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1 A Simple Model

To help motivate and interpret our empirical work, we develop a simple model of crowded

trading, building on the work of Hong and Stein (1999). In their model, Hong and Stein study

the interaction of newswatchers and quantitative traders following well-known strategies,

and assume that the number of quantitative traders is fixed. We extend their setting to

incorporate a time-varying number of quantitative traders (or, equivalently, time-varying

aggregate risk tolerance), to reflect the fact that arbitrage capital can change stochastically.

1.1 Baseline Model Setup

Following Hong and Stein, our economy has a single asset with supply Q that pays a liqui-

dating dividend, DT , at time T . Specifically,

DT = D0 +
T∑

j=0

εj (1)

where εj is iid N(0, σ2). All ε’s are independently distributed and can be further decomposed

into Z independent sub-innovations, εj = ε1j + ...+ εzj , where εlj is iid N(0, σ2/z). Thus, each

sub-innovation has the same variance. Throughout, we consider the limiting case where T

goes to infinity. This choice allows us to focus on the steady-state trading strategy—that is,

a strategy that does not depend on how close we are to the terminal payoff.

Our baseline model features three groups of investors. The first group is newswatchers

with CARA utility. These newswatchers are divided into z equal-sized groups. At time

t, news about εt+z−1 starts to spread. More specifically, at time t, group 1 newswatchers

observe ε1t+z−1, group 2 observes ε2t+z−1, and so forth. Thus, at time t, each sub-innovation

of εt+z−1 is observed by 1/z of the total newswatcher population. Next, at time t + 1, the

groups rotate, so that group 1 newswatchers observe ε2t+z−1, group 2 observes ε3t+z−1, and so

forth. Therefore, at time t + 1, each sub-innovation of of εt+z−1 is observed by 2/z of the

total newswatcher population. This rotation process continues until time t+ z− 1, at which

point each group of newswatchers has observed the entire signal εt+z−1, so that the entirety

of εt+z−1 is public information. Importantly, newswatchers do not condition their demand
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on Pt.
1 As shown by Hong and Stein, this structure naturally leads to underreaction:

Pt = Dt + {(z − 1)εt+1 + (z − 2)εt+2 + ...+ εt+z−1} /z − θQ (2)

Note that θ is a function of newswatchers’ risk aversion and σ2. For simplicity, we normalize

θ to 1.

Our second group of investors is momentum traders, who also have CARA utility with

risk tolerance of γMOM . Following Hong and Stein (1999), we assume that these traders hold

their positions for jMOM periods, and, importantly, only condition on ∆Pt−1 = Pt−1 − Pt−2.

In other words, generation-t momentum traders’ demand is FMOM
t = φMOM

t ∆Pt−1, where

φMOM
t is the endogenous response chosen by momentum traders.

Our contribution relative to Hong and Stein is that we allow the number of momentum

traders to be time varying as captured by NMOM
t . In particular, we assume that NMOM

t is

the sum of two components, one observable (XMOM
t ) and one unobservable (Y MOM

t ). The

evolution of XMOM
t follows a two-state (0.5−spreadX , 0.5+spreadX) Markov process where

the persistence of each state is calibrated to the AR(1) coefficient (0.66) of our comomentum

measure in the data. Y MOM
t also follows a two-state (0.5− spreadY , 0.5 + spreadY ) Markov

process with the same persistence.2 In the special case where spreadY = 0, the total number

of momentum traders is effectively publicly observable; otherwise, momentum traders only

see a noisy proxy.

Our final group of investors consists of value traders, also having CARA utility with

risk tolerance of γV AL. Value traders hold their positions for jV AL periods, and condition

on P̂t − Pt, where P̂t is a noisy signal of the fundamental value of the firm (i.e., firm value

incorporating all available information at t plus an independent noise term, εP̂t ∼ N(0, σ2
P̂

) ).

Thus, P̂t − Pt is reminiscent of the value signal used in practice. Consequently, generation-t

value traders’ demand is F V AL
t = φV AL

t (P̂t − Pt), where φV AL
t is the endogenous response

chosen by value traders. A key distinction between the momentum and value strategies is

that while momentum trading exacerbates the initial momentum signal, value traders shrink

the value signal; in other words, the former is a positive-feedback strategy and the latter a

negative-feedback strategy.

1Hong and Stein (1999) provide extensive discussion of the way in which their model departs from a classic
model like Grossman (1976). They also show how the important takeaways from their theory continue to
hold even if they add fully-rational but risk-averse arbitrageurs who can condition on everything in the model
that is observed by any other trader.

2We require that spreadX < 0.5 and spreadY < 0.5, so that the amount of arbitrage capital is strictly
positive in each period.
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We further assume that NV AL
t , the number of value traders in period t, follows a similar

structure to NMOM
t (with two components, both of which follow a two-state Markov process).

For simplicity, we assume that XMOM
t is observable only for momentum traders, while XV AL

t

is observable only for value traders. (We relax this assumption in an extension where a single

group of arbitrageurs optimally trade both signals.) Given these assumptions, the aggregate

supply absorbed by newswatchers is thus

St = Q−
jMOM∑
i=1

FMOM
t−i+1 −

jV AL∑
i=1

F V AL
t−i+1

= Q−
jMOM∑
i=1

NMOM
t−i+1 φ

MOM
t−i+1∆Pt−i −

jV AL∑
i=1

NV AL
t−i+1φ

V AL
t−i+1(P̂t−i+1 − Pt−i+1). (3)

1.2 Equilibrium

We conjecture a linear pricing equation

Pt = Dt + ((z − 1)εt+1 + (z − 2)εt+2 + ...+ εt+z−1)/z

−Q+

jMOM∑
i=1

NMOM
t−i+1 φ

MOM
t−i+1∆Pt−i +

jV AL∑
i=1

NV AL
t−i+1φ

V AL
t−i+1(P̂t−i+1 − Pt−i+1). (4)

Without loss of generality and for the purpose of illustration, we set jMOM = jV AL = 1 (i.e.,

momentum traders and value traders live for only one period).3 As a consequence, demand

by momentum and value traders can be characterized by the following equations:

φMOM
t (XMOM

t , XV AL
t )∆Pt−1 =

EMOM(∆Pt+1|XMOM
t , XV AL

t )

V ar(∆Pt+1|XMOM
t , XV AL

t )
γMOM

φV AL
t (XMOM

t , XV AL
t )(P̂t − Pt) =

EV AL(∆Pt+1|XMOM
t , XV AL

t )

V ar(∆Pt+1|XMOM
t , XV AL

t )
γV AL

3In other words, all momentum and value traders are reborn in each period. Our theoretical conclusions
are robust to allowing j to differ from one.
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where the expected next-period return can be expressed as a linear projection onto the

momentum and value signals:

EMOM(∆Pt+1|∆Pt−1, X
MOM
t , XV AL

t ) =
Cov(∆Pt+1,∆Pt−1|XMOM

t , XV AL
t )

V ar(∆Pt−1|XMOM
t , XV AL

t )
∆Pt−1

EV AL(∆Pt+1|P̂t − Pt, X
MOM
t , XV AL

t ) =
Cov(∆Pt+1, P̂t − Pt|XMOM

t , XV AL
t )

V ar(P̂t − Pt|XMOM
t , XV AL

t )
(P̂t − Pt)

1.3 An Extension

We next extend the model by allowing Nt quantitative traders to use an optimal blended

strategy. In other words, every quantitative trader now runs a bivariate regression to forecast

future stock returns based on both the momentum and value signals. As a consequence,

demand by arbitrageurs can be characterized by the following:

φMOM
t ∆Pt−1 + φV AL

t (P̂t − Pt) =
E(∆Pt+1|Xt)

V ar(∆Pt+1|Xt)
γ, (5)

where γ is the risk tolerance of all quantitative traders,and Xt is the observable variation in

arbitrage capital. The expected next-period return is now

E(∆Pt+1|Xt,∆Pt−1, P̂t − Pt) =
[
∆Pt−1 P̂t − Pt

]
Σ−1

[
Cov(∆Pt+1,∆Pt−1|Xt)

Cov(∆Pt+1, P̂t − Pt|Xt)

]
,

where

Σ =

[
V ar(∆Pt−1|Xt) Cov(∆Pt−1, P̂t − Pt|Xt)

Cov(P̂t − Pt,∆Pt−1|Xt) V ar(P̂t − Pt|Xt)

]
.

