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A Possibility Theorem on Aggregation Over Multiple Interconnected Propositions 
Christian List1 

forthcoming in Mathematical Social Sciences 
Abstract. Drawing on the so-called “doctrinal paradox”, List and Pettit (2002a) have shown that, given an 
unrestricted domain condition, there exists no procedure for aggregating individual sets of judgments over multiple 
interconnected propositions into corresponding collective ones, where the procedure satisfies some minimal 
conditions similar to the conditions of Arrow’s theorem. I prove that we can avoid the paradox and the associated 
impossibility result by introducing an appropriate domain restriction: a structure condition, called unidimensional 
alignment, is shown to open up a possibility result, similar in spirit to Black’s median voter theorem (1948). 
Specifically, I prove that, given unidimensional alignment, propositionwise majority voting is the unique procedure 
for aggregating individual sets of judgments into collective ones in accordance with the above mentioned minimal 
conditions. 
 

1. The Problem 
 

A new problem of aggregation has increasingly come to the attention of scholars in law, 
economics and philosophy. While social choice theory classically focuses on the aggregation of 
preference orderings or utility functions, the new problem concerns the aggregation of sets of 
judgments over multiple interconnected propositions. The propositions are interconnected in that 
the judgments on some of the propositions logically constrain the judgments on others. Interest in 
the new aggregation problem was first sparked by the identification of the so-called “doctrinal 
paradox” (Kornhauser & Sager 1986; Kornhauser 1992; Kornhauser & Sager 1993; Chapman 
1998; Brennan 2000; Pettit 2001).  

Suppose a three-member court has to decide whether a defendant is liable under a charge 
of breach of contract. Legal doctrine requires that the court should find that the defendant is liable 
(proposition R) if and only if it finds, first, that the defendant did some action X (proposition P), 
and, second, that the defendant had a contractual obligation not to do action X (proposition Q). 
Thus legal doctrine demands (R ↔ (P ∧ Q)). Suppose the judgments of the three judges are as in 
table 1. 
 

 P Q (R ↔ (P ∧ Q)) R 
Judge 1 Yes Yes Yes Yes 
Judge 2 Yes No Yes No 
Judge 3 No Yes Yes No 
Majority Yes Yes Yes No 

Table 1 
 
All judges accept (R ↔ (P ∧ Q)). Judge 1 accepts both P and Q and, by implication, R. 

Judges 2 and 3 each accept only one of P or Q and, by implication, they both reject R. If the court 
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++44/1865/278500; Fax …/278621; E-mail christian.list@nuf.ox.ac.uk. The author wishes to thank Philip Pettit for 
discussion, and Hervé Moulin and two anonymous reviewers for helpful comments and suggestions. [An earlier 
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applies majority voting on each of the four propositions P, Q, R, and (R ↔ (P ∧ Q)), it faces a 
paradoxical outcome. A majority accepts P, a majority accepts Q, a majority (unanimity) accepts 
(R ↔ (P ∧ Q)), and yet a majority rejects R. Propositionwise majority voting thus generates an 
inconsistent collective set of judgments, namely {P, Q, (R ↔ (P ∧ Q)), ¬R} (corresponding to 
the last row of table 1). This set is inconsistent in the standard sense of propositional logic: there 
exists no assignment of truth-values to P, Q and R that makes all the propositions in the set 
simultaneously true. Note that the sets of judgments of the individual judges (corresponding to 
the first three rows of table 1) are all consistent. The doctrinal paradox is related to Anscombe’s 
paradox, or Ostrogorski’s paradox (Anscombe 1976; Kelly 1989; Brams, Kilgour and Zwicker 
1997). Like the doctrinal paradox, these paradoxes are concerned with aggregation over multiple 
propositions. Unlike the doctrinal paradox, they do not explicitly incorporate logical connections 
between different propositions.2   

Just as Condorcet’s paradox of cyclical majority preferences can be associated with a 
more general impossibility result – Arrow’s theorem –, so the doctrinal paradox is illustrative of a 
more general result. As stated in more detail below, given an unrestricted domain condition, there 
exists no procedure for aggregating individual sets of judgments into collective ones, where the 
procedure satisfies some minimal conditions similar to Arrow's conditions (List and Pettit 2002a). 

In this paper, I prove that we can restrict the domain of admissible individual sets of 
judgments in such a way as to avoid the paradox and the associated impossibility result. If a 
profile of individual sets of judgments satisfies a structure condition called unidimensional 
alignment, then propositionwise majority voting will generate a consistent collective set of 
judgments. If the number of individuals is odd, that set will be the set of judgments of the median 
individual with respect to a suitably defined structuring ordering; if the number of individuals is 
even, the set will be the intersection of the sets of judgments of the median pair of individuals. 
Moreover, I provide a characterization result: given unidimensional alignment, propositionwise 
majority voting is the unique aggregation procedure satisfying the above mentioned minimal 
conditions.  

