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ABSTRACT

We study how well primary financial markets allocate capital when information about in-

vestment opportunities is dispersed across market participants. Paradoxically, the fact that

information is valuable for real investment decisions destroys the efficiency of the market. To

add to the paradox, as the number of market participants with useful information increases, a

growing share of them fall into an “informational black hole,” making markets even less efficient.

Contrary to the predictions of standard theory, investment inefficiencies and the cost of capital

to firms seeking financing can increase with the size of the market.
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The main role of primary financial markets is to channel resources to firms with worthwhile

projects. This process requires information about demand, technological feasibility, manage-

ment, and current industry and macroeconomic conditions, as well as views on how to interpret

such information. The efficiency of the capital allocation process depends on how well markets

aggregate all this information. Today, a large and growing number of professional investors such

as business angels, venture capitalists, and private equity firms alongside traditional commercial

banks compete to invest in firms with good investment opportunities.

One might expect that when a larger number of experts are active in the market in which

a firm is seeking financing, investment decisions should improve and the cost of capital for the

firm should go down. There are two compelling reasons from economic theory to support these

expectations. First, increased competition between investors should reduce their informational

rents and drive down the cost of capital. Second, when investors as an aggregate possess more

information about the viability of a project, investment decisions should become more efficient—

which should further decrease the cost of capital. Yet, the fact that periods in which a record

number of investors are present in a subsector of the financial market often coincides with

episodes of large misallocation of capital, such as in the dot-com bubble and the financial crisis

of 2007-2008, has led many observers to question whether increasing the size of financial markets

is socially useful.

In this paper, we develop a model of information aggregation and capital allocation in pri-

mary financial markets and identify a new economic mechanism that leads to a trade-off between

competition and informational efficiency. We show that larger and more competitive markets

can lead to worse information aggregation, and therefore to less efficient investment decisions

and a higher cost of capital. Our results have normative implications for how issuing firms

should maximize revenues that drastically contrast with common wisdom. We show that poli-

cies restricting competition and allowing collusion among investors may lead to higher social

surplus and higher revenues to firms.

In our model, informed investors compete for the right to finance a new project of a firm

and only few of them take a stake in the firm in return for providing financing. The stakes can

be in the form of debt, equity, convertible debt, or any of the other securities that are used in

practice. Also, competition between investors can take many forms, ranging from structured

auctions to informal negotiations. Our results hold for any competitive capital raising process in

which investors take stakes that are neither risk free nor profit when the firm does badly. There

are few primary financial markets that do not satisfy these assumptions.

The important departure from the existing literature is that in our setup the information

generated in a financing mechanism is useful for subsequent investment decisions, and in par-

ticular, for the decision whether to start the project or not. In our setting, any investor with

sufficiently pessimistic information who wins the right to finance the project would conclude that

the project is negative NPV and not worth investing in. Relatively pessimistic investors there-

fore abstain from bidding.1 As a result, all their information is pooled together and lost—they

1Investors are free to submit negative bids, but never do so in equilibrium.
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fall into an “informational black hole”. This loss of information is costly, and leads to investment

mistakes—some projects that would have been worth pursuing had all market information been

utilized do not get financed, while some that are not worth pursuing get financed.

The problem is exacerbated as the market grows larger, because of the winner’s curse. In

a larger market, even an investor with somewhat favorable information will conclude that the

project is not worth investing in if he wins, since winning implies that all other investors are

more pessimistic. Hence, the informational black hole and the amount of information destroyed

grow with the size of the market. As a result, the investment mistakes continue to persist even

in large financial markets with many experts and large amounts of information. We show that

in many cases, social surplus as well as the expected revenues to the firm can actually decrease

with the size of the market.

It should be stressed that the winner’s curse alone cannot explain our results. It is the

interplay between the winner’s curse and the fact that information generated in the fundraising

process can affect the decision whether to start the project or not that is necessary for our

results. The winner’s curse is present is any standard auction. Yet, as Bali and Jackson (2002)

show under very general assumptions about values, revenues approach their maximum as the

number of bidders goes to infinity when standard assets are auctioned. This is not necessarily

true in our setting. Thus, our results may help explain the phenomenon of “proprietary transac-

tions” in venture capital and private equity in which entrepreneurs appear to voluntarily restrict

competition when seeking financing. Similarly, they provide support for the common practice

in acquisition procedures for investment banks to restrict the set of invited bidders, and for the

results of Boone and Mulherin (2007) who show that there is no evidence that this practice

reduces seller revenues.

When firms cannot commit to restrict the number of investors2, we show that the equilibrium

size of the market may be inefficiently large. This happens because the marginal investor does

not internalize the negative externality he imposes on allocational efficiency when he enters the

market. We show that social welfare can decrease with a decrease in the cost of setting up an

informed intermediary, and that policies aimed at restricting the market size can lead to Pareto

improvements.

In our setting, efficiency can be improved by committing to give a stake in the project

to a sufficiently large number of investors if this is practically feasible. This is in contrast

to the standard setting, where revenues are maximized by concentrating the allocation to the

highest bidder. In a multi-unit auction where the number of units grows with the number of

bidders, a loser’s curse balances out the winner’s curse (as shown in Pesendorfer and Swinkels

(1997) for standard multi-unit auctions) which in our setting leads to higher participation and

better information aggregation, and hence a higher surplus. Thus, our findings may provide

one rationale for crowd-funding, in which start-ups seek financing on a platform that looks very

much like a multi-unit auction, and may also help explain rationing in IPO allocations since

rationing increases the number of winning investors.

2To commit to restrict the number of investors, a firm needs to commit not to consider unsolicited offers,
because ex post it is always optimal to consider all offers.
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A related solution is to allow multiple investors to form syndicates and submit joint “club

bids” in the fundraising process. Club bids and syndicates are common practice among both

angel investors, venture capitalists, and private equity firms, and have been the subject of

investigation by competition authorities for creating anti-competitive collusion. Indeed, in a

standard auction setting, club bids reduce the expected revenues of the seller. But in our setting,

the opposite may hold—because club bids reduce the winner’s curse problem, they encourage

participation, which increases the efficiency of the market.

Another prescription of our theory for improving efficiency which is markedly different from

that of the standard auctions concerns the timing of information release. According to the

famous “linkage principle” of Milgrom and Weber (1982) any value-relevant information that

can be revealed before an auction should be revealed in order to lower the informational rent

of bidders. In our setting, to the contrary, it is often better to attempt financing of the project

before some value-relevant information is revealed. The reason is that residual uncertainty adds

an option value to the project which makes less optimistic investors participate, which in turn

improves the information aggregation properties of the market and leads to higher social surplus.

This prediction of our theory squares well with practice whereby firms up for sale or engaged

in capital raising often release information to investors in stages. In the first stage, only some

general information is shared, and only serious investors, who advance to the second stage, get

access to full information.

