space.  

Adjacency structures arise naturally in many systems. For example, suppose S is 
ordinary three-dimensional Euclidean space, and suppose information can flow only 
“continuously” through this space. This would be the case, for instance, in a system 
consisting of particles travelling along continuous trajectories and interacting via 
continuous force fields, such as those found in classical mechanics, or in a system 
described by partial differential equations, such as those found in quantum mechanics, 
classical electrodynamics, or hydrodynamics. In such systems, for any subsets R and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
46 Once again, we have stated this result somewhat informally. For a more formal statement, see 
Krengel (1985, Chapter 6). 
47 It is not necessary to average over a sequence of “boxes”; the same argument works for any sequence 
of sets which increase in size and thickness in an appropriate sense, technically any Følner sequence.   
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R' of S, we have R→R' if there exists a point s in R such that, for any radius r > 0, the 
ball of radius r centred at s intersects R'.48 

For another example, suppose S is the three-dimensional integer lattice: the set of all 
ordered triples s = (s1, s2, s3), where s1, s2, and s3 are integers. Say that two points s 
and s' in S are neighbours if they differ in only one coordinate and that difference is 1. 
Thus (3,7,5) and (3,6,5) are neighbours. Suppose information can flow only directly 
between neighbours in the lattice. Then, for any subsets R and R' of S, we have R→R' 
if some point in R is a neighbour of some point in R'.49 Discrete spatial geometries of 
this kind can be found in a class of systems called cellular automata.50   

For a final example, consider a directed graph; this is a mathematical structure 
consisting of a set of “vertices”, along with a set of “arrows” which link together pairs 
of vertices. Directed graphs can be used to model electric circuits, communication 
networks (e.g., the internet), economic and transportation networks, and biological 
systems (e.g., neural networks, gene regulatory networks, and epidemiological 
networks). Suppose S is the set of vertices in this graph. Then, for any subsets R and 
R' in S, we have R→R' if there is an arrow from some vertex in R to some vertex in R'.   

If the sets R and R' overlap (i.e., if R ∩ R' ≠ ∅), then clearly we have both R→R' and 
R'→R. However, the examples above show that we can have R→R' even if R and R' 
do not overlap, as long as the two sets “touch” each other in some sense. 
Heuristically, R→R' means that it is not possible to interpose any “barrier” between R 
and R'; there is no “gap” between them.  

What role does the adjacency structure play in our model? Why does space have one 
adjacency structure rather than another? Just as we argued earlier in the case of time, 
we will now argue that a “correct” adjacency structure on space is one that satisfies a 
Markov property with respect to the conditional probability structure {PrE}E⊆Ω. This 
Markov property is defined by considering conditional probabilities based on “partial 
information” about a spatially extended history.  

We therefore need a precise way to talk about such “partial information”. Let R be a 
subset of S, and let R × T be the set of all ordered pairs (s,t), where s is an element of 
R, and t is an element of T. So, R × T is the set of all time-slices restricted to the 
spatial region R. For any history h in Ω, recall that hR×T denotes the restriction of h to 
the set R × T. Heuristically, this restriction records only the part of the history h which 
“happens inside R”. Let us then define the event [hR×T] to be the set of all extensions 
of hR×T to full histories in Ω, i.e., the set of all histories h' in Ω!such that hR×T = h'R×T. 
These are precisely the histories that are accessible from h relative to the space-time 
region R × T. The Markov property for adjacency structures will be based on 
conditional independence with respect to such events, in the following way. 

For any event E (i.e., a subset of Ω), we say that E happens inside R if, for all 
histories h and h' such that hR×T = h'R×T, the history h is an element of E if and only if 
h' is an element of E. In other words, the question of whether or not a particular 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
48 Generally, an adjacency structure can be defined in a similar way on any metric or topological space. 
49 Generally, an adjacency structure can be defined in a similar way on any Cayley graph of any group. 
50 See Ilachinski (2001) and Moore and Mertens (2011). 
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history is an element of E is completely determined by the restriction of that history to 
spatial “region” R.  

A tripartition of S is a triple (R, R', R''), where R, R', and R'' are three disjoint subsets 
of S which together cover S (i.e., R ∪ R' ∪ R'' = S), such that it is not the case that 
R→R'' or R''→R. Heuristically, this means that the set R' “separates” R from R''. For 
example, suppose S is three-dimensional Euclidean space, with the adjacency 
structure introduced above. Let R be the set of all points whose distance to the origin 
is less than 1: the unit ball. Let R' be the set of all points whose distance to the origin 
is between 1 and 2, so R' is a sort of thick spherical “shell” around R. Finally, let R'' 
be the set of all points whose distance to the origin is greater than 2. Then (R, R', R'') 
is a tripartition of S.  

We say that the adjacency structure → satisfies the Markov property with respect to 
the conditional probability structure {PrE}E⊆Ω if, for any tripartition (R, R', R'') and 
any history h in Ω, any event which happens inside R is conditionally independent 
from any event which happens inside R'', given everything that happens in R' (i.e., 
given [hR'×T]).  

Heuristically, this means that there is no way for information to propagate from R into 
R'', or vice versa, without first passing through R'. For example, suppose S is three-
dimensional Euclidean space, and (R, R', R'') is the “concentric sphere” tripartition 
described above. In this case, the spherical shell R' acts as a barrier that isolates the 
ball-shaped compartment R from any influences coming from the “outer region” R''. 
If we have complete information about the history inside R' (i.e., we know [hR' × T]), 
then we have complete control over the boundary conditions for any experiment we 
conduct inside R, and thus we do not need to control or even know what happens in 
the outer region R''. 

As this example shows, scientists implicitly assume that space satisfies the Markov 
property every time they construct a laboratory apparatus that “isolates” some 
experiment from the surrounding environment. Indeed, people also implicitly assume 
the Markov property every time they close the doors and windows of their houses to 
keep out the cold. Thus, the Markov property is fundamental to the way we ordinarily 
think of space. It underpins the adjacency structure of space in the same way it 
underpins the order structure of time.  

Just as with time, however, the Markov property does not completely determine the 
structure of space. First, there may be more than one adjacency structure on S which 
satisfies the Markov property with respect to {PrE}E⊆Ω, just as there may be more 
than one Markovian order on T. Second, the adjacency structure alone leaves many 
important geometric properties of S unspecified. For example, in many contexts, we 
would like to define a metric on S, which determines a notion of “distance” between 
points. This is obviously crucial in classical mechanics, for example. The adjacency 
structure does not determine a unique metric. We therefore now turn to the question 
of how we might arrive at such a metric. 
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3.9 Duration and distance 

Recall that the set T of times is linearly ordered. In many contexts, we would like to 
define a notion of duration on T. In other words, given four moments t1, t2, t3, and t4 
in T, with t1 < t2 and t3 < t4, we would like to determine whether the time interval 
between t1 and t2, is greater or smaller than the interval between t3 and t4. To do this, 
we suppose that the monoid ΓT of temporal symmetries acts freely and transitively on 
T. This means that, for any times t1 and t2 in T, there is a unique symmetry γ in ΓT 
such that γ(t1) = t2. We can then define a formal “subtraction” operation on T as 
follows. Fix some reference time t0. Now, for any times t1 and t2 in T, we define  

t2 – t1 = γ(t2), where γ is the unique temporal symmetry in ΓT such that γ(t1) = t0. 

In particular, this implies that t – t0 = t, for any t in T. For any four points t1, t2, t3, and 
t4 in T, we say that the time interval from t1 to t2 is greater than the time interval from 
t3 to t4 if t2 – t1 > t4 – t3. Similarly, we can define a formal “addition” operation on T. 
For any times t1 and t2 in T, we define  

t1 + t2 = γ(t2), where γ is the unique temporal symmetry in ΓT such that γ(t0) = t1. 

The set T, together with the ordering < and the operation +, is a linearly ordered 
group.51 

In many contexts, we would also like to define a metric on S, which determines a 
notion of “distance” between points in space. As we have noted, the adjacency 
structure does not determine a unique metric. But we can define a concept of distance 
on S by measuring how long it takes for information to travel from one point to the 
other. To do this, we need to use the concept of duration we have just introduced. 

