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Social Choice Theory 
Christian List 

 
Social choice theory is the study of collective decision procedures. It is not a single 
theory, but a cluster of models and results concerning the aggregation of individual 
inputs (e.g., votes, preferences, judgments, welfare) into collective outputs (e.g., 
collective decisions, preferences, judgments, welfare). Central questions are: How can 
a group of individuals choose a winning outcome (e.g., policy, electoral candidate) 
from a given set of options? What are the properties of different voting systems? 
When is a voting system democratic? How can a collective (e.g., electorate, 
legislature, collegial court, expert panel, or committee) arrive at coherent collective 
preferences or judgments on some issues, on the basis of its members’ individual 
preferences or judgments? How can we rank different social alternatives in an order 
of social welfare? Social choice theorists study these questions not just by looking at 
examples, but by developing general models and proving theorems. 
 
Pioneered in the 18th century by Nicolas de Condorcet and Jean-Charles de Borda 
and in the 19th century by Charles Dodgson (also known as Lewis Carroll), social 
choice theory took off in the 20th century with the works of Kenneth Arrow, Amartya 
Sen, and Duncan Black. Its influence extends across economics, political science, 
philosophy, mathematics, and recently computer science and biology. Apart from 
contributing to our understanding of collective decision procedures, social choice 
theory has applications in the areas of institutional design, welfare economics, and 
social epistemology. 
 
1. History of social choice theory 
 
1.1 Condorcet 
 
The two scholars most often associated with the development of social choice theory 
are the Frenchman Nicolas de Condorcet (1743-1794) and the American Kenneth 
Arrow (born 1921). Condorcet was a liberal thinker in the era of the French 
Revolution who was pursued by the revolutionary authorities for criticizing them. 
After a period of hiding, he was eventually arrested (though apparently not 
immediately identified), and died in prison (for more details on Condorcet, see 
McLean and Hewitt 1994). In his Essay on the Application of Analysis to the 
Probability of Majority Decisions (1785), he advocated a particular voting system, 
pairwise majority voting, and presented his two most prominent insights. The first, 
known as Condorcet’s jury theorem, is that if each member of a jury has an equal and 
independent chance better than random, but worse than perfect, of making a correct 
judgment on whether a defendant is guilty (or on some other factual proposition), the 
majority of jurors is more likely to be correct than each individual juror, and the 
probability of a correct majority judgment approaches 1 as the jury size increases. 
Thus, under certain conditions, majority rule is good at ‘tracking the truth’ (e.g., 
Grofman, Owen, and Feld 1983; List and Goodin 2001). 
 
Condorcet’s second insight, often called Condorcet’s paradox, is the observation that 
majority preferences can be ‘irrational’ (specifically, intransitive) even when 
individual preferences are ‘rational’ (specifically, transitive). Suppose, for example, 
that one third of a group prefers alternative x to y to z, a second third prefers y to z to 
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x, and a final third prefers z to x to y. Then there are majorities (of two thirds) for x 
against y, for y against z, and for z against x: a ‘cycle’, which violates transitivity. 
Furthermore, no alternative is a Condorcet winner, an alternative that beats, or at least 
ties with, every other alternative in pairwise majority contests. 
 
Condorcet anticipated a key theme of modern social choice theory: majority rule is at 
once a plausible method of collective decision making and yet subject to some 
surprising problems. Resolving or bypassing these problems remains one of social 
choice theory’s core concerns. 
 
1.2 Arrow and his influence 
 
While Condorcet had investigated a particular voting method (majority voting), 
Arrow, who won the Nobel Memorial Prize in Economics in 1972, introduced a 
general approach to the study of preference aggregation, partly inspired by his teacher 
of logic Alfred Tarski (1901-1983) from whom he had learnt relation theory as an 
undergraduate at the City College of New York (Suppes 2005). Arrow considered a 
class of possible aggregation methods, which he called social welfare functions, and 
asked which of them satisfy certain axioms or desiderata. He proved that, 
surprisingly, there exists no method for aggregating the preferences of two or more 
individuals over three or more alternatives into collective preferences, where this 
method satisfies five seemingly plausible axioms, discussed below. 
 
This result, known as Arrow’s impossibility theorem, prompted much work and many 
debates in social choice theory and welfare economics. William Riker (1920-1993), 
who inspired the Rochester school in political science, interpreted it as a mathematical 
proof of the impossibility of populist democracy (e.g., Riker 1982). Others, most 
prominently Amartya Sen (born 1933), who won the 1998 Nobel Memorial Prize, 
took it to show that ordinal preferences are insufficient for making satisfactory social 
choices. Commentators also questioned whether Arrow’s desiderata on an 
aggregation method are as innocuous as claimed or whether they should be relaxed.  
 
The lessons from Arrow’s theorem depend, in part, on how we interpret an Arrovian 
social welfare function. The use of ordinal preferences as the ‘aggregenda’ may be 
easier to justify if we interpret the aggregation rule as a voting method than if we 
interpret it as a welfare evaluation method. Sen argued that, in the latter case (where a 
social planner seeks to rank different social alternatives in an order of social welfare), 
it may be justifiable to use additional information over and above ordinal preferences, 
such as interpersonally comparable welfare measurements (e.g., Sen 1982).  
 
Arrow himself held the view ‘that interpersonal comparison of utilities has no 
meaning and … that there is no meaning relevant to welfare comparisons in the 
measurability of individual utility’ (1951/1963, p. 9). This view was influenced by 
neoclassical economics, associated with scholars such as Vilfredo Pareto (1848-
1923), Lionel Robbins (1898-1984), John Hicks (1904-1989), co-winner of the 
Economics Nobel Prize with Arrow, and Paul Samuelson (1915-2009), another Nobel 
Laureate. Arrow’s theorem demonstrates the implications of the ‘ordinalist’ 
assumptions of neoclassical thought.  
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Nowadays most social choice theorists have moved beyond the early negative 
interpretations of Arrow’s theorem and are interested in the trade-offs involved in 
finding satisfactory decision procedures. Sen has promoted this ‘possibilist’ 
interpretation of social choice theory (e.g., in his 1998 Nobel lecture).  
 
Within this approach, Arrow’s axiomatic method is perhaps even more influential 
than his impossibility theorem (on the axiomatic method, see Thomson 2000). The 
paradigmatic kind of result in contemporary axiomatic work is the ‘characterization 
theorem’. Here the aim is to identify a set of plausible necessary and sufficient 
conditions that uniquely characterize a particular solution (or class of solutions) to a 
given type of collective decision problem. An early example is Kenneth May’s (1952) 
characterization of majority rule, discussed below.  
 
1.3 Borda, Carroll, Black, and others 
 
Condorcet and Arrow are not the only founding figures of social choice theory. 
Condorcet’s contemporary and co-national Jean-Charles de Borda (1733-1799) 
defended a voting system that is often seen as a prominent alternative to majority 
voting. The Borda count, formally defined later, avoids Condorcet’s paradox but 
violates one of Arrow’s conditions, the independence of irrelevant alternatives. Thus 
the debate between Condorcet and Borda is a precursor to some modern debates on 
how to respond to Arrow’s theorem.   
 
The origins of this debate precede Condorcet and Borda. In the Middle Ages, Ramon 
Llull (c1235-1315) proposed the aggregation method of pairwise majority voting, 
while Nicolas Cusanus (1401-1464) proposed a variant of the Borda count (McLean 
1990). In 1672, the German statesman and scholar Samuel von Pufendorf (1632-
1694) compared simple majority, qualified majority, and unanimity rules and offered 
an analysis of the structure of preferences that can be seen as a precursor to later 
discoveries (e.g., on single-peakedness, discussed below) (Gaertner 2005). 
 
In the 19th century, the British mathematician and clergyman Charles Dodgson (1832-
1898), better known as Lewis Carroll, independently rediscovered many of 
Condorcet’s and Borda’s insights and also developed a theory of proportional 
representation. It was largely thanks to the Scottish economist Duncan Black (1908-
1991) that Condorcet’s, Borda’s, and Dodgson’s social-choice-theoretic ideas were 
drawn to the attention of the modern research community (McLean, McMillan, and 
Monroe 1995). Black also made several discoveries related to majority voting, some 
of which are discussed below. 
 
In France, George-Théodule Guilbaud ([1952] 1966) wrote an important but often 
overlooked paper, revisiting Condorcet’s theory of voting from a logical perspective 
and sparking a French literature on the Condorcet effect, the logical problem 
underlying Condorcet’s paradox, which has only recently received more attention in 
Anglophone social choice theory (Monjardet 2005). For further contributions on the 
history of social choice, see McLean, McMillan, and Monroe (1996), McLean and 
Urken (1995), McLean and Hewitt (1994), and a special issue of Social Choice and 
Welfare, edited by Salles (2005). 
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2. Three formal arguments for majority rule 
 
To introduce social choice theory formally, it helps to consider a simple decision 
problem: a collective choice between two alternatives. 
 
2.1 The concept of an aggregation rule 
 
Let N = {1, 2, …, n} be a set of individuals, where n ≥ 2. The individuals have to 
choose between two alternatives (candidates, policies etc.). Each individual i ∈ N 
casts a vote, denoted vi, where 
 

vi = 1 represents a vote for the first alternative, 
vi = -1 represents a vote for the second alternative, and optionally 
vi = 0 represents an abstention (for simplicity, we set this possibility aside). 

 
A combination of votes across the individuals, <v1, v2, …, vn>, is called a profile. For 
any profile, the group seeks to arrive at a social decision v, where 
 

v = 1 represents a decision for the first alternative, 
v = -1 represents a decision for the second alternative, and 
v = 0 represents a tie. 

 
An aggregation rule is a function f that assigns to each profile <v1, v2, …, vn> (in 
some domain of admissible profiles) a social decision v = f(v1, v2, …, vn). Examples 
are:  
 
Majority rule: For each profile <v1, v2, …, vn>, 
 
         1  if v1 + v2 + … + vn > 0 (‘there are more 1s than -1s’);  

f(v1, v2, …, vn) = { 0  if v1 + v2 + … + vn = 0 (‘there are as many 1s as -1s’); 
      -1  if v1 + v2 + … + vn < 0 (‘there are more -1s than 1s’). 

  
Dictatorship: For each profile <v1, v2, …, vn>, 
 

f(v1, v2, …, vn) = vi,  
 
where i ∈ N is an antecedently fixed individual (the ‘dictator’).   
 
Weighted majority rule: For each profile <v1, v2, …, vn>, 
 
         1  if w1v1 + w2v2 + … + wnvn > 0, 

f(v1, v2, …, vn) = { 0  if w1v1 + w2v2 + … + wnvn = 0, 
      -1  if w1v1 + w2v2 + … + wnvn < 0, 

  
where w1, w2, …, wn are real numbers, interpreted as the ‘voting weights’ of the n 
individuals. 
 
Two points about the concept of an aggregation rule are worth noting. First, under the 
standard definition, an aggregation rule is defined extensionally, not intensionally: it 
is a mapping (functional relationship) between individual inputs and collective 
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outputs, not a set of explicit instructions (a rule in the ordinary-language sense) that 
could be extended to inputs outside the function’s formal domain. Secondly, an 
aggregation rule is defined for a fixed set of individuals N and a fixed decision 
problem, so that majority rule in a group of two individuals is a different 
mathematical object from majority rule in a group of three.  
 