A driver of our results is the difficulty of profiting from negative information in primary

markets, where there are no existing assets to short. We show that efficiency can be improved

by creating a shorting market where a derivative contract that pays off if the entrepreneur

secures financing but opts not to pursue the project. Such a market allows pessimistic investors

to express their views, which can lead to more efficient investment decisions. A number of critical

features point to the difficulty of creating such a market. First, the shorting market needs to be

subsidized—there are no gains from trade between third parties taking opposite positions in the

shorting market. Since the entrepreneur has no resources of her own, the subsidy must come

from the participants in the regular financing market. Second, since the key economic role of the

shorting market is to produce information that helps a marginal investor avoid bad projects, the

contract must pay off when the project is not started. Hence, it cannot be a standard derivative

or short position that is contingent on the value of an existing asset. Third, to prevent conflicts

of interest from distorting the investment decision, the agent taking the decision should have no

stake on either side of the shorting market.

We obtain most of our results in a setting with common values, where the number of potential

investors is known, and the entrepreneur has no assets in place. In the extension section, we show

that our results are robust to the presence of private values and assets in place, and hold when

the number of investors is stochastic. Furthermore, we show that uncertainty about market size

often leads to less efficient outcomes.

More generally, our results have implications for different architectures of primary financial

markets. This is an area in which there is currently much market experimentation. Traditional
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venture capital and small business lending markets operate as relatively opaque search markets,

with frictions that tend to limit competition. New innovation such as peer-to-peer lending and

crowdfunding platforms create a more transparent and competitive market architecture. When

is it useful to have more competition? When is it useful to spread out the allocation, and should

this be done through the platform or by endogenous syndication? Our framework can be used

to answer these questions.

Our paper is related to several different strands of literature. A few papers in auction

theory show that restricting the number of bidders can be optimal. Samuelson (1985) and Levin

and Smith (1994) consider auctions with participation costs and show that it may be optimal to

restrict entry to reduce wasteful expenditures in equilibrium. In both papers, efficiency increases

as the costs decrease. Furthermore, the optimal size of the market goes to infinity as costs go

to zero. In contrast, we show optimal market size can be finite even with zero costs and that

lowering costs can lead to a decrease in social surplus. Thus, both the economics mechanism and

implications of Samuelson (1985) and Levin and Smith (1994) are very different from those in

our paper. Similar to our paper the winner’s curse is also important for the results of Bulow and

Klemperer (2002) and Parlour and Rajan (2005) who argue that rationing in IPO can lead to

higher revenues. However, in both papers information has no value for real investment decisions.

Therefore, the economic role of the winner’s curse in Bulow and Klemperer (2002) nor Parlour

and Rajan (2005) is very different from that in our paper.

At a more general level, our paper is also linked to the literature on the social value and

optimal size of financial markets. Several papers have argued that gains associated with purely

speculative trading or rent-seeking activities can attract too many entrants into financial mar-

kets (see, e.g., Murphy, Shleifer and Vishny (1991) and Bolton, Santos and Scheinkman (2016)).

We provide an alternative mechanism in which each market participant possesses valuable in-

formation for guiding real production, but competition inhibits the effective use of information.

Our paper is also connected to the literature on how well prices aggregate information in

auctions. This literature Wilson (1977), Milgrom (1979), and Milgrom (1981) show that in first-

price and second-price auctions the price aggregates information only under special assumptions

about the signal distribution. In contrast, Kremer (2002) and Han and Shum (2004) show that

the price in ascending-price auctions always aggregates information. For multi-unit auctions,

Pesendorfer and Swinkels (1997) show that the price converges to the true value of the asset

in uniform-price auctions if the number of units sold also grows sufficiently large. Atakan and

Ekmekci (2014) show that information aggregation of prices can fail in a large uniform-price

auction if the buyer of each object can make a separate decision about how to use it.

Unlike the above literature, we allow the decision maker to observe all equilibrium actions

and messages in a general set of competitive mechanisms. In all of the above settings, observing

equilibrium actions would lead to full information aggregation in large markets. In contrast,

we show that information aggregation can still fail when information is valuable for productive

decisions. For example, the ascending-price auction no longer aggregates information in our

setting. Furthermore, we show that not only might markets not aggregate information as the
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number of investors grows large, but informational efficiency may decrease with market size.

More generally, the link between the informativeness of financial markets (such as stock

markets) and real decisions by firms or governments is studied in the “feed back” literature (for

a summary of this literature, see Bond, Edmans and Goldstein (2012)). The closest to our work

in this literature are the papers by Bond and Eraslan (2010), Bond and Goldstein (2014) and

Goldstein, Ozdenoren, Yuan (2011) who show that when an economic actor takes real decisions

based on the information in asset prices, they affect the incentives to trade on this information

in an endogenous way that may destroy the informational efficiency of the market. None of

these papers analyze the effect of market size on efficiency, which is one of our main objectives.

Furthermore, our paper shows that informational and allocational efficiency can fail even in the

primary market for capital, where investors directly bear the consequences of their actions.

Finally, like us, Broecker (1990) studies a project financing setting. He considers a special

case of our model when the financing mechanism is the first-price auction, signals are binary,

and investors who provide financing do not have the option to cancel a project after an offer is

accepted. Broecker (1990) does not study information aggregation and surplus specifically and

does not consider the effect of reducing the number of investors, releasing information, revealing

bids, or allowing investors to endogenously decide on the investment after the auction is over.

Example

We start with an example to convey the main idea of the paper in the simplest possible setting.

A prospective entrepreneur has an idea for a startup that requires a 1M investment. She is

uncertain whether it is worth it—there is an equal probability that the project is good (G),

in which case it would return 2M, or bad (B) in which case it would return nothing. The

unconditional net present value is therefore zero, and as it stands she weakly prefers to stay in

her current job.
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To test her idea and potentially arrange financing, the entrepreneur sends her business plan

to a venture capitalist (VC), who is an expert at evaluating startups. The VC can get a high or

a low signal about the project, with Pr(H|G) = 1,Pr(H|B) = 1/2. If the VC gets a low signal,

he learns that the project is bad, since good projects never generate low signals. Therefore, he

will not finance the startup, and the entrepreneur stays in her old job. If the VC gets a high

signal, he updates the probability that the project is good to 2/3 :

Pr(G|H) =
Pr(H|G) Pr(G)

Pr(H|G) Pr(G) + Pr(H|B) Pr(B)
=

2

3
.
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Therefore, conditional on a high signal, the project is positive NPV:

V H =
2

3
× 1M − 1

3
× 1M =

1M

3
,

and the expected surplus is

Pr(H)× V H =
3

4
× 1M

3
=

1M

4
.

The VC and the entrepreneur split this surplus in some way during bargaining, and the business

is started. The existence of an informed investor has increased both social surplus and the value

to the entrepreneur by making the investment decision more efficient.

Now suppose the entrepreneur sends her business plan to two competing VCs instead. She

argues that inviting more VCs to join a bargaining process with her will both increase the infor-

mativeness of her decision and the share of surplus she can keep due to increased competition.

Both VCs get informative signals that are drawn independently conditional on the project type.

If either signal is low the project is sure to be bad, while if both signals are high the project is

good with probability 4/5 :

Pr(G|HH) =
Pr(H|G)2 Pr(G)

Pr(H|G)2 Pr(G) + Pr(H|B)2 Pr(B)
=

4

5
.