The condition of unidimensional alignment is similar in spirit to Black's condition of 
single-peakedness in the context of preference aggregation (Black 1948). Like single-peakedness, 
                                                           
2 “Premise-based” and “conclusion-based” decision procedures have been proposed as escape-routes from the 
doctrinal paradox (for example, Pettit 2001). On the premise-based procedure, majority voting is applied on each of 
P and Q (the “premises”), but not on R (the “conclusion”), and the rule (R ↔ (P ∧ Q)) is then used to determine the 
collective judgment on R, so that the majority verdict on R is ignored. Given table 1, this leads to the acceptance of 
R. On the conclusion-based procedure, majority voting is applied only on R, but not on P and Q, so that the majority 
verdicts on P and Q are ignored. Given table 1, this leads to the rejection of R. Thus the premise-based and 
conclusion-based procedures may produce divergent outcomes. It is easily seen that they each violate condition (S) 
below. Using the framework of the Condorcet jury theorem, Bovens and Rabinowicz (2001) have compared the 
performance of the two procedures in terms of “tracking the truth” on R – where there is such a truth to be tracked. 
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it is a simple condition that lends itself to an interpretation in terms of ‘onedimensionality’, as I 
will suggest. However, the simplicity of the condition, like that of single-peakedness, comes at a 
price. From a logical point of view, the condition is too restrictive: it is only sufficient but not 
necessary for avoiding the relevant paradox and the associated impossibility result. But I show 
that a version of the presented characterization result on propositionwise majority voting holds 
for any domain restriction condition where (i) the condition is less restrictive than unidimensional 
alignment (i.e. it corresponds to a domain that is a superset of the unidimensional alignment 
domain) and (ii) the condition also provides an escape-route from the paradox and associated 
impossibility result.  
 
2. The Framework 
 

Let N = {1, 2, ..., n} be a set of individuals (n≥2). Let X be a set of propositions from the 
propositional calculus, interpreted as those propositions on which judgments are to be made. The 
set X includes atomic propositions, such as P, Q and R, and compound propositions, such as  
(R ↔ (P ∧ Q)) or (P ↔ ¬Q). To make the problem non-trivial, we assume that X contains at least 
two distinct atomic propositions, P and Q, and their conjunction, (P∧Q).3 Moreover, we assume 
that X contains proposition-negation pairs: we assume that, for every φ∈X, we also have ¬φ∈X. 
For simplicity, for every φ∈X, we identify ¬¬φ with φ. 

For each i∈N, individual i’s set of judgments is a subset Φi ⊆ X. Then φ∈Φi means 
"individual i accepts φ". A profile of individual sets of judgments is an n-tuple {Φi}i∈N =  
{Φ1, Φ2, …, Φn}. An aggregation function is a function F whose input is a profile of individual 
sets of judgments and whose output is a collective set of judgments Φ ⊆ X. Here φ∈Φ means "the 
group N accepts φ". We use D to denote the domain of F. Below we consider different domain 
conditions. We define propositionwise majority voting (as in the doctrinal paradox) to be the 
following aggregation function on some domain D: for each {Φi}i∈N∈D, F({Φi}i∈N) :=  
{φ∈X : |{i∈N : φ∈Φi}|>n/2}. 
 An (individual or collective) set of judgments Φ ⊆ X is complete if, for all φ∈X, at least 
one of φ∈Φ or ¬φ∈Φ holds. The set Φ is consistent if, for all φ∈X, at most one of φ∈Φ or ¬φ∈Φ 
holds. The set Φ is deductively closed if, for all ϕ∈X, if Φ logically entails ϕ, then ϕ∈Φ. Let U be 
the set of all logically possible profiles of complete, consistent and deductively closed individual 
sets of judgments.  

                                                           
3 The use of conjunction (∧) here is not essential, and the use of other logical connectives would yield a similar 
result. Particularly, as the set of connectives {¬, ∧} is expressively adequate, any logically possible proposition of 
the propositional calculus can be expressed as a proposition using ¬ and ∧ as the only connectives. 
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List and Pettit (2002a) use the following minimal conditions on an aggregation function 
F: 
 
UNRESTRICTED DOMAIN (U). The domain of F is D = U. 
 
ANONYMITY (A). For any {Φi}i∈N∈D and any permutation σ : N → N, F({Φi}i∈N) = F({Φσ(i)}i∈N). 
 