We can then rewrite φMOM
t and φV AL

t as[
φMOM
t (Xt)

φV AL
t (Xt)

]
= Σ−1

[
Cov(∆Pt+1,∆Pt−1|Xt)

Cov(∆Pt+1, P̂t − Pt|Xt)

]
γ

V ar(∆Pt+1|Xt)

and conjecture a linear pricing equation:

Pt = Dt + ((z − 1)εt+1 + (z − 2)εt+2 + ...+ εt+z−1)/z

−Q+Nt[φ
MOM
t ∆Pt−1 + φV AL

t (P̂t − Pt)]. (6)
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1.4 Model Solution

These equations do not have an analytical solution for φMOM
t and φV AL

t , which are functions

of state variables XMOM
t and XV AL

t . Thus, we solve the model via simulation. Specifically,

we set the initial values of φMOM
t and φV AL

t to the solutions based on constant NMOM
t and

NV AL
t (as in the Hong and Stein case). In each subsequent round, we simulate a price path

based on φMOM
t and φV AL

t computed in the previous iteration; we then re-calculate φMOM
t

and φV AL
t using the simulated price path. The solution to the above set of equations is then

the fixed point in φMOM
t and φV AL

t conditional on XMOM
t and XV AL

t .

Section 1.1 of the Internet Appendix explores a variety of implications of our model via

comparative statics. We summarize the key results as follows. First, momentum returns peak

in the short run and then gradually and partially reverse in subsequent periods. Second,

all else equal, a larger amount of momentum capital (i.e., when either XMOM
t or Y MOM

t is

relatively high) is associated with a larger return effect at the time of the arbitrageurs’ trades

and then a smaller drift subsequently. In other words, as more capital arrives, momentum

traders incorporate more information into prices as they trade, consequently making the

momentum strategy less profitable. Third, a larger amount of momentum capital is also

associated with a larger reversal in the long run, consistent with the idea that momentum

trading can be destabilizing.

1.5 Arbitrage Activity and Strategy Returns

To speak more directly to our empirical tests, we compare periods with high momentum

(value) activity vs. periods with low momentum (value) activity in our simulated data.

As shown in Equation (3), arbitrage demand for the momentum strategy in our simple

model is NMOM
t φMOM

t abs(∆Pt−1) (i.e., the number of momentum traders times their mo-

mentum trading intensity times the magnitude of the momentum signal), and that for value

is NV AL
t φV AL

t abs(P̂t−Pt) (i.e., the number of value traders times their value trading intensity

times the magnitude of the value signal). Consequently, we sort all simulated periods into

two groups based on the absolute value of either NMOM
t φMOM

t ∆Pt−1 or NV AL
t φV AL

t (P̂t−Pt)

and track the returns to the momentum and value strategies in subsequent periods. Note

that if the momentum (or value) signal is negative, arbitrageurs short the stock, so their

profit is minus the stock return when that occurs.

The simulation results are shown in Appendix Table A1. Panel A presents momentum
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returns after periods of high and low momentum demand. Specifically, we report momentum

returns in period 0 (when momentum traders put on the trade), in period 1 (when momentum

traders hold their positions), and periods 2-12 (the long-run). Across all γMOM values,

momentum spreads in the formation period are larger in high momentum activity periods

than in low activity periods. There is also a larger reversal to the momentum strategy

after periods with high momentum activity than periods with low activity, again across all

γMOM values. Momentum returns in the holding period (j=1 in this case), however, depend

on the γMOM value. When momentum traders are relatively risk-averse (i.e., with a low

γMOM), momentum returns in period 1 are larger in high momentum activity periods than

in low activity periods; when momentum traders are relatively risk-tolerant (i.e., with a high

γMOM), the reverse is true.

Panel B of the same table presents value returns after periods of high and low value

strategy activity. In both the holding and post-holding periods, value returns are strictly

larger after high realizations of value activity than low realizations of value activity. This is

true for all γV AL values. The reason that our model has different predictions for momentum

and value is that value is a negative-feedback strategy. Though value traders’ demand is

a linear function of the value signal as well, the resulting demand also shrinks the signal.

This fact has two implications. 1) The equilibrium value signal is a positive predictor of

future value strategy returns (in contrast, the momentum signal can be a negative predictor

of future returns). 2) High value activity is accompanied by a relatively large value signal,

which in turn indicates high expected returns to the value strategy. We provide a more

detailed discussion of momentum vs. value strategies in Section 2.2 of this appendix.

2 Numerical Comparative Statics

2.1 Momentum Strategy Returns

We conduct a number of numerical comparative-static exercises for momentum strategy

returns using the model described above. For each set of parameter values, we calculate the

cumulative momentum profits, i.e., the coefficient estimates from the regression of ∆Pt+k

on ∆Pt−1, where k ranges from 1 to 12. Period 0 is when arbitrageurs put on their trades

and period 1 is when momentum profits are realized. For illustration purposes, we focus

on the setting where z is equal to 3 (i.e., the signal in each period is divided into three
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sub-signals); we have also experimented with other z values and obtained similar patterns

(results available upon request). When unstated, γMOM is set to 2 and γV AL to 1 in the

baseline model, and γ to 3 in the extended model; for other parameters, the default values

of Spreadx and Spready are set to 0.4 and σP̂ to 1.

Appendix Figures A1-A4 present comparative statics of the baseline model, in which one

group of arbitrageurs follows a momentum strategy and the other group follows a value strat-

egy (each solving a univariate optimization problem). Each graph in these figures contains

three to five lines that correspond to different realizations of XMOM
t and Y MOM

t . “High”

or “Low”denotes that the realization of XMOM
t or Y MOM

t is either high or low. “Uncondi-

tional” or “Uncond” corresponds to settings in which the cumulative momentum return is

unconditional on XMOM
t or Y MOM

t , or both.

A number of general observations are worth pointing out. First, momentum returns

peak in period 1 (or 0, depending on the parameter values), and gradually reverse in the

subsequent periods. As evident by the positive cumulative return at the end of period 12,

momentum returns are only partially reversed. Second, all else equal, a larger amount of

momentum capital (i.e., in the high state of XMOM
t or Y MOM

t ) is associated with a larger

return effect in period 0 (when arbitrageurs put on their trades) and a smaller drift in period

1; in other words, as more capital arrives, momentum traders incorporate more information

into prices as they trade, consequently making the momentum strategy less profitable. Third,

a larger amount of momentum capital is also associated with a larger reversal in the long

run (periods 2 to 12), consistent with the idea that momentum trading can be destabilizing.

Appendix Figure A1 depicts cumulative momentum returns as a function of the risk

tolerance of momentum traders, with γMOM ranging from 1 to 10. Consistent with Hong

and Stein (1999), we find that across all settings, as momentum traders become more risk

tolerant, a) the average momentum profit in period 1 (as well as the cumulative return over

the entire 12 periods) declines, and b) the long-run reversal to the momentum strategy in

periods 2 to 12 increases. Put differently, as arbitrageurs trade more aggressively on the

momentum signal, they reduce the short-term profitability of the strategy and at the same

time induce a stronger long-run reversal.

Appendix Figure A2 shows momentum returns with varying degrees of risk tolerance of

value traders, where γV AL ranges from 1 to 10. Since value traders observe a noisy signal

of the fundamental value, they trade to correct any deviation from this benchmark value –

that is, value investors temper whatever price effect is caused by momentum traders. Not
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surprisingly, as γV AL increases, the entire curve of cumulative momentum returns shifts

downward: a) a smaller momentum spread in period 0, b) a smaller momentum return in

period 1, and c) a weaker reversal in periods 2 to 12.

In Appendix Figure A3, we keep the two risk-tolerance coefficients constant, and vary

the size of SpreadX , the part of time-varying momentum capital observable to momentum

traders. As SpreadX increases from 0.05 to 0.5, the unconditional momentum profit remains

roughly constant, but the wedge between the high and low states of XMOM
t is magnified.

For example, when SpreadX is close to zero, the three lines (high XMOM
t , unconditional,

low XMOM
t ) are virtually indistinguishable from each other. In contrast, in the bottom-right

graph, where SpreadX=0.5, the high-XMOM
t line stays visibly above the low-XMOM

t line.

(This is the case even if we set Y MOM
t to zero.)