Hence, if the information of the two VCs is used efficiently, the project is started if and only if

both get high signals. Conditional on two high signals, the NPV of the project is now:

V HH =
4

5
× 1M − 1

5
× 1M =

3M

5
.

Therefore, the expected surplus is

Pr(HH)× V HH =
5

8

3M

5
=

3M

8
>

1M

4
.

But this is not what happens. Suppose that VCs have some minimal hassle cost ε > 0

of entering the bargaining process, and hence never bother to participate if they receive low

signals. Suppose a VC with a high signal enters with some probability 0 ≤ µ ≤ 1 in a symmetric

equilibrium. If both enter, it becomes common knowledge that they both have high signals,

so bargaining is done under symmetric information. The entrepreneur will have the VCs bid

against each other, and competition will drive VC’s share of surplus to zero.

Hence, a VC can only break even on his small participation cost when he is alone bargaining

with the entrepreneur. But when VC1 is the only participant, VC2 is likely to have had a low

signal—in fact, if VCs only stay out when they get low signals (µ = 1), he must have had a

low signal, implying that the project is negative NPV. A VC can then never break even on his

participation cost in any state: In states where the project is likely to be good, competition

drives his profits to zero, and in states where competition is absent, a winner’s curse makes the

project unattractive.
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The winner’s curse is worse the more likely it is that a VC with a good signal participates.

Hence, in a symmetric equilibrium, the participation rate µ for a VC with a high signal must

be low enough such that his competitor can profitably finance the project when he participates

alone.

How does the surplus in such an equilibrium compare to the one where the entrepreneur

deals exclusively with one VC? For states where the original VC still enters, there is no change

since the project is still financed. We therefore compare investment efficiency on the set of

projects the original VC now passes on, which consists of all projects he gets a low signal on

and a fraction (1− µ) of projects he gets a high signal on.

Projects from this pool will now be financed if and only if the new VC gets a high signal and

enters. He therefore finances a good project from the pool with probability µPr(H|G) = µ, and

a bad project with probability µPr(H|B) = µ × 1/2. Since the project at least weakly breaks

even when the investor has a high signal, the surplus created on the pool is no higher than if he

had always entered—i.e., if he invested in all good projects and a fraction 1/2 of bad projects.

The original VC, when he was the only invited investor, financed all good projects out of

the pool. Of the bad projects in the pool, he invested in the ones where he erroneously received

a high signal, which consists of a fraction

Pr(H|B)(1− µ)

Pr(H|B)(1− µ) + Pr(L|B)
=

1
2(1− µ)

1
2(1− µ) + 1

2

=
1− µ
2− µ

,

which is lower than 1/2. Therefore, the screening of the original VC on this pool when there

was no competition was more efficient, so surplus goes down with two VCs. If the entrepreneur

has enough bargaining power, her revenues also goes down.

What went wrong? The extra competition from adding a VC led to no rents to VCs in the

best states, and a winner’s curse made it hard to break even when bargaining alone with the

entrepreneur. This led to lower participation by the original VC, and the valuable information

he had when not participating was lost. The extra information of the added investor was not

enough to compensate for the lost information, so that investment decisions were less informed

than before. Even though the share of surplus captured by the entrepreneur increased with

added competition, the negative effect on total surplus made her welfare go down.

The problem gets even worse with more VCs, even though the market as an aggregate

has more information. As the number of investors increases, it becomes harder and harder to

break even in marginal states due to the winner’s curse, so that the non-participation region

1 − µ increases. We call this region the information black hole since the information of non-

participating investors in this region is lost.

Figure 1 shows potential social surplus if all information is used efficiently, and the actual

equilibrium surplus as a function of the number of VCs in the market. Potential surplus increases

and approaches the first best outcome where only good projects are financed, while market

surplus declines.

The example has a simple investment decision (start or abandon), binary signals, no assets in
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place, and a particular market structure. The remainder of the paper generalizes this example to

allow for general investment policy choices for both mature and new firms, general information

structures, financing contracts, and modes of competition between investors.

1 Setup

The model has two sets of risk-neutral agents: A firm seeking financing to start a new project,

and a set {1, ..., N} of potential investors who have private information about the prospects of

the project. In our main analysis, we will refer to the firm as the “entrepreneur” and assume

that the firm has no other assets or financial resources—we show in Section 4.4 that our results

apply equally well to mature firms with assets in place. Each investor gets a private signal Si

that is informative about whether the project type θ is good (θ = G) or bad (θ = B). The ex

ante probability that the project is good is π0.

1.1 Signals

Conditional on the project type θ, signals are drawn identically and independently on [0, 1] with

continuous conditional densities fG(s) and fB(s) satisfying the strict maximum likelihood ratio

property:

Assumption 1 Strict MLRP:

∀s > s′,
fG(s)

fB(s)
>
fG(s′)

fB(s′)
.

Assumption 1 ensures that higher signals are better news than lower signals.3 We also assume

that fB(1) > 0, and that the likelihood ratio fG(1)/fB(1) at the most optimistic signal realization

s = 1 is bounded. These assumptions ensure that the observation of a single signal can never

rule out the possibility of the project being bad, while an observer of all signals will be able to

learn the project type perfectly as the number of investors goes to infinity.

1.2 Project

The information of investors is valuable for deciding the investment policy of the firm. The

investment policy a is picked from a compact choice set A and leads to a random surplus Va net

of any investments and opportunity costs. We allow for the possibility that the project value

Va is a function of variables other than the type θ, but we assume that Va is independent of

investor signals conditional on the project type. Hence, given information ω learned during a

3As we show in the working paper version of this paper, all results go through under the weaker assumptions
that fG(s) and fB(s) are left-continuous and have right limits everywhere, and signals satisfy weak MLRP: ∀s ≥
s′, fG(s)/fB(s) ≥ fG(s′)/fB(s′). The discrete signal distribution in the motivating example can be represented
with left-continuous densities satisfying weak MLRP: fB(s) = 1 for all s, fG(s) = 0 for s ≤ 1/2, and fG(s) = 2
for s > 1/2.
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financing process, the expected net present value depends only on the updated probability of

the type, π(ω) = Pr(G|ω), and the expected payoffs given the type:

E(Va|ω) = π(ω)E(Va|G) + (1− π(ω))E(Va|B). (1)

The choice set always includes the option a = 0 of abandoning the project opportunity

without cost (V0 ≡ 0), while any policy a 6= 0 requires financing and leads to strictly positive

net present value for good project and strictly negative net present value for bad projects:

Assumption 2

E(Va|G) > 0 > E(Va|B) ∀a 6= 0. (2)

For applications where the number of possible policy choices are infinite—e.g., when the

project scale can be chosen from a continuum—we also assume that E(Va|θ) is a continuous

function of a for each type θ and that there is no “minimal scale” version of the project which

is positive NPV even with an arbitrarily small probability of the project being good:

Assumption 3

max
a6=0

E(Va|G)

|E(Va|B)|
<∞. (3)

We show in Lemma 1 that assumptions 2 and 3 together imply that the project should be

abandoned if sufficiently negative information is learned during a financing process.