SYSTEMATICITY (S). There exists a function f : {0, 1}n → {0, 1} such that, for any {Φi}i∈N∈D, 
F({Φi}i∈N) = {φ∈X : f(δ1(φ), δ2(φ), ..., δn(φ)) = 1}, where, for each i∈N and each φ∈X, δi(φ) = 1 if 
φ∈Φi and δi(φ) = 0 if φ∉Φi. 
 
 Conditions (U) and (A) have direct counterparts in standard social choice theory. 
Condition (U) requires that F should accept as admissible input any logically possible profile of 
individual sets of judgments, where the individual sets of judgments satisfy completeness, 
consistency and deductive closure. Condition (A) requires that F be invariant under permutations 
of the individuals, thereby giving all individuals formally equal weight in the aggregation. 
Condition (S) is closest to a combination of independence of irrelevant alternatives and neutrality. 
It requires that (i) the collective judgment on each proposition should depend exclusively on the 
pattern of individual judgments on that proposition (the “independence” part) and (ii) the same 
pattern of dependence should hold for all propositions (the “neutrality” part).4 Condition (S) is 
demanding in so far as we might sometimes wish to treat different kinds of propositions 
differently, e.g. to treat ‘premises’ and ‘conclusions’ differently.5 Nonetheless, propositionwise 
majority voting, which has some prima facie plausibility as an aggregation function, satisfies all 
of (U), (A) and (S), but the doctrinal paradox shows that it may fail to generate complete, 
consistent and deductively closed collective sets of judgments.  
 
Theorem 1. (List and Pettit 2002a) There exists no aggregation function F (generating complete, 
consistent and deductively closed collective sets of judgments) which satisfies (U), (A) and (S).  
 

                                                           
4 It can be shown that, when the present framework is extended in such a way that X contains pairwise ranking 
propositions of the form xPy (from the predicate calculus), then condition (S) entails that (i) each collective pairwise 
ranking judgment depends exclusively on the pattern of individual ranking judgments over the same pair of 
alternatives and (ii) the same pattern of dependence holds for all pairwise ranking judgments. Here part (i) is 
precisely Arrow’s condition of independence of irrelevant alternatives. But while independence of irrelevant 
alternatives still allows different pairs of alternatives to be treated differently (so long as their collective pairwise 
rankings depend only on the corresponding individual pairwise rankings and not on rankings involving third 
alternatives), part (ii) here disallows such differential treatment. Thus condition (S) entails the conjunction of 
independence of irrelevant alternatives and neutrality, a condition that is sometimes called independence of non-
welfare characteristics in Arrowian social choice theory. Independence of non-welfare characteristics entails, but is 
not entailed by, independence of irrelevant alternatives. See List and Pettit (2002b). 
5 See note 2 above.  
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3. The Result 
 

To define unidimensional alignment, a few preliminary definitions are due. Fix a profile 
of individual sets of judgments {Φi}i∈N. For each φ∈X, define Naccept-φ := {i∈N : φ∈Φi} and  
Nreject-φ := {i∈N : φ∉Φi}. Further, given any linear ordering Ω on N and any N1, N2 ⊆ N, we write 
N1 Ω N2 as an abbreviation for [for all i∈N1 and all j∈N2, iΩj].  

A profile of individual sets of judgments, {Φi}i∈N, satisfies unidimensional alignment if 
there exists a linear ordering Ω on N such that 

for every φ∈X, either Naccept-φ Ω Nreject-φ or Nreject-φ Ω Naccept-φ.6  
An ordering Ω with this property will be called a structuring ordering of N for {Φi}i∈N. If n is 
odd, then we say that individual m∈N is the median individual with respect to Ω if |{i∈N : iΩm}| 
= |{i∈N : mΩi}|. If n is even, there exists no median individual under this definition. We then say 
that individuals m1, m2∈N are the median pair of individuals with respect to Ω if (i) m1Ωm2, (ii) 
there exists no i∈N such that m1Ωi and iΩm2, and (iii) |{i∈N : iΩm1}| = |{i∈N : m2Ωi}|. 

Informally, a profile of individual sets of judgments satisfies unidimensional alignment if 
the individuals can be ordered from left to right such that, for every proposition φ∈X, the 
individuals accepting φ are either all to the left, or all the right, of those rejecting φ. 
 