Given any two regions R and R' of S, and a time t in T, we define what it means for 
region R' to be “not reachable” from region R in time t. We begin with some 
preliminary definitions. For any subset R of S, and any time t in T, let R × {t} denote 
the set {(s,t): s ∈ R}. Adapting our earlier definition, we say that an event E happens 
inside R at time t if, for all histories h and h' such that hR×{t} = h'R×{t}, the history h is 
an element of E if and only if h' is an element of E. In other words, the question of 
whether or not a particular history is an element of E is completely determined by the 
restriction of that history to space-time region R × {t}. Further, let RC denote the 
complement of R in S, i.e., RC = {s ∈ S: s ∉ R}. Given any two subsets R and R' of S, 
and a time t in T with t > t0, we now say that R' is not reachable from R in time t if, 
for any history h in Ω, any event which happens in R' at time t is conditionally 
independent of any event which happens in R at t0, given [hRC×{t0}]. Informally, once 
we have complete information about the state of the system outside the set R at 
time t0, learning something about the state of the system inside R at time t0 gives us 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
51 Formally, this means that (i) the operation + is associative, i.e., (t1+ t2) + t3 = t1 + (t2+ t3) for all t1, t2, 
t3 in T; (ii) there is an identity element, namely t0, such that t0 + t = t = t + t0 for all t in T; (iii) every 
element t in T has an inverse –t such that t + (–t) = t0 = (–t) + t; and (iv) the ordering < is homogeneous, 
meaning that, for all t1, t2, t3 in T, we have (t1 + t2 < t1 + t3) ⇔ (t2< t3) ⇔ (t2 + t1 < t3 + t1). It is not, in 
general, the case that linearly ordered groups are commutative (“abelian”), i.e., we could have 
t1 + t2 ≠ t2 + t1 for some t1, t2 in T. See, e.g., Fuchs (2011) for an introduction to ordered groups. 
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no further information about the eventual state of the system inside R' at the later 
time t.52  

We now define the distance d(R, R') between R and R' to be the maximum time t in T 
such that R' is not reachable from R in time t, if this maximum exists.53 This can be 
interpreted as the minimum length of time required for information to “propagate” 
from R to R'. It would be natural to suppose that this notion of distance satisfies the 
following three properties: 

Symmetry: For all subsets R, R' of S,  

d(R, R') = d(R', R). 

Triangle Inequality: For all subsets R, R', R'' of S,  

d(R, R'') ≤ d(R, R') + d(R',R''). 

Non-Complementarity: For all subsets R1, R2, R3 of S,  

d(R1 ∪ R2, R3) = min{d(R1, R3) , d(R2, R3)}. 

However, none of these properties can be guaranteed, unless the conditional 
probability structure {PrE}E⊆Ω has the right underlying properties. For example, if the 
information flow between different spatial locations is asymmetrical, such as in many 
communications networks, then Symmetry might not be satisfied; it might take longer 
for information to propagate from R to R' than vice versa. If information can be 
“forgotten” or “erased” at some spatial locations in the system, then the Triangle 
Inequality might not be satisfied; some information propagating from R to R' might be 
forgotten before it reaches R''. Turning to Non-Complementarity: it is always true that 
d(R1 ∪ R2, R3) ≤ min{d(R1, R3) , d(R2, R3)}. However, this inequality could be strict; 
i.e., we could have d(R1 ∪ R2, R3) < min{d(R1, R3) , d(R2, R3)}. For example, what 
happens in regions R1 and R2 at time t1 could be like two pieces of a puzzle, which 
reveal little about what happens in region R3 at time t2 when considered separately, 
but determine it completely when put together.54 

Note that our definition of distance between regions of space immediately entails a 
definition of distance between points in space: the distance between any two points s1 
and s2 in S is simply the distance between the singleton regions consisting of them, 
i.e., d(s1, s2) = d({s1},{s2}). Clearly, d(s, s) = 0 for any point s in S. Thus, if our 
distance measure satisfies Symmetry and the Triangle Inequality, it determines a 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
52 In our definition of “non-reachability”, we have referred to the reference time t0. However, because 
ΓT acts freely and transitively on T, the reference time does not matter. When region R' is not reachable 
from region R in time t according to our definition, this implies that, for any times t1 and t2 with t2–t1=t, 
any event which happens in R' at time t2 is conditionally independent of any event which happens in R 
at t1, given [hRC×{t1}].!
53 If the maximum does not exist, we can instead use the supremum, provided the order of time is 
supremum-complete (i.e., any subset of T has a supremum), as it would be if T were the set of real 
numbers. If the order of time is not supremum-complete, then the precise distance between R and R' 
may not be well-defined. 
54 Technically, this means that there exist events E1, E2, and E3 in Ω which happen, respectively, in 
region R1 at time t1, in region R2 at time t1, and in region R3 at time t2 such that E1, E2, and E3 are 
pairwise independent, but not jointly independent. This situation is common in probability theory. 
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metric on the space S. Furthermore, if it satisfies Non-Complementarity, this metric 
completely determines the distance between any two regions R and R' in S.55 
However, as we have pointed out, the distance measure need not generally satisfy 
these properties. 

One notable feature of our approach is that it measures the distance between spatial 
locations in units of time. This is, of course, entirely consistent with the practice in 
modern physics of measuring distance in units such as light seconds or light years. 
However, the present approach works only if the maximum speed of information 
propagation in our system is finite. In classical physics, information can propagate 
through space at arbitrarily high speeds. Therefore, in a classical physical system, the 
effective “distance” between any two spatial locations collapses to zero, according to 
our definition. To recover a non-trivial definition of “distance” in such a system, we 
must impose some restriction on the sort of “information transmission” we can use. 
For instance, we could consider information transmission via some messenger or 
signal travelling at a fixed velocity. Similarly, in Maxwell’s theory of 
electrodynamics, which is complementary to classical mechanics, electromagnetic 
waves propagate at a fixed and finite speed, namely the speed of light, even if 
classical-mechanical particles can exceed this speed. Thus, in the world of classical 
physics, we could define a non-trivial concept of “electromagnetic distance”, even if 
there is no non-trivial concept of “mechanical distance”. We discuss the issue of 
distance in quantum mechanics in Appendix C. 

4. Amorphous systems: space-time as an emergent property 

4.1 Basic definitions 

So far, we have defined histories as functions from a set of points in either time or 
space-time into some state space, where histories play the role of possible worlds. 
Time or space-time, in turn, had an exogenously given structure. In a temporally 
evolving system, time was some linearly ordered set (T), and in a spatially extended 
system, space-time was explicitly decomposed into space (S) and time (T), consistent 
with some fixed geometry. This picture can, and for many purposes must, be 
generalized. Both special and general relativity theory, for example, go against the 
idea that there exists a fixed temporal dimension (for a classic philosophical 
discussion, see Putnam 1967).  

A more general approach is to define a history as a function from some “indexing 
set”, which we call a set of loci, into a state space. The set of loci could be a linearly 
ordered set of points in time, thereby accommodating our first class of systems, or a 
set of space-time locations with an explicit decomposition into space and time, 
thereby accommodating the second class. But it could also be a more general four-
dimensional space-time manifold without any exogenous decomposition, or even a 
completely abstract indexing set.  

Formally, let I (for “indexing set”) be the set of loci, and let X denote the state space. 
A generalized history is a function h from I into X, where, for each locus i in I, h(i) is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
55 To be precise, d(R,R') = min{d(s,s'): s ∈ R and s' ∈ R'}. Strictly speaking, this only works if R and R' 
are finite sets of points. For infinite sets, we would need a slightly stronger version of non-
complementarity, which says that d(R, R') = inf{d(s, s'): s ∈ R and s' ∈ R'} (and this infimum exists). 
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the state of the system at locus i. As in the case of spatially extended systems, the 
state h(i) is best interpreted, not as a “global” state, in which the system is at some 
specific point in time (indeed, there is no exogenous notion of time), but as a “local” 
state, in which the system is at a specific locus. We write Ω to denote the set of all 
generalized histories deemed possible, which can again be viewed as nomologically 
possible worlds, and subsets of Ω are called events.56 

To complete our present definitions, we must, once more, introduce a conditional 
probability structure on Ω. As should be clear by now, this is a family of conditional 
probability functions {PrE}E⊆Ω, consisting of one PrE for each event E in Ω. An 
amorphous system is the pair consisting of the set Ω of possible generalized histories 
and the conditional probability structure {PrE}E⊆Ω.  

How much of the framework that we have developed so far can be extended to the 
setting of amorphous systems? We might ask, for instance, whether an abstract 
indexing set, despite not being endowed with any exogenous structure, can attain 
some spatial and/or temporal structure as an emergent property, for instance as a 
byproduct of the correlations encoded in {PrE}E⊆Ω. We might also ask whether, and to 
what extent, the geometry of the set of loci is unique, or alternatively whether there 
might be multiple equally “correct” geometries. 

4.2 Adjacency structure and the Markov property 

Just as in Section 3.8, the topology of the set I of loci can be represented by an 
adjacency structure: a binary relation →  defined between subsets of I. For example, 
suppose I is a set of times, as in Section 2, i.e., I = T. For any subsets R and R' of I, 
define R→R' if there does not exist any time t such that r < t < r' for all r in R and all 
r' in R'. For another example, let I be the four-dimensional space-time manifold of a 
general relativistic system. Then, for any subsets R and R' of I, we might define R→R' 
if there is a locus i in I such that any open neighbourhood around i intersects R'. 

In Section 2.10, we related the order structure of the set T of times to the conditional 
probability structure {PrE}E⊆Ω by means of a temporal Markov property. Likewise, in 
Section 3.8, we related the adjacency structure of the set S of spatial locations to the 
conditional probability structure {PrE}E⊆Ω by means of a spatial Markov property. We 
now discuss a similar idea in relation to a general set of loci. This, in turn, will allow 
us to view the adjacency structure among loci – and thereby its topology – as an 
“emergent property”: something that emerges from the correlations encoded in 
{PrE}E⊆Ω. 