Our assumptions put few restrictions on a project. The project can be scalable, have fixed

or marginal costs, and the choice set can include any set of risk-return profiles that do not have

a guaranteed positive NPV. The choice can also be over different dynamic investment strategies

if new information is expected to arrive over time—for example, whether to invest immediately,

keep the option to invest alive while waiting for resolution of uncertainty, or completely abandon

the project (see Section 5 for more details). The critical assumption driving our results is that

there is a non-trivial choice at the extensive margin between the status quo action a = 0 requiring

no financing and any other choice a 6= 0. Most of our results can therefore be derived in the

special case with a binary choice set a ∈ {0, 1} as in our motivating example, where a = 1 means

starting the project.

Given information ω the optimal investment policy that delivers the maximal expected payoff

solves:

a(ω) = arg max
a∈A

π(ω)E(Va|G) + (1− π(ω))E(Va|B). (4)

From equation (4) it is clear that the optimal investment policy a(ω) depends only on the

updated probability of the type, π(ω). Hence, social surplus is given by v(π(ω)), where

v(π) = max
a∈A

πE(Va|G) + (1− π)E(Va|B). (5)

The following lemma provides a first-best benchmark for social surplus when all market infor-

mation is available:
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Lemma 1

(i) There is a π∗ > 0 such that a(π) = 0 and v(π) = 0 for all π ∈ [0, π∗], and v(π) > 0 for all

π > π∗. v(π) is strictly increasing for π > π∗ and convex.

(ii) When ω = S ≡ {Si}Ni=1, social surplus increases with N and approaches the first-best in

the limit:

lim
N→∞

E(v(π(S))) = E
(

max
a

E(Va|θ)
)
.

Proof: See the Appendix.

The lemma shows the value of investor information. Although the net present value under

a given policy a is linear in the expected type π of the project, the value under the optimal

investment policy is convex. As in any real option setting with convex payoffs, more information

allows for better fine-tuning of the investment decision and increases the value. As the number

of investor signals grows without bound, an observer of all signals would avoid all bad projects

and invest optimally in all good projects.

1.3 Fundraising market

Investors compete over what financing contract, if any, to supply to the firm. We first describe

the set of financing contracts we allow as feasible outcomes, and then describe the market

equilibrium conditions.

Any market outcome can be described as an investment policy a and a financing contract

wa = {wi,a}Ni=1 that implements a, where wi,a specifies investor i′s net payoff. A typical example

is where an investor i contributes capital Ii to the firm in exchange for a security zi backed by

the post-investment cash flows Va +
∑

j Ij of the firm, so that wi,a = zi(Va +
∑

j Ij) − Ii. The

entrepreneur retains Va−
∑

iwi,a. We allow the payoffs to depend both on the realized value of

the project and investor signals, but omit this dependence in the notation whenever possible to

avoid cluttering the exposition.

Given an investment policy a, we allow for any financing contract wa that satisfies the

following feasibility restrictions:

Assumption 4 Limited liability: Va −
∑

iwi,a ≥ 0

Assumption 5 Monotonicity: For all wi,a, E (wi,a|B) ≤ min (E (wi,a|G) , 0) .

The limited liability condition simply requires that the penniless entrepreneur should be able

to implement the contracted investment policy. We relax the assumption in Section 4.4, where

we allow the firm to have existing assets that can back securities.

The monotonicity condition is automatically satisfied if the firm has only one class of investors

(where wi,a = qiwa for some constant qi ≥ 0 and contract wa).
4 For the case where the firm has

multiple classes of investors, the monotonicity condition says that investors should be sufficiently

4This follows from Assumption 2 and limited liability; with only one class of securities, investors cannot make
profits on bad projects, and so must make some profits on good projects in order to break even.
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aligned, in the sense that they all prefer the project to do well rather than poorly. This is a

standard condition in the security design literature (see e.g., DeMarzo, Kremer, and Skrzypacz

(2005)) that can be microfounded as a way to prevent ex post moral hazard between a firm’s

active investors, or between the entrepreneur and some set of investors. The monotonicity

condition also says that no investor should receive a claim that has strictly positive profits

regardless of the state of the project—that is, there is no “free lunch” ex post.5

1.3.1 Market equilibrium

We are interested in how efficiently the equilibrium investment policy a reflects the market

information contained in investor signals when investors compete to finance the firm. To put an

upper bound on efficiency, we allow for any type of information extraction from investors who

participate in the market. As in the motivating example, the loss of information will be due to

investors who decide not to participate after observing their signal.

We restrict attention to symmetric equilibria in which investors with signals above some

threshold ŝ ∈ [0, 1] participate. As we will see (Proposition 1), it is without loss of generality

to focus on threshold participation strategies when the monotonicity condition holds. This is

because investors can only make profits if the project is good, so that more optimistic investors

always expect to break even when less optimistic investors do. Non-participating investors leave

the game, so equilibrium allocations can only depend on information in the censored signal

vector S≥ŝ ≡ {Si × 1{si≥ŝ}}Ni=1.

As we want the model to be applicable to a wide set of primary capital market, we do not

specify a particular way in which investors compete. However, as is clear from our motivating

example, competition plays an important role for our result. We will allow any market structure

that is mildly competitive, in that a “maximally pessimistic” participant is outcompeted and

cannot make profits when there are more aggressive participants with enough resources:

Assumption 6 Competitive market: If there are n > K participants where the resources of K

investors are enough to finance the firm, an investor with a signal just above the equilibrium

participation threshold ŝ makes vanishing profits:

lim
s↓ŝ

E(wi,a|Si = s, n > K participants) ≤ 0. (6)

This is a generalized version of the assumption about competition we made in the motivating

example. In the example, all participants have equally optimistic signals H, so any participant

5Although we know of no primary financial market where the monotonicity condition is violated, it is not
without loss of generality—it rules out shorting markets, and more generally, non-monotone surplus-extraction
mechanisms as in McAfee, McMillan and Reny (1989) that rely on a set of side transfers ti(s) between investors
based purely on messages sent in the financing process. Such contracts are not ex post rational, which may
explain why they are seldom—if ever—used in practice. We show in Section 4.3 how the introduction of a
carefully designed shorting market can improve informational efficiency if the monotonicity condition is relaxed,
but the market has to be subsidized by the firm’s investors, and participants will have ex post incentives to either
renege or influence the firm to take inefficient actions.
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is marginal. When both VCs enter, their signals are common knowledge and competition drive

their rents to zero.

With a more general signal structure, the analogous logic is as follows. The lowest possible

investor type that participates in equilibrium has no informational rents, since his reservation

value is the lowest possible value compatible with an observed set of participating investors.

Hence, competitors can always outbid him, and an entrepreneur can safely hold out until the

reservation price of the lowest type is reached. The competitive assumption holds in any non-

collusive, non-rationed auction or bargaining setting such as uniform or discriminatory price

auctions, irrespective of whether investors make their bids before or after they have observed

the number of competitors. In particular, the assumption is automatically satisfied when only

the investors with the K highest signals get an allocation in equilibrium.

In our main analysis, to make the exposition simpler, we assume that all investors have deep

pockets so that K = 1. All our results hold for any fixed K that does not grow with the size of

the market. We study the case of K > 1 as well as collusion and rationing in Section 4.