 Individual 3 Individual 2 Individual 5 Individual 4 Individual 1 
P No No No Yes Yes 
Q Yes Yes No No No 
R Yes No No No No 

(R ↔ (P ∧ Q)) No Yes Yes Yes Yes 
Table 2 

The profile in table 2 satisfies unidimensional alignment, whereas the profile in table 1 
violates the condition. Let UAD be the set of all logically possible profiles of complete, 
consistent and deductively closed individual sets of judgments satisfying unidimensional 
alignment. 
 
UNIDIMENSIONAL ALIGNMENT DOMAIN (UAD). The domain of F is D = UAD. 
 
Proposition 1. Let F be propositionwise majority voting. For any {Φi}i∈N∈UAD, the following 
holds: 
• If n is odd, F({Φi}i∈N) = Φm, where m is the median individual with respect to a structuring 

ordering of N for {Φi}i∈N . 
• If n is even, F({Φi}i∈N) = Φm1∩Φm2, where m1 and m2 are the median pair of individuals with 

respect to a structuring ordering of N for {Φi}i∈N. 
 
                                                           
6 Note that this permits Naccept−φ = Ø or Nreject-φ = Ø. 
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The proof is given in the appendix. Proposition 1 can be summarized as follows. Given a 
profile of individual sets of judgments that satisfies unidimensional alignment, order the 
individuals along a structuring ordering. Consider first the case in which n is odd. Then the set of 
judgments of the median individual with respect to the structuring ordering will be accepted in 
propositionwise majority voting (in the case of table 2, the judgments of individual 5). The reason 
is that, by unidimensional alignment, the median individual shares the majority judgment on each 
proposition. More precisely, the condition of unidimensional alignment implies that, for each 
proposition φ∈X, a majority of individuals (i.e. at least (n+1)/2) accepts φ if and only if the 
median individual accepts φ. It follows immediately that, provided that the set of judgments of 
the median individual satisfies completeness, consistency and deductive closure, so will the 
resulting collective set. Consider next the case in which n is even. The situation is very similar to 
the previous case, although there exists no single median individual. This time the intersection of 
the sets of judgments of the median pair of individuals will be accepted in propositionwise 
majority voting. Here a majority of individuals (i.e. at least n/2+1) accepts a proposition φ if and 
only if both members of the median pair accept φ. It is easy to check that the intersection of two 
consistent and deductively closed individual sets of judgments is also consistent and deductively 
closed. Hence, provided that the sets of judgments of the median pair of individuals satisfy 
consistency and deductive closure, so will the collective set. But there is one complication. The 
median pair of individuals may not agree on φ, and as a result there may be some propositions 
φ∈X such that neither φ nor ¬φ is contained in the intersection of the sets of judgments of the 
median pair. The collective set of judgments may thus violate completeness.  
 However, the next theorem implies that such violations of completeness occur only in one 
special situation – and, moreover, in the intuitively ‘right’ kind of situation, namely when φ and 
¬φ are supported by an equal number of individuals, i.e. when φ and ¬φ are tied in majority 
voting.  

We say that a set of judgments Φ ⊆ X is almost complete if, for all φ∈X,  
|Naccept-φ| ≠ |Nreject-φ| implies that at least one of φ∈Φ or ¬φ∈Φ holds. When n is odd, we can never 
have |Naccept-φ| = |Nreject-φ|, and hence the notions of completeness and almost completeness 
coincide. When n is even, on the other hand, the two notions are distinct: completeness implies 
almost completeness, but not vice-versa.7 

                                                           
7 Suppose n is even. An almost complete set of judgments that satisfies consistency and deductively closure can 
always be extended to a complete set of judgments that also satisfies consistency and deductive closure. For example, 
if the collective set of judgments Φ is Φm1

∩Φm2
, where Φm1

 and Φm2
 are the sets of judgments of the median pair of 

individuals, then each of Φm1
 and Φm2

 is a complete, consistent and deductively closed extension of Φ. So, when 
there are ties as a result of a disagreement between the median pair of individuals, the ties can be broken by 
consistently taking sides with either individual m1 or individual m2. However, if we add such a tie-breaking rule to 
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Theorem 2. Let F be an aggregation function satisfying (UAD). Then 
(i) F generates almost complete, consistent and deductively closed collective sets of 

judgments and satisfies (A) and (S) 
if and only if  
(ii) F is propositionwise majority voting.  

 
The proof is also given in the appendix. Theorem 2 implies not only that propositionwise 

majority voting is an aggregation function (generating almost complete, consistent and 
deductively closed collective sets of judgments) which satisfies (UAD), (A) and (S), but also that 
propositionwise majority voting is the unique such aggregation function.8  

Moreover, the proof of theorem 2 in the appendix (specifically, the proof of “(i) implies 
(ii)”) establishes a more general result:  

 
Proposition 2. Let F be an aggregation function on some domain D satisfying UAD ⊆ D ⊆ U. If, 
on the domain D, F generates almost complete, consistent and deductively closed collective sets 
of judgments and satisfies (A) and (S), then F is propositionwise majority voting. 
 