To illustrate, Tables 1 and 2 show majority rule for these two group sizes as 
extensional objects. The rows of each table correspond to the different possible 
profiles of votes; the final column displays the resulting social decisions. 
 

Table 1: Majority rule among two individuals 
Individual 1’s vote Individual 2’s vote Collective decision 
1 1 1 
1 -1 0 
-1 1 0 
-1 -1 -1 

 
Table 2: Majority rule among three individuals 

Individual 1’s vote Individual 2’s vote Individual 3’s vote Collective decision 
1 1 1 1 
1 1 -1 1 
1 -1 1 1 
1 -1 -1 -1 
-1 1 1 1 
-1 1 -1 -1 
-1 -1 1 -1 
-1 -1 -1 -1 

 
The present way of representing an aggregation rule helps us see how many possible 
aggregation rules there are (e.g., List 2011). Suppose there are k profiles in the 
domain of admissible inputs (in the present example, k = 2n, since each of the n 
individuals has two choices, with abstention disallowed). Suppose, further, there are l 
possible social decisions for each profile (in the example, l = 3, allowing ties). Then 
there are lk possible aggregation rules: the relevant table has k rows, and in each row, 
there are l possible ways of specifying the final entry (the collective decision). Thus 
the number of possible aggregation rules grows exponentially with the number of 
admissible profiles and the number of possible decision outcomes.  
 
To select an aggregation rule non-arbitrarily from this large class of possible ones, 
some constraints are needed. I now consider three formal arguments for majority rule. 
 
2.2 A procedural argument for majority rule 
 
The first involves imposing some ‘procedural’ requirements on the relationship 
between individual votes and social decisions and showing that majority rule is the 
only aggregation rule satisfying them. May (1952) introduced four such requirements: 
 
Universal domain: The domain of admissible inputs of the aggregation rule consists 
of all logically possible profiles of votes <v1, v2, …, vn>, where each vi ∈ {-1,1}. 
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Anonymity: For any admissible profiles <v1, v2, …, vn> and <w1, w2, …, wn> that are 
permutations of each other (i.e., one can be obtained from the other by reordering the 
entries), the social decision is the same, i.e., f(v1, v2, …, vn) = f(w1, w2, …, wn). 
 
Neutrality: For any admissible profile <v1, v2, …, vn>, if the votes for the two 
alternatives are reversed, the social decision is reversed too, i.e., f(-v1, -v2, …, -vn) = 
-f(v1, v2, …, vn). 
 
Positive responsiveness: For any admissible profile <v1, v2, …, vn>, if some voters 
change their votes in favour of one alternative (say the first) and all other votes 
remain the same, the social decision does not change in the opposite direction; if the 
social decision was a tie prior to the change, the tie is broken in the direction of the 
change, i.e., if [wi > vi for some i and wj = vj for all other j] and f(v1, v2, …, vn) = 0 or 
1, then f(w1, w2, …, wn) = 1. 
 
Universal domain requires the aggregation rule to cope with any level of ‘pluralism’ 
in its inputs; anonymity requires it to treat all voters equally; neutrality requires it to 
treat all alternatives equally; and positive responsiveness requires the social decision 
to be a positive function of the way people vote. May proved the following:  
 
Theorem (May 1952): An aggregation rule satisfies universal domain, anonymity, 
neutrality, and positive responsiveness if and only if it is majority rule. 
 
Apart from providing an argument for majority rule based on four plausible 
procedural desiderata, the theorem helps us characterize other aggregation rules in 
terms of which desiderata they violate. Dictatorships and weighted majority rules with 
unequal individual weights violate anonymity. Asymmetrical supermajority rules 
(under which a supermajority of the votes, such as two thirds or three quarters, is 
required for a decision in favour of one of the alternatives, while the other alternative 
is the default choice) violate neutrality. This may sometimes be justifiable, for 
instance when there is a presumption in favour of one alternative, such as a 
presumption of innocence in a jury decision. Symmetrical supermajority rules (under 
which neither alternative is chosen unless it is supported by a sufficiently large 
supermajority) violate positive responsiveness. A more far-fetched example of an 
aggregation rule violating positive responsiveness is the inverse majority rule (here 
the alternative rejected by a majority wins). 
 
2.3 An epistemic argument for majority rule 
 
Condorcet’s jury theorem provides a consequentialist argument for majority rule. The 
argument is ‘epistemic’, insofar as the aggregation rule is interpreted as a truth-
tracking device (e.g., Grofman, Owen and Feld 1983; List and Goodin 2001).   
 
Suppose the aim is to make a judgment on some procedure-independent fact or state 
of the world, denoted X. In a jury decision, the defendant is either guilty (X = 1) or 
innocent (X = -1). In an expert-panel decision on the safety of some technology, the 
technology may be either safe (X = 1) or not (X = -1). Each individual’s vote 
expresses a judgment on that fact or state, and the social decision represents the 
collective judgment. The goal is to reach a factually correct collective judgment. 
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Which aggregation rule performs best at ‘truth tracking’ depends on the relationship 
between the individual votes and the relevant fact or state of the world.  
 
Condorcet assumed that each individual is better than random at making a correct 
judgment (the competence assumption) and that different individuals’ judgments are 
stochastically independent, given the state of the world (the independence 
assumption). Formally, let V1, V2, ..., Vn (capital letters) denote the random variables 
generating the specific individual votes v1, v2, …, vn (small letters), and let V = f(V1, 
V2, ..., Vn) denote the resulting random variable representing the social decision v = 
f(v1, v2, …, vn) under a given aggregation rule f, such as majority rule. Condorcet’s 
assumptions can be stated as follows: 
 
Competence: For each individual i ∈ N and each state of the world x ∈ {-1,1}, Pr(Vi = 
x | X = x) = p > 1/2, where p is the same across individuals and states. 
 
Independence: The votes of different individuals V1, V2, ..., Vn are independent of each 
other, conditional on each value x ∈ {-1,1} of X. 
 
Under these assumptions, majority voting is a good truth-tracker: 
 
Theorem (Condorcet’s jury theorem): For each state of the world x ∈ {-1,1}, the 
probability of a correct majority decision, Pr(V = x | X = x), is greater than each 
individual’s probability of a correct vote, Pr(Vi = x | X = x), and converges to 1, as the 
number of individuals n increases.1 
 
The first conjunct (‘is greater than each individual’s probability’) is the non-
asymptotic conclusion, the second (‘converges to 1’) the asymptotic conclusion. One 
can further show that, if the two states of the world have an equal prior probability 
(i.e., Pr(X = 1) = Pr(X = -1) = 1/2), majority rule is the most reliable of all aggregation 
rules, maximizing Pr(V = X) (e.g., Ben-Yashar and Nitzan 1997). 
 
Although the jury theorem is often invoked to establish the epistemic merits of 
democracy, its assumptions are highly idealistic. The competence assumption is not a 
conceptual claim but an empirical one and depends on any given decision problem. 
Although an average (not necessarily equal) individual competence above 1/2 may be 
sufficient for Condorcet’s conclusion (e.g., Grofman, Owen, and Feld 1983, Boland 
1989, Kanazawa 1998),2 the theorem ceases to hold if individuals are randomizers (no 
better and no worse than a coin toss) or if they are worse than random (p < 1/2). In the 
latter case, the probability of a correct majority decision is less than each individual’s 
probability of a correct vote and converges to 0, as the jury size increases. The 
theorem’s conclusion can also be undermined in less extreme cases (Berend and 
Paroush 1998), for instance when each individual’s reliability, though above 1/2, is an 
exponentially decreasing function approaching 1/2 with increasing jury size (List 
2003a).  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 When n is even, the first part of the theorem only holds for group sizes n above a certain lower bound 
(which depends on p), due to the possibility of majority ties. When n is odd, it holds for any n > 1. 
2  If different individuals have different known levels of reliability, weighted majority voting 
outperforms simple majority voting at maximizing the probability of a correct decision, with each 
individual’s voting weight proportional to log(p/(1-p)), where p is the individual’s reliability as defined 
above (Shapley and Grofman 1984; Grofman, Owen, and Feld 1983; Ben-Yashar and Nitzan 1997).  
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Similarly, whether the independence assumption is true depends on the decision 
problem in question. Although Condorcet’s conclusion is robust to the presence of 
some interdependencies between individual votes, the structure of these 
interdependencies matters (e.g., Boland 1989; Ladha 1992; Estlund 1994; Dietrich 
and List 2004; Berend and Sapir 2007; Dietrich and Spiekermann 2013). If all 
individuals’ votes are perfectly correlated with one another or mimic a small number 
of opinion leaders, the collective judgment is no more reliable than the judgment 
among a small number of independent individuals.  
 
Bayesian networks, as employed in Pearl’s work on causation (2000), have been used 
to model the effects of voter dependencies on the jury theorem and to distinguish 
between stronger and weaker variants of conditional independence (Dietrich and List 
2004, Dietrich and Spiekermann 2013). Dietrich (2008) has argued that Condorcet’s 
two assumptions are never simultaneously justified, in the sense that, even when they 
are both true, one cannot obtain evidence to support both at once.  
 
Finally, game-theoretic work challenges an implicit assumption of the jury theorem, 
namely that voters will always reveal their judgments truthfully. Even if all voters 
prefer a correct to an incorrect collective judgment, they may still have incentives to 
misrepresent their individual judgments. This can happen when, conditional on the 
event of being pivotal for the outcome, a voter expects a higher chance of bringing 
about a correct collective judgment by voting against his or her own private judgment 
than in line with it (Austin-Smith and Banks 1996; Feddersen and Pesendorfer 1998). 
 
2.4 A utilitarian argument for majority rule 
 
Another consequentialist argument for majority rule is utilitarian rather than 
epistemic. It does not require the existence of an independent fact or state of the world 
that the collective decision is supposed to track. Suppose each voter gets some utility 
from the collective decision, which depends on whether the decision matches his or 
her vote (preference): specifically, each voter gets a utility of 1 from a match between 
his or her vote and the collective outcome and a utility of 0 from a mismatch.3 The 
Rae-Taylor theorem then states that if each individual has an equal prior probability 
of preferring each of the two alternatives, majority rule maximizes each individual’s 
expected utility (see, e.g., Mueller 2003). 
  
Relatedly, majority rule minimizes the number of frustrated voters (defined as voters 
on the losing side) and maximizes total utility across voters. Brighouse and Fleurbaey 
(2010) generalize this result. Define voter i’s stake in the decision, δi, as the utility 
difference between his or her preferred outcome and his or her dispreferred outcome. 
The Rae-Taylor theorem rests on an implicit equal-stakes assumption, i.e., δi  = 1 for 
every i ∈ N. Brighouse and Fleurbaey show that when stakes are allowed to vary 
across voters, total utility is maximized not by majority rule, but by a weighted 
majority rule, where each individual i’s voting weight wi is proportional to his or her 
stake δi. 
 
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Optionally, one can stipulate that the utility from a tie is 1/2. 
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3. Preference aggregation 
 
At the heart of social choice theory is the analysis of preference aggregation, 
understood as the aggregation of several individuals’ preference rankings of two or 
more social alternatives into a single, collective preference ranking (or choice) over 
these alternatives. 
 