The final requirement we put on an equilibrium is that it is informationally robust. Since we

assume that participation is free, there are typically a multitude of equilibria with different levels

of efficiency depending on whether indifferent investors participate and share their information

or not. Our robustness criterion rules out equilibria that rely critically on information from

indifferent investors who would never participate in any possible financing mechanism if there

were even an arbitrarily small participation cost ε > 0.

We start with the definition of an equilibrium with an arbitrary participation cost, and then

give the formal definition of a robust equilibrium:

Definition 1 {ŝε, aε,waε} is a symmetric, competitive equilibrium with a participation cost ε

if:

(i) waε is a feasible contract, that is, Assumptions 4 and 5 hold.

(ii) aε and waε are measurable with respect to S≥ŝε.

(iii) Assumption 6 holds.

(iv) Incentive compatibility holds: For any si ∈ [0, 1]

si ∈ arg max
s′∈[0,1]

1{s′≥ŝ}(E(wi,aε(S
−i, s′)|Si = si)− ε), (7)

where wi,aε(S
−i, s′) is the payoff to an investor with signal si if he acts as if he has signal s′.

Definition 2 {ŝ, a,wa} is a robust symmetric, competitive equilibrium with zero participation

cost if for every δ, there is a symmetric, competitive equilibrium of a financing mechanism with

participation cost ε > 0 such that |ŝ− ŝε| < δ and allocations are within δ:

E(|Va − Vaε |) +
∑
i

E(|wi − wi,aε |) < δ. (8)
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To make clear the role of the robustness criterion, recall our motivating example. In the

example, if participation costs are zero, there is a continuum of non-robust equilibria with

different degrees of participation. The most efficient of these is an equilibrium where VCs

always participate when they get a high signal (µ = 1), but the project is only financed if

all VCs participate. This equilibrium fully aggregates information and achieves the first best.

However, in this equilibrium all investors always make exactly zero profits, and so even an

arbitrarily small participation cost destroys the equilibrium.

Our equilibrium definition allows for a very wide class of market structures and financial

contracts, and is as unrestrictive as possible in order to put a lower bound on investment ineffi-

ciencies. We have not required that the outcome is renegotiation proof, or that the prescribed

equilibrium investment policy is incentive compatible for the final decision maker. We show in

Section 2.1 that a straight equity financing contract issued to investors with the highest will-

ingness to pay achieves maximal efficiency, is renegotiation proof, and induces the entrepreneur

and investors to agree on the ex post surplus-maximizing action.

2 Analysis: Informational black holes

In this section we study how well fundraising markets incorporate information into investment

decisions. We derive a maximal set (ŝ, 1] of participating investors from which information can

be learned, and show that even with maximum information there are significant investment

inefficiencies relative to the first best.

To derive a lower bound on the participation threshold, we focus on a marginal participating

investor with signal s just above the participation threshold ŝε when there is an arbitrarily small

participation cost ε > 0. From the competitiveness assumption, if s is sufficiently close to the

threshold he will make vanishingly small profits if any other investors participate, and hence

cannot break even on his participation cost. A necessary condition for him to participate is

therefore that he breaks even when noone else participates:

E(wi|Si = s,max
j
Sj ≤ ŝε) ≥ ε. (9)

When this investor is the only participant, limited liability implies that wi ≤ Va so that the in-

vestor cannot get more than the available surplus. Hence, a necessary condition for participation

is:

max
a

E(Va|Si = s,max
j
Sj ≤ ŝε) ≥ ε. (10)

Hence, for a marginal investor with a non-zero participation cost, it must be worth starting the

project based only on the information that other investors are not participating. The winner’s

curse for a marginal investor is worse the lower the participation threshold is, which puts a lower

bound on the threshold in any robust equilibrium:
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Proposition 1 In any robust symmetric equilibrium, the participation threshold is no smaller

than the smallest value ŝN such that

max
a6=0

E(Va|max
i
Si = ŝN ) ≥ 0, (11)

and, given a set of participants κN ≡
∑

1{Si≥ŝ}, no investment policy is more efficient than the

policy a(s≥ŝ) given by:

a(s≥ŝ) = max
a6=0

E(Va|S≥ŝ = s≥ŝ) if κN > 0 and a(s≥ŝ) = 0 if κN = 0. (12)

Proof. See the Appendix.

Whenever ŝN > 0 we call the minimal non-participation region [0, ŝN ] the informational

black hole, since the investment decision a(S≥ŝ) cannot vary with signals below the threshold—

all signals below ŝN are pooled together and lost.

Proposition 1 implies that even in a constrained efficient robust equilibrium, the most im-

portant investment decision—whether to start the project or not—cannot rely on any more

information than what is contained in the highest signal among investors. To see this, note

that if the highest signal is below the threshold, there is no participation and the project is

abandoned. Conversely, whenever the highest signal is above the threshold, it is always efficient

to start the project. This is so since even in the least optimistic such scenario, where a marginal

participant wins alone, starting the project is efficient. Hence, the project is started if and only

if any investor participates.

The existence of the informational black hole leads to inevitable investment inefficiencies.

For example, when all signals are in the informational black hole but close to the participation

threshold, the project will not be undertaken even though it can be positive NPV. In con-

trast, even if all but one investor have the most negative signal possible so that the project is

strictly unprofitable, the constrained efficient policy is to start the project whenever one investor

participates.

In what follows, we will focus on the case where there is at least some participation in a

robust equilibrium:

Assumption 7 There is an action a such that

E(Va|Si = 1) > 0. (13)

Assumption 7 says that a single investor who observes the highest possible signal will find it

worthwhile to start the project. When this assumption is violated, Proposition 1 implies that

there is never any participation, so that the financing market breaks down completely.

Given Assumption 7, the minimal participation threshold ŝN is always strictly below one.

However, as the market grows larger, ŝN will increase due to the winner’s curse, so that more and

more investors end up in the informational black hole. The next proposition shows that as the

number of investors N and hence the amount of information in the market grows, the amount
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of information lost in the informational black hole grows correspondingly so that substantial

uncertainty remains even in arbitrarily large markets:

Proposition 2 As N → ∞, the informational black hole grows with N such that the number

of participants κN converges to a poisson-distributed random variable κ with

Pr(κ = k|B) = e−τ
τk

k!
, k = 0, 1, . . . , (14)

Pr(κ = k|G) = e−λτ
(λτ)k

k!
, (15)

where λ = fG(1)/fB(1). The arrival rate τ > 0 of participants is the unique solution to the

marginal investor’s break-even condition:

Pr(G|κ = 1)

Pr(B|κ = 1)
=

π∗

1− π∗
⇔ λ

e−λτ

e−τ
π0

1− π0
=

π∗

1− π∗
, (16)

where π∗ is the break-even probability for the project defined in Lemma 1. The number of

participants κ becomes a sufficient statistic for equilibrium information in the limit:

π(S≥ŝN )

1− π(S≥ŝN )
→ λκ−1

π∗

1− π∗
. (17)

(18)

Proof. See the Appendix.

Corollary 1 Information never aggregates, and both over- and under-investment happens with

positive probability as N goes to infinity:

lim
N→∞

Pr(a = 0|G) = e−λτ , (19)

lim
N→∞

Pr(a 6= 0|B) = 1− e−τ . (20)

Proposition 2 shows that the participation cut-off ŝN increases with the number of investors.