This result may seem surprising initially, as momentum traders observe the realizations

of XMOM
t and adjust their trading intensity accordingly. While this intuition is correct, mo-

mentum traders’ endogenous response (captured by φMOM
t ) does not fully offset the variation

in XMOM
t . This arises because momentum traders are risk averse; as such, they demand a

higher premium to bet more aggressively on momentum in the low-XMOM
t state. In other

words, the product of NMOM
t and φMOM

t remains higher in the high-XMOM
t state, despite

the fact that φMOM
t is higher in the low-XMOM

t state. The table below documents this fact

by showing both φt and Nt × φt in the high and low X states as we vary SpreadX .
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φ in the Baseline Model

φMOM φV AL

SpreadX High Low High Low

0.05 0.335 0.359 0.266 0.279

0.1 0.323 0.371 0.260 0.285

0.2 0.302 0.397 0.249 0.298

0.3 0.284 0.429 0.239 0.313

0.4 0.268 0.467 0.229 0.328

0.5 0.253 0.513 0.219 0.345

NMOMφMOM NV ALφV AL

SpreadX High Low High Low

0.05 0.351 0.341 0.279 0.265

0.1 0.355 0.334 0.286 0.256

0.2 0.362 0.318 0.299 0.238

0.3 0.370 0.300 0.310 0.219

0.4 0.375 0.280 0.320 0.197

0.5 0.379 0.257 0.328 0.172

Appendix Figure A4 repeats the exercise in Figure A3 by introducing variation in SpreadY ,

the unobservable component of time-varying momentum capital. The general pattern is sim-

ilar to that in Figure A3: as we increase SpreadY , the wedge in short-run momentum returns

and long-run return reversal between the high and low states of Y MOM
t is magnified. Not

surprisingly, all else equal, the effect of SpreadY on the wedge is larger than that of SpreadX .

This is because momentum traders do not observe Y MOM
t , and therefore cannot condition

their trading intensity on the realizations of Y MOM
t . Put another way, φMOM

t does not

vary across the high vs. low Y MOM
t states, so the product of NMOM

t and φMOM
t is solely

determined by the realization of Y MOM
t .

Appendix Figures A5-A7 present comparative statics of the extended model, in which a

single group of arbitrageurs, whose time-varying capital is denoted by Nt, trade both the

momentum and value strategies (i.e., solving a bivariate optimization problem).

Appendix Figure A5 shows cumulative momentum returns as a function of the risk toler-

ance of this single group of arbitrageurs. As γ increases (from 1 to 10), arbitrageurs bet more

aggressively on both momentum and value (the latter again helps mitigate any price effect

induced by the former). Consequently, returns in both period 0 (when arbitrageurs put their
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trades) and period 1 (when momentum profits are realized) decrease; the long-run reversal

of momentum also gets weaker. Moreover, the cumulative return at the end of period 12

(reflecting the overall underreaction to news) gets smaller as a result of intensified trading

by arbitrageurs.

Appendix Figures A6 and A7 examine momentum returns with different values of SpreadX

and SpreadY , respectively. (The table below shows φt and Nt × φt in the high and low X

states with different values of SpreadX .) The patterns are similar to those in Appendix Fig-

ures A3 and A4. Again, an increase in Spread (in either Xt or Yt) leads to a larger wedge in

short-term momentum profits as well as in long-term return reversal across the high and low

states of the corresponding component in momentum capital. Moreover, since arbitrageurs

can only observe Xt but not Yt, SpreadY has a larger impact on momentum returns than

SpreadX .4

φ in the Extended Model

φMOM φV AL

SpreadX High Low High Low

0.05 0.314 0.337 0.381 0.410

0.1 0.304 0.349 0.368 0.425

0.2 0.284 0.378 0.344 0.463

0.3 0.267 0.415 0.323 0.508

0.4 0.253 0.455 0.303 0.557

0.5 0.239 0.512 0.285 0.622

NMOMφMOM NV ALφV AL

SpreadX High Low High Low

0.05 0.329 0.320 0.400 0.390

0.1 0.335 0.314 0.405 0.382

0.2 0.341 0.303 0.413 0.370

0.3 0.347 0.291 0.420 0.355

0.4 0.354 0.273 0.425 0.334

0.5 0.359 0.256 0.428 0.311

4To ensure the robustness of our results, we also experimented with different values of z (6, 12) and j (3,
6, 12) in the extended model (results available upon request). Our model’s key results remain unchanged.
First, a larger amount of momentum capital (i.e., when Xt or Yt is high) is associated with a larger return in
period 0 (when arbitrageurs put their on trades), a smaller momentum profit in the short run, and a larger
reversal in the longer run. Second, as we increase either SpreadX or SpreadY , the return spread between
the high and low momentum-capital states becomes larger.
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2.2 Momentum (Value) Returns with respect to CoMOM (CoV AL)

To speak more directly to our empirical results, Appendix Table A1 Panel A compares

periods with high arbitrage activity vs. periods with low arbitrage activity in our simulated

data. Although we do not explicitly model the correlations among momentum or value

stocks (given that we have a one-asset model), we can interpret CoMOM and CoV AL as

measures of aggregate arbitrage demand for the momentum and value strategies at each

point in time. As shown in Equation (3), arbitrage demand for the momentum strategy in

our simple model is NMOM
t φMOM

t abs(∆Pt−1) (i.e., the number of momentum traders times

their momentum trading intensity times the magnitude of the momentum signal), and that

for value is NV AL
t φV AL

t abs(P̂t−Pt) (i.e., the number of value traders times their value trading

intensity times the magnitude of the value signal). We highlight that CoMOM and CoV AL

reflect not only the aggregate trading intensity of momentum and value investors (as captured

by NMOM
t φMOM

t and NV AL
t φV AL

t , respectively), but also the magnitude of the momentum

and value signals at that point in time. The correlation in our model between aggregate

arbitrage demand and the momentum signal as well as that between aggregate arbitrage

demand and the value signal is over 90%. In the data, CoMOM is strongly associated

with the formation period momentum spread (correlation of 0.16), and CoV AL is strongly

associated with the value spread (correlation of 0.17).

Consequently, we sort all simulated periods into two groups based on the absolute value

of either NMOM
t φMOM

t ∆Pt−1 or NV AL
t φV AL

t (P̂t−Pt) and track momentum and value returns

in the subsequent periods. If ∆Pt−1 or P̂t − Pt is negative, we multiple subsequent stock

returns by -1 to reflect the fact that arbitrageurs have a short position in the stock in those

situations. Moreover, to highlight the differences in return patterns associated with CoMOM

and CoV AL, we analyze momentum and value strategies one at a time.5 This choice is driven

by the fact that we have a one-asset model in which the momentum signal and value signal

tend to be positively correlated. To see this, consider a positive fundamental shock to the

stock. This results in a positive momentum signal, but since newswatchers underreact to

the positive shock, this shock also results in a positive value signal.

The simulation results are shown in Appendix Table A1. Panel A presents momentum

returns after periods of high and low momentum activity (CoMOM). We report momentum

returns in period 0 (when momentum traders put on the trade), in period 1 (when momentum

traders hold their positions), and periods 2-12 (the long-run). Across all γMOM values,

5In other words, we allow arbitrageurs to only condition on one of the two signals at a time.
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momentum spreads in the formation period are larger in high CoMOM periods than in

low CoMOM periods. There is also a larger reversal to the momentum strategy after

periods with high CoMOM than periods with low CoMOM , again across all γMOM values.

Momentum returns in the holding period (j=1 in this case), interestingly, depend on the

γMOM value. When momentum traders are relatively risk-averse (i.e., with a low γMOM),

momentum returns in period 1 are larger in high CoMOM periods than in low CoMOM

periods; when momentum traders are relatively risk-tolerant (i.e., with a high γMOM), the

reverse is true.

Panel B of the same table presents value strategy returns after periods of high and low

value activity (CoV AL). Again, we report value returns in period 0 (when value traders put

on the trade), in period 1 (when they hold their positions), and periods 2-12 (the long-run).

In both the holding and post-holding periods, value returns are strictly larger after high

realizations of CoV AL than low realizations of CoV AL. This is true for all γV AL values.

Overall, these findings are relatively intuitive. The idea that momentum can become an

overreaction strategy (where long-horizon returns are negative) in our dynamic model can

be foreshadowed by the comparative statics of Hong and Stein (1999). The reason is that

as a positive-feedback strategy, momentum trading amplifies the signal: more momentum

activity in period t, all else equal, makes the signal more attractive for period t+1. This

naturally leads to an overreaction phenomenon. Of course, the attractiveness of our model

is that we allow traders to dynamically condition the intensity of their momentum strategy

on the observable component of the variation in the amount of momentum capital.