Let R be a subset of I (i.e., a collection of loci). As before, for any generalized history 
h in Ω, we define hR to be the restriction of that history to the set R. We then define 
the event [hR] to be the set of all histories h' in Ω!such that hR = h'R. For any event E 
(i.e., a subset of Ω), we say that E happens inside R if, for all histories h and h' such 
that hR = h'R, the history h is an element of E if and only if h' is an element of E. Thus, 
whether or not a particular history is an element of E is completely determined by the 
restriction of that history to R. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
56 Note that, in the literature on general relativity theory, the word “event” is used to refer to the objects 
we call “loci”. Our use of the word “event” is consistent with its use in probability theory.  
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As in Section 3.8, we define a tripartition of the set I of loci to be a triple (R, R', R''), 
where R, R', and R'' are three disjoint subsets of I which together cover I (i.e., 
R ∪ R' ∪ R'' = I), such that it is not the case that R → R'' or R'' → R. Again, this 
means that the set R' somehow “separates” R from R''.  

For example, let T be a set of times, with the adjacency structure introduced at the 
start of this section. Fix two times t0 and t1, with t0 ≤ t1. Let R be the set of all times 
strictly before t0, let R' be the set of all times between t0 and t1 (including t0 and t1), 
and let R'' be the set of all times strictly after t1. Then (R,R',R'') is a tripartition of T.  

For another example, let I be the four-dimensional Minkowski space-time of special 
relativity, with the “open neighbourhood” adjacency structure introduced above. Let λ 
be a linear time-like trajectory through I, for instance the trajectory of an “observer” 
traveling through space-time at a constant velocity, and let p be a point on this 
trajectory. In special relativity theory, there is a unique three-dimensional simultaneity 
hyperplane R' passing through p, such that all events that happen inside R' seem to 
occur simultaneously from the perspective of the λ-observer at p. Let R be the set of 
all points in I which have some part of R' in their future light-cone, and let R'' be the 
set of all points in I which have some part of R' in their past light-cone. Then 
(R, R', R'') is a tripartition of I.57 More generally, let R and R'' be any disjoint open 
subsets of I,58 and let R' be the complement of the union R ∪ R''. Then (R, R', R'') is a 
tripartition of I.  

We say that the adjacency structure → satisfies the amorphous Markov property with 
respect to the conditional probability structure {PrE}E⊆Ω if, for any tripartition 
(R, R', R'') and any generalized history h in Ω, any event which happens inside R is 
conditionally independent from any event which happens inside R'', given [hR']. 
Again, this means, roughly, that there is no way for information to propagate from R 
into R'', or vice versa, without first passing through R'. For example, suppose I is four-
dimensional Minkowski space-time, and (R, R', R'') is the tripartition described above. 
In this case, the simultaneity hyperplane R' plays the role of the “present”, which 
isolates the “past” R from the “future” R''. If we have complete information about the 
history inside R' (i.e. we know [hR']), then we have complete information about the 
“present state” of the world; thus, we can predict its future evolution (in R'') without 
needing to know anything about its past history (in R).  

In Section 2.10, we argued that the temporal Markov property was the key property of 
time; a “correct” ordering of the set T was any ordering that satisfied this property. 
Likewise, in Section 3.8, we argued that the spatial Markov property was the key 
property of space; a “correct” adjacency structure on the set S was any adjacency 
structure that satisfied this property. Now we make a parallel claim for amorphous 
systems: a “correct” adjacency structure on I is one that satisfies the amorphous 
Markov property. This Markov property subsumes both the temporal Markov 
property of Section 2 and the spatial Markov property of Section 3. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
57 In a model of general relativity, a similar construction works if R' is a Cauchy surface in the four-
dimensional space-time manifold. 
58 A subset R of I is open if, for any s in R, there is some r > 0 such that the ball of radius r around s is 
contained in R. 
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This has an important consequence. In our framework, the topology of I, in the form 
of the adjacency structure, does not need to be imposed exogenously. Instead, this 
topology can emerge endogenously from the conditional probability structure 
{PrE}E⊆Ω. We say that an adjacency structure → between subsets of I is 
{PrE}E⊆Ω-admissible if it satisfies the amorphous Markov property with respect to 
{PrE}E⊆Ω. If we think of I as a sort of generalized space-time, this means that the 
topology of space-time is an emergent property of the amorphous system.59  

4.3 Time and predictability 

Both temporally evolving systems and spatially extended systems come with a set T 
which plays the role of “time”. What plays the role of time in an amorphous system? 
The adjacency structure described in the previous section tells us whether two subsets 
of the index set I are in “informational contact” or are “informationally separated” 
from one another, but it does not tell us which subset comes “before” and which 
comes “after”, or even whether this question makes sense. We now explain how time 
itself can be an emergent property of an amorphous system. 

Let → be an adjacency structure on the index set I. Let T be a linearly ordered set. A 
possible time structure on I is a function τ from I into T such that, for any t in T, if (i) 
R is the set of all points i in I such that τ(i) < t, (ii) R' is the set of all points i in I such 
that τ(i) = t, and (iii) R'' is the set of all points i in I such that τ(i) > t, then (R, R', R'') 
is a tripartition of I.  

For example, let I be four-dimensional Minkowski space-time as described in Section 
4.2, and let λ be a linear time-like trajectory through I. Fix some point p0 on the 
trajectory λ. Let T be the set of real numbers. Then, for every t in T, there is a unique 
point pt along the trajectory λ which appears to be t seconds in the future of p0 (or in 
the past, if t < 0), with respect to the subjective time (i.e., proper time) experienced by 
an observer traveling along the trajectory λ. Let Rt be the simultaneity hyperplane 
passing through pt. If we define τ(i) = t for all points i in Rt, then τ is a possible time 
structure on I. 

As this example illustrates, an amorphous system may admit many possible time 
structures. In special relativity, there is a distinct time-structure for every inertial 
reference frame. All of these time structures are equally “correct”. Indeed, this is one 
of the key insights of special relativity theory. However, unless we impose further 
constraints, a system may also admit many “absurd” time structures. For example, 
suppose I is four-dimensional Newtonian space-time (i.e., I = R3 × R), with the “open 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
59 We are not the first to suggest that the geometry and/or topology of space-time could be an emergent 
property of more fundamental causal structures. Brown and Pooley (2001, 2006) have argued 
forcefully that the geometry – or rather, the apparent geometry – of relativistic space-time should be 
seen as a consequence of the symmetries (i.e., Lorentz covariance) of the dynamical laws governing 
matter and electromagnetism. In their words (2006, Section 5): “space-time’s Minkowskian structure 
cannot be taken to explain the Lorentz covariance of the dynamical laws. From our perspective, of 
course, the direction of explanation goes the other way around. It is the Lorentz covariance of the laws 
that underwrites the fact that the geometry of space-time is Minkowskian.” See also Brown (2005). 
However, Brown and Pooley’s approach is very different from the approach we take here. The idea of 
emergent space-time geometry has also recently appeared in the literature on high-energy physics and 
quantum cosmology. See, e.g., Konopka et al. (2008) and Hamma et al. (2010). 
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neighbourhood” adjacency structure described in Section 4.2. For all points (s1, s2, s3, t) 
in I, define τ(s1, s2, s3, t) = s3. Then τ is a possible time structure on I. But if the “true” 
time coordinate is t, not s3, it seems that this time structure is not correct. So, what 
property of the system determines which time structures are the correct ones? 

Clearly, a “correct” time structure should satisfy something like the temporal Markov 
property from Section 2. However, if the adjacency structure → satisfies the 
amorphous Markov property with respect to the conditional probability structure 
{PrE}E⊆Ω, then it is easy to see that any possible time structure will satisfy the 
temporal Markov property.60 So, the Markov property alone is not enough to pick out 
the “correct” time structures. 

Arguably, what picks out the correct time structures is predictability. To understand 
this, suppose we took a classical mechanical system with Newtonian space-time 
I = R3 × R, and applied the “absurd” time structure τ(s1, s2, s3, t) = s3, as defined 
above. How would the system appear with respect to this time structure? It would 
appear very strange and unpredictable. Particles would randomly pop in and out of 
existence. Energy and momentum would not be conserved from one moment to the 
next. Events would seem to unfold over time without any rhyme or reason. This total 
lack of predictability would be an indication that we had picked the wrong time 
structure for the system. 

On the other hand, if we had picked the “correct” time structure, namely 
τ(s1, s2, s3, t) = t, then the system would appear completely deterministic; its state at 
one “moment” in time, as defined by τ, would completely determine its “past” and 
“future” behaviour, as defined by τ. This total predictability is an indication that this 
is the correct time structure for the system. 

In this example, there was a particularly stark contrast between an “incorrect” time 
structure, which renders the system totally unpredictable, and a “correct” one, which 
renders it totally predictable. This is because classical mechanical systems are 
deterministic. In an indeterministic system, there will not generally be such a stark 
contrast. Nevertheless, some time structures will render the system more predictable 
than others, and among these, we claim, the ones that render the system most 
predictable are the correct time structures for that system. 