The basic model is as follows. Again, consider a set N = {1, 2, …, n} of individuals (n 
≥ 2). Let X = {x, y, z, …} be a set of social alternatives, for example possible worlds, 
policy platforms, election candidates, or allocations of goods. Each individual i ∈ N 
has a preference ordering Ri over these alternatives: a complete and transitive binary 
relation on X.4 For any x, y ∈ X, xRiy means that individual i weakly prefers x to y. We 
write xPiy if xRiy and not yRix (‘individual i strictly prefers x to y’), and xIiy if xRiy 
and yRix (‘individual i is indifferent between x and y’).  
 
A combination of preference orderings across the individuals, <R1, R2, …, Rn>, is 
called a profile. A preference aggregation rule, F, is a function that assigns to each 
profile <R1, R2, …, Rn> (in some domain of admissible profiles) a social preference 
relation R = F(R1, R2, …, Rn) on X. When F is clear from the context, we simply write 
R for the social preference relation corresponding to <R1, R2, …, Rn>.  
 
For any x, y ∈ X, xRy means that x is socially weakly preferred to y. We also write 
xPy if xRy and not yRx (‘x is strictly socially preferred to y’), and xIy if xRy and yRx 
(‘x and y are socially tied’). For generality, the requirement that R be complete and 
transitive is not built into the definition of a preference aggregation rule. 
 
The paradigmatic example of a preference aggregation rule is pairwise majority 
voting, as discussed by Condorcet. Here, for any profile <R1, R2, …, Rn> and any x, y 
∈ X, xRy if and only if at least as many individuals have xRiy as have yRix, formally 
|{i∈N : xRiy}| ≥ |{i∈N : yRix}|. As we have seen, this does not guarantee transitive 
social preferences.5  
 
How frequent are intransitive majority preferences? It can be shown that the 
proportion of preference profiles (among all possible ones) that lead to cyclical 
majority preferences increases with the number of individuals (n) and the number of 
alternatives (|X|). If all possible preference profiles are equally likely to occur (the so-
called ‘impartial culture’ scenario), majority cycles should therefore be probable in 
large electorates (Gehrlein 1983). (Technical work further distinguishes between ‘top-
cycles’ and cycles below a possible Condorcet-winning alternative.) However, the 
probability of cycles can be significantly lower under certain systematic, even small, 
deviations from an impartial culture (List and Goodin 2001, Appendix 3; Tsetlin, 
Regenwetter, and Grofman 2003; Regenwetter et al. 2006). 
 
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Completeness requires that, for any x, y ∈ X, xRiy or yRix, and transitivity requires that, for any x, y, z 
∈ X, if xRiy and yRiz, then xRiz. 
5 In the classic example, there are three individuals with preference orderings xP1yP1z, yP2zP2x, and 
zP3xP3y over three alternatives x, y, and z. The resulting majority preferences are cyclical: we have xPy, 
yRz, and yet zPx. 
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3.1 Arrow’s theorem 
 
Abstracting from pairwise majority voting, Arrow introduced the following 
conditions on a preference aggregation rule, F.  
 
Universal domain: The domain of F is the set of all logically possible profiles of 
complete and transitive individual preference orderings. 
 
Ordering: For any profile <R1, R2, …, Rn> in the domain of F, the social preference 
relation R is complete and transitive. 
 
Weak Pareto principle: For any profile <R1, R2, …, Rn> in the domain of F, if for all 
i∈N xPiy, then xPy. 
 
Independence of irrelevant alternatives: For any two profiles <R1, R2, …, Rn> and 
<R*1, R*2, …, R*n> in the domain of F and any x, y ∈ X, if for all i ∈ N xRiy if and 
only if xR*iy, then xRy if and only if xR*y. 
 
Non-dictatorship: There does not exist an individual i ∈ N such that, for all <R1, R2, 
…, Rn> in the domain of F and all x, y ∈ X, xPiy implies xPy. 
 
Universal domain requires the aggregation rule to cope with any level of ‘pluralism’ 
in its inputs. Ordering requires it to produce ‘rational’ social preferences, avoiding 
Condorcet cycles. The weak Pareto principle requires that when all individuals strictly 
prefer alternative x to alternative y, so does society. Independence of irrelevant 
alternatives requires that the social preference between any two alternatives x and y 
depend only on the individual preferences between x and y, not on individuals’ 
preferences over other alternatives. Non-dictatorship requires that there be no 
‘dictator’, who always determines the social preference, regardless of other 
individuals’ preferences. (Note that pairwise majority voting satisfies all of these 
conditions except ordering.) 
 
Theorem (Arrow 1951/1963): If |X| > 2, there exists no preference aggregation rule 
satisfying universal domain, ordering, the weak Pareto principle, independence of 
irrelevant alternatives, and non-dictatorship. 
 
It is evident that this result carries over to the aggregation of other kinds of orderings, 
as distinct from preference orderings, such as (i) belief orderings over several 
hypotheses (ordinal credences), (ii) multiple criteria that a single decision maker may 
use to generate an all-things-considered ordering of several decision options, and (iii) 
conflicting value rankings to be reconciled.  
 
Examples of other such aggregation problems to which Arrow’s theorem has been 
applied include: intrapersonal aggregation problems (e.g., May 1954; Hurley 1985), 
constraint aggregation in optimality theory in linguistics (e.g., Harbour and List 
2000), theory choice (e.g., Okasha 2011; cf. Morreau forthcoming), evidence 
amalgamation (e.g., Stegenga 2011), and the aggregation of multiple similarity 
orderings into an all-things-considered similarity ordering (e.g., Morreau 2010, 
Kroedel and Huber 2012). In each case, the plausibility of Arrow’s theorem depends 
on the case-specific plausibility of Arrow’s ordinalist framework and the theorem’s 
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conditions. 
 
Generally, if we consider Arrow’s framework appropriate and his conditions 
indispensable, Arrow’s theorem raises a serious challenge. To avoid it, we must relax 
at least one of the five conditions or give up the restriction of the aggregation rule’s 
inputs to orderings and defend the use of richer inputs, as discussed in Section 4. 
 
3.2 Non-dictatorial preference aggregation rules 
 
3.2.1 Relaxing universal domain 
 
One way to avoid Arrow’s theorem is to relax universal domain. If the aggregation 
rule is required to accept as input only preference profiles that satisfy certain 
‘cohesion’ conditions, then aggregation rules such as pairwise majority voting will 
produce complete and transitive social preferences. The best-known cohesion 
condition is single-peakedness (Black 1948).  
 
A profile <R1, R2, …, Rn> is single-peaked if the alternatives can be aligned from 
‘left’ to ‘right’ (e.g., on some cognitive or ideological dimension) such that each 
individual has a most preferred position on that alignment with decreasing preference 
as alternatives get more distant (in either direction) from the most preferred position. 
Formally, this requires the existence of a linear ordering Ω on X such that, for every 
triple of alternatives x, y, z ∈ X, if y lies between x and z with respect to Ω, it is not the 
case that xRiy and zRix (this rules out a ‘cave’ between x and z, at y). Single-
peakedness is plausible in some democratic contexts. If the alternatives in X are 
different tax rates, for example, each individual may have a most preferred tax rate 
(which will be lower for a libertarian individual than for a socialist) and prefer other 
tax rates less as they get more distant from the ideal. 
 
Black (1948) proved that if the domain of the aggregation rule is restricted to the set 
of all profiles of individual preference orderings satisfying single-peakedness, 
majority cycles cannot occur, and the most preferred alternative of the median 
individual relative to the relevant left-right alignment is a Condorcet winner 
(assuming n is odd). Pairwise majority voting then satisfies the rest of Arrow’s 
conditions.  
 
Other domain-restriction conditions with similar implications include single-
cavedness, a geometrical mirror image of single-peakedness (Inada 1964), 
separability into two groups (ibid.), and latin-squarelessness (Ward 1965), the latter 
two more complicated combinatorial conditions. (For a review, see Gaertner 2001.) 
Sen (1966) showed that all these conditions imply a weaker condition, triple-wise 
value-restriction. It requires that, for every triple of alternatives x, y, z ∈ X, there 
exists one alternative in {x, y, z} and one rank r ∈ {1, 2, 3} such that no individual 
ranks that alternative in rth place among x, y, and z. For instance, all individuals may 
agree that y is not bottom (r = 3) among x, y, and z. Triple-wise value-restriction 
suffices for transitive majority preferences. 
  
There has been much discussion on whether, and under what conditions, real-world 
preferences fall into such a restricted domain. It has been suggested, for example, that 
group deliberation can induce single-peaked preferences, by leading participants to 
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focus on a shared cognitive or ideological dimension (Miller 1992; Knight and 
Johnson 1995; Dryzek and List 2003). Experimental evidence from deliberative 
opinion polls is consistent with this hypothesis (List, Luskin, Fishkin, and McLean 
2013), though further empirical work is needed. 
 
3.2.2 Relaxing ordering 
 
Preference aggregation rules are normally expected to produce orderings as their 
outputs, but sometimes we may only require partial orderings or not fully transitive 
binary relations. An aggregation rule that produces transitive but often incomplete 
social preferences is the Pareto dominance procedure: here, for any profile <R1, R2, 
…, Rn> and any x, y ∈ X, xRy if and only if, for all i ∈ N, xPiy. An aggregation rule 
that produces complete but often intransitive social preferences is the Pareto 
extension procedure: here, for any profile <R1, R2, …, Rn> and any x, y ∈ X, xRy if 
and only if it is not the case that, for all i ∈ N, yPix. Both rules have a unanimitarian 
spirit, giving each individual veto power either against the presence of a weak social 
preference for x over y or against its absence. 
 
Gibbard (1969) proved that even if we replace the requirement of transitivity with 
what he called quasi-transitivity, the resulting possibilities of aggregation are still 
very limited. Call a preference relation R quasi-transitive if the induced strict relation 
P is transitive (while the indifference relation I need not be transitive). Call an 
aggregation rule oligarchic if there is a subset M ⊆ N (the ‘oligarchs’) such that (i) if, 
for all i ∈ M, xPiy, then xPy, and (ii) if, for some i ∈ M, xPiy, then xRy. The Pareto 
extension procedure is an example of an oligarchic aggregation rule with M = N. In an 
oligarchy, the oligarchs are jointly decisive and have individual veto power. Gibbard 
proved the following: 
 
Theorem (Gibbard 1969): If |X| > 2, there exists no preference aggregation rule 
satisfying universal domain, quasi-transitivity and completeness of social preferences, 
the weak Pareto principle, independence of irrelevant alternatives, and non-oligarchy. 
 
3.2.3 Relaxing the weak Pareto principle 
 
The weak Pareto principle is arguably hard to give up. One case in which we may lift 
it is that of spurious unanimity, where a unanimous preference for x over y is based on 
mutually inconsistent reasons (e.g., Mongin 1997; Gilboa, Samet, and Schmeidler 
2004). Two men may each prefer to fight a duel (alternative x) to not fighting it 
(alternative y) because each over-estimates his chances of winning. There may exist 
no mutually agreeable probability assignment over possible outcomes of the duel (i.e., 
who would win) that would ‘rationalize’ the unanimous preference for x over y. In 
this case, the unanimous preference is a bad indicator of social preferability. This 
example, however, depends on the fact that the alternatives of fighting and not 
fighting are not fully specified outcomes but uncertain prospects. Arguably, the weak 
Pareto principle is more plausible in cases without uncertainty.  
 