The notion that value strategies always have positive long-horizon returns in our model is

also intuitive. To see this, note that arbitrageurs never “over-trade” the value signal (unlike

in the momentum case) because their trading dampens the signal; in the extreme case, for

instance, where arbitrageurs are risk neutral, their infinitely-aggressive trades completely

eliminate the value signal and the expected return to the value strategy is reduced to zero

(not negative!). Consequently, the equilibrium value signal is always a positive predictor

of future returns, and so is value arbitrage activity, which is simply a linear (or any other

increasing) function of the value signal.
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3 Further Discussion of Appendix Tables

3.1 Time-Varying Momentum Return Skewness and Market Beta

Daniel and Moskowitz (2016) and Daniel, Jagannathan, and Kim (2018) study the non-

normality of momentum returns with a particular focus on the negative skewness in momen-

tum returns. Both papers argue that momentum crashes are forecastable.6 Appendix Table

A2 reports the extent to which comomentum forecasts time-series variation in the skewness

of momentum returns. We examine both the skewness of daily returns (in months 1-3) and

weekly returns (months 1-6 and months 1-12).

As shown in Panel A, the skewness of daily momentum returns is noticeably lower when

comomentum is high. Indeed, the skewness of daily returns in the first three months of the

holding period is monotonically decreasing in comomentum. The 20 percent of the sample

that corresponds to low values of comomentum has subsequent momentum returns that

exhibit daily return skewness of -0.126, while the 20 percent of the sample that corresponds

to high values of comomentum has subsequent momentum returns with a skewness of -0.348.

The difference is both economically and statistically significant. Panels B and C document

that the negative skewness we find in long-short momentum strategies roughly comes from

both sides of the trade. This finding is consistent with long-short momentum traders playing

an important role in these markets.

Finally, in Panel D of the Table, we also examine the way the betas of momentum

portfolios (as well as their long and short components) change in the year after portfolio

formation. Consistent with previous research (Chen, Singal, and Whitelaw, 2016), we find

that momentum portfolios tend to have betas that increase over the next year and that

this increase is roughly attributable to both the long and short side of the trade. However,

we find no evidence that this effect varies with comomentum as the related point estimate

(-0.046) is statistically insignificant (t-statistic of -0.42). These conclusions continue to hold

even after zeroing in on the loser side of the portfolio.

6Daniel and Moskowitz (2016) show that market declines and high market volatility forecast momentum
crashes. Daniel, Jagannathan, and Kim (2018) estimate a hidden Markov model that helps identify those
times where momentum strategies experience severe losses.
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3.2 Institutional Ownership

If crowded trading is responsible for overreaction in momentum profits, then one expects

that our findings should be stronger among those stocks that are more likely to be traded by

arbitrageurs. Appendix Table A3 tests this idea by splitting stocks into two groups based

on the level of institutional ownership (as of the beginning of the holding period). We can

strongly reject the null hypothesis that the degree of predictability linked to comomentum is

the same across the two subsamples. Specifically, the Years 1 and 2 predictability associated

with moving from low to high CoMOM subperiods among only low-institutional-ownership

stocks is a statistically-insignificant -0.54% per month (t-statistic of -1.41). In stark contrast,

moving from low to high CoMOM states among only high-institutional-ownership stocks

is associated with a predictable difference in Years 1 and 2 returns of -1.42% per month

(t-statistic of -4.36). A test of the difference in these Years 1 and 2 return spreads across

these two non-overlapping groups of stocks has a t-statistic of -3.91, which rejects the null

at the 0.1% level of significance.

Given the results of Lee and Swaminathan (2000), we have also examined splitting the

sample in a similar fashion based on turnover and the book-to-market ratio. In either case,

we find no difference in comomentum’s ability to forecast time-variation in momentum’s

long-run reversal.

3.3 Other Forecasting Variables

In Appendix Table A4, we document the inability of traditional variables to forecast mo-

mentum returns. Both formation-period spreads in the momentum characteristic (Panel A)

and formation-period spreads in valuation ratios across winner and loser stocks (Panel B)

do not predict abnormal holding period returns on momentum strategies.

3.4 Instrumented Comomentum

There are a number of possible drivers of time variation in momentum arbitrage activity.

One possibility is that as the momentum strategy becomes more profitable (due to, for

example, stronger underreaction on the part of noise traders), arbitrageurs optimally allo-

cate more capital to the momentum trade. In that case, arbitrageurs can be viewed as a

stabilizing force. This view might be categorized as a demand-side explanation. Another
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possibility is that additional capital is dedicated to the momentum strategy for reasons that

are unrelated to the strategy’s expected return—for instance, due to trading costs, fund-

ing conditions, and/or end investors’ (and perhaps portfolio managers’) misperception of

expected momentum strategy returns—and thus arbitrageurs become a destabilizing force.

This view might be categorized as a supply-side explanation.

Taken at face value, a demand-side explanation seems inconsistent with the facts. Co-

momentum does not forecast higher future momentum holding period returns. Instead, it

forecasts lower holding period returns, higher volatility, and higher crash risk. Moreover, as

a key message of the paper, comomentum forecasts more negative post-holding-period mo-

mentum returns, implying that more underreaction by noise traders is not the main driver

of the increased activity.

Lou and Polk (2021) (henceforth LP) document in their Table III that time-series vari-

ation in comomentum may be linked to various direct but imperfect measures of the inputs

going into the arbitrage process. One of these input variables is lagged momentum returns

(in the year prior to the comomentum construction). LP show that more arbitrage activity

flows to the momentum strategy when the strategy has recently performed well. However,

there is no empirical evidence that the holding period returns on momentum strategies ex-

hibit strong persistence. Nevertheless, some end investors and/or portfolio managers may

hold this belief. This tension leads to a natural test of the supply side of arbitrage activity.

In particular, in Appendix Table A5, we repeat the analysis of LP’s Table IV but using a

time series of fitted comomentum where the instrument is the cashflow-news component of

lagged momentum returns.7 We focus solely on this component of returns as doing so allows

us to remove any feedback effect that momentum trading generates. Indeed, in a world

where arbitrage activity in momentum stocks is just enough to eliminate underreaction but

not so much as to result in overreaction, holding period returns to momentum strategies

should consist of only cash-flow news.

The results from this test are consistent with our supply-side explanation and inconsis-

tent with a demand-side explanation. As we show in Appendix Table A5, periods of high

momentum returns are followed by a stronger reversal to the momentum strategy, consistent

with a supply-side mechanism. In particular, both holding period and post-holding period

returns to momentum stocks are markedly lower. Appendix Figure A8 shows these patterns

in pre- and post-formation returns to momentum stocks using instrumented comomentum.

7We follow Vuolteenaho (2002) to extract the cashflow-news component of stock returns.
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As the figure documents, we continue to find that arbitrage activity is destabilizing.

3.5 An Alternative Momentum Strategy

Since comomentum is a success at identifying times when arbitrage activity is high, we now

examine whether our approach can help us identify arbitrage activity in the cross section.

In particular, we develop trading strategies based on stocks’ formation-year covariance with

extreme momentum deciles. For every stock, we calculate the average of 1) its abnormal

correlation with the returns of the top momentum decile and 2) the negative of its abnor-

mal correlation with the bottom momentum decile in the formation year. We exclude, if

necessary, that stock from the calculation of the decile returns. As with our comomentum

measure, we industry adjust and control for the three factors of Fama and French (1993).

We dub this measure stock comomentum (CoMOM stock). We expect stock comomentum to

identify those stocks that arbitrageurs are trading as part of their more general quantitative

strategy.8 These stocks should perform well subsequently and, if aggregate comomentum is

high, eventually reverse.

Appendix Table A7 Panel A reports Fama-MacBeth estimates of cross-sectional regres-

sions forecasting stock returns in month t + 1 with time t − 1 information (we skip the

most recent month to avoid short-term return reversals). Regression (1) shows that stock

comomentum strongly forecasts cross-sectional variation in monthly stock returns with a

t-statistic over 4. We emphasize that stock comomentum is different from the typical mea-

sure of momentum risk sensitivity, i.e., the pre-formation loading on a momentum factor. To

show this difference, we estimate the formation-period momentum beta (beta UMD) on Ken

French’s UMD factor using weekly returns over the same period in which we measure como-

mentum. Regression (2) shows that beta UMD does not forecast cross-sectional variation

in average returns. This failure is perhaps not surprising giving the literature emphasizing

characteristics over covariances (Daniel and Titman, 1997).