To make this idea more precise, we need a way to measure the “predictability” of a 
system under a given time structure. One way to do this is to use the information-
theoretic concept of entropy.61 For any subset R of I, let ΩR be the set of all R-
restricted histories hR obtained from any h in Ω. For simplicity, let us assume that the 
underlying state space X is finite. If R' is some other finite subset of I, then ΩR' is also 
finite.62 Suppose we know hR, and we want to predict hR'. For any hR in ΩR, there is a 
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60 To be somewhat more precise: given a possible time structure on I, we can represent the amorphous 
system as a temporally evolving system, and this temporally evolving system will satisfy the temporal 
Markov property. This construction is straightforward, but to avoid getting bogged down in 
technicalities, we set aside the details here. 
61 This is not the same as thermodynamic entropy, although it is loosely related. Thus, the discussion 
that follows should not be interpreted thermodynamically.  
62 To be precise, if |X| is the cardinality of X, and |R'| is the cardinality of R', then the cardinality of ΩR' 
is at most |X||R'|. 
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quantity called the conditional entropy of R' given hR, denoted by η(R',hR), which 
measures how “unpredictable” the restricted history hR' is, given the restricted history 
hR.63 For example, if hR' is entirely determined by hR, then η(R',hR) = 0. At the other 
extreme, if hR' is effectively as unpredictable as a collection of independent coin-
tosses, even after conditioning on hR, then η(R',hR) = 1. Intermediate levels of entropy 
represent intermediate degrees of unpredictability.  

Now, let τ be a time structure, mapping I into T. Let t be some time in T; let R be the 
set of all points i in I such that τ(i) = t; and let RC be the set of all points i in I such 
that τ(i) ≠ t. We define η(τ, t), the unpredictability of the system under τ at t, to be the 
maximum value of η(R', hR), where hR can be any element of ΩR and R' is allowed to 
be any finite subset of RC.64 If η(τ, t)=0, then this means roughly that any generalized 
history h in Ω is almost entirely predictable, based on its restriction hR.65 If η(τ,t) > 0, 
then histories in Ω are not, in general, fully predictable from their restrictions to R. 
The larger η(τ, t) is, the less predictable these histories are. We then define η(τ), the 
unpredictability of the system under the time structure τ, to be the maximum value of 
η(τ, t) over all times t in T.66 

For example, suppose I is the four-dimensional Newtonian space-time of a classical 
mechanical system (i.e., I = R3 ×  R), and τ is the “correct” time structure for this 
system, namely τ(s1, s2, s3, t) = t. Then η(τ) = 0, because classical mechanics is entirely 
deterministic. However, if τ was an “incorrect” time structure, such as τ(s1, s2, s3, t) = s3, 
then we would have η(τ) > 0, because the ascription of this incorrect time structure 
would render the system unpredictable, as we have explained.  

We now come to the key point of this section. A correct time structure for an 
amorphous system is any time structure that minimizes unpredictability and thereby 
maximizes regularity. Note that this definition allows that there may be many correct 
time structures, as in the case in special or general relativity, all of which render the 
system equally predictable. This has an important consequence. The correct time 
structure does not need to be imposed exogenously. Instead, the correct time structure 
(or structures) could emerge endogenously from the conditional probability structure 
{PrE}E⊆Ω. In other words, the structure of time itself could itself be an emergent 
property of the amorphous system. Using a more metaphysical language, it might be 
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63 Formally, η(R', hR) is the sum, over all possible R'-restrictions hR' in ΩR', of  

–Pr([hR'] | [hR]) log2[Pr([hR'] | [hR])] / |R'| log2(|X|). 
However, the precise formula is not important for this discussion. 
64 To be more precise, it is the supremum of this set. The maximum is not always well-defined. 
65 Even if η(τ, t)=0, there may be some “residual” unpredictability, in the sense that Ω may contain 
more than one extension of hR to all of I. However, the conditional probability structure {PrE}E⊆Ω 
concentrates all probability on one of these possible extensions; the rest of the extensions get 
probability zero. 
66 Again, strictly speaking, we require the supremum. The supremum of η(τ, t) across time t is not the 
only conceivable measures of unpredictability of the system under time structure τ. We could also take 
the average or some other aggregate measure. For example, suppose that I is an N-dimensional integer 
lattice (formally, I = ZN). Then we could measure the unpredictability of the system under different 
time structures using the theory of entropy geometry and expansive subdynamics first developed for 
multidimensional cellular automata by Milnor (1988) and later extended to arbitrary multidimensional 
symbolic dynamical systems by Boyle and Lind (1997). See the section on “Entropy” in Pivato (2009) 
for a summary of this theory. 
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that space and time are grounded in the dynamics of the system, rather than the other 
way round. 

4.4 Which features of a system are real? 

A final philosophical question on which we wish to comment briefly is the following. 
Suppose we have described a given system using our formal framework. Should we 
treat all features of that system as “real”, or should we treat some features as mere 
artefacts of our formal description?  

The debates between relationalist and substantivalist views about space and time, and 
between structuralist and full-blown realist views in science more generally, can be 
seen as attempts to answer this question.67 Let us begin with a relationalist or 
structuralist view, which may be about space and time in particular or about the 
properties of a system more generally. On such a view (of which there can be several 
variants), only some “relational” or “structural” properties of a system should be 
viewed as real, while “intrinsic”, “non-structural” properties should not. It does not 
matter, for example, what the nature of the system’s spatiotemporal loci in the set I is, 
nor what the nature of the system’s possible states in the set X is. All that matters is 
how these loci and/or states are related to one another and what dynamics they 
display. Two formally distinct systems, with formally distinct indexing sets I and I' 
and/or formally distinct state spaces X and X', will count as the same system if their 
nomologically possible histories and probabilistic properties are structurally 
indistinguishable. 

By contrast, on a substantivalist or full-blown realist view, which may also be about 
space and time in particular or about the properties of a system more generally, even 
intrinsic, non-structural properties of a system can be real, over and above the 
system’s relational or structural properties. So, the system’s spatiotemporal indexing 
set I and its state space X may be significant in ways that go beyond the structures and 
relations in which they stand. (Again, there can be several variants of such a view.) 
An example of a non-structural property is the exact indexing of time. One can 
imagine two structurally identical temporally evolving systems, indexed by 
T = {0,1,2,3,....} and T' = {1,2,3,4,....} respectively. The only difference is that in one 
system history “starts at time zero”, whereas in the other it “starts at time 1”. For a 
relationist or structuralist, these are “the same” system. But a substantivalist or full-
blown realist might insist that there is a genuine difference between them. 

The debates between these different views occur in several places in philosophy and 
take a variety of forms, so we cannot do justice to them here. We wish to note, 
however, that our formal framework can be used to express some salient positions 
within those debates. Specifically, different answers to the question of which features 
of a system are real can be expressed in terms of different criteria for individuating 
systems. If we begin with a very large class of systems that are formally described in 
our framework, there are a number of ways in which one might partition this class of 
systems into equivalence classes that are each taken to represent the same system. 
Different such partitions then correspond to different answers to the question of which 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
67 On a broadly “structuralist” or “relationalist” approach to metaphysics, see, e.g., Ladyman and Ross 
(2009). On “absolute” versus “relational” accounts of space and time, see, e.g., Earman (1989). On 
“substantivalism” and its discontents, see, e.g., Nerlich (2003). 
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features of a system are real, rather than mere artefacts of our formal description. In 
particular, only those features that are present among all members of any given 
equivalence class count as real. Features on which there can be differences even 
within the same equivalence class count as artefacts of our formal description.  

A relationalist or structuralist view would entail that any two systems that do not 
differ in any relational or structural properties count as the same and thereby fall into 
the same equivalence class. A substantivalist or full-blown realist view, by contrast, 
would entail that two such systems could still count as different; thus, the equivalence 
classes would be more fine-grained according to such a view, and might even be 
singleton (in which case all features of any given system would count as real).   

Here is one way of formalizing this idea. Consider two amorphous systems, given by 
the pairs (Ω, {PrE}E⊆Ω) and (Ω', {Pr'E}E⊆Ω'), where the histories in Ω are functions 
from the set I of loci into the state space X, and the histories in Ω' are functions from 
the set I' of loci into the state space X'. Let H and H' denote the sets of logically 
possible functions from I into X and from I' into X', respectively. 

Suppose there is a bijection θ from I into I', and also a bijection ξ from X into X' 
(recall that a bijection is a one-to-one, onto function). Using θ and ξ, we can then 
define a bijection σ from H into H' which maps each history h in H to the history h' in 
H' defined as follows: for each i' in I',  

h'(i') = ξ[h(i)], where i = θ–1(i') (with θ–1 defined as the inverse of θ). 

The bijection σ is an isomorphism between the two systems if  

• σ(Ω) = Ω'; and 
• for any events E' and D' in Ω', if E and D are the inverse images of E' and D' 

under σ, then Pr'E'(D') = PrE(D). 