An aggregation rule that becomes possible when the weak Pareto principle is dropped 
is an imposed procedure, where, for any profile <R1, R2, …, Rn>, the social preference 
relation R is an antecedently fixed (‘imposed’) ordering Rimposed of the alternatives. 
Though completely unresponsive to individual preferences, this aggregation rule 
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satisfies the rest of Arrow’s conditions. 
 
Sen (1970a) offered another critique of the weak Pareto principle, showing that it 
conflicts with a ‘liberal’ principle. Here we interpret the aggregation rule as a method 
a social planner can use to rank social alternatives in an order of social welfare. 
Suppose each individual in society is given some basic rights, to the effect that his or 
her preference is sometimes socially decisive (i.e., cannot be overridden by others’ 
preferences). Each of Lewd and Prude, for example, should be decisive over whether 
he himself reads a particular book, Lady Chatterley’s Lover.  
 
Minimal liberalism: There are at least two distinct individuals i, j ∈ N who are each 
decisive on at least one pair of alternatives; i.e., there is at least one pair of 
alternatives x, y ∈ X such that, for every profile <R1, R2, …, Rn>, xPiy implies xPy, 
and yPix implies yPx, and at least one pair of alternatives x*, y* ∈ X such that, for 
every profile <R1, R2, …, Rn>, x*Pjy* implies x*Py*, and y*Pjx* implies y*Px*.  
 
Sen asked us to imagine that Lewd most prefers that Prude read the book (alternative 
x), second-most prefers that he read the book himself (alternative y), and least prefers 
that neither read the book (z). Prude most prefers that neither read the book (z), 
second-most prefers that he read the book himself (x), and least prefers that Lewd 
read the book (y). Assuming Lewd is decisive over the pair y and z, society should 
prefer y to z. Assuming Prude is decisive over the pair x and z, society should prefer z 
to x. But since Lewd and Prude both prefer x to y, the weak Pareto principle (applied 
to N = {Lewd, Prude}) implies that society should prefer x to y, and so we are faced 
with a social preference cycle. Sen called this problem the ‘liberal paradox’ and 
generalized it as follows. 
 
Theorem (Sen 1970a): There exists no preference aggregation rule satisfying 
universal domain, acyclicity of social preferences, the weak Pareto principle, and 
minimal liberalism. 
 
The result suggests that if we wish to respect individual rights, we may sometimes 
have to sacrifice Paretian efficiency. An alternative conclusion is that the weak Pareto 
principle can be rendered compatible with minimal liberalism only when the domain 
of admissible preference profiles is suitably restricted, for instance to preferences that 
are ‘tolerant’ or not ‘meddlesome’ (Blau 1975, Craven 1982, Gigliotti 1986, Sen 
1983). Lewd’s and Prude’s preferences in Sen’s example are ‘meddlesome’.  
 
Several authors have challenged the relevance of Sen’s result, however, by criticizing 
his formalization of rights (e.g., Gaertner, Pattanaik, and Suzumura 1992, Dowding 
and van Hees 2003). 
 
3.2.3 Relaxing independence of irrelevant alternatives 
 
A common way to obtain possible preference aggregation rules is to give up 
independence of irrelevant alternatives. Almost all familiar voting methods over three 
or more alternatives that involve some form of preferential voting (with voters being 
asked to express full or partial preference orderings) violate this condition. 
 
A standard example is plurality rule: here, for any profile <R1, R2, …, Rn> and any x, 
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y ∈ X, xRy if and only if |{i ∈ N : for all z ≠ x, xPiz}| ≥ |{i ∈ N : for all z ≠ y, yPiz}|. 
Informally, alternatives are socially ranked in the order of how many individuals most 
prefer each of them. Plurality rule avoids Condorcet’s paradox, but runs into other 
problems. Most notably, an alternative that is majority-dispreferred to every other 
alternative may win under plurality rule: if 34% of the voters rank x above y above z, 
33% rank y above z above x, and 33% rank z above y above x, plurality rule ranks x 
above each of y and z, while pairwise majority voting would rank y above z above x (y 
is the Condorcet winner). By disregarding individuals’ lower-ranked alternatives, 
plurality rule also violates the weak Pareto principle. However, plurality rule may be 
plausible in ‘restricted informational environments’, where the balloting procedure 
collects information only about voters’ top preferences, not about their full preference 
rankings. Here plurality rule satisfies generalized variants of May’s four conditions 
introduced above (Goodin and List 2006). 
 
A second example of a preference aggregation rule that violates independence of 
irrelevant alternatives is the Borda count (e.g., Saari 1990). Here, for any profile <R1, 
R2, …, Rn> and any x, y ∈ X, xRy if and only if Σi∈N|{z ∈ X : xRiz}| ≥ Σi∈N|{z ∈ X : 
yRiz}|. Informally, each voter assigns a score to each alternative, which depends on its 
rank in his or her preference ranking. The most-preferred alternative gets a score of k 
(where k = |X|), the second-most-preferred alternative a score of k–1, the third-most-
preferred alternative a score of k–2, and so on. Alternatives are then socially ordered 
in terms of the sums of their scores across voters: the alternative with the largest sum-
total is top, the alternative with the second-largest sum-total next, and so on.  
 
To see how this violates independence of irrelevant alternatives, consider the two 
profiles of individual preference orderings over four alternatives (x, y, z, w) in Tables 
3 and 4.  
 

Table 3: A profile of individual preference orderings 
 Individual 1 Individuals 2 to 7 Individuals 8 to 15 
1st preference y x z 
2nd preference x z x 
3rd preference z w y 
4th preference w y w 

 
Table 4: A slightly modified profile of individual preference orderings 

 Individual 1 Individuals 2 to 7 Individuals 8 to 15 
1st preference x x z 
2nd preference y z x 
3rd preference w w y 
4th preference z y w 

 
In Table 3, the Borda scores of the four alternatives are: 
 

x: 9*3 + 6*4 = 51, 
y: 1*4 + 6*1 + 8*2 = 26, 
z: 1*2 + 6*3 + 8*4 = 52, 
w: 1*1 + 6*2 + 8*1 = 21, 

 
leading to a social preference for z over x over y over w. In Table 4 the Borda scores 
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are: 
 

x: 7*4 + 8*3 = 52, 
y: 1*3 + 6*1 + 8*2 = 25, 
z: 1*1 + 6*3 + 8*4 = 51, 
w: 7*2 + 8*1 = 22,  

 
leading to a social preference for x over z over y over w. The only difference between 
the two profiles lies in Individual 1’s preference ordering, and even here there is no 
change in the relative ranking of x and z. Despite identical individual preferences 
between x and z in Tables 3 and 4, the social preference between x and z is reversed, a 
violation of independence of irrelevant alternatives.   
 
Such violations are common in real-world voting rules, and they make preference 
aggregation potentially vulnerable to strategic voting and/or strategic agenda setting. I 
illustrate this in the case of strategic voting. 
  
3.3 The Gibbard-Satterthwaite theorem 
 
So far we have discussed preference aggregation rules, which map profiles of 
individual preference orderings to social preference relations. We now consider social 
choice rules, whose output, instead, is one or several winning alternatives. Formally, a 
social choice rule, f, is a function that assigns to each profile <R1, R2, …, Rn> (in 
some domain of admissible profiles) a social choice set f(R1, R2, …, Rn) ⊆ X. A social 
choice rule f can be derived from a preference aggregation rule F, by defining f(R1, 
R2, …, Rn) = {x ∈ X : for all y ∈ X, xRy} where R = F(R1, R2, …, Rn); the reverse does 
not generally hold. We call the set of sometimes-chosen alternatives the range of f.6  
  
The Condorcet winner criterion defines a social choice rule, where, for each profile 
<R1, R2, …, Rn>, f(R1, R2, …, Rn) contains every alternative in X that wins or at least 
ties with every other alternative in pairwise majority voting. As shown by 
Condorcet’s paradox, this may produce an empty choice set. By contrast, plurality 
rule and the Borda count induce social choice rules that always produce non-empty 
choice sets. They also satisfy the following basic conditions (the last for |X| ≥ 3): 
 
Universal Domain: The domain of f is the set of all logically possible profiles of 
complete and transitive individual preference orderings. 
 
Non-dictatorship: There does not exist an individual i ∈ N such that, for all <R1, R2, 
…, Rn> in the domain of f and all x in the range of f, yRix where y ∈ f(R1, R2, …, Rn).7 
 
The range constraint: The range of f contains at least three distinct alternatives (and 
ideally all alternatives in X). 
 
When supplemented with an appropriate tie-breaking criterion, the plurality and 
Borda rules can further be made ‘resolute’: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Formally, {x ∈ X : x ∈ f(R1,R2,…,Rn) for some <R1,R2,…,Rn> in the domain of f}. 
7 For present purposes, one can stipulate that the last clause (for all x in the range of f, yRix where y ∈ 
f(R1, R2, …, Rn)) is violated if f(R1, R2, …, Rn) is empty. 



	
   16 

 
Resoluteness: The social choice rule f always produces a unique winning alternative 
(a singleton choice set). (We then write x = f(R1, R2, …, Rn) to denote the winning 
alternative for the profile <R1, R2, …, Rn>.) 
 
Surprisingly, this list of conditions conflicts with the following further requirement. 
 
Strategy-proofness: There does not exist a profile <R1, R2, …, Rn> in the domain of f 
at which f is manipulable by some individual i ∈ N, where manipulability means the 
following: if i submits a false preference ordering R’i (≠ Ri), the winner is an 
alternative y’ that i strictly prefers (according to Ri) to the alternative y that would win 
if i submitted the true preference ordering Ri.8 
 
Theorem (Gibbard 1973, Satterthwaite 1975): There exists no social choice rule 
satisfying universal domain, non-dictatorship, the range constraint, resoluteness, and 
strategy-proofness. 
 
This result raises important questions about the trade-offs between different 
requirements on a social choice rule. A dictatorship, which always chooses the 
dictator’s most preferred alternative, is trivially strategy-proof. The dictator obviously 
has no incentive to vote strategically, and no-one else does so either, since the 
outcome depends only on the dictator.  
 
To see that the Borda count violates strategy-proofness, recall the example of Tables 
3 and 4 above. If Individual 1 in Table 3 truthfully submits the preference ordering 
yP1xP1zP1w, the Borda winner is z, as we have seen. If Individual 1 falsely submits 
the preference ordering xP1yP1wP1z, as in Table 4, the Borda winner is x. But 
Individual 1 prefers x to z according to his or her true preference ordering (in Table 
3), and so he or she has an incentive to vote strategically.  
 
Moulin (1980) has shown that when the domain of the social choice rule is restricted 
to single-peaked preference profiles, pairwise majority voting and other so-called 
‘median voting’ schemes can satisfy the rest of the conditions of the Gibbard-
Satterthwaite theorem. Similarly, when collective decisions are restricted to binary 
choices alone, which amounts to dropping the range constraint, majority voting 
satisfies the rest of the conditions. Other possible escape routes from the theorem 
open up if resoluteness is dropped. In the limiting case in which all alternatives are 
always chosen, the other conditions are vacuously satisfied.  
 