Regression (3) documents that the momentum characteristic (MOM) works very well

8Wahal and Yavuz (2013) show that the past return on a stock’s style predicts cross-sectional variation
in average returns and that momentum is stronger among stocks that covary more with their style. Wahal
and Yavuz measure style as the corresponding portfolio from the Fama and French (1993) 25 size and book-
to-market portfolios. However, those portfolios may not be industry neutral (Cohen, Polk, and Vuolteenaho
2003) and may covary due to fundamentals (Cohen, Polk, and Vuolteenaho 2009). In contrast, our analysis
not only focuses on comovement among momentum stocks (rather than stocks sorted on book-to-market
and/or size) but also is careful to measure excess comovement, i.e., comovement controlling for the Fama
and French (1993) market, size, and value factors.
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over this time period. However, regression (4) shows that our stock comomentum mea-

sure remains significant in the presence of the momentum characteristic. Finally, regression

(5) adds several other control variables including log size (ME), log book-to-market ratio

(BM), idiosyncratic volatility (IV OL), and turnover (TURNOV ER). Stock comomentum

continues to be statistically significant.9

In Panel B of Appendix Table A7, we examine returns on a standard hedge portfolio

based on stock-comomentum-sorted value-weight decile portfolios. Our goal with this simple

approach is to confirm that the abnormal performance linked to stock comomentum is robust

as well as to examine the buy-and-hold performance of the strategy. In particular, we

report average (abnormal) monthly returns over months 1-6.10 Results are economically and

statistically significant in all instances. For example, the Fama and French three-factor alpha

is 1% per month with an associated t-statistic of 4.07 when holding the long-short portfolio

ranked by CoMOM stock for six months.

Finally, Panel C documents the ability of aggregate comomentum to forecast the returns

on our stock comomentum strategy. As before, we classify all months into five groups based

on CoMOM . In the row labeled “5-1”, we report the difference in portfolio buy-and-hold

returns over various horizons to the stock comomentum strategy based on investing in high

comomentum periods (5) versus low periods (1). In the row labeled “OLS”, we report the

corresponding slope coefficient from the regression of the overlapping annual stock como-

mentum strategy returns (either in Year 0, 1, or 2) on comomentum ranks. Similar to what

we find for the standard momentum strategy, the performance of the stock comomentum

strategy is decreasing in aggregate comomentum, both in Year 1 and in Year 2.

3.6 International Evidence

As an out-of-sample test of our findings, we examine the predictive ability of comomen-

tum in an international sample consisting of the returns to momentum strategies in the

19 largest markets (after the US). These countries are Australia (AUS), Austria (AUT),

Belgium (BEL), Canada (CAN), Switzerland (CHE), Germany (DEU), Denmark (DNK),

9In unreported results, following Lee and Swaminathan (2000), we have also interacted ret12 with both
turnover and BM . These interactions have little effect on the ability of CoMOM stockL to describe cross-
sectional variation in average returns.

10In unreported analysis, we find that the abnormal performance linked to stock comomentum lasts for
six months. Then returns are essentially flat. Finally, all of the abnormal performance reverts in Year 2.
These results are consistent with arbitrageurs causing overreaction that subsequently reverts.
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Spain (ESP), Finland (FIN), France (FRA), Great Britain (GBR), Hong Kong (HKG), Italy

(ITA), Japan (JPN), Netherland (NLD), Norway (NOR), New Zealand (NZL), Singapore

(SGP), and Sweden (SWE). In each market, we calculate the country-specific comomentum

measure in a manner similar to our US measure.

We find that our country-specific comomentum measures move together, with an average

pairwise correlation of 0.47 over the subsample where we have data for all 19 countries (from

December 1986 to December 2011). This finding is reassuring as one might expect that

there is a common global factor in country-specific measures of arbitrage activity. Appendix

Figure A9 plots equal-weight averages of the country-specific comomentum for each of three

regions: Asia-Pacific, Europe, and North America. In the figure, North American comomen-

tum declines very quickly after the 1987 crash and remains low until the late 1990s. The

other two regions’ comomentum declines slowly over this period. Then, all three regions’

comomentum begins to move more closely together, generally increasing over the next 15

years. In general, there is a large common component in comomentum across countries and

regions. For example, the correlation between comomentum in the US and Europe is 0.66,

and the correlation between comomentum in the US and Japan is 0.19.

Appendix Table A8 Panel A reports the estimate from a regression forecasting a coun-

try’s time-t momentum return with time-t− 1 country-specific comomentum. Panel A also

reports the regression coefficient after controlling for country-specific market, size, and value

factors. We find that in every country these point estimates are negative. In particular, for

the regression where we control for country-specific factors, six estimates have t-statistics

less than -2.0, and 14 estimates have t-statistics less than -1.0. As a statistical test of the

comomentum’s forecasting ability in the international sample, we form a value-weight world

momentum strategy (WLD) across these 19 non-US markets and forecast the resulting re-

turn with a corresponding value-weight comomentum measure, both without and with the

corresponding global market, size, and value factors. The results confirm that comomentum

strongly forecast future momentum returns in international settings, with t-statistics of -2.45

and -2.58 respectively.

If comomentum forecasts time-series variation in country-specific momentum and if our

country comomentum measures are not perfectly correlated, a natural question to ask is

whether there is cross-sectional (i.e., inter-country) information in our international como-

mentum measures. Thus, in Panel B of Appendix Table A8, we sort countries into quintiles

based on their comomentum measure each month, investing in the momentum strategies of
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the countries in the bottom quintile and shorting the momentum strategies of the countries

in the top quintile. We then adjust these monthly returns using world (including the US)

market, size, value, and momentum factors.

We find that comomentum strongly forecasts the cross section of country-specific mo-

mentum strategy returns. Momentum strategies in low comomentum countries outperform

momentum strategies in high comomentum countries by a factor of 3. (0.95% per month ver-

sus 0.29% per month) and the difference (0.66%) is statistically significant with a t-statistic

of 2.98. These results continue to hold after controlling for market, size, and value factors.

A strategy that only invests in momentum in those countries with low arbitrage activity and

hedges out exposure to global market, size, and value factors earns more than 17% per year

with a t-statistic of 8.41. Controlling for global momentum reduces this outperformance to

a still quite impressive 4.2% per year which is statistically significant from zero (t-statistic

of 2.61).
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Table A1: Model Comparative Statics 
 

This table shows simulation results of our model. The model setup and the simulation procedure are discussed 
in the Online Appendix. Panel A shows returns to momentum traders after periods of low vs. high momentum 
activity (defined as 𝑁𝑁𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝜑𝜑𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎(∆𝑃𝑃𝑡𝑡−1)). Panel B shows returns to value traders after periods of low vs. 
high value activity (defined as 𝑁𝑁𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉𝜑𝜑𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃�𝑡𝑡 − 𝑃𝑃𝑡𝑡)).  
 

 Panel A: Simulated Momentum Returns in the Model 

 Low Momentum Activity High Momentum Activity 

𝛾𝛾 Period 0 Period 1 Periods 2-12 Period 0 Period 1 Periods 2-12 

1 0.1772 0.0458 -0.0570 0.5399 0.1100 -0.1567 

3 0.1803 0.0309 -0.0706 0.5676 0.0566 -0.2264 

5 0.1805 0.0244 -0.0767 0.5749 0.0363 -0.2441 

7 0.1813 0.0221 -0.0792   0.5783 0.0268 -0.2482 

10 0.1826 0.0201 -0.0820 0.5866 0.0188 -0.2647 

 
 Panel B: Simulated Value Returns in the Model 

 Low Value Activity High Value Activity  

𝛾𝛾 Period 0 Period 1 Periods 2-12 Period 0 Period 1 Periods 2-12 

1 0.1929 0.0606 0.0544 0.7522 0.1760 0.2075 

3 0.2142 0.0335 0.0457 0.8421 0.0931 0.1771 

5 0.2225 0.0228 0.0403 0.8753 0.0636 0.1616 

7 0.2269 0.0177 0.0399 0.8946 0.0472 0.1545 

10 0.2309 0.0142 0.0395 0.9079 0.0326 0.1481 
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Table A2: Forecasting Momentum Return Skewness 
 
This table reports the skewness of momentum returns as a function of lagged comomentum. At the end of 
each month, we sort all stocks into deciles based on their lagged 11-month cumulative returns (skipping the 
most recent month). We exclude stocks with prices below $5 a share and/or that are in the bottom NYSE 
size decile from the sample. We then classify all months into five groups based on 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the average of 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉  (loser comomentum) and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊  (winner comomentum). 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉  is the pairwise abnormal 
return correlation in the loser decile in the ranking year 𝑡𝑡, while  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊 is the average pairwise abnormal 
return correlation in the winner decile. Panels A, B and C report the skewness in daily (weekly) returns to 
the value-weight winner minus loser portfolio in months 1 to 3 (1 to 6 and 1 to 12) after portfolio formation. 
Panel D reports the difference in market beta in the 12 months after portfolio formation vs. that during the 
formation year, based on weekly portfolio returns. Year zero is the portfolio ranking period. “5-1” is the 
difference in skewness of momentum returns (or changes in market beta) following high vs. low 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 
“OLS” is the slope coefficient from the regression of the skewness of momentum returns (or changes in market 
beta) on ranks of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. We compute t-statistics, shown in parentheses, based on standard errors corrected 
for serial-dependence with 3 lags (months 1-3), 6 lags (month 1-6), or 12 lags (month 1-12). We indicate 
statistical significance at the 5% level in bold. 