Proposition 2 has some useful implications. For instance, if D is the maximal subset of U 
on which propositionwise majority voting generates almost complete, consistent and deductively 
closed collective sets of judgments, then propositionwise majority voting is also the unique such 
aggregation function on D satisfying (A) and (S).9 Further, although we cannot currently give an 
easily definable less demanding domain restriction condition than (UAD), there is already 

                                                                                                                                                                                            
our definition of propositionwise majority voting, the resulting aggregation function F violates condition (S). But F 
still satisfies a slightly weakened version of systematicity. We say that F is almost systematic if there exists a 
function f : {0, 1}n → {0, 1} such that, for any {Φi}i∈N in the domain of F, for all φ∈X with |Naccept-φ| ≠ |Nreject-φ|, 
φ∈F({Φi}i∈N) if and only if f(δ1(φ), δ2(φ), ..., δn(φ)) = 1, where, for each i∈N and each φ∈X, δi(φ) = 1 if φ∈Φi and δi(φ) 
= 0 if φ∉Φi. 
8 Since propositionwise majority voting on the domain UAD selects the set of judgments of the median individual (or 
the intersection of the sets of judgments of the median pair), a natural generalization of this aggregation rule on UAD 
seems to be a generalized median voter rule (with parameter k∈N) which selects, for each {Φi}i∈N∈UAD, the set of 
judgments of the kth

 individual with respect to a structuring ordering of N for {Φi}i∈N. However, there are at least two 
problems with the class of generalized median voter rules. The first problem is that, for each {Φi}i∈N∈UAD, the 
corresponding structuring ordering is unique at most up to reversal of the ordering: if Ω is a structuring ordering for 
{Φi}i∈N, then so is Ω∗, where, for all i, j∈N, iΩ∗j if and only if jΩi. To make a generalized median voter rule well-
defined, we must select one of Ω or Ω∗. But if we make this selection on the basis of, for instance, which of the two 
orderings ranks a lower-numbered individual in N left-most (or right-most), then the resulting rule will violate 
condition (A). The second problem is that, in conjunction with condition (A), generalized median voter rules may 
violate condition (S). For example, in table 2 above, if we consider a generalized median voter rule which selects the 
set of judgments of the 2nd individual (from left) with respect to the structuring ordering, then Q will be accepted and 
P will be rejected. By conditions (S) and (A), however, the collective judgments on P and Q must coincide. I am 
grateful to an anonymous reviewer for drawing my attention to the class of generalized median voter rules. 
9 Formally, D := {{Φi}i∈N∈U : F({Φi}i∈N) is almost complete, consistent and deductively closed}, where F is 
propositionwise majority voting. We know that UAD ⊆ D. In the general case, UAD ≠ D. 
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something we know about such a condition: whatever the condition is, so long as it permits the 
existence of aggregation functions (generating almost complete, consistent and deductively 
closed collective sets of judgments) which satisfy (A) and (S), then propositionwise majority 
voting is the unique such aggregation function.  

One simple generalization of unidimensional alignment is this. Suppose the set of 
propositions X can be partitioned into disjoint non-empty subsets X1, X2, …, Xr such that the 
propositions in distinct subsets have no atomic propositions in common.10 This implies that the 
propositions in distinct subsets are logically independent from each other. We now say that a 
profile {Φi}i∈N satisfies generalized unidimensional alignment if, for each s∈{1, 2, …, r}, the 
profile {Φi}i∈N restricted to Xs – i.e. {Φi∩Xs}i∈N – satisfies unidimensional alignment. It can 
easily be checked that propositionwise majority voting generates almost complete, consistent and 
deductively closed collective sets of judgments for profiles satisfying generalized unidimensional 
alignment. 

 
4. Concluding Remarks 

 
The condition of unidimensional alignment is similar in spirit to Black's condition of 

single-peakedness (Black 1948). Each of these two conditions is sufficient but not necessary for 
avoiding the relevant paradox and associated impossibility result. From a logical perspective, 
both may therefore seem unnecessarily restrictive, but, in compensation, they are both simple and 
easily interpretable. An attractive feature of Black’s condition is that it has a natural interpretation 
in terms of ‘onedimensionality’: if the individuals agree on a left/right dimension along which 
policy options are aligned, then their preference orderings may satisfy single-peakedness with 
respect to that dimension.  