The requirement of strategy-proofness has been challenged too. One line of argument 
is that, even when there exist strategic incentives in the technical sense of the 
Gibbard-Satterthwaite theorem, individuals will not necessarily act on them. They 
would require detailed information about others’ preferences and enough 
computational power to figure out what the optimal strategically modified preferences 
would be. Neither demand is generally met. Bartholdi, Tovey, and Trick (1989) 
showed that, due to computational complexity, some social choice rules are resistant 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Formally, y’Piy, where y’ = f(R1, …, R’i, …, Rn) and y = f(R1, …, Ri, …, Rn), assuming that <R1, …, 
R’i, …, Rn> is in the domain of f. The definition presupposes that the social choice sets for the profiles 
<R1, …, Ri, …, Rn> and <R1, …, R’i, …, Rn> are singleton. 
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to strategic manipulation: it may be an NP-hard problem for a voter to determine how 
to vote strategically. Harrison and McDaniel (2008) provide experimental evidence 
suggesting that the ‘Kemeny rule’, an extension of pairwise majority voting designed 
to avoid Condorcet cycles, is ‘behaviourally incentive-compatible’: i.e., strategic 
manipulation is computationally hard. 
 
Dowding and van Hees (2008) have argued that not all forms of strategic voting are 
normatively problematic. They distinguish between ‘sincere’ and ‘insincere’ forms of 
manipulation and argue that only the latter but not the former are normatively 
troublesome. Sincere manipulation involves (i) voting for a compromise alternative 
whose chances of winning are thereby increased, where (ii) one prefers the 
compromise alternative to the alternative that would otherwise win. Supporters of 
Ralph Nader, a third-party US presidential candidate in 2000 with little chance of 
winning, who voted in favour of Al Gore to increase his chances of beating George 
W. Bush engaged in sincere manipulation in the sense of (i) and (ii). Plurality rule is 
susceptible to sincere manipulation, but not vulnerable to insincere manipulation. 
 
4. Welfare aggregation 
 
An implicit assumption so far has been that preferences are ordinal and not 
interpersonally comparable: preference orderings contain no information about each 
individual’s strength of preference or about how to compare different individuals’ 
preferences with one another. Statements such as ‘Individual 1 prefers alternative x 
more than Individual 2 prefers alternative y’ or ‘Individual l prefers a switch from x to 
y more than Individual 2 prefers a switch from x* to y*’ are considered meaningless.  
 
In voting contexts, this assumption may be plausible, but in welfare-evaluation 
contexts – when a social planner seeks to rank different social alternatives in an order 
of social welfare – the use of richer information may be justified. Sen (1970b) 
generalized Arrow’s model to incorporate such richer information.  
 
As before, consider a set N = {1, 2, …, n} of individuals (n ≥ 2) and a set X = {x, y, z, 
…} of social alternatives. Now each individual i ∈ N has a welfare function Wi over 
these alternatives, which assigns a real number Wi(x) to each alternative x ∈ X, 
interpreted as a measure of i’s welfare under alternative x. Any welfare function on X 
induces an ordering on X, but the converse is not true: welfare functions encode more 
information. A combination of welfare functions across the individuals, <W1, W2, …, 
Wn>, is called a profile.  
 
A social welfare functional (SWFL), also denoted F, is a function that assigns to each 
profile <W1, W2, …, Wn> (in some domain of admissible profiles) a social preference 
relation R = F(W1, W2, …, Wn) on X, with the familiar interpretation. Again, when F is 
clear from the context, we write R for the social preference relation corresponding to 
<W1, W2, …, Wn>. The output of a SWFL is similar to that of a preference 
aggregation rule (again, we do not build the completeness or transitivity of R into the 
definition9), but its input is richer.  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Sen, like Arrow in his definition of social welfare functions (as opposed to functionals), required R to 
be an ordering by definition. 
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What we gain from this depends on how much of the enriched informational input we 
allow ourselves to use in determining society’s preferences: technically, it depends on 
our assumption about measurability and interpersonal comparability of welfare.  
 
4.1 Measurability and interpersonal comparability of welfare 
 
Numerically, welfare profiles contain much information over and above the profiles 
of orderings on X they induce. But we may not consider all this information 
meaningful. Some of it could be an artifact of the numerical representation. For 
example, the difference between the profile <W1, W2, …, Wn> and its scaled-up 
version <10*W1, 10*W2, …, 10*Wn>, where everything is the same in proportional 
terms, could be like the difference between length measurements in centimeters and in 
inches.  
 
Some examples of statements about individual welfare that may, or may not, be 
meaningful are the following (List 2003b; see also Bossert and Weymark 1996, 
Section 5): 
 
A level comparison: Individual i’s welfare under alternative x is at least as great as 
individual j’s welfare under alternative y, formally Wi(x) ≥ Wj(y).  
 
The comparison is intrapersonal if i = j, and interpersonal if i ≠ j. 
 
A unit comparison: The ratio of [individual i’s welfare gain or loss if we switch from 
alternative y1 to alternative x1] to [individual j’s welfare gain or loss if we switch from 
alternative y2 to alternative x2] is λ, where λ is some real number, formally (x1 – y1) / 
(x2 – y2) = λ.  
 
Again, the comparison is intrapersonal if i = j, and interpersonal if i ≠ j. 
 
A zero comparison: Individual i’s welfare under alternative x is greater than / equal to 
/ less than zero, formally sign(Wi(x)) = λ, where λ ∈ {–1, 0, 1} and sign is a real-
valued function that maps strictly negative numbers to –1, zero to 0, and strictly 
positive numbers to +1. 
 
Arrow’s view, as noted, is that only intrapersonal level comparisons are meaningful, 
while all other kinds of comparisons are not. Sen (1970b) formalized various 
assumptions about measurability and interpersonal comparability of welfare by (i) 
defining an equivalence relation on welfare profiles that specifies when two profiles 
count as ‘containing the same information’, and (ii) requiring any profiles in the same 
equivalence class to generate the same social preference ordering. Of the kinds of 
comparisons introduced above, the meaningful ones are those that are invariant in 
each equivalence class. Arrow’s ordinalist assumption can be expressed as follows: 
 
Ordinal measurability with no interpersonal comparability (ONC): Two profiles <W1, 
W2, …, Wn> and <W*1, W*2, …, W*n> contain the same information whenever, for 
each i ∈ N, W*i = φi(Wi), where φi is some positive monotonic transformation, 
possibly different for different individuals. 
 
Thus the individual welfare functions in any profile can be arbitrarily monotonically 
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transformed (‘stretched or squeezed’) without informational loss, thereby ruling out 
any interpersonal comparisons or even intrapersonal unit comparisons.  
 
If welfare is cardinally measurable but still interpersonally non-comparable, we have:  
 
Cardinal measurability with no interpersonal comparability (CNC): Two profiles 
<W1, W2, …, Wn> and <W*1, W*2, …, W*n> contain the same information whenever, 
for each i ∈ N, W*i = aiWi + bi, where the ais and bis are real numbers (with ai > 0), 
possibly different for different individuals. 
 
Here, each individual’s welfare function is unique up to positive affine 
transformations (‘scaling and shifting’), but there is still no common scale across 
individuals. This secures intrapersonal level and unit comparisons, but rules out 
interpersonal comparisons and zero comparisons.  
 
Interpersonal level comparability is achieved under the following enriched variant of 
ordinal measurability: 
 
Ordinal measurability with interpersonal level comparability (OLC): Two profiles 
<W1, W2, …, Wn> and <W*1, W*2, …, W*n> contain the same information whenever, 
for each i ∈ N, W*i = φ(Wi), where φ is the same positive monotonic transformation 
for all individuals.  
 
Here, a profile of individual welfare functions can be arbitrarily monotonically 
transformed (‘stretched or squeezed’) without informational loss, but the same 
transformation must be used for all individuals, thereby securing interpersonal level 
comparability.  
 
Interpersonal unit comparability is achieved under the following enriched variant of 
cardinal measurability: 
 
Cardinal measurability with interpersonal unit comparability (CUC): Two profiles 
<W1, W2, …, Wn> and <W*1, W*2, …, W*n> contain the same information whenever, 
for each i ∈ N, W*i = aWi + bi, where a is the same real number for all individuals (a 
> 0) and the bis are real numbers. 
 
Here, the welfare functions in each profile can be re-scaled and shifted without 
informational loss, but the same scalar multiple (though not necessarily the same 
shifting constant) must be used for all individuals, thereby rendering interpersonal 
unit comparisons invariant in each equivalence class.  
 
Zero comparisons, finally, become meaningful under the following enriched variant 
of ordinal measurability (List 2001): 
 
Ordinal measurability with zero comparability (ONC+0): Two profiles <W1, W2, …, 
Wn> and <W*1, W*2, …, W*n> contain the same information whenever, for each i ∈ 
N, W*i = φi(Wi), where φi is some positive monotonic and zero-preserving 
transformation, possibly different for different individuals. (Here zero-preserving 
means that φi(0) = 0.) 
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This allows arbitrary stretching and squeezing of individual welfare functions without 
informational loss, provided the welfare level of zero remains fixed, thereby ensuring 
zero comparability.  
 
Several other measurability and interpersonal comparability assumptions have been 
discussed in the literature. The following ensures interpersonal comparability of both 
levels and units:  
 
Cardinal measurability with full interpersonal comparability (CFC): Two profiles 
<W1, W2, …, Wn> and <W*1, W*2, …, W*n> contain the same information whenever, 
for each i ∈ N, W*i = aWi + b, where a, b are the same real numbers for all individuals 
(a > 0). 
 
Lastly, intra- and interpersonal comparisons of all three kinds (level, unit, and zero) 
are meaningful if we accept the following: 
 
Ratio-scale measurability with full interpersonal comparability (RFC): Two profiles 
<W1, W2, …, Wn> and <W*1, W*2, …, W*n> contain the same information whenever, 
for each i ∈ N, W*i = aWi, where a is the same real number for all individuals (a > 0). 
 
Which assumption is warranted depends on how welfare is interpreted. If welfare is 
hedonic utility, which can be experienced only from a first-person perspective, 
interpersonal comparisons are harder to justify than if welfare is the objective 
satisfaction of subjective preferences or desires (the desire-satisfaction view) or an 
objective good or state (an objective-list view) (e.g., Hausman 1995, List 2003b). The 
desire-satisfaction view may render interpersonal comparisons empirically 
meaningful (by relating the interpersonally significant maximal and minimal levels of 
welfare for each individual to the attainment of his or her most and least preferred 
alternatives), but at the expense of running into problems of expensive tastes or 
adaptive preferences (Hausman 1995). Resource-based, functioning-based, or 
primary-goods-based currencies of welfare, by contrast, may allow empirically 
meaningful and less morally problematic interpersonal comparisons.   
 
4.2 The possibility of welfare aggregation 
 
Once we introduce interpersonal comparisons of welfare levels or units or zero 
comparisons, there exist possible SWFLs satisfying the analogues of Arrow’s 
conditions as well as stronger desiderata. In a welfare-aggregation context, Arrow’s 
impossibility can therefore be traced to a lack of interpersonal comparability. 
 