 
Panel A: Momentum Skewness 

  Months 1-3 Months 1-6 Months 1-12 

Rank No Obs. Estimate Estimate Estimate 
1 112 -0.126 -0.209 -0.234 
2 113 -0.140 -0.249 -0.258 
3 113 -0.190 -0.343 -0.180 
4 113 -0.250 -0.316 -0.271 
5 113 -0.348 -0.423 -0.444 

5-1  -0.221 -0.214 -0.210 
  (-2.54) (-1.74) (-1.19) 

OLS  -0.055 -0.050 -0.043 
  (-2.94) (-1.82) (-1.16) 

 
 

Panel B: Loser Skewness 

  Months 1-3 Months 1-6 Months 1-12 

Rank No Obs. Estimate Estimate Estimate 
1 112 0.245 0.244 0.263 
2 113 0.185 0.273 0.269 
3 113 0.259 0.364 0.247 
4 113 0.302 0.321 0.335 
5 113 0.366 0.636 0.685 

5-1  0.121 0.392 0.422 
  (1.24) (2.83) (1.84) 

OLS  0.036 0.083 0.091 
  (1.64) (2.73) (1.87) 

  
  



23 
 

 
 

Panel C: Winner Skewness 

  Months 1-3 Months 1-6 Months 1-12 

Rank No Obs. Estimate Estimate Estimate 
1 112 -0.012 -0.053 -0.045 
2 113 -0.044 -0.124 -0.097 
3 113 -0.103 -0.219 -0.099 
4 113 -0.133 -0.216 -0.161 
5 113 -0.228 -0.103 -0.087 

5-1  -0.216 -0.050 -0.043 
  (-2.46) (-0.47) (-0.41) 

OLS  -0.052 -0.019 -0.015 
  (-2.73) (-0.79) (-0.65) 

 
 

Panel D: Market Beta Change 

  WML Winners Losers 

Rank No Obs. Estimate Estimate Estimate 
1 112 0.234 0.169 -0.065 
2 113 0.217 0.127 -0.089 
3 113 0.223 0.132 -0.092 
4 113 0.178 0.103 -0.075 
5 113 0.188 0.077 -0.111 

5-1  -0.046 -0.092 -0.046 
  (-0.42) (-1.11) (-0.71) 

OLS  -0.013 -0.021 -0.008 
  (-0.55) (-1.18) (-0.54) 
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Table A3: Institutional Ownership and the Comomentum Effect 
 
This table reports the way the relation between expected returns on momentum stocks and lagged 
comomentum varies with institutional ownership. At the end of each month, we sort all stocks into deciles 
based on their lagged 11-month cumulative returns (skipping the most recent month). We exclude stocks 
with prices below $5 a share and/or that are in the bottom NYSE size decile from the sample. We then 
classify all months into five groups based on 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the average of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 (loser comomentum) and 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊 (winner comomentum). 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 is the pairwise abnormal return correlation in the loser decile in 
the ranking year 𝑡𝑡, while 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊 is the average pairwise abnormal return correlation in the winner decile. 
We report the returns to the momentum strategy (i.e., long the value-weight winner decile and short the 
value-weight loser decile) in each of the four years after portfolio formation post-1980, following low to high 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Year zero is the portfolio ranking period. “5-1” is the difference in monthly returns to the momentum 
strategy following high vs. low 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . “OLS” is the slope coefficient from the regression of monthly 
momentum returns on ranks of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . Panels A and B report the average monthly returns to the 
momentum strategy constructed solely based on stocks with low and high institutional ownership (banks and 
investment managers, as of the beginning of the holding period), respectively. Panel C compares the difference 
between “5-1” in the low institutional ownership subsample and “5-1” in the high institutional ownership 
subsample. We compute t-statistics, shown in parentheses, based on standard errors corrected for serial-
dependence up to 24 lags and indicate statistical significance at the 5% level in bold. 
 

Panel A: Stocks with Low Institutional Ownership 

  Year 0 Year 1 Year 2 Years 1-2 Years 3-4 

Rank No Obs. Estimate Estimate Estimate Estimate Estimate 
1 74 9.82% 0.39% 0.07% 0.23% -0.08% 
2 74 9.95% 0.78% -0.27% 0.26% -0.06% 
3 74 11.08% 0.58% -1.02% -0.22% 0.24% 
4 74 11.73% 0.66% -0.77% -0.05% 0.08% 
5 74 12.47% -0.52% -0.11% -0.31% 0.22% 

5-1  2.65% -0.91% -0.18% -0.54% 0.30% 
  (1.91) (-1.76) (-0.45) (-1.41) (1.18) 

OLS  0.007 -0.002 -0.001 -0.001 0.001 
  (2.25) (-1.48) (-0.82) (-1.76) (1.08) 

 
Panel B: Stocks with High Institutional Ownership 

  Year 0 Year 1 Year 2 Years 1-2 Years 3-4 

Rank No Obs. Estimate Estimate Estimate Estimate Estimate 
1 74 8.79% 0.60% 0.46% 0.53% 0.09% 
2 74 9.10% 0.70% -0.24% 0.23% 0.08% 
3 74 10.06% 0.34% -0.44% -0.05% -0.05% 
4 74 10.61% 0.10% -0.92% -0.41% -0.21% 
5 74 11.66% -0.70% -1.08% -0.89% 0.33% 

5-1  2.87% -1.30% -1.54% -1.42% 0.24% 
  (2.92) (-2.10) (-5.63) (-4.36) (0.84) 

OLS  0.007 -0.003 -0.004 -0.003 0.000 
  (3.09) (-2.38) (-3.89) (-4.55) (0.26) 

 
Panel C: Diff between High IO 5-1 and Low IO 5-1 

 No Obs. Year 0 Year 1 Year 2 Years 1-2 Years 3-4 
Diff 74 0.22% -0.39% -1.36% -0.88% -0.06% 

  (0.51) (-1.36) (-3.22) (-3.91) (-0.15) 
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Table A4: Inability of Traditional Variables to Forecast Momentum Returns 
 
This table reports momentum returns as a function of the lagged momentum formation period spread or 
momentum valuation spread. At the end of each month, we sort all stocks into deciles based on their lagged 
11-month cumulative returns (skipping the most recent month). We exclude stocks with prices below $5 a 
share and/or that are in the bottom NYSE size decile from the sample. We then classify all months into five 
groups based on either the momentum formation period spread (i.e., the return spread between the winner 
and loser deciles during the formation period) or the momentum valuation spread (i.e., the difference in the 
average book-to-market ratio of the winner and loser deciles at the end of the formation period). We report 
the returns to the momentum strategy (i.e., long the value-weight winner decile and short the value-weight 
loser decile) in the month after portfolio formation. Year zero is the portfolio ranking period. “5-1” is the 
difference in monthly returns to the momentum strategy following high vs. low momentum formation-period 
spread or momentum valuation spread. “OLS” is the slope coefficient from the regression of monthly 
momentum returns on ranks of the two sorting variables. We compute t-statistics, shown in parentheses, 
based on standard errors corrected for serial-dependence with 12 lags and indicate statistical significance at 
the 5% level in bold. 
 

Panel A: Sort by the Momentum Formation-Period Spread 

  
Month 1 

Raw 
Month 1 
FF3F 

Month 1 
FF5F 

Rank No Obs. Estimate Estimate Estimate 
1 112 1.52% 1.87% 1.51% 
2 113 0.65% 0.93% 0.83% 
3 113 2.22% 2.30% 2.02% 
4 113 0.66% 1.09% 1.13% 
5 113 1.86% 2.25% 1.67% 

5-1  0.34% 0.38% 0.15% 
  (0.33) (0.40) (0.17) 

OLS  0.001 0.001 0.001 
  (0.29) (0.41) (0.30) 

 
Panel B: Sort by the Momentum Valuation Spread 

  
Month 1 

Raw 
Month 1 
FF3F 

Month 1 
FF5F 

Rank No Obs. Estimate Estimate Estimate 

1 112 0.01% 0.41% 0.21% 

2 113 2.05% 2.11% 1.82% 

3 113 2.12% 2.35% 1.91% 

4 113 1.56% 2.17% 2.12% 

5 113 1.16% 1.39% 1.08% 

5-1  1.15% 0.99% 0.87% 

  (1.63) (1.37) (1.19) 

OLS  0.002 0.002 0.002 

  (1.03) (1.12) (1.12) 
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Table A5: Instrumented Comomentum 
 