Is unidimensional alignment just an artificial condition, or can we also interpret it 
plausibly in terms of onedimensionality? Suppose (i) the individuals disagree on what set of 
judgments to endorse, but they agree on a single left/right dimension (such as from “most liberal” 
to “most conservative”) that characterizes the range of their disagreement; in particular, suppose 
that each individual takes a certain position on that dimension. And suppose (ii), for each 
proposition, the extreme positions on the left/right dimension correspond to either clear 
acceptance or clear rejection of the proposition and there exists an 'acceptance threshold' on the 
dimension (possibly different for different propositions) such that all the individuals to the left of 
the threshold accept the proposition and all the individuals to its right reject it (or vice-versa). For 

                                                           
10 Such partitions may not exist for all sets of propositions X. For example, if X contains a finite number of atomic 
propositions and there exists a compound proposition in X that includes all these atomic propositions, then the 
required partition will not exist. Also, if X is a complete Boolean algebra, the required partition will not exist. 
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example, in a political context, all individuals to the left of some threshold might be in favour of a 
certain binary “free trade” proposition while all individuals to its right might be against it. 
Conditions (i) and (ii) entail unidimensional alignment. In other words, agreement on a 
dimension can induce unidimensional alignment.  

This suggests that, if the individuals reach agreement on a dimension, the doctrinal 
paradox and the associated impossibility result can be avoided; and, in analogy with Black’s 
famous result, the output of the aggregation will then be the median individual’s input (if the 
number of individuals is odd) or the intersection of the median pair’s inputs (if the number of 
individuals is even). A challenge for further work will be to find a domain restriction condition 
that is less restrictive than (UAD) but still sufficient for the avoidance of the “doctrinal paradox”, 
and yet easy to define and interpret. But, as we have seen, whatever domain such a condition will 
describe, propositionwise majority will be the unique aggregation procedure on that domain 
which generates almost complete, consistent and deductively closed collective sets of judgments 
and satisfies conditions (A) and (S).  
 
Appendix: Proofs 
 
Proof of proposition 1.  

 
Let F be propositionwise majority voting. Let {Φi}i∈N∈UAD. Then F({Φi}i∈N) =  

{φ∈X : |Naccept-φ|>n/2}. Let Ω be a structuring ordering of N for {Φi}i∈N. If n is even, let m1 and m2 
be the median pair of individuals with respect to Ω. If n is odd, let m1=m2:=m be the median 
individual with respect to Ω. We show that, for any φ∈X, φ∈F({Φi}i∈N) if and only if φ∈ 
Φm1∩Φm2, which implies that F({Φi}i∈N)=Φm1∩Φm2. Note that this implies the desired result both 
for n even and for n odd, because if n is odd we have Φm1∩Φm2=Φm under the present definitions.  

Take any φ∈X. Suppose φ∈Φm1∩Φm2. Then m1, m2∈Naccept-φ. But since [Naccept-φ Ω Nreject-φ 

or Nreject-φ Ω Naccept-φ], we must have either [for every i∈N, if iΩm1 then i∈Naccept-φ] or [for every 
i∈N, if m2Ωi then i∈Naccept-φ]. Hence either |Naccept-φ| ≥ |{m1, m2}|+|{i∈N : iΩm1}| or |Naccept-φ| ≥ 

|{m1, m2}|+|{i∈N : m2Ωi}. Note that |{m1, m2}| = 1 if n is odd and |{m1, m2}| = 2 if n is even. But, 
by the definition of m1 and m2 (as the median individual or pair with respect to Ω), we have  

 
     (n-1)/2  if n is odd  

|{i∈N : iΩm1}| = |{i∈N : m2Ωi}| = { 
     (n-2)/2 if n is even, 

and hence |Naccept-φ| > n/2. Therefore φ∈F({Φi}i∈N).  
Conversely, suppose φ∈F({Φi}i∈N). Then |Naccept-φ|>n/2. Assume, for a contradiction, that 

φ∉Φm1∩Φm2. Then m1∉Naccept-φ or m2∉Naccept-φ (or both). Without loss of generality, assume 
m1∉Naccept-φ (the case m2∉Naccept-φ is perfectly analogous). Then m1∈Nreject-φ. We must then have 
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either [for every i∈N, if m1Ωi then i∈Nreject-φ] or [for every i∈N, if iΩm1 then i∈Nreject-φ], since 
[Naccept-φ Ω Nreject-φ or Nreject-φ Ω Naccept-φ] by unidimensional alignment. But then either |Nreject-φ| ≥ 

1+|{i∈N : m1Ωi}| ≥ 1+|{i∈N : m2Ωi}| or |Nreject-φ| ≥ 1+|{i∈N : iΩm1}|. If n is odd, then this means 
|Nreject-φ| ≥ 1+(n-1)/2 > n/2. If n is even, then this means |Nreject-φ| ≥ 1+(n-2)/2 = n/2. In both cases, 
|Nreject-φ| ≥ n/2, which contradicts |Naccept-φ|>n/2. Therefore φ∈Φm1∩Φm2. We conclude that 
F({Φi}i∈N) = Φm1∩Φm2, as required. ■ 
 
Proof of theorem 2.  
 