As noted, a SWFL respects a given assumption about measurability and interpersonal 
comparability if, for any two profiles <W1, W2, …, Wn> and <W*1, W*2, …, W*n> that 
are deemed to contain the same information, F(W1, W2, …, Wn) = F(W*1, W*2, …, 
W*n). Arrow’s conditions and theorem can be restated as follows: 
 
Universal domain: The domain of F is the set of all logically possible profiles of 
individual welfare functions. 
 
Ordering: For any profile <W1, W2, …, Wn> in the domain of F, the social preference 
relation R is complete and transitive. 
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Weak Pareto principle: For any profile <W1, W2, …, Wn> in the domain of F, if for all 
i∈N Wi(x) > Wi(y), then xPy. 
 
Independence of irrelevant alternatives: For any two profiles <W1, W2, …, Wn> and 
<W*1, W*2, …, W*n> in the domain of F and any x, y ∈ X, if for all i ∈ N Wi(x) = 
W*i(x) and Wi(y) = W*i(y), then xRy if and only if xR*y. 
 
Non-dictatorship: There does not exist an individual i ∈ N such that, for all <W1, W2, 
…, Wn> in the domain of F and all x, y ∈ X, Wi(x) > Wi(y) implies xPy. 
 
Theorem: Under ONC (or CNC, as Sen 1970b has shown), if |X| > 2, there exists no 
SWFL satisfying universal domain, ordering, the weak Pareto principle, independence 
of irrelevant alternatives, and non-dictatorship. 
 
Crucially, however, each of OLC, CUC, and ONC+0 is sufficient for the existence of 
SWFLs satisfying all other conditions: 
 
Theorem: Under each of OLC, CUC, and ONC+0, there exist SWFLs satisfying 
universal domain, ordering, the weak Pareto principle, independence of irrelevant 
alternatives, and non-dictatorship (as well as stronger conditions). 
 
Some examples of such SWFLs come from political philosophy and welfare 
economics. A possible SWFL under OLC is a version of Rawls’s difference principle 
(1971). 
 
Maximin: For any profile <W1, W2, …, Wn> and any x, y ∈ X, xRy if and only if 
mini ∈ N(Wi(x)) ≥ mini ∈ N(Wi(y)). 
 
While maximin rank-orders social alternatives in terms of the welfare level of the 
worst-off individual alone, its lexicographic extension (leximin), which was endorsed 
by Rawls himself, uses the welfare level of the second-worst-off individual as a tie-
breaker when there is tie at the level of the worst off, the welfare level of the third-
worst-off individual as a tie-breaker when there is a tie at the second stage, and so on. 
(Note, however, that Rawls focused on primary goods, rather than welfare, as the 
relevant ‘currency’.) This satisfies the strong (not just weak) Pareto principle, 
requiring that if for all i∈N Wi(x) ≥ Wi(y), then xRy, and if in addition for some i∈N 
Wi(x) > Wi(y), then xPy.  
 
An example of a possible SWFL under CUC is classical utilitarianism. 
 
Utilitarianism: For any profile <W1, W2, …, Wn> and any x, y ∈ X, xRy if and only if 
W1(x) + W2(x) + … + Wn(x) ≥ W1(y) + W2(y) + … + Wn(y). 
 
Finally, an example of a possible SWFL under ONC+0 is a variant of a frequently 
used, though simplistic poverty measure. 
 
A head-count rule: For any profile <W1, W2, …, Wn> and any x, y ∈ X, xRy if and only 
if |{i ∈ N : Wi(x) < 0}| < |{i ∈ N : Wi(y) < 0}| or [|{i ∈ N : Wi(x) < 0}| = |{i ∈ N : Wi(y) 
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< 0}| and xRjy], where j ∈ N is some antecedently fixed tie-breaking individual. 
 
While substantively less compelling than maximin or utilitarian rules, head-count 
rules require only zero-comparability of welfare (List 2001).   
 
An important conclusion, therefore, is that Rawls’s difference principle, the classical 
utilitarian principle, and even the head-count method of poverty measurement can all 
be seen as solutions to Arrow’s aggregation problem that become possible once we go 
beyond Arrow’s framework of ordinal, interpersonally non-comparable preferences.  
 
Under CFC, one can provide a simultaneous characterization of Rawlsian maximin 
and utilitarianism (Deschamps and Gevers 1978). It uses two additional axioms. One, 
minimal equity, requires (in the words of Sen 1977, p. 1548) ‘that a person who is 
going to be best off anyway does not always strictly have his way’, and another, 
separability, requires that two welfare profiles that coincide for some subset M ⊆ N 
while everyone in N\M is indifferent between all alternatives in X lead to the same 
social ordering. 
 
Theorem (Deschamps and Gevers 1978): Under CFC, any SWFL satisfying universal 
domain, ordering, the strong Pareto principle, independence of irrelevant alternatives, 
anonymity (as in May’s theorem), minimal equity, and separability is either leximin 
or of a utilitarian type (meaning that, except possibly when there are ties in sum-total 
welfare, it coincides with the utilitarian SWFL defined above). 
 
Finally, the additional information available under RFC makes ‘prioritarian’ SWFLs 
possible.10 Like utilitarian SWFLs, they rank-order social alternatives on the basis of 
welfare sums across the individuals in N, but rather than summing up welfare directly, 
they sum up concavely transformed welfare, giving greater marginal weight to lower 
levels of welfare. 
 
Prioritarianism: For any profile <W1, W2, …, Wn> and any x, y ∈ X, xRy if and only if 
W1

r(x) + W2
r(x) + … + Wn

 r(x) ≥ W1
r(y) + W2

r(y) + … + Wn
 r(y), where 0 < r < 1.  

 
Prioritarianism requires RFC and not merely CFC because, by design, the prioritarian 
social ordering for any welfare profile is not invariant under changes in welfare levels 
(shifting). 
 
4.3 Other topics 
 
The present framework has been applied to several further areas. It has been 
generalized to variable-population-size choice problems, so as to formalize population 
ethics in the tradition of Parfit (1984). Here, we must rank-order social alternatives 
(e.g., possible worlds) in which different individuals exist. For example, the set of 
individuals existing under alternative x, N(x), could differ from the set of individuals 
existing under y, N(y). This raises questions such as whether a world with a smaller 
number of better-off individuals is better than, equally good as, or worse than a world 
with a larger number of worse-off individuals. (The focus here is on axiological 
questions about the relative goodness of such worlds, not normative questions about 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 Technically, this requires a domain restriction to positive welfare profiles. 
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the rightness or wrongness of bringing them about.)  
 
Parfit (1984) and others argued that classical utilitarianism is subject to the repugnant 
conclusion: a world with a very large number of individuals whose welfare levels are 
barely above zero could have a larger sum-total of welfare, and therefore count as 
better, than a world with a smaller number of very well-off individuals.  
 
Blackorby, Donaldson, and Bossert (e.g., 2005) have axiomatically characterized 
different variable-population-size welfare aggregation methods that avoid the 
repugnant conclusion and satisfy some other desiderata. One solution is the following: 
 
Critical-level utilitarianism: For any profile <W1, W2, …, Wn> and any x, y ∈ X, xRy 
if and only if Σi∈N(x)[Wi(x) – c] ≥ Σi∈N(y)[Wi(y) – c], where c ≥ 0 is some ‘critical level’ 
of welfare above which the quality of life counts as ‘decent/good’. 
 
Critical-level utilitarianism avoids the repugnant conclusion when the parameter c is 
set sufficiently large. It requires stronger measurability of welfare than classical 
utilitarianism, since it generates a social ordering R that is not generally invariant 
under re-scaling of welfare units or shifts in welfare levels. Even the rich framework 
of RFC would force the critical level c to be zero, thereby collapsing critical-level 
utilitarianism into classical utilitarianism and making it vulnerable to the repugnant 
conclusion again. As Blackorby, Bossert, and Donaldson (1999, p. 420) note, ‘[s]ome 
information environments that are ethically adequate in fixed-population settings have 
ethically unattractive consequences in variable-population environments.’ Thus, in the 
variable-population-size case, a more significant departure from the informational 
framework of Arrow’s original model is needed to avoid impossibility results. 
 
The SWFL approach has been generalized to the case in which each individual has 
multiple welfare functions (e.g., a k-tuple of them), capturing (i) multiple opinions 
about each individual’s welfare (e.g., Roberts 1995, Ooghe and Lauwers 2005) or (ii) 
multiple dimensions of welfare (e.g., List 2004a). In this case, we are faced not only 
with issues of measurability and interpersonal comparability, but also with issues of 
inter-opinion or inter-dimensional comparability. To obtain compelling possibility 
results, comparability across both individuals and dimensions/opinions is needed. A 
related literature addresses multidimensional inequality measurement (for an 
introductory review, see Weymark 2006). 
 
Finally, in the philosophy of biology, the one-dimensional and multi-dimensional 
SWFL frameworks have been used (by Okasha 2009 and Bossert, Qi, and Weymark 
2013) to analyse the notion of group fitness, defined as a function of individual fitness 
indicators.  
 
5. Judgment aggregation 
 
A more recent branch of social choice theory is the theory of judgment aggregation. It 
can be motivated by observing that votes for a most preferred alternative or orderings 
(or welfare functions) over multiple alternatives are not the only objects we may wish 
to aggregate from an individual to a collective level. Many decision-making bodies, 
such as legislatures, collegial courts, expert panels, and other committees, are faced 
with more complex ‘aggreganda’. In particular, they may have to aggregate individual 
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sets of judgments on multiple, logically connected propositions into collective sets of 
judgments. 
 
A court may have to judge whether a defendant is liable for breach of contract on the 
basis of whether there was a valid contract in place and whether there was a breach. 
An expert panel may have to judge whether atmospheric greenhouse-gas 
concentrations will exceed a particular threshold by 2050, whether there is a causal 
chain from greater greenhouse-gas concentrations to temperature increases, and 
whether the temperature will increase. Legislators may have to judge whether a 
particular end is socially desirable, whether a proposed policy is the best means for 
achieving that end, and whether to pursue that policy. 
 
These problems cannot be formalized in standard preference-aggregation models, 
since the aggreganda are not orderings but sets of judgments on multiple propositions. 
The theory of judgment aggregation represents these aggreganda in propositional 
logic (or another suitable logic). The field was inspired by the ‘doctrinal paradox’ in 
jurisprudence, with which we begin.  
 
5.1 The ‘doctrinal paradox’ and the ‘discursive dilemma’ 
 
Kornhauser and Sager (1986) described the following problem. (A structurally similar 
problem was discovered by Vacca 1921 and, as Elster 2013 points out, by Poisson 
1837.) A three-judge court has to make judgments on the following propositions: 
 

p: The defendant was contractually obliged not to do action X. 
q: The defendant did action X. 
r: The defendant is liable for breach of contract. 

 
According to legal doctrine, the premises p and q are jointly necessary and sufficient 
for the conclusion r. Suppose the individual judges hold the views shown in Table 5.  
 