This table shows returns to the momentum strategy as a function of an instrumented version of the 
comomentum measure that is based on the cashflow component of lagged momentum returns. At the end of 
each month, we sort all stocks into deciles based on their lagged 11-month cumulative returns (skipping the 
most recent month). We compute pairwise abnormal return correlations (after controlling for the Fama-
French three factors) for all stocks in both the bottom and top deciles using weekly Fama-and-French 30-
industry-adjusted stock returns in the previous 12 months. To mitigate the impact of microstructure issues, 
we exclude stock with prices below $5 a share and/or that are in the bottom NYSE size decile from the 
sample. We first calculate 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the average of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊, the average pairwise abnormal 
return correlation in the loser and winner deciles respectively in year 𝑡𝑡. We then classify all months into five 
groups based on the instrumented component of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Reported below are the returns to a value-weight 
momentum strategy (i.e., winner minus loser deciles) in each of the four years after formation during 1965 to 
2015, following low and high instrumented 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Year zero is the portfolio ranking period. “5-1” is the 
difference in monthly returns to the momentum strategy following high vs. low instrumented 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. “OLS” 
is the slope coefficient from the regression of monthly momentum returns on ranks of instrumented 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 
We compute t-statistics, shown in parentheses, based on standard errors corrected for serial-dependence up 
to 24 lags and indicate statistical significance at the 5% level in bold. 
 

Forecasting Future Momentum Returns 

  Year 0 Year 1 Year 2 Years 1-2 Years 3-4 

Rank No Obs. Estimate Estimate Estimate Estimate Estimate 
1 112 9.08% 0.95% 0.05% 0.50% 0.44% 
2 113 9.24% 0.44% -0.25% 0.10% 0.14% 
3 113 9.46% 0.72% -0.41% 0.15% -0.24% 
4 113 9.78% 0.61% -0.79% -0.09% -0.48% 
5 113 10.23% 0.06% -0.75% -0.35% -0.35% 

5-1  1.15% -0.90% -0.80% -0.85% -0.79% 
  (0.98) (-2.31) (-3.07) (-3.41) (-3.80) 

OLS  0.003 -0.002 -0.002 -0.002 -0.002 
  (1.14) (-1.92) (-3.15) (-3.53) (-4.28) 
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Table A6: Forecasting Value Returns and Skewness with 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 
This table reports return characteristics of the value strategy as a function of lagged 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. At the end of 
each month, we sort all stocks into deciles based on their lagged book-to-market ratios. We exclude stocks 
with prices below $5 a share and/or that are in the bottom NYSE size decile from the sample. We then 
classify all months into five groups based on 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the average of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 (value covalue) and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺 
(growth covalue). 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 is the pairwise abnormal return correlation in the value decile in the ranking year 
𝑡𝑡, while 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺 is the average pairwise abnormal return correlation in the growth decile. We report the 
returns to the value strategy (i.e., long the value-weight winner decile and short the value-weight loser decile) 
in each of the four years after portfolio formation during 1965 to 2015, following low to high 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Year 
zero is the portfolio ranking period. Panel A reports the average monthly return of the value strategy. Panel 
B reports the skewness in daily (weekly) returns to the value portfolio in months 1 to 3 (1 to 6 and 1 to 12) 
after portfolio formation. “5-1” is the difference in the relevant statistic across high and low 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ranks. 
“OLS” is the slope coefficient from the regression of the relevant statistic on ranks of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. We compute t-
statistics, shown in parentheses, based on standard errors corrected for serial-dependence up to 24 lags. We 
indicate statistical significance at the 5% level in bold. 
 

Panel A: Value Returns 

  Year 0 Years 1-2 Years 3-4 

Rank No Obs. Estimate Estimate Estimate 
1 112 -1.51% 0.01% 0.51% 
2 113 -2.08% 0.44% 0.28% 
3 113 -2.25% 0.31% 0.22% 
4 113 -2.33% 0.61% 0.52% 
5 113 -3.93% 1.18% 0.42% 

5-1  -2.42% 1.17% -0.09% 
  (-4.20) (2.39) (-0.34) 

OLS  -0.005 0.003 0.000 
  (-3.73) (2.26) (0.10) 

 
Panel B: Value Skewness 

  Months 1-3 Months 1-6 Months 1-12 

Rank No Obs. Estimate Estimate Estimate 
1 112 0.029  -0.011  -0.014  
2 113 0.186  0.146  0.153  
3 113 0.074  0.166  0.076  
4 113 0.137  0.086  0.030  
5 113 0.170  0.151  0.091  

5-1  0.141 0.162 0.105 
  (1.33) (1.12) (0.55) 

OLS  0.023 0.026 0.009 
  (1.01) (0.87) (0.22) 
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Table A7: An Alternative Momentum Strategy 
 
This table reports the return to trading strategies based on stocks’ formation-year covariance with momentum 
stocks. Panel A reports Fama-MacBeth estimates of cross-sectional regressions forecasting stock returns in 
month 𝑡𝑡+1. At the end of each month 𝑡𝑡, we sort all stocks into deciles based on their past 11-month 
cumulative return (skipping the most recent month to avoid short-term return reversals and excluding micro-
cap and low-price stocks to mitigate the impact of microstructure issues). The main independent variable is 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆, the average of (1) the abnormal return correlation between weekly returns of a stock and the 
minus weekly returns to the bottom momentum decile in the formation year, and (2) the abnormal return 
correlation between weekly returns of a stock and weekly returns to the top momentum decile in the formation 
year. We exclude, if necessary, the stock in question from the calculation of the decile returns. Other control 
variables include the formation-period momentum beta with regard to the weekly UMD factor (𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑈𝑈𝑀𝑀𝑈𝑈), 
lagged one-year stock return (𝐶𝐶𝐶𝐶𝐶𝐶), log size (𝐶𝐶𝐵𝐵), log book-to-market ratio (𝐵𝐵𝐶𝐶), idiosyncratic volatility 
(𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶), and turnover (𝐵𝐵𝑇𝑇𝑇𝑇𝑁𝑁𝐶𝐶𝐶𝐶𝐵𝐵𝑇𝑇). Panel B reports the average monthly buy-and-hold returns over various 
horizons to a long-short 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 strategy formed from monthly-rebalanced value-weight decile portfolios. 
Panel C documents the ability of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 to forecast the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 strategy. We classify all months into 
five groups based on 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. “5-1” is the difference in portfolio buy-and-hold returns over various horizons 
to the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  strategy based on investing in high (5) vs. low (1) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  groups. “OLS” is the 
corresponding slope coefficient from the regression of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 returns on ranks of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Standard 
errors in brackets are Newey-West adjusted with 12 lags (Year 0, Year 1, and Year 2) or 24 lags (Year 3-4). 
We denote significance at the 90%, 95%, and 99% level using *, **, ***. 
 

Panel A: Fama-MacBeth Regressions 
DepVar = Stock Returns in Month 𝑡𝑡+1 

 [1] [2] [3] [4] [5] 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡−1

𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 0.026***   0.009** 0.009** 
 [0.006]   [0.004] [0.004] 
𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑡𝑡−1𝑈𝑈𝑀𝑀𝑈𝑈  0.002*  0.000 -0.000 
  [0.001]  [0.000] [0.001] 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡−1   0.007*** 0.006*** 0.007*** 
   [0.001] [0.001] [0.001] 
𝐶𝐶𝐵𝐵𝑡𝑡−1     -0.002*** 
     [0.000] 
𝐵𝐵𝐶𝐶𝑡𝑡−1     0.002** 
     [0.001] 
𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡−1     -0.005*** 
     [0.001] 
𝐵𝐵𝑇𝑇𝑇𝑇𝑁𝑁𝐶𝐶𝐶𝐶𝐵𝐵𝑇𝑇𝑡𝑡−1     -0.001 

     [0.001] 
      

Adj-R2 0.02  0.02  0.04  0.05  0.09  
No. Obs. 223,158 223,158 223,158 223,158 223,158 
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Panel B: Portfolio Returns Ranked by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 

Decile 
Excess 
Return 

CAPM 
Alpha 

FF 
Alpha 

Excess 
Return 

CAPM 
Alpha 

FF 
Alpha 

Excess 
Return 

CAPM 
Alpha 

FF 
Alpha 

 Months 1 Months 1-3 Months 1-6 
10 - 1 1.15% 1.20% 1.30% 0.99% 1.03% 1.16% 0.77% 0.80% 1.00% 
 (3.89) (4.07) (4.41) (3.76) (3.94) (4.27) (3.20) (3.35) (4.07) 

 
 