(ii) implies (i). Suppose we have (ii), i.e. F is propositionwise majority voting, defined on 
D = UAD. It is easy to check that F satisfies (A) and (S). We need to show that, for every 
{Φi}i∈N∈D, F generates an almost complete, consistent and deductively closed collective set of 
judgments. Let {Φi}i∈N∈D = UAD. Let Ω be a structuring ordering of N for {Φi}i∈N. Consider 
two cases: n is odd, and n is even. If n is odd, by proposition 1, F({Φi}i∈N) = Φm, where m is the 
median individual with respect to Ω. But, by assumption, Φm is complete, consistent and 
deductively closed. It follows that F({Φi}i∈N) is also complete (and by implication almost 
complete), consistent and deductively closed. If n is even, by proposition 1, F({Φi}i∈N) = 
Φm1∩Φm2, where m1 and m2 are the median pair of individuals with respect to Ω. Again, each of 
Φm1 and Φm2 is complete, consistent and deductively closed. It is easy to check that the 
intersection of two consistent and deductively closed individual sets of judgments is also 
consistent and deductively closed, and hence it follows that F({Φi}i∈N) is consistent and 
deductively closed. To show that F({Φi}i∈N) is almost complete, assume, for a contradiction, that 
there exists φ∈X with |Naccept-φ| ≠ |Nreject-φ| such that φ∉F({Φi}i∈N) and ¬φ∉F({Φi}i∈N). This 
means that φ∉Φm1∩Φm2 and ¬φ∉Φm1∩Φm2. Since each of Φm1 and Φm2 is complete and 
consistent, must have either [φ∈Φm1 and φ∉Φm2] or [φ∉Φm1 and φ∈Φm2], i.e. either [m1∈Naccept-φ 
and m2∈Nreject-φ] or [m1∈Nreject-φ and m2∈Naccept-φ]. But since m1 and m2 are the median pair of 
individuals with respect to Ω and we have [Naccept-φ Ω Nreject-φ or Nreject-φ Ω Naccept-φ] (by 
unidimensional alignment), we must have |Naccept-φ| = |Nreject-φ| = n/2, a contradiction. Hence 
F({Φi}i∈N) is almost complete. We conclude that (i) holds, as required. 

(i) implies (ii). For this part of the proof, it is sufficient to assume that the domain D of F 
satisfies UAD ⊆ D ⊆ U. This assumption holds in particular when D = UAD, as assumed in 
theorem 2. Suppose we have (i), i.e. F generates almost complete, consistent and deductively 
closed collective sets of judgments and satisfies (A) and (S). The structure of the proof is as 
follows. We prove the following three claims. 

Claim 1. There exists a function g : {0, 1, …, n} → {0, 1} such that, for any {Φi}i∈N∈D, 
F({Φi}i∈N) = {φ∈X : g(|Naccept-φ|) = 1}.  
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Claim 2. For any k∈{0, 1, …, n}, 
       1  if k≠n/2 
g(k) + g(n-k) = {  

0 if k=n/2. 
Claim 3. For any k, l∈{0, 1, …, n}, k < l implies g(k) ≤ g(l). 

To prove that F is propositionwise majority voting, by claim 1 it is sufficient to prove that, for all 
{Φi}i∈N∈D and all φ∈X, g(|Naccept-φ|) = 1 if and only if |Naccept-φ| > n/2, i.e. if and only if, for all 
k∈{0, 1, …, n}, f(k) = 1 if and only if k > n/2. Suppose k > n/2. Assume, for a contradiction, that 
g(k) = 0. By claim 2, f(n-k) = 1. But since k > n/2, we have n-k < k, and then g(n-k) = 1 > g(k) = 0 
contradicts claim 3. Hence g(k) = 1. Suppose k ≤ n/2. If k=n/2, then by claim 2, g(k)=0. If k < n/2, 
then n-k > n/2. We have already shown that n-k > n/2 implies g(n-k) = 1. Since g(n-k) + g(k) = 1, 
by claim 2, we must have g(k)=0. Hence (ii) holds, as required. 