The reason is the winners curse: In a larger market, winning with the same signal is bad news

because winning implies that all other investors are more pessimistic. Assumption 7 guarantees

that equation (16) has a nonnegative solution. Equations (14) and (15) show that as long as the

likelihood ratio λ at the top signal is finite, the number of investors who actually participate in

a financing process converges to the Poisson distribution with parameter τ if the project is bad

and the Poisson distribution with parameter λτ if the project is good. This limited participation

impedes the inference of project type. As a result, sizable investment mistakes persist for any

market size.

Propositions 1 and 2 illustrate the critical importance of Assumption 2, which is our main

departure from standard theories of information aggregation. Assumption 2 says that the deci-

sion about whether to start the project or not is non-trivial, because starting the project leads
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to losses if the project is bad. If Assumption 2 is violated and there is an action a such that

the project is strictly positive NPV even in the bad state, Equation 11 implies that ŝN = 0 for

any N. Hence, everyone participates, and a constrained efficient robust mechanism can achieve

the first best. A larger market then always produces more information. For example, in stan-

dard auction theory where there is no action choice but an existing asset is sold, an ascending

price auction reveals all information in the market. Of course, in that setting, information has

no social value—once information has social value and a non-trivial decision has to me made,

Proposition 1 shows that, paradoxically, the market can no longer aggregate information.

Propositions 1 and 2 show that the recoverable market information depends on three things:

The size of the market, the signal distribution, and how “in the money” the project is as

summarized by the difference between the prior π0 and the break-even probability π∗. We will

discuss the effect of market size and how it interacts with the signal distribution in detail in

Section 3. In the asymptotic limit described in Proposition 2, the amount of available information

is conveniently summarized in the expected number of participants λτ when the project is good:

λτ =
λ

λ− 1

(
lnλ+

[
ln

π0
1− π0

− ln
π∗

1− π∗

])
. (21)

When this arrival rate is high, more market information is recovered and the posterior for the

decision maker is more informative. In large markets, the effect of the signal distribution is

summarized by the top likelihood ratio λ, and not surprisingly, more is learned when signals are

more informative. In Section 4.2.1, we discuss implications of this when investors can affect λ

by forming bidding clubs or coming together in a partnership firm.

The “moneyness” of the project is higher when the prior π0 is high and the break-even

probability π∗ is low. A project that is more likely to be positive NPV will generate more

participation, and therefore more information. This market outcome is often inefficient—projects

where the extensive margin decision is less important, so that information is less socially useful,

will generate the most information!

The moneyness depends on project characteristics through π∗, which in turn is lower the

more real option value the project is expected to have after fundraising. We use this fact in

Section 4 where we show that social surplus is increased if fundraising is done before public

resolution of uncertainty.

Remarkably, the available equilibrium information does not depend on any other project

parameter than the break-even rate π∗, which is determined solely by the payoffs to the unique

optimal policy a(π∗) for a marginal participant. Hence, any value from being able to pick other

infra-marginal policies when π(s≥ŝN ) > π∗ has no effect on equilibrium information, despite the

fact that more information is extra valuable when there is a richer policy set to pick from. This

fact holds for any number of investors N, not only asymptotically, and is a negative informational

externality imposed by the marginal participant on more optimistic investors.

When there is a lot of value from picking the right infra-marginal action, a government policy

of subsidizing investors may therefore improve surplus by lowering the participation threshold.

Thus, our model provides a new justification for government programs that give tax breaks or
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credit guarantees to direct investors in private companies. There is a cost to such subsidies,

however—the marginal participant will finance socially wasteful negative NPV projects. If the

action choice is binary, such a policy would destroy surplus, as infra-marginal information then

has no value.

Before describing the detailed implications of the informational black hole for surplus and

revenues, we show in the next section that a straightforward financing process closely resembling

most real-world primary markets implements the constrained efficient investment policy.

2.1 Implementation with straight equity financing

We show that the constrained efficient investment policy can be implemented by selling straight

equity to the highest bidder in a standard auction. An equity auction proceeds as follows. The

entrepreneur first sets a target I of capital to be raised into the firm through a new equity issue,

and a fraction β ∈ [0, 1] of her own shares to be sold for cash. This captures both total buyouts,

where β = 1, and venture capital settings where the entrepreneur remains fully invested, where

β = 0. The capital budget I is set so that any investment policy can be implemented, i.e.,

Va + I ≥ 0 for all a ∈ A.

Normalizing the number of shares of the firm before capital raising to one, the price per

share (or “pre-money valuation”) p at which equity is sold is set in a second- or ascending price

auction:

1. Second-price auction: Bids bi(si) are submitted simultaneously, the highest bidder h wins,

and p = maxi 6=h bi.

2. Ascending-price auction: Bidding starts at price p = 0, and the price is gradually increased

until all but one bidder have dropped out.

If the entrepreneur gets any bids, the winner of the auction pays I + βp for a fraction I+βp
I+p

of shares backed by the post-money cash flows Va + I, so that the winner’s pay off function is

given by:

wh =
I + βp

I + p
(Va + I)− (I + βp) =

I + βp

I + p
(Va − p) . (22)

The entrepreneur keeps (1−β) shares and gets βp in cash for her remaining shares. The winning

investor and the entrepreneur then jointly decide on the investment policy, taking into account

all the information learned from the bidding behavior of other investors.

If bids of participating investors are strictly increasing in signals, bids will perfectly reveal

their signals. Since the investor and the entrepreneur are perfectly aligned ex post with payoffs

that are linear in the surplus Va, they will therefore agree to take the surplus maximizing action

conditional on the information contained in the bids:

a (s≥ŝ) = arg max
a

E (Va|S≥ŝ = s≥ŝ) . (23)
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If the participation threshold ŝ is at the lower bound ŝN in a robust equilibrium, the equity

auction achieves the upper bound on efficiency. We show that this is the case in the following

proposition:

Proposition 3 There is a robust symmetric equilibrium in the second-price and ascending-price

equity auction. Each format delivers the maximum possible social surplus. Investor i participates

in the auction if and only if Si ≥ ŝN , where ŝN is defined by equation (11).

Proof. See the Appendix.

Because of perfect alignment, the equity auction is robust to ex post moral hazard and rene-

gotiation. Neither the investor nor the entrepreneur has an incentive to distort any information

before the investment policy choice, and it is immaterial whether the action a is observable or

contractible. Straight equity financing is unique in this regard, as any other security structure

will create conflicts of interest for some specification of possible action choices.

We conclude this section with a discussion of the requirement for an equilibrium to be robust.