We call two systems isomorphic if there exists an isomorphism between them. 
Isomorphic systems display the same dynamics, and they are relationally or 
structurally indistinguishable.68 Moreover, any topology of space and time that is 
admissible for one such system can be mapped, in a structure-preserving way, onto a 
topology that is admissible for another.  

Thus, on a relationalist or structuralist view, any two isomorphic systems should be 
considered the same. On a substantivalist or full-blown realist view, they may still 
differ. A view of the first kind would therefore take systems to be unique only up to 
isomorphism, so that our initial large class of systems would be partitioned into 
equivalence classes of isomorphic systems. A view of the second kind would opt for a 
more fine-grained partition, acknowledging that even isomorphic systems may be 
distinct in reality. 

The properties of systems on which we have focused in this paper are mainly 
structural and are preserved by all isomorphisms. This includes, for instance, the 
symmetries and ergodicity properties of a system, the distinction between laws and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
68 In fact, any bijective symmetry of a system constitutes an isomorphism from a system into itself. 
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“brute facts”, and the topology (or topologies) and geometry (or geometries) of space 
and time that are compatible with the correlation structure (in the sense that they 
satisfy the relevant Markov conditions). Thus, even a relationalist or structuralist 
would accept that all of these properties are “real” features of the system, and not 
mere artefacts. 

5. Concluding discussion 

We have introduced a framework for describing three general classes of systems and 
shown how this framework can be used to address a number of philosophical 
questions. We began with the class of temporally evolving systems, of which classical 
dynamical systems are a special case, and then moved on to the class of spatially 
extended systems and the class of amorphous systems. As noted, the framework can 
accommodate systems as diverse as the solar system, quantum-mechanical systems, 
special and general relativistic systems, and the earth’s climate system. 

We have discussed questions such as: how can we define nomological possibility, 
necessity, determinism, and indeterminism? How can we distinguish laws from brute 
facts? How are laws related to symmetries? What regularities must a system display 
to permit global generalizations from local observations? How can we formulate 
principles of parsimony such as Occam’s Razor, and how can we justify their use? 
What is the role of space and time in a system? And what is at stake in the debate 
between relationalist and substantivalist views about space and time, and between 
structuralist and full-blown realist views about systems more generally? 

While our framework and what it says about these questions should already be of 
sufficient interest to make the framework worth studying, the greatest payoff lies 
arguably in the variety of applications to which the framework lends itself. 
Developing these is beyond the scope of this paper, but we conclude by mentioning a 
few. 

5.1 Higher-level versus lower-level properties 

Our framework can be used to explore the relationship between lower-level (“micro”) 
and higher-level (“macro”) properties of a system. By partitioning the system’s state 
space X into suitable equivalence classes, we can capture the idea that “higher-level” 
or “macro” states are more coarse-grained than “lower-level” or “micro” states, so 
that each “macro” state can be realized by multiple “micro” states: the phenomenon of 
multiple realizability. Consider, for example, all the different possible micro-level 
trajectories of a tossed coin that each correspond to the macro-property of “landing 
heads”. Or consider all the different possible micro-states of individual water 
molecules that each correspond to a macro-state such as “frozen”, “liquid”, or 
“gaseous”.  

Suppose X is the original state space, and X is the relevant set of equivalence classes, 
which we interpret as the higher-level state space. We can then write σ to denote the 
function that maps each lower-level state x in X to the corresponding higher-level 
state x in X. (Note the “outlined” font for higher-level objects.) This function can be 
interpreted as the supervenience relation connecting the two levels. We can then use 
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σ to specify the resulting higher-level histories.69 For each lower-level history h in the 
original set Ω, the corresponding higher-level history h is the function from T into X, 
where, for each t in T, h(t) = σ(h(t)). (If we are dealing with a spatially extended or 
amorphous system instead of a temporally evolving one, we must replace T in this 
definition with S × T or I.) The set of higher-level histories is therefore Ω = σ(Ω). 
Similarly, we can use σ to arrive at a conditional probability structure defined over 
higher-level events, formally written {PrE}E⊆Ω; see Appendix A for details. The pair 
(Ω,{PrE}E⊆Ω) can be viewed as our system, re-described at a higher level. In the 
terminology of Appendix A, the higher-level system is a factor system of the original, 
lower-level system.  

This construction allows us to study the dynamics of the higher-level system and to 
compare its properties with those of the lower-level system. Interestingly, the higher-
level dynamics may be different from the underlying lower-level dynamics. For 
example, features such as determinism or indeterminism are not generally preserved 
under coarse-graining: the lower-level system may be deterministic, while the higher-
level system is not (or vice versa). Thus indeterminism could be an emergent property 
(see, e.g., Butterfield 2012 and List 2014; for a related discussion, see also Werndl 
2009b).  

In a similar vein, we may study the level-specificity of other properties. For instance, 
elsewhere we have used this approach to argue that non-trivial objective chance could 
be an emergent phenomenon, which is entirely consistent with lower-level 
determinism (List and Pivato 2015).70 

5.2 Laws and regularities in the special sciences 

There is much debate on whether there are laws in the special sciences, as distinct 
from fundamental physics. The existence of laws is particularly contested in fields 
such as biology, ecology, geology, psychology, and the social sciences. (Chemistry, 
by contrast, is often viewed as a close relative of physics and thereby similar enough 
to it in its lawfulness.) Examples of special-science regularities that are sometimes 
described as laws include (i) Kleiber’s law in biology, according to which an 
organism’s metabolic rate is proportional to the ¾th power of its body mass; (ii) the 
laws of supply and demand in economics, according to which (except for Giffen 
goods) the demand for a good is a decreasing function of its price, and the supply is 
an increasing function of price; and (iii) Duverger’s law in political science, according 
to which, under a first-past-the-post electoral system, the effective number of parties 
in the legislature will be lower than under a proportional-representation system, 
ceteris paribus. The key question is whether any of these regularities are sufficiently 
robust to qualify as laws. 

One common view is that, as we move further away from fundamental physics, there 
are fewer and fewer regularities that live up to genuine “law-hood”. Kim (2010, 
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69 This construction, under the present notational conventions, was introduced in List (2014) and List 
and Pivato (2015). 
70 For earlier work defending higher-level chance, sometimes using a strategy that is similar in spirit to 
ours (though not fully equivalent), see, e.g., Loewer (2001), Frigg and Hoefer (2010), Glynn (2010), 
Strevens (2011), and Hemmo and Shenker (2012). 
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ch. 14), for instance, argues that there are no “strict” laws in the special sciences. 
Among the reasons he gives for this conclusion are (i) the multiple realizability of 
special-science properties, which, he claims, undermines their “inductive 
projectibility”, and (ii) the alleged metaphysical anomalism of the mental realm, 
which, he suggests, undermines the existence of laws in psychology and the social 
sciences.  

Other scholars defend the existence of laws in the special sciences. For example, 
focusing on the social sciences, Kincaid (1990) argues that several widely cited 
arguments against laws fail. He thinks that the most serious challenge to laws in the 
social sciences comes from the excessive ceteris paribus qualifications that all such 
laws require, but argues that the procedures we routinely employ to deal with such 
qualifications in the natural sciences carry over to the social sciences. 

The framework we have presented might be used to make some progress in this 
debate. Using our framework, we can in principle describe the special-science 
systems in question and identify the properties these systems would have to display in 
order to secure the existence of laws. As we have seen, what laws there are in a given 
system depends on the system’s symmetries and the properties they preserve. Another 
question is whether we are prepared to recognize weaker kinds of laws corresponding 
to partial or local symmetries, as defined in Appendix B. Finally, our framework 
shows that whether we can make global generalizations from local observations, and 
thereby come to know the relevant laws, depends on whether the given special-
science systems are ergodic.71 Although it is undoubtedly difficult to settle all of these 
questions, our framework can make them explicit, thereby rendering the debate more 
tractable.  

5.3 Intentional systems 

While we have mainly discussed physical systems, there is no barrier, in principle, to 
using our framework also for describing systems involving intentional agents. Indeed, 
an earlier version of the present formalism has proved useful for the analysis of free 
will (List 2014 and List and Rabinowicz 2014). We can think of an agent, together 
with the relevant environment, as a temporally evolving system. This system can be 
described at different levels: at a physical level, at which we would not take an 
“intentional stance” towards the system, and at an agential level, at which we would 
take such a stance (on the notion of an “intentional stance”, see Dennett 1987). 
Physical-level descriptions would capture the states of the agent’s brain and body, 
while agential-level descriptions would capture the agent’s higher-level mental or 
psychological states, thereby focusing on the agent’s beliefs, desires, and intentions, 
rather than the underlying neuronal or bodily states. 