Panel C: Portfolio Returns Ranked by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 in Different CoMOM Periods 
 Year 0 Year 1 Year 2 Year 3-4 

Rank Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

5-1 4.94% (4.26) -1.05% (-1.83) -1.27% (-2.64) 0.31% (0.98) 
OLS 0.012  (4.66) -0.003  (-1.98) -0.003  (-2.70) 0.000  (0.49) 
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Table A8: International Evidence 
 
This table reports returns to international momentum strategies as a function of lagged country-specific 
comomentum. In Panel A, at the end of each month, we sort stocks in each market into deciles based on their 
lagged 11-month cumulative returns (skipping the most recent month). 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 in each country is the average 
of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 (loser comomentum) and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊 (winner comomentum). CoefEst1 is the regression coefficient 
of the month 𝑡𝑡 momentum return on 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 computed at the end of month 𝑡𝑡-1, while CoefEst2 is the 
corresponding regression coefficient, controlling for country-specific market, size, and value factors. We 
examine the world’s largest 19 stock markets (after the US). We also compute a value-weight world (excluding 
the US) momentum strategy (WLD) and forecast that strategy with the corresponding value-weight world 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  measure. In Panel B, we report the monthly returns to an inter-country (including the US) 
momentum timing strategy, which goes long (short) country-specific momentum strategies whose 
corresponding 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is in the bottom (top) quintile in the previous month. We then adjust these monthly 
returns using world (including the US) market, size, value, and momentum factors. We compute t-statistics, 
shown in parentheses, based on standard errors corrected for serial-dependence with 12 lags and indicate 
statistical significance at the 5% level in bold. 
 

Panel A: Regression Coefficients in Other Countries 

Country No months CoefEst1 CoefEst2  Country No months CeofEst1 CeofEst2 

AUS 324 -0.0969 -0.0634  GBR 324 -0.0585 -0.0536 
   (-2.01) (-1.37)     (-1.68) (-1.78) 

AUT 288 -0.051 -0.0627  HKG 324 -0.0681 -0.1068 
   (-1.49) (-1.02)     (-4.04) (-2.38) 

BEL 324 -0.1043 -0.0828  ITA 324 -0.0081 -0.0207 
   (-2.18) (-1.95)     (-0.30) (-0.64) 

CAN 324 -0.1887 -0.1558  JPN 324 -0.0354 -0.0427 
   (-2.98) (-3.16)     (-1.14) (-1.69) 

CHE 324 -0.0392 -0.074  NLD 324 -0.0705 -0.0867 
   (-1.63) (-2.41)     (-2.08) (-2.04) 

DEU 324 -0.0575 -0.124  NOR 321 -0.0172 -0.1075 
   (-1.66) (-2.46)     (-0.32) (-1.77) 

DNK 324 -0.0231 -0.0228  NZL 295 -0.0837 -0.0643 
   (-0.98) (-0.79)     (-2.45) (-1.87) 

ESP 324 -0.0003 0.0036  SGP 324 -0.0899 -0.1428 
   (-0.01) (0.10)     (-2.58) (-4.21) 

FIN 324 -0.0089 0.0054  SWE 324 -0.0065 0.0116 
   (-0.26) (0.17)     (-0.15) (0.33) 

FRA 324 -0.0711 -0.0628  WLD 324 -0.0898 -0.0666 
   (-1.95) (-1.86)     (-2.45) (-2.58) 

 
Panel B: Long-Short Portfolios of Country Momentum 

Quintile No Months Excess Return CAPM Alpha FF Alpha Carhart Alpha 

S 288 0.29% 0.41% 0.75% -0.20% 
   (1.11) (1.73) (3.49) (-0.92) 

L 288 0.95% 1.06% 1.45% 0.35% 
   (3.90) (4.65) (8.41) (2.61) 

L-S 288 0.66% 0.64% 0.71% 0.55% 
   (2.98) (2.94) (3.25) (2.10) 
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(a) 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 1 (b) 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 2 

(c) 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 3 (d) 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 5 

(e) 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 8 (f) 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 10 
 
 
Figure A1: This figure shows the simulated regression coefficients of future stock returns on the momentum 
signal as a function of 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 (the risk tolerance of momentum traders). The simulation is based on the baseline 
model (which has separate groups of arbitrageurs trading momentum and value). Arbitrageurs put on their 
trades in period 0. 
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(a) 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 = 1 (b) 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 = 2 

(c) 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 = 3 (d) 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 = 5 

(e) 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 = 8 (f) 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 = 10 
 
 
Figure A2: This figure shows the simulated regression coefficients of future stock returns on the momentum 
signal as a function of 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 (the risk tolerance of value traders). The simulation is based on the baseline 
model (which has separate groups of arbitrageurs trading momentum and value). Arbitrageurs put on their 
trades in period 0. 
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(a) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.05 (b) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.1 

(c) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.2 (d) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.3 

(e) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.4 (f) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.5 
 
 
Figure A3: This figure shows the simulated regression coefficients of future stock returns on the momentum 
signal as a function of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 (the spread in the observable component of arbitrage capital). The simulation 
is based on the baseline model (which has separate groups of arbitrageurs trading momentum and value). 
Arbitrageurs put on their trades in period 0. 
  



34 
 

 
(a) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.05 (b) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.1 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.2 (d) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.3 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.4 (f) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.5 

 
 
Figure A4: This figure shows the simulated regression coefficients of future stock returns on the momentum 
signal as a function of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌  (the spread in the unobservable component of arbitrage capital). The 
simulation is based on the baseline model (which has separate groups of arbitrageurs trading momentum and 
value). Arbitrageurs put on their trades in period 0. 
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(a) 𝛾𝛾 = 1 (b) 𝛾𝛾 = 2 

(c) 𝛾𝛾 = 3 (d) 𝛾𝛾 = 5 

(e) 𝛾𝛾 = 8 (f) 𝛾𝛾 = 10 
 

 
Figure A5: This figure shows the simulated regression coefficients of future stock returns on the momentum 
signal as a function of 𝛾𝛾 (the risk tolerance of all arbitrageurs). The simulation is based on the extended 
model (which has a single group of arbitrageurs that trade both the momentum and value signals optimally). 
Arbitrageurs put on their trades in period 0. 
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(a) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.05 (b) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.1 

(c) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.2 (d) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.3 

(e) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.4 (f) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 = 0.5 
 

 
Figure A6: This figure shows the simulated regression coefficients of future stock returns on the momentum 
signal as a function of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑋𝑋 (the spread in the observable component of arbitrage capital). The simulation 
is based on the extended model (which has a single group of arbitrageurs that trade both the momentum and 
value signals optimally). Arbitrageurs put on their trades in period 0. 
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(a) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.05 (b) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.1 

(c) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.2 (d) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.3 

(e) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.4 (f) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌 = 0.5 
 
 
Figure A7: This figure shows the simulated regression coefficients of future stock returns on the momentum 
signal as a function of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑌𝑌  (the spread in the unobservable component of arbitrage capital). The 
simulation is based on the extended model (which has a single group of arbitrageurs that trade both the 
momentum and value signals optimally). Arbitrageurs put on their trades in period 0. 
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Figure A8: These figures show returns to the momentum strategy as a function of the instrumented 
comomentum measure (where the instrument is the cashflow component of lagged momentum holding-period 
returns). At the end of each month, we sort all stocks into deciles based on their lagged 11-month cumulative 
returns (skipping the most recent month). We compute pairwise abnormal return correlations (after 
controlling for the Fama-French three factors) for all stocks in both the bottom and top deciles using weekly 
Fama-and-French 30-industry-adjusted stock returns in the previous 12 months. To mitigate the impact of 
microstructure issues, we exclude stocks with prices below $5 a share and/or that are in the bottom NYSE 
size decile from the sample. We then classify all months into five groups based on the instrumented component 
of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the average of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊. The top panel shows the compounded returns to a value-
weight momentum strategy (i.e., winner minus loser deciles) in the four years after formation, following low 
and high instrumented 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . The bottom panel shows the compounded returns to a value-weight 
momentum strategy (i.e., winner minus loser deciles) from the beginning of the formation year to four years 
post-formation following low and high instrumented 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. The difference in years one and two abnormal 
returns following high vs. low 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 periods is -0.85%/month with a t-statistic of -3.41. 
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Figure A9: This figure shows the time series of region-specific comomentum measures. At the end of each 
month, we sort all stocks in a country into decile portfolios based on their lagged 11-month cumulative returns 
(skipping the most recent month). Country comomentum is the average pairwise return correlation in the 
loser and winner deciles measured in the ranking month. We calculate region comomentum as the equal-
weight country momentum in the region. These regions are Asia-Pacific, Europe, and North America. 
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