In general, there can be nonrobust equilibria with participation thresholds below ŝN . To see this,

note that social surplus decreases in the participation cut-off ŝ. When an investor expects others

to participate over a larger signal interval so that the informational black hole is smaller, he

expects surplus to be larger because of the extra information, which justifies bidding higher and

participating for lower signal realizations. Hence, the expectation of the size of an informational

black hole can be self-fulfilling and lead to multiple equilibria. As an example, suppose that

each investor participates if and only if his signal is above the cut-off sN defined as the smallest

value such that

max
a6=0

E(Va|S1 = S2 = . . . SN = sN ) ≥ 0. (24)

The cut-off sN is defined such that the project just breaks even conditional on all investors

having this signal. Therefore, when an investor with signal s just above sN wins the right to

finance the project he only starts the project if all N − 1 competitors participate and have

their signals between sN and s. As s gets closer to sN the probability of such an event goes to

zero, so that the marginal participating investor never makes any profit. Hence, this marginal

investor would not participate in the fundrasing mechanism in the presence of an arbitrarily

small participation costs. By not participating, he makes it impossible to break even for the

investor with a signal just above him. As a result, the whole participation process unravels and

stops only when the participation cut-off reaches ŝN . Thus, all equilibria with cut-offs below ŝN

are fragile.6

3 Smaller versus larger markets

We now study how surplus and revenue change with the number of investors N , which we have

loosely referred to as market size. When the issuing firm does not actively restrict participation,

6In the working paper version of this paper we showed that these equilibria also no longer exist when partici-
pation costs are zero, but bids are made in arbitrarily small increments.
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we think of N as the number of all potential investors that may conceivably be interested in

financing the firm. For example, for a start-up this could be the number of VC firms and

angel investors active within the region and industry, and for a mature firm it could be the set

of potential financial and strategic investors. If the issuing firm can restrict participation, for

example by engaging in a proprietary transaction or a targeted auction, N is the number of

invited investors.

To the extent that the set of potential investors Nj relevant for a particular firm j comoves

with the overall set of investors in primary capital markets, our model also has aggregate impli-

cations. We think this is a realistic assumption; for example, entry of investors into both private

equity and venture capital tend to comove strongly across all subsectors, and indeed with the

overall size of financial markets.

As we show, most of our results will be driven by the extensive margin decision between

the status quo action a = 0 and any other choice a 6= 0. We will therefore focus our main

analysis on the case of only two actions a = 0 and a = 1, and show that the results are robust to

having more than two action choices in Section 5.1. With binary actions, the investment policy

is completely determined by the realization of the highest signal. We assume that a financing

mechanism ensures participation at the lowest possible participation threshold ŝN . Thus, the

project is started whenever the highest signal is above ŝN . Therefore, social surplus is equal to

π0 Pr(max
i
Si ≥ ŝN |G)E(V1|G) + (1− π0) Pr(max

i
Si ≥ ŝN |B)E(V1|B). (25)

In our motivating example we showed that social surplus is maximized with just one investor.

In this section we show that this case is not an isolated example. Because the informational

black hole grows with the number of investors, the investment mistakes can be increasing in the

number of investors as well. As a result, markets with a large number of investors can lead to

strictly worse social surplus and revenues for the entrepreneur. Below we provide necessary and

sufficient conditions on the distribution functions FB and FG for social surplus to be increasing

or decreasing with the number of investors.

Adding an investor to the market changes the set of started projects, and hence social surplus,

in two ways. First, the participation threshold increases due to the stronger winner’s curse in

a larger market. This implies that some projects that were previously marginally approved

are now dropped if the signal of the new investor is not above the participation threshold.

However, because these marginal projects are close to zero NPV due to investors’ participation

optimization, the effect on social surplus from dropping them is small—as we show in the proof

of Proposition 4, the effect vanishes when we add investors in a continuous way and use the

envelope theorem. In our motivating example, for example, when an extra VC is invited, the

original VC withdraws from offering financing after a high signal with probability (1−µ). When

the extra VC does not participate, this project is dropped. But equilibrium participation is set

such that this project is zero NPV anyway—the positive information in the original VC’s high

signal is exactly offset by the information that the new VC does not participate.

The second effect is that some projects that would previously not have received financing
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now get started if the added investor has a sufficiently optimistic signal. In our motivating

example, a project on which a single invited VC has a low signal does not get financed. This is

a bad project for sure, but with an extra VC it gets financed with probability Pr(H|B)µ > 0,

so surplus goes down. The extra high signal cannot compensate for the very bad information of

the original VC.

For the general case, the effect of adding an extra investor can go either way depending on

how informative an extra high signal is. Suppose that a project is not financed in a market

with N investors, which happens when no one participates so that maxi≤N Si < ŝN . If another

investor is added to the market, such a project will be financed if SN+1 > ŝN+1. For this change

to increase surplus, the project must be positive NPV when the extra investor has the highest

possible signal SN+1 = 1 :

Pr(G|max
i≤N

Si ≤ ŝN , SN+1 = 1) ≥ π∗, (26)

where π∗ is the break-even probability defined in Lemma 1. To see under what conditions Equa-

tion 26 holds, we compare this event with the break-even condition for a marginal participant

in a market with N investors, which from the definition of the threshold ŝN is given by:7

Pr(G| max
i≤N−1

Si ≤ ŝN , SN = ŝN ) = π∗, (27)

i.e., when there is one marginal participant with signal ŝN , and all other N − 1 investors

have signals below the threshold, the project just breaks even. This event differs from the event

in Equation 26 by having one bidder at the threshold rather than a combination of one bidder

below the threshold and one bidder with a top signal. The signal of an extra investor can

therefore never make a previously rejected project positive NPV if

Pr(G|SN+1 = 1, SN ≤ ŝN ) < Pr(G|SN = ŝN ), (28)

which, using Bayes’ law and rewriting, can be written as

fG(1)

fB(1)
≤ fG(ŝN )

FG(ŝN )
/
fB(ŝN )

FB(ŝN )
. (29)

The right-hand side of Equation 29 is the likelihood ratio at the top of the informational

black hole threshold, conditional on still being in the informational black hole. It is a measure

of how efficiently a market of size N screens projects. It is large when the normal likelihood

ratio fG/fB is high at the break-even threshold ŝN relative to signals below, so that there is

a big difference in quality between accepted and rejected projects. As the size of the market

grows and ŝN goes to one, this conditional likelihood ratio goes to fG(1)/fB(1) = λ. Hence,

if the conditional likelihood ratio is decreasing, increasing market size leads to less informative

screening and lower surplus: 8

7This assumes the participation threshold has an interior solution—if ŝN = 0 it is always efficient to increase
the market size. For N sufficiently large, there is always an interior solution.

8The argument here has skirted over the fact that adding an extra investor is a discrete change and so changes
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Proposition 4 If fG(s)
FG(s)

/ fB(s)
FB(s) is an increasing function on [ŝ1, 1] then social surplus (25) in-

creases with the number of investors. If there exists N such that fG(s)
FG(s)

/ fB(s)
FB(s) is a decreasing

function on [ŝN , 1] then maximal social surplus is achieved with no more than N investors.

Proof: See the Appendix.

The conditional likelihood ratio fG(s)
FG(s)

/ fB(s)
FB(s) is the ratio of the likelihood ratio fG(s)/fB(s)

and the probability ratio FG(s)/FB(s) of an original signal. Both ratios increase with s because

of MLPR. Therefore, the conditional likelihood ratio decreases with s if and only if the likelihood

ratio of an original signal is sufficiently flat at the top signals. The most extreme example is the

case of discrete signals where the likelihood ratio is constant over some interval [a, 1]. In this

case
fG(s)

FG(s)
/
fB(s)

FB(s)
= λ

FB(s)

FG(s)

for some λ, which decreases with s.