The framework then allows us to explain, for instance, how agential-level 
indeterminism and an agent’s possibility of doing otherwise can co-exist with 
physical-level determinism (as argued in List 2014). The framework might also shed 
some light on how other psychological properties can emerge from the underlying 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
71 The systems that are studied in the special sciences often arise as higher-level descriptions of 
systems from the natural sciences, as discussed in Section 5.1 above. In this case, the special-science 
system will have at least as many symmetries and at least as much ergodicity as the underlying natural-
science system, as explained in Appendix A. 
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physical dynamics of the system. In particular, as a factor system of the original 
physical system, the agential system may exhibit additional symmetries not present at 
the physical level. This may, in turn, be used to explain why some higher-level 
regularities in an intentional system (e.g., regularities involving beliefs, desires, 
intentions, and norms) may qualify as “real patterns” (Dennett 1991) and not merely 
as illusions due to our ignorance of the physical-level details. 

Needless to say, all of these applications are challenging and raise controversial 
philosophical issues. We hope, however, that our framework will be a clarifying 
contribution to formal metaphysics and the philosophy of science and will inspire 
further work.  

References 

Baker, Alan. 2013. “Simplicity”. In The Stanford Encyclopedia of Philosophy, ed. 
Edward N. Zalta. Available at: 
http://plato.stanford.edu/archives/fall2013/entries/simplicity    

Baker, David John. 2010. “Symmetry and the Metaphysics of Physics.” Philosophy 
Compass, 5(12): 1157–1166. 

Berkovitz, Joseph, Roman Frigg, and Fred Kronz. 2006. “The ergodic hierarchy, 
randomness and Hamiltonian chaos.” Studies in History and Philosophy of 
Modern Physics, 37(4): 661–691.  

Boyle, Mike, and Douglas Lind. 1997. “Expansive subdynamics.” Transactions of the 
American Mathematical Society, 349(1): 55–102.  

Brading, Katherine, and Elena Castellani. 2013. “Symmetry and Symmetry 
Breaking.” In The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta. 
Available at:  
http://plato.stanford.edu/archives/spr2013/entries/symmetry-breaking   

Brown, Harvey R. 2005. Physical Relativity: Space-Time Structure from a Dynamical 
Perspective. Oxford: Oxford University Press. 

Brown, Harvey R., and Oliver Pooley. 2001. “The origin of the spacetime metric: 
Bell’s ‘Lorentzian pedagogy’ and its significance in general relativity.” In 
Physics Meets Philosophy at the Planck Length. Ed. C. Callender and N. 
Huggett. Cambridge University Press, pp. 256–272. 

Brown, Harvey R., and Oliver Pooley. 2006. “Minkowski space-time: a glorious non-
entity.” In The Ontology of Spacetime. Ed. Dennis Dieks. Elsevier, pp. 67–89. 

Butterfield, Jeremy. 2012. “Laws, Causation and Dynamics at Different Levels.” 
Interface Focus 2 (1): 101–114.  

de Finetti, Bruno. 1972. Probability, induction and statistics. The art of guessing. 
London: John Wiley & Sons. 

Dennett, Daniel. 1987. The Intentional Stance. Cambridge/MA: MIT Press. 

Dennett, Daniel. 1991. “Real Patterns.” Journal of Philosophy 88(1): 27–51.  

Earman, John. 1989. World Enough and Spacetime: Absolute and Relational Theories 
of Motion. Cambridge, MA: MIT Press. 



 50 

Eberhardt, Frederick, and Clark Glymour. 2009. “Hans Reichenbach’s probability 
logic.” In Handbook of the History of Logic. Volume 10: Inductive Logic, ed. 
Dov M. Gabbay, Stephan Hartmann and John Woods. Elsevier. 

Fitzpatrick, Simon. 2015. “Simplicity in the Philosophy of Science.” In The Internet 
Encyclopedia of Philosophy, ISSN 2161-0002. Available at: 
http://www.iep.utm.edu  

French, Steven. 2014. The Structure of the World: Metaphysics and representation. 
Oxford: Oxford University Press. 

Frigg, Roman, Joseph Berkovitz, and Fred Kronz. 2011. “The Ergodic Hierarchy.” In 
The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta. Available at:  
http://plato.stanford.edu/archives/sum2011/entries/ergodic-hierarchy 

Frigg, Roman, and Carl Hoefer. 2010. “Determinism and Chance from a Humean 
Perspective.” In The Present Situation in the Philosophy of Science, ed. F. 
Stadler. Heidelberg: Springer-Verlag, pp. 351–371. 

Fuchs, Laszlo. 2011. Partially ordered algebraic systems. New York: Dover.  
Glasner, E. 2003. Ergodic Theory via Joinings. Providence, RI: American 

Mathematical Society. 
Glynn, Luke. 2010. “Deterministic Chance.” British Journal for the Philosophy of 

Science 61(1): 51–80. 

Golubitsky, Marty, Marcus Pivato, and Ian Stewart. 2003. “Symmetry groupoids and 
patterns of synchrony in coupled cell networks.” SIAM Journal of Applied 
Dynamical Systems 2(4): 609–646.  

Guay, Alexandre, and Brian Hepburn. 2009. “Symmetry and Its Formalisms: 
Mathematical Aspects.” Philosophy of Science, 76(2): 160–178. 

Halpern, Joseph Y. 2010. “Lexicographic probability, conditional probability, and 
nonstandard probability.” Games and Economic Behavior, 68: 155–179.  

Hamma, A., F. Markopoulou, S. Lloyd, F. Caravelli, S. Severini, and K. Markström. 
2010. “Quantum Bose-Hubbard model with an evolving graph as a toy model 
for emergent spacetime.” Physical Review D 81(10): 104032. 

Hemmo, Meir, and Orly R. Shenker. 2012. The Road to Maxwell’s Demon: 
Conceptual Foundations of Statistical Mechanics. Cambridge: Cambridge 
University Press. 

Ilachinski, Andrew. 2001. Cellular Automata. River Edge, NJ: World Scientific.  

Kelly, K. T. 2007. “A New Solution to the Puzzle of Simplicity.” Philosophy of 
Science (Proceedings of the 2006 Biennial Meeting of the Philosophy of 
Science Association) 74(5): 561-573. 

Kim, Jaegwon. 2010. Essays in the Metaphysics of Mind. Oxford: Oxford University 
Press. 

Kincaid, Harold. 1990. “Defending Laws in the Social Sciences.” Philosophy of the 
Social Sciences 20(1): 56–83. 

Konopka, T., F. Markopoulou, and S. Severini. 2008. “Quantum graphity: A model of 
emergent locality.” Physical Review D 77(10): 104029. 



 51 

Krengel, Ulrich. 1985. Ergodic theorems. With a supplement by Antoine Brunel. 
Berlin: Walter de Gruyter & Co. 

Ladyman, James, and Don Ross. 2009. Every Thing Must Go: Metaphysics 
Naturalized. Oxford: Oxford University Press. 

Lewis, David. 1986. “A Subjectivist’s Guide to Objective Chance.” In Philosophical 
Papers, Vol. II, 83–132. Oxford: Oxford University Press.  

List, Christian. 2014. “Free will, determinism, and the possibility of doing otherwise.” 
Noûs, 48(1): 156–178.  

List, Christian, and Marcus Pivato. 2015. “Emergent Chance.” The Philosophical 
Review, 124(1): 119–152. 

List, Christian, and Wlodek Rabinowicz. 2014. “Two Intuitions about Free Will: 
Alternative Possibilities and Intentional Endorsement.” Philosophical 
Perspectives 28: 155–172. 

Loewer, Barry. 2001. “Determinism and Chance.” Studies in History and Philosophy 
of Modern Physics 32B(4): 609–620. 

Mainzer, Klaus. 1996. Symmetries of Nature. Berlin: Walter de Gruyter.  

Milnor, John. 1988. “On the entropy geometry of cellular automata.” Complex 
Systems, 2(3): 357–385.  

Moore, Cristopher, and Stephan Mertens. 2011. The Nature of Computation. Oxford: 
Oxford University Press.  

Nerlich, Graham. 2003. “Space-Time Substantivalism.” In The Oxford Handbook of 
Metaphysics. Ed. Michael J. Loux and Dean W. Zimmerman. Oxford: Oxford 
University Press, pp. 281–314. 

Pearl, Judea. 2000. Causality: Models, Reasoning, and Inference. Cambridge: 
Cambridge University Press. 

Popper, Karl. 1968. The Logic of Scientific Discovery, second edition. London: 
Hutchinson.  

Pivato, Marcus. 2009. “The ergodic theory of cellular automata.” In The Encyclopedia 
of Complexity and System Science, ed. Robert A. Meyers. Springer-Verlag.  

Pivato, Marcus. 2010. Linear Partial Differential Equations and Fourier Theory. 
Cambridge: Cambridge University Press.  

Priest, Graham. 2001. An Introduction to Non-Classical Logic. Cambridge: 
Cambridge University Press. 

Putnam, Hilary. 1967. “Time and Physical Geometry.” The Journal of Philosophy, 
64(8): 240–247. 

Reichenbach, Hans. 1949. The Theory of Probability. An Inquiry into the Logical and 
Mathematical Foundations of the Calculus of Probability. Transl. by E. H. 
Hutten and M. Reichenbach. Berkeley / Los Angeles: University of California 
Press. 