Table 5: An example of the ‘doctrinal paradox’ 
 p (obligation) q (action) r (liability) 
Judge 1 True True True 
Judge 2 False True False 
Judge 3 True False False 
Majority True True False 

 
Although each individual judge respects the relevant legal doctrine, there is a majority 
for p, a majority for q, and yet a majority against r – in breach of legal doctrine. The 
court faces a dilemma: it can either go with the majority judgments on the premises (p 
and q) and reach a ‘liable’ verdict by logical inference (the issue-by-issue or premise-
based approach); or go with the majority judgment on the conclusion (r) and reach a 
‘not liable’ verdict, ignoring the majority judgments on the premises (the case-by-
case or conclusion-based approach). Kornhauser and Sager’s ‘doctrinal paradox’ 
consists in the fact that these two approaches may lead to opposite outcomes. 
 
We can learn another lesson from this example. Relative to the legal doctrine, the 
majority judgments are logically inconsistent. Formally expressed, the set of majority-
accepted propositions, {p, q, not r}, is inconsistent relative to the constraint r if and 
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only if (p and q). This observation was the starting point of the more recent, logic-
based literature on judgment aggregation (beginning with List and Pettit 2002).  
 
The possibility of inconsistent majority judgments is not tied to the presence of a legal 
doctrine or other explicit side constraint (as pointed out by Pettit 2001, who called this 
phenomenon the ‘discursive dilemma’). Suppose, for example, an expert panel has to 
make judgments on three propositions (and their negations): 

p: Atmospheric CO2 will exceed 600ppm by 2050. 
if p then q: If atmospheric CO2 exceeds this level by 2050, there will be a  
    temperature increase of more than 3.5° by 2010. 
q: There will be a temperature increase of more than 3.5° by 2010. 

 
If individual judgments are as shown in Table 6, the majority judgments are 
inconsistent: despite individually consistent judgments, the set of majority-accepted 
propositions, {p, if p then q, not q}, is logically inconsistent.  
 

Table 6: A majoritarian inconsistency 
 p if p then q q 
Expert 1 True True True 
Expert 2 False True False 
Expert 3 True False False 
Majority True True False 

 
5.2 The conditions for inconsistent majority judgments 
 
The patterns of judgments in Tables 5 and 6 are structurally equivalent to the pattern 
of preferences leading to Condorcet’s paradox, when we reinterpret those preferences 
as judgments on propositions of the form ‘x is preferable to y’, ‘y is preferable to z’, 
and so on, as shown in Table 7 (List and Pettit 2004; an earlier interpretation of 
preferences along these lines can be found in Guilbaud [1952] 1966). Here, the set of 
majority-accepted propositions is inconsistent relative to the constraint of transitivity. 

 
Table 7: Condorcet’s paradox, propositionally reinterpreted 

 ‘x is preferable to y’ ‘y is preferable to z’ ‘x is preferable to z’ 
Individual 1  
(prefers x to y to z) 

True True True 

Individual 2 
(prefers y to z to x) 

False True 
 

False 

Individual 3 
(prefers z to x to y) 

True False False 

Majority 
(prefers x to y to z 
to x, a ‘cycle’) 

True True False 

 
A general combinatorial result subsumes all these phenomena. Call a set of 
propositions minimally inconsistent if it is a logically inconsistent set, but all its 
proper subsets are consistent.  
 
Proposition (Dietrich and List 2007a, Nehring and Puppe 2007): Propositionwise 
majority voting may generate inconsistent collective judgments if and only if the set 
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of propositions (and their negations) on which judgments are to be made has a 
minimally inconsistent subset of three or more propositions.  
 
In the examples of Tables 6, 5, and 7, the relevant minimally inconsistent sets of size 
(at least) three are: {p, if p then q, not q}; {p, q, not r}, which is minimally 
inconsistent relative to the side constraint r if and only if (p and q); and {‘x is 
preferable to y’, ‘y is preferable to z’, ‘z is preferable to x’}, which is minimally 
inconsistent relative to a transitivity constraint on preferability. 
  
5.3 A general model and a simple impossibility result 
 
The basic model of judgment aggregation can be defined as follows (List and Pettit 
2002). Let N = {1, 2, …, n} be a set of individuals (n ≥ 2). The propositions on which 
judgments are to be made are represented by sentences from propositional logic (or 
some other, expressively richer logic, such as a predicate, modal, or conditional logic; 
see Dietrich 2007). We define the agenda, X, as a finite set of propositions, closed 
under single negation.11 For example, X could be {p, ¬p, p→q, ¬(p→q), q, ¬q}, as in 
the expert-panel case. 
 
Each individual i ∈ N has a judgment set Ji, defined as a subset Ji ⊆ X and interpreted 
as the set of propositions that individual i accepts. A judgment set is consistent if it is 
a logically consistent set of propositions12 and complete (relative to X) if it contains a 
member of every proposition-negation pair p, ¬p ∈ X. 
 
A combination of judgment sets across the individuals, <J1, J2, …, Jn>, is called a 
profile. A judgment aggregation rule, F, is a function that assigns to each profile <J1, 
J2, …, Jn> (in some domain of admissible profiles) a collective judgment set J = F(J1, 
J2, …, Jn) ⊆ X, interpreted as the set of propositions accepted by the group as a whole. 
As before, when F is clear from the context, we write J for the collective judgment set 
corresponding to <J1, J2, …, Jn>. Again, for generality, we build no rationality 
requirement on J (such as consistency or completeness) into the definition of a 
judgment aggregation rule. 
 
The simplest example of a judgment aggregation rule is propositionwise majority 
voting. Here, for any profile <J1, J2, …, Jn>, J = {p ∈ X : |{i ∈ N : p ∈ Ji}| > n/2}. As 
we have seen, this may produce inconsistent collective judgments. 
 
Consider the following conditions on an aggregation rule: 
 
Universal domain: The domain of F is the set of all logically possible profiles of 
consistent and complete individual judgment sets. 
 
Collective rationality: For any profile <J1, J2, …, Jn> in the domain of F, the 
collective judgment set J is consistent and complete. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Formally, X = {p,¬p : p ∈ X+}, where X+ is a set of un-negated propositions. To avoid technicalities, 
we assume that X contains no contradictory or tautological propositions. 
12 In principle, consistency can be defined relative to some side constraint such as the legal doctrine in 
the ‘doctrinal paradox’ example. 
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Anonymity: For any two profiles <J1, J2, …, Jn> and <J*
1, J*

2, …, J*
n> that are 

permutations of each other, F(J1, J2, …, Jn) = F(J*
1, J*

2, …, J*
n). 

 
Systematicity: For any two profiles <J1, J2, …, Jn> and <J*1, J*2, …, J*n> in the 
domain of F and any p, q ∈ X, if for all i ∈ N p ∈ Ji if and only if q ∈ J*

i, then p ∈ J if 
and only if q ∈ J*. 
 
The first three conditions are analogous to universal domain, ordering, and anonymity 
in preference aggregation. The last is the counterpart of independence of irrelevant 
alternatives, though stronger: it requires that (i) the collective judgment on any 
proposition p ∈ X (of which a binary ranking proposition such as ‘x is preferable to y’ 
is a special case) depend only on individual propositions on p (the independence part), 
and (ii) the pattern of dependence between individual and collective judgments be the 
same across all propositions in X (the neutrality part). Formally, independence is the 
special case with quantification restricted to p = q. Propositionwise majority voting 
satisfies all these conditions, except the consistency part of collective rationality. 
 
Theorem (List and Pettit 2002): If {p, q, p∧q} ⊆ X (where p and q are mutually 
independent propositions and ‘∧’ can also be replaced by ‘∨’ or ‘→’), there exists no 
judgment aggregation rule satisfying universal domain, collective rationality, 
anonymity, and systematicity. 
 
Like other impossibility theorems, this result is best interpreted as describing the 
trade-offs between different conditions on an aggregation rule. The result has been 
generalized and strengthened in various ways, beginning with Pauly and van Hees’s 
(2006) proof that the impossibility persists if anonymity is weakened to non-
dictatorship (for other generalizations, see Dietrich 2006 and Mongin 2008). 
 
5.4 More general impossibility and possibility theorems 
 
As we have seen, in preference aggregation, the ‘boundary’ between possibility and 
impossibility results is easy to draw: when there are only two decision alternatives, all 
of the desiderata on a preference aggregation rule reviewed above can be satisfied 
(and majority rule does the job); when there are three or more alternatives, there are 
impossibility results. In judgment aggregation, by contrast, the picture is more 
complicated. What matters is not the number of propositions in X but the nature of the 
logical interconnections between them.  
 
Impossibility results in judgment aggregation have the following generic form: for a 
given class of agendas, the aggregation rules satisfying a particular set of conditions 
(usually, a domain condition, a rationality condition, and some responsiveness 
conditions) are non-existent or degenerate (e.g., dictatorial). Different kinds of 
agendas trigger different instances of this scheme, with stronger or weaker conditions 
imposed on the aggregation rule depending on the properties of those agendas (for a 
more detailed review, see List 2012). The significance of combinatorial properties of 
the agenda was first discovered by Nehring and Puppe (2002) in a mathematically 
related but interpretationally distinct framework (strategy-proof social choice over so-
called property spaces). Three kinds of agenda stand out:  
 
A non-simple agenda: X has a minimally inconsistent subset of three or more 
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propositions. 
 
A pair-negatable agenda: X has a minimally inconsistent subset Y that can be 
rendered consistent by negating a pair of propositions in it. (Equivalently, X is not 
isomorphic to a set of propositions whose only connectives are ¬ and ↔; see Dokow 
and Holzman 2010a.) 
 
A path-connected agenda (or totally blocked, in Nehring and Puppe 2002): For any p, 
q ∈ X, there is a sequence p1, p2, …, pk ∈ X with p1 = p and pk = q such that p1 
conditionally entails p2, p2 conditionally entails p3, …, and pk-1 conditionally entails 
pk. (Here, pi conditionally entails pj if pi ∪ Y entails pj for some Y ⊆ X consistent with 
each of pi and ¬pj.) 
 
Some agendas have two or more of these properties. The agendas in our ‘doctrinal 
paradox’ and ‘discursive dilemma’ examples are both non-simple and pair-negatable. 
The preference agenda, X = {‘x is preferable to y’, ‘y is preferable to x’, ‘x is 
preferable to z’, ‘z is preferable to x’, …}, is non-simple, pair-negatable, and path-
connected (assuming preferability is transitive and complete). The following result 
holds: 
 
Theorem (Dietrich and List 2007b, Dokow and Holzman 2010a, building on Nehring 
and Puppe 2002): If X is non-simple, pair-negatable, and path-connected, there exists 
no judgment aggregation rule satisfying universal domain, collective rationality, 
independence, unanimity preservation (requiring that, for any unanimous profile <J, 
J, …, J>, F(J, J, …, J) = J), and non-dictatorship.13 
 
Applied to the preference agenda, this result yields Arrow’s theorem (for strict 
preference orderings) as a corollary (predecessors of this result can be found in List 
and Pettit 2004 and Nehring 2003).14 Thus Arrovian preference aggregation can be 
reinterpreted as a special case of judgment aggregation. 
 
The literature contains several variants of this theorem. One variant drops the agenda 
property of path-connectedness and strengthens independence to systematicity. A 
second variant drops the agenda property of pair-negatability and imposes a 
monotonicity condition on the aggregation rule (requiring that additional support 
never hurt an accepted proposition) (Nehring and Puppe 2010; the latter result was 
first proved in the above-mentioned mathematically related framework by Nehring 
and Puppe 2002). A final variant drops both path-connectedness and pair-negatability 
while imposing both systematicity and monotonicity (ibid.).  
 