Proof of claim 1. Since F satisfies (S), there exists a function f : {0, 1}n → {0, 1} such 
that, for any {Φi}i∈N∈D, F({Φi}i∈N) = {φ∈X : f(δ1(φ), δ2(φ), ..., δn(φ)) = 1}, where, for each i∈N 
and each φ∈X, δi(φ) = 1 if φ∈Φi and δi(φ) = 0 if φ∉Φi. Now define g : {0, 1, …, n} → {0, 1} as 
follows. For each k∈{0, 1, …, n}, let g(k) := f(d1, d2, ..., dn) where di := 1 for i≤k and di := 0 for 
i>k. Since F satisfies (A) in addition to (S), for any (d1, d2, ..., dn) ∈ {0, 1}n and any permutation 
σ: N → N, we have f(d1, d2, ..., dn) = f(dσ(1), dσ(2), ..., dσ(n)). Therefore, for any  
(d1, d2, ..., dn), (e1, e2, ..., en)∈{0, 1}n, if |{i ∈ N : di = 1}| = |{i ∈ N : ei = 1}| then f(d1, d2, ..., dn) = 
f(e1, e2, ..., en). This implies that, for any (e1, e2, ..., en) ∈{0, 1}n, f(e1, e2, ..., en) = f(d1, d2, ..., dn) 
where di := 1 for i≤|{i ∈ N : ei = 1}| and di := 0 for i>|{i ∈ N : ei = 1}|, and thus f(e1, e2, ..., en) = 
g(|{i ∈ N : ei = 1}|). Hence, for any {Φi}i∈N∈D, F({Φi}i∈N) = {φ∈X : f(δ1(φ), δ2(φ), ..., δn(φ)) = 1} 

= {φ∈X : g(|Naccept-φ|) = 1}, as required. 
Proof of claim 2. Let k∈{0, 1, …, n}. Consider {Φi}i∈N∈D and φ∈X such that |Naccept-φ| = 

k. Since we can construct a profile {Φi}i∈N with this property in UAD, the required {Φi}i∈N exists 
in D (⊇UAD). Since, by assumption, each Φi in {Φi}i∈N is complete and consistent, we have 
Naccept-¬φ = N \ Naccept-φ, and thus |Naccept-¬φ| = n-k. By claim 1, φ∈F({Φi}i∈N) if and only if 
g(|Naccept-φ|) = 1; and ¬φ∈F({Φi}i∈N) if and only if g(|Naccept-¬φ|) = 1. Since F generates consistent 
collective sets of judgments, we have not both φ∈F({Φi}i∈N) and ¬φ∈F({Φi}i∈N), and thus g(k) + 
g(n-k) ≤ 1. First consider the case k≠n/2. Since F generates almost complete collective sets of 
judgments and k≠n/2, at least one of φ∈F({Φi}i∈N) or ¬φ∈F({Φi}i∈N) holds, and thus g(k)+g(n-k) 
> 0. Therefore g(k) + g(n-k) = 1. Second consider the case k=n/2. Then n-k=n/2, and g(k) = g(n-k). 
Since g(k) + g(n-k) ≤ 1, we have 2g(k) ≤ 1. Therefore g(k) = 0, as required. 

Proof of claim 3. Assume, for a contradiction, that there exist k, l∈{0, 1, …, n} such k < l 
and g(k) > g(l), i.e. g(k) = 1 and g(l) = 0. Construct a profile of complete, consistent and 
deductively closed individual sets of judgments, {Φi}i∈N , as shown in table 3.  
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 Ind. 1 Ind. 2 ... Ind. k Ind. k+1 ... Ind. l Ind. l+1 ... Ind. n 
P Yes Yes ... Yes No ... No No No No 
Q Yes Yes ... Yes Yes ... Yes No No No 

(P ∧ Q) Yes Yes ... Yes No ... No No No No 

Table 3 
 
Note that {Φi}i∈N satisfies unidimensional alignment and thus {Φi}i∈N∈UAD ⊆ D. By claim 1, 
for every φ∈X, φ∈F({Φi}i∈N) if and only if g(|Naccept-φ|) = 1. Since |Naccept-P| = |Naccept-(P∧Q)| = k and 
g(k) = 1, we have P, (P ∧ Q)∈F({Φi}i∈N). Since, by assumption, F({Φi}i∈N) is deductively closed, 
we must also have Q∈F({Φi}i∈N). However, |Naccept-Q| = l and g(l) = 0, which implies 
Q∉F({Φi}i∈N), a contradiction. Therefore, for any k, l∈{0, 1, …, n}, k < l implies g(k) ≤ g(l), as 
required. ■ 
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