Rényi, Alfred. 1955. “On a new axiomatic theory of probability.” Acta Mathematica 
Acadademiae Scientiarum Hungarica. 6(3–4): 285–335. 



 52 

Roberts, Bryan W. 2013. “When We Do (and Do Not) Have a Classical Arrow of 
Time.” Philosophy of Science 80(5): 1112–1124. 

Schaffer, Jonathan. 2007. “Deterministic chance?” British Journal for the Philosophy 
of Science, 58(2): 113–140. 

Spirtes, Peter, Clark Glymour, and Richard Scheines. 2000. Causation, Prediction 
and Search, second edition. Cambridge, MA: MIT Press. 

Strevens, Michael. 2011. “Probability out of Determinism.” In Probabilities in 
Physics, ed. Claus Beisbart and Stephan Hartmann. Oxford: Oxford University 
Press, pp. 339–364. 

van Fraassen, Bas. 1976. “Representation of conditional probabilities.” Journal of 
Philosophical Logic, 5: 417–430. 

van Fraassen, Bas. 1989. Laws and Symmetry. Oxford: Clarendon Press.  
Werndl, Charlotte. 2009a. “What are the new implications of chaos for 

unpredictability?” The British Journal for the Philosophy of Science, 60: 195–
220.  

Werndl, Charlotte. 2009b. “Are deterministic descriptions and indeterministic 
descriptions observationally equivalent?” Studies in History and Philosophy of 
Science Part B: Studies in History and Philosophy of Modern Physics 40(3): 
232–242.  

Wigner, Eugene. 1967. Symmetries and reflections. Bloomington, Indiana: Indiana 
University Press. 

Appendix A: Factor systems 

One possible objection to our framework is that it is both unrealistic and unwieldy. It 
is unrealistic because the actual universe is not sufficiently regular (e.g., it might lack 
a large enough monoid of symmetries or ergodicity). It is unwieldy because the 
universe as a whole is far too complex a system for us to analyze within this 
framework anyway. 

However, there is no need to insist on applying our framework to the universe as a 
whole. Instead, we can apply it to a “factor” system, as we now explain. Consider a 
temporally evolving system, consisting of a set Ω of nomologically possible histories 
(each of which is a function from a set T of times into a set X of possible states), along 
with a conditional probability structure {PrE}E⊆Ω. Let X' be another set, and let φ be a 
function from X into X'. For every history h in Ω, let φ(h) be the function h' from T 
into X' defined by h'(t) = φ[h(t)] for all t in T. Let Ω' = {φ(h): h ∈ Ω}. For any subsets 
D' and E' of Ω', let D and E be their inverse images under φ, where these are subsets 
of Ω, and define Pr'E'(D') = PrE(D). Then {Pr'E'}E'⊆Ω' is a conditional probability 
structure on Ω'. The system specified by Ω' and {Pr'E'}E'⊆Ω' is called a factor system 
of the original system specified by Ω and {PrE}E⊆Ω. The function φ from Ω into Ω' is 
called a factor map. We can define factors of spatially extended systems and 
amorphous systems in an exactly analogous manner; we leave the details to the 
reader. 
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For a concrete example, suppose that (Ω, {PrE}E⊆Ω) is a classical-physics description 
of the entire solar system at an atomic level of detail. So X is an extremely high-
dimensional space, which must specify the position and momentum of every atom in 
the entire solar system, along with all of their gravitational and electromagnetic 
interactions. 72  Meanwhile, let (Ω', {Pr'E'}E'⊆Ω') be the very simple celestial-
mechanical system consisting only of the Earth, Moon, and Sun, described as 
gravitationally interacting point masses. So X' = R18, because we must specify the 
three-dimensional position and momentum vectors of each of the three objects in the 
system, and 3×6 = 18. Let φ be the function from X into X' which translates each 
highly detailed atomic-level description of the solar system into the crude 18-
dimensional celestial mechanical description. Then φ is a factor mapping from 
(Ω, {PrE}E⊆Ω) into (Ω', {Pr'E'}E'⊆Ω'), and thus (Ω', {Pr'E'}E'⊆Ω') is a factor of 
(Ω, {PrE}E⊆Ω).  

As this example illustrates, a factor system can be seen as a sort of “abstraction” or 
“simplification” of the original system, obtained by discarding some properties. Now, 
suppose ψ is a function from T into itself (e.g., a time shift) which is a temporal 
symmetry of the original system (Ω, {PrE}E⊆Ω). Then it is easy to verify that ψ will 
also be a temporal symmetry of the factor system (Ω', {Pr'E'}E'⊆Ω'). Thus, the temporal 
symmetry monoid of the factor (Ω', {Pr'E'}E'⊆Ω') is at least as large as the temporal 
symmetry monoid of the original system (Ω, {PrE}E⊆Ω). In a spatially extended 
system, the exact same statement applies to spatiotemporal symmetries. Furthermore, 
if Ψ is an amenable group of temporal (or spatiotemporal) symmetries, and 
(Ω, {PrE}E⊆Ω) is ergodic relative to Ψ, then (Ω', {Pr'E'}E'⊆Ω') will also be ergodic 
relative to Ψ. In other words, (Ω', {Pr'E'}E'⊆Ω') is at least as ergodic as (Ω, {PrE}E⊆Ω). 

This means that, even if the original system (Ω, {PrE}E⊆Ω) lacks certain symmetries 
or ergodicity properties, the factor system (Ω', {Pr'E'}E'⊆Ω') may well possess these 
properties. Furthermore, even if the original system (Ω, {PrE}E⊆Ω) is too complicated 
to analyze using the formal tools we have described, the system (Ω', {Pr'E'}E'⊆Ω') may 
well be simple enough. To illustrate this, consider our example of the solar system. 
The original system (Ω, {PrE}E⊆Ω) describes the entire solar system at an atomic level 
of detail; whether or not the system possesses the desired symmetries or ergodicity 
properties, it is certainly too complex to analyze. In contrast, the abstract Earth-Moon-
Sun system (Ω', {Pr'E'}E'⊆Ω') is very simple. In fact, it is an example of a 
quasiperiodic dynamical system: it can be described as two independently rotating 
“wheels”, one describing the orbit of the Moon around the Earth, and the other 
describing the orbit of the Earth around the Sun. This is a prototypical example of an 
ergodic dynamical system. 

Appendix B: Partial symmetries and local symmetries 

An important assumption of this paper has been that there is a fairly large monoid Γ 
of symmetries acting on the set Ω of nomologically possible histories. We have 
argued that a modal or probabilistic feature of the system is a physical “law” rather 
than a “brute fact” if it is invariant under all of these symmetries. But this argument 
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72 For simplicity, we eschew a quantum-mechanical description in this example. 
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runs into a problem: many systems studied in the sciences lack sufficient symmetries 
to account for all of their “law-like” features. 

For example, suppose that space is represented by the set of all integers, while time is 
represented by the set of positive integers, i.e., S = {...,–1,0,1,2,...} and T = {1,2,3,...}, 
and consider the simple random-walk system described in Section 2.10. 
Nomologically speaking, the token could begin at any spatial location at time one. But 
suppose the conditional probability structure {PrE}E⊆Ω is such that, with probability 
one, the token begins at spatial location zero at time one.73 

In that case, the probability distribution of its location at time t is a (t–1, ½)-binomial 
distribution.74 Evidently, this distribution is not invariant under spatial translations, 
since it is centred around zero. Furthermore, it changes over time. Thus, 
spatiotemporal translations are not symmetries of this system. But this contradicts our 
intuition that the motion of the token is highly “law-like”: it can be described by a 
simple rule which is the same everywhere in space and time. 

To solve this problem, we now introduce the notion of “partial” symmetries; and we 
adopt the framework of spatially extended systems. Recall that H is the set all 
logically possible spatially extended histories. A partial symmetry monoid of a 
spatially extended system is a collection Γ of transformations of H, along with a 
collection E of ordered pairs of events (E, D), such that: 

• γ(h) is in Ω, for all γ in Γ and h in Ω; and 

• for any event pair (E,D) in E and any γ in Γ, if E′ and D′ are the inverse 
images of E and D under γ, then (E′,D′) is also in E, and PrE' [D'] = PrE[D]. 

For example, in our random walk example (re-construed in the framework of spatially 
extended systems), let E be the set of all ordered pairs of events (E, D) such that event 
E exactly specifies the location of the particle at some time t, while event D happens 
at some later time t′. Thus, PrE[D] is the conditional probability that the token 
satisfies such-and-such property at time t′, given that it was at such-and-such location 
at time t. Let ΓST be the monoid of all spatiotemporal translations of S × T. If γ is any 
element of ΓST, then E is invariant under γ, and the conditional probability PrE[D] is 
preserved by γ for any (E,D) in E, in the sense described above. Thus, the pair (ΓST,E) 
is a partial symmetry monoid for the random-walk system. Crucially, the set E does 
not include pairs of the form (Ω, D), so we do not require unconditional probabilities 
of the form PrΩ[D] to be preserved by spatiotemporal translations. 