In each case, the agenda properties are not only sufficient but also necessary for the 
result (Nehring and Puppe 2002, 2010; Dokow and Holzman 2010a). Note also that 
path-connectedness implies non-simplicity. Therefore, non-simplicity need not be 
listed among the theorem’s conditions, though it is needed in the variants dropping 
path-connectedness. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 See also the remark on the relationship between path-connectedness and non-simplicity at the end of 
this subsection. 
14 An earlier mathematically related, though interpretationally distinct contribution is Wilson’s work on 
abstract aggregation (1975). 
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5.5 Non-dictatorial judgment aggregation rules 
 
5.5.1 Relaxing universal domain 
 
As in preference aggregation, one way to avoid the present impossibility results is to 
relax universal domain. If the domain of admissible profiles of individual judgment 
sets is restricted to those satisfying specific ‘cohesion’ conditions, propositionwise 
majority voting produces consistent collective judgments.  
 
The simplest cohesion condition is unidimensional alignment (List 2003c). A profile 
<J1, J2, …, Jn> is unidimensionally aligned if the individuals in N can be ordered from 
left to right (e.g., on some cognitive or ideological dimension) such that, for every 
proposition p ∈ X, the individuals accepting p (i.e., those with p ∈ Ji) are either all to 
the left, or all to the right, of those rejecting p (i.e., those with p ∉ Ji), as illustrated in 
Table 8. For any such profile, the majority judgments are consistent: the judgment set 
of the median individual relative to the left-right ordering will prevail (where n is 
odd). This judgment set will inherit its consistency from the median individual, 
assuming individual judgments are consistent. By implication, on unidimensionally 
aligned domains, propositionwise majority voting will satisfy the rest of the 
conditions on judgment aggregation rules reviewed above.  
 

Table 8: Unidimensional alignment 
 Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 
p True True False False False 
q True   True True True False 
r False False False True True 

p∧q∧r False False False False False 
 

In analogy with the case of single-peakedness in preference aggregation, several less 
restrictive conditions already suffice for consistent majority judgments. One such 
condition (introduced in Dietrich and List 2010a, where a survey is provided) 
generalizes Sen’s triple-wise value-restriction. A profile <J1, J2, …, Jn> is value-
restricted if every minimally inconsistent subset Y ⊆ X has a pair of elements p, q 
such that no individual i ∈ N has {p, q} ⊆ Ji. Value-restriction prevents any 
minimally inconsistent subset of X from becoming majority-accepted, and hence 
ensures consistent majority judgments. Applied to the preference agenda, value-
restriction reduces to Sen’s equally named condition. 
 
5.5.2 Relaxing collective rationality 
 
While the requirement that collective judgments be consistent is widely accepted, the 
requirement that collective judgments be complete (in X) is more contentious. In 
support of completeness, one might say that a given proposition would not be 
included in X unless it is supposed to be collectively adjudicated. Against 
completeness, one might say that there are circumstances in which the level of 
disagreement on a particular proposition (or set of propositions) is so great that 
forming a collective view on it is undesirable or counterproductive. Several papers 
offer possibility or impossibility results on completeness relaxations (e.g., List and 
Pettit 2002; Gärdenfors 2006; Dietrich and List 2007a, 2008; Dokow and Holzman 
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2010b). 
 
Judgment aggregation rules violating collective completeness while satisfying (all or 
most of) the other conditions introduced above include: unanimity rule, where, for 
any profile <J1, J2, …, Jn>, J = {p ∈ X : p ∈ Ji for all i ∈ N}; supermajority rules, 
where, for any profile <J1, J2, …, Jn>, J = {p ∈ X : |{i ∈ N : p ∈ Ji}| > qn} for a 
suitable acceptance quota q ∈ [0.5,1); and conclusion-based rules, where a subset Y ⊆ 
X of logically independent propositions (and their negations) is designated as a set of 
conclusions and J = {p ∈ Y : |{i ∈ N : p ∈ Ji}| > n/2}. In the multi-member court 
example of Table 5, the set of conclusions is simply Y = {r, ¬r}.  
 
Given consistent individual judgment sets, unanimity rule guarantees consistent 
collective judgment sets, because the intersection of several consistent sets of 
propositions is always consistent. Supermajority rules guarantee consistent collective 
judgment sets too, provided the quota q is chosen to be at least (k-1)/k, where k is the 
size of the largest minimally inconsistent subset of X. The reason is combinatorial: 
any k distinct supermajorities of the relevant size will always have at least one 
individual in common. So, for any minimally inconsistent set of propositions (which 
is at most of size k) to be majority-accepted, at least one individual would have to 
accept all the propositions in the set, contradicting this individual’s consistency 
(Dietrich and List 2007a, List and Pettit 2002). Conclusion-based rules, finally, 
produce consistent collective judgment sets by construction, but always leave non-
conclusions undecided.  
 
Gärdenfors (2006) and more generally Dietrich and List (2008) and Dokow and 
Holzman (2010b) have shown that if – while relaxing completeness – we require 
collective judgment sets to be deductively closed (i.e., for any p ∈ X entailed by J, it 
must be that p ∈ J), we face an impossibility result again. For the same agendas that 
lead to the impossibility result reviewed in Section 5.4, there exists no judgment 
aggregation rule satisfying universal domain, collective consistency and deductive 
closure, independence, unanimity preservation, and non-oligarchy. An aggregation 
rule is called oligarchic if there is an antecedently fixed subset M ⊆ N (the 
‘oligarchs’) such that, for any profile <J1, J2, …, Jn>, J = {p ∈ X : p ∈ Ji for all i ∈ 
M}. Unanimity rule and dictatorships are special cases with M = N and M = {i} for 
some i ∈ N, respectively.  
 
The downside of oligarchic aggregation rules is that they either lapse into dictatorship 
or lead to stalemate, with the slightest disagreements between oligarchs resulting in 
indecision (since every oligarch has veto power on every proposition).  
 
5.5.3 Relaxing systematicity/independence 
 
A variety of judgment aggregation rules become possible when we relax 
systematicity/independence. Recall that systematicity combines an independence and 
a neutrality requirement. Relaxing only neutrality does not get us very far, since for 
many agendas there are impossibility results with independence alone, as illustrated in 
Section 5.4. 
 
One much-discussed class of aggregation rules violating independence is given by the 
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premise-based rules. Here, a subset Y ⊆ X of logically independent propositions (and 
their negations) is designated as a set of premises, as in the court example. For any 
profile <J1, J2, …, Jn>, J = {p ∈ X : JY entails p} where JY are the majority-accepted 
propositions among the premises, formally {p ∈ Y : |{i ∈ N : p ∈ Ji}| > n/2}. 
Informally, majority votes are taken on the premises, and the collective judgments on 
all other propositions are determined by logical implication. If the premises constitute 
a logical basis for the entire agenda, a premise-based rule guarantees consistent and 
(absent ties) complete collective judgment sets. (The present definition follows List 
and Pettit 2002; for generalizations, see Dietrich and Mongin 2010. The procedural 
and epistemic properties of premise-based rules are discussed in Pettit 2001, 
Chapman 2002, Bovens and Rabinowicz 2006, Dietrich 2006, and List 2006.)  
 
A generalization is given by the sequential priority rules (List 2004b, Dietrich and 
List 2007a). Here, for each profile <J1, J2, …, Jn>, the propositions in X are 
collectively adjudicated in a fixed order of priority, for instance, a temporal or 
epistemic one. The collective judgment on each proposition p ∈ X is made as follows. 
If the majority judgment on p is consistent with collective judgments on prior 
propositions, this majority judgment prevails; otherwise the collective judgment on p 
is determined by the implications of prior judgments. By construction, this guarantees 
consistent and (absent ties) complete collective judgments. However, it is path-
dependent: the order in which propositions are considered may affect the outcome, 
specifically when the underlying majority judgments are inconsistent. For example, 
when this aggregation rule is applied to the profiles in Tables 5, 6, and 7 (but not 8), 
the collective judgments depend on the order in which the propositions are 
considered. Thus sequential priority rules are vulnerable to agenda manipulation. 
Similar phenomena occur in sequential pairwise majority voting in preference 
aggregation (e.g., Riker 1982). 
 
Another prominent class of aggregation rules violating independence is given by the 
distance-based rules (Pigozzi 2006, building on Konieczny and Pino Pérez 2002; see 
also Miller and Osherson 2009). A distance-based rule is defined in terms of some 
distance metric between judgment sets, for example the Hamming distance, where, 
for any two judgment sets J, J’ ⊆ X, d(J, J’) = |{p ∈ X : not [p ∈ J ⇔ p ∈ J’]}|. Each 
profile <J1, J2, …, Jn> is mapped to a consistent and complete judgment set J that 
minimizes the sum-total distance from each of the Jis. Distance-based rules can be 
interpreted as capturing the idea of identifying compromise judgments. Unlike 
premise-based or sequential priority rules, they do not require a distinction between 
premises and conclusions or any other order of priority among the propositions. 
 
As in preference aggregation, the cost of relaxing independence is the loss of strategy-
proofness. The conjunction of independence and monotonicity is necessary and 
sufficient for the non-manipulability of a judgment aggregation rule by strategic 
voting (Dietrich and List 2007c; for related results, see Nehring and Puppe 2002). 
Thus we cannot generally achieve strategy-proofness without relaxing either universal 
domain, or collective rationality, or unanimity preservation, or non-dictatorship. In 
practice, we must therefore look for ways of rendering opportunities for strategic 
manipulation less of a threat. 
 
6. Other topics 
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As should be evident, social choice theory is a vast field. Areas not covered in this 
entry, or mentioned only in passing, include: theories of fair division (how to divide 
one or several divisible or indivisible goods, such as cakes or houses, between several 
claimants; e.g., Brams and Taylor 1996 and Moulin 2004); behavioural social choice 
theory (analyzing empirical evidence of voting behaviour under various aggregation 
rules; e.g., Regenwetter et al. 2006, List, Luskin, Fishkin, and McLean 2013); 
empirical social choice theory (analysing surveys and experiments on people’s 
intuitions about distributive justice; e.g., Gaertner and Schokkaert 2012); 
computational social choice theory (analysing computational properties of 
aggregation rules, including their computational complexity; e.g., Bartholdi, Tovey, 
and Trick 1989, Brandt, Conitzer, and Endriss 2013); theories of probability 
aggregation (studying the aggregation of probability or credence functions; e.g., 
Lehrer and Wagner 1981, McConway 1981, Genest and Zidek 1986, Mongin 1995, 
Dietrich and List 2007d); theories of general attitude aggregation (generalizing two-
valued judgment aggregation, probability/credence aggregation, and preference 
aggregation; e.g., Dietrich and List 2010b, Dokow and Holzman 2010c); the study of 
collective decision-making in non-human animals (studying group decisions in a 
variety of animal species from social insects to primates, as surveyed in Conradt and 
List 2009 and the special issue it introduces); and applications to social epistemology 
(the analysis of group doxastic states and their relationship to individual doxastic 
states; e.g., Goldman 2004, 2010). 
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