Seen from this perspective, the transition probabilities of the random walk are 
“lawlike”, because they are preserved by all the transformations in ΓST. In contrast, 
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73 The following argument does not depend on this assumption. Indeed, our argument would apply to 
any initial probability distribution for the token. Note that there is no such thing as a uniform 
probability distribution over the set of integers. 
74 To be precise: if t is odd, and t' = t–1, then for any even s between –t'/2 and t'/2, the probability that 
the token will be at spatial location s at time t is 2-t'B((t'+s)/2, t'), where B is the binomial coefficient 
function. The formula for even times is similar, but more complicated. 
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the initial probability distribution of the system is merely a “brute fact”, since it is not 
preserved by any symmetries. 

For another example suppose that the temporally evolving (or spatially extended) 
system (Ω', {Pr'E'}E'⊆Ω') is a factor of the system (Ω, {PrE}E⊆Ω), via some factor map 
ψ, as described in Appendix A. For any event E' ⊆ Ω', let ψ–1(E') denote its inverse 
image under ψ (here defined as a subset of Ω). Then define E = {(ψ–1(E'), ψ–1(D')): 
E', D' ⊆ Ω'}. Let Γ be a monoid of spatiotemporal symmetries of the factor system 
(Ω', {Pr'E'}E'⊆Ω'). The elements of Γ might not be symmetries of the original system 
(Ω, {PrE}E⊆Ω). However, they will be partial symmetries, with respect to the set E. So 
(Γ, E) is a partial symmetry monoid for (Ω, {PrE}E⊆Ω). As already explained in 
Appendix A, one can greatly extend the scope of our framework by focusing attention 
on a factor system rather than the original system. We now see that this is a special 
case of the broader concept of a partial symmetry monoid. 

However, partial symmetry monoids cannot accommodate another feature of many 
systems. To illustrate this, consider a temporally evolving system where time is a 
finite sequence of integers, e.g., T = {1,2,...,100}. For such a system, time translations 
are not even well-defined.75 But in most such systems, we still want to say that the 
system obeys the same causal laws at all times, except perhaps at times 0 and 100. A 
similar problem arises in a spatially extended system where the space S is bounded 
(e.g., a partial differential equation defined on a cube, with specified boundary 
conditions) or a finite set of points (e.g., a cellular automaton defined on a 100 × 100 
grid, with specified boundary conditions). In such a system, spatial translations are 
not well-defined. But in most such systems, we still want to say that the system obeys 
the same causal laws everywhere in the “interior” of the spatial domain. 

To solve this problem, we now introduce “local” symmetries. We begin with some 
preliminary definitions. Let N be a subset of S × T; heuristically, this represents some 
“region” of space-time. Extending our earlier terminology, we say that an event 
E ⊆ Ω happens inside N if, for all histories h and h′ in Ω, if hN = h′N, then hN is in E if 
and only if h′N is in E. Let ΩN = {hN : h in Ω}; this is a collection of functions from N 
into X. Let N′ be another subset of S × T, and suppose γ is a function from N′ into N. 
For any hN in ΩN, we define γ(hN) to be the function h′N′ from N′ into X defined by 
h′N′ (n′) = hN[γ(n′)], for all n′ in N′. Note that h′N′ is not necessarily an element of ΩN′.  

We now define a local symmetry groupoid of a spatially extended system to be a 
combination of three components: 

• a collection N of subsets of S × T (called neighbourhoods); 

• for each neighbourhood N in N, a set EN of ordered pairs of events (E, D) 
which happen inside N (called local events); and 

• for each pair of neighbourhoods N and N′ in N, a collection ΓN,N′ of bijections 
from N′ into N (called local symmetries). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
75 For example, suppose we try to define ψ(t) = t+1 for all t in T; then ψ(100) is not well-defined, 
because 101 is not an element of T. 
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We refer to the collection {ΓN,N′ : N, N′ ∈ N} as a groupoid because it must satisfy two 
algebraic closure properties: 

• For all neighbourhoods M and N in N, and any local symmetries γ in ΓM,N, its 
inverse γ–1 is in ΓN,M. 

• For all neighbourhoods L, N, and M in N, and all local symmetries α in ΓL,M 
and β in ΓM,N, the composition α ° β is in ΓL,N. 

For any neighbourhoods N and N′ in N, and any γ in ΓN,N′, we call γ a local symmetry 
because it must preserve the modal and probabilistic structure of the system in the 
following sense: 

• For any h in ΩN, its image γ(h) is in ΩN′.  

• For all event pairs (E′,D′) in EN′, if E and D are the inverse images of E′ and D′ 
under γ, then (E,D) is in EN, and PrE[D] = PrE′[D′ ]. 

For example, suppose that S = {1,2,....,10} and T={1,2,...,100}. For any s in {2,...,9} 
and t in {2,...,99}, let Ns,t be the 3 × 2 “space-time rectangle” of the form Ns,t = 
{s−1, s, s+1} × {t , t+1}. Let N be the set of all such space-time rectangles. For any s 
and s′ in {2,...,9}, and any t and t′ in {2,...,99}, if N = Ns,t and N′ = Ns′,t′, then we 
define ΓN,N′ = {γs′,t′→s,t}, where γs′,t′→s,t is the function from N′ into N which sends each 
space-time point (s0, t0) in N′ to the point (s0 − s′ + s, t0 − t′ + t) in N. Then, with a 
suitable specification of the local event sets EN for all N in N, we could construct a 
local symmetry groupoid for many of the spatially extended systems (such as cellular 
automata) that one might define on S × T. However, a fully worked out example 
would be rather technically involved, and is beyond the scope of this paper; see 
Golubitsky, Pivato, and Stewart (2003) and Guay and Hepburn (2009).  

Most of the ideas we have developed in this paper for the monoid of “full” 
symmetries can be generalized to partial symmetries and local symmetries. However, 
this is also beyond the scope of this paper. 

Appendix C: Spatial distance in quantum mechanical systems 

In Section 3.9, we proposed a definition of the distance between two regions R and R′ 
in space, based on the minimum time duration required for a “signal” to travel from R 
to R′. As we have already observed, this definition is not entirely satisfactory in 
systems where signals can travel at arbitrarily high speeds (such as classical 
mechanics). This is particularly problematic in quantum mechanics, for two reasons. 

First, there is the well-known phenomenon of entanglement, where two particles, 
perhaps separated by a large spatial distance, can apparently correlate their behaviour. 
But in fact this is less of a problem than it first appears. Rather than interpreting 
entanglement as “spooky action at a distance”, we can interpret it as a sign that we 
have not correctly specified the space S for this spatially extended system. A three-
dimensional quantum system with n particles is not a collection of n wave functions 
on a three-dimensional space; rather, it should be viewed as a single wave function on 
a 3n-dimensional space. So we should define S = R3n. Even if two particles appear 



 57 

widely “separated” from our three-dimensional perspective, their joint location is 
described by a single “hump” of the wave function in a six-dimensional space.76 From 
this perspective, the entangled behaviour of the two particles does not appear as a 
non-local phenomenon.  

However, there is a more fundamental problem, which affects even a single-particle 
quantum system. Solutions to the Schrödinger equation on unbounded domains 
generally have full support: they give nonzero probability to every part of the space. 
This means, in effect, that the particle has a nonzero probability (albeit tiny) of 
“jumping” arbitrarily large distances through space.77 Thus, no two regions of space 
are ever unreachable from one another in any time duration, no matter how short, and 
so the distance between any two regions will be zero, according to the definition 
given in Section 3.9. 

To address this problem, we must introduce a slightly more nuanced version of 
“unreachability”. Let ε > 0 be some small “error tolerance”. Given three events E, F, 
and G in Ω, we say that E and G are ε-conditionally independent given F, if 
1–ε < PrF[E∩G] / PrF[E]⋅PrF[G] < 1+ε. In other words, the conditional probability 
PrF[E ∩G] is “almost” the same as the product PrF[E]⋅PrF[G], which means that E and 
G are “almost” conditionally independent, given F. If R and R′ are two regions of S, 
and t > t0, then we say that R′ is ε-unreachable from R in time t if, for any h in Ω, any 
event which happens in R′ at time t is ε-conditionally independent of any event which 
happens in R at time t0, given the event [hRC×{t0}]. If ε is small, this means that, with 
very high probability, a signal which originates in R at time t0 cannot reach R′ before 
time t. We then define the ε-distance between R and R′ to be the supremum of the set 
of all t such that R′ is ε-unreachable from R in time t (if this supremum exists). 

By using a small but non-zero ε, we can thus define a non-trivial notion of ε-distance 
between different regions of space, even in a quantum-mechanical system. This 
measure of distance will obviously depend on the value of ε, but it will roughly 
approximate the “classical” notion of distance. However, a detailed development of 
this approach is beyond the scope of this paper. 
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76 We are being slightly imprecise here; in quantum mechanics, particles do not even have precisely 
specified locations. 
77 Again, we are being somewhat imprecise in even ascribing a particular “location” to the particle. The 
Fourier transform of the wave function also has full support; this means that any velocity for the 
particle, no matter how large, has a tiny but non-zero probability of being realized. 