We next consider entrepreneurial revenues as a function of market size. If the entrepreneur

has the power to pick the number of investors, he will do so in order to maximize revenues rather

than surplus. The private optimum may differ from the social optimum if the entrepreneur

captures only part of the surplus. As in standard common-value auction, the extra competition

from added investors tends to drive their share of surplus down, and for competitive mechanisms

the entrepreneur captures all the surplus as the number of investor grows without bound. Hence,

if surplus increases with N , there is no conflict between the private and social optimum—the

entrepreneur will prefer the maximal number of investors.

The non-trivial case is when surplus decreases with N . Will the entrepreneur find it optimal

to restrict the number of investors even though this may entail surrendering a higher fraction of

the surplus to investors? Our answer is a qualified “Yes”. The next proposition gives a sufficient

condition for when this is the case.

Proposition 5 Suppose financing is done by using straight equity in any of the standard format

auction. For any s∗ < 1 there exist δ > 0 and N∗ <∞ such that for any fG and fB satisfying

fG(1)

fB(1)
− fG(s∗)

fB(s∗)
< δ

entrepreneur’s revenue strictly decreases with N for N > N∗.

Proof: See the Appendix.

the participation threshold discretely rather than continuously. Adding investors in a continuous way corresponds
to adding an “informationally small” signal to the market with distribution function Fθ(s)

ε for vanishingly small
ε. This signal has likelihood ratio (fG(s)/FG(s))/(fB(s)/FB(s)), so that the change in surplus when the added
signal is above the participation threshold and leads to extra investment is negative if

fG(ŝN )

FG(ŝN )
/
fB(ŝN )

FB(ŝN )
≥ fG(s)

FG(s)
/
fB(s)

FB(s)
, (30)

which holds if the conditional likelihood ratio decreases above the cut-off.
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To understand this result, recall our motivating example. There, investors with high signals

are equally informed, and therefore are unable to earn any profits beyond their vanishing partic-

ipation cost. Hence, the entrepreneur captures all the surplus, so revenues go down in tandem

with surplus. With a general signal distribution, participating investors who are not marginal

capture some informational rents. But if the likelihood ratio at the top of the signal distribution

is relatively flat, participating investors in large markets are informationally close to each other.

Therefore, these investors capture little informational rent. As a result, increasing N beyond a

certain level has little effect on the split of revenues but a large negative effect on surplus.

Figure 2 Panel A plots both social surplus and profit for a modified version of our moti-

vating example, where signals are continuous and satisfy strict MLRP: FB is a uniform [0, 1]

distribution, and FG is the normal distribution with mean 1 and standard deviation 1, truncated

to [0, 1]. Competition is assumed take place in a second-price equity auction. We can see that

social surplus is maximized at a market size of two. In contrast, the entrepreneur’s revenues are

maximized at a substantially larger market size of 13. The entrepreneur prefers a larger mar-

ket size than what maximizes social surplus because increased competition between investors

reduces their share of the surplus. One can construct other examples where the entrepreneur’s

revenue is maximized for any given number of investors by appropriately choosing the signal

distribution. In all these examples, the entrepreneur is better off if he restricts the number of

investors who participate in the fundraising process.

Our result that small markets may be optimal for firms provides a new explanation for the

phenomenon of “proprietary transactions” in venture capital and private equity, or “targeted

auctions” in the sale of firms in which only a select set of acquirers are invited to submit bids.

The results we derive for the case of stochastic bidders (see Section 5.4) identifies a further

value of small markets—as we show, uncertainty about the number of bidders often leads to less

efficient outcomes than when the number of bidders is known, and a targeted auction where the

number of participants is made public removes this uncertainty.

3.1 Can financial markets be too big?

In the previous section we established that small markets may be preferable both from the

entrepreneur’s and from a social surplus perspective. In this section we show that the equilibrium

size of the market can be too large relative to both the social and the entrepreneurial optimum,

and can be Pareto inferior relative to a market with one less investor.

If the entrepreneur can commit to seek financing from a restricted set of investors, the market

can obviously never be larger than what is optimal for the entrepreneur. However, restricting

the set of potential investors may be difficult in practice because it is ex post optimal for the

entrepreneur to consider any offer he receives, even if the offer is unsolicited. In this section we

therefore assume no commitment so that investors can enter any auction.

So far, we have assumed that investors observe signals for free to make our results on the

failure of information aggregation in large markets as striking as possible. In order to have a

non-trivial equilibrium market size, we now assume that investors face some costs of gathering
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information. Assume that each potential investors i has a cost ci of gathering information about

the project, and that ci is strictly increasing. We focus on the case where fG(s)
FG(s)

/ fB(s)
FB(s) is a

decreasing function at s = 1 so that social surplus (gross of investor costs) is maximized at a

finite market size. The socially optimal market size net of costs is then even smaller.

Proposition 6 Suppose that fG(s)
FG(s)

/ fB(s)
FB(s) is a decreasing function at s = 1. Then, there is

c > 0 such that if sufficiently many investors have costs of gathering information below c, the

equilibrium size of the market is larger than the socially optimal size. Lowering information

gathering costs proportionally for all investors can lead to a decrease in both net and gross of

fees social surplus.

Proof: See the Appendix.

The proposition shows that there is no reason to believe that markets will become more

efficient as information technology improves. This is in contrast to the predictions of Samuelson

(1985) and Levin and Smith (1994) who study information costs in an otherwise standard auction

theory setting. In both papers, the optimal size of the market goes to infinity as costs go to

zero. Proposition 6 shows that there can be too much entry in equilibrium relative to the social

optimum.

Let us continue with our motivating example, modified to have signals from the truncated

normal distribution when the project is good. Figure 2 Panel B shows expected gross profits

to investors from participating in a second-price equity auction as a function of market size,

as well as a particular specification for the cost ci of information gathering for each investor.

In equilibrium, investors will enter as long as expected profits cover their cost, so that for the

specific costs drawn in the figure the first five investors will enter in equilibrium with the 15th

investor indifferent between entering and staying out. Recall that the entrepreneur’s revenue is

maximized at the market size of 13. Hence, the equilibrium market size is larger than both the

social optimum and the entrepreneur’s optimum.

Now suppose that every investor’s cost was just slightly larger. This would be the case if, for

example, tax rates on venture capitalist profits are increased slightly. The equilibrium market

size would drop to 14, which would constitute a Pareto improvement. Participating investors

would make higher profits because of both reduced competition and more efficient investment

decisions. The entrepreneur’s revenues would increase because the increased surplus from more

efficient investment outweighs the loss from reduced competition. Finally, the investor who

drops out of the market is no worse off since he was just breaking even before.

We have restricted the analysis in this section to the extensive-margin binary action case. For

the case with an arbitrary action space, the informational black hole and the extensive margin

decision of whether to start the project or not remains exactly the same–the project is started if

and only if anyone participates. For the binary action case, no other information affects surplus,

which simplifies the analysis. When the firm can choose from different investment policies

conditional on starting the project, the infra-marginal information of participating bidders has

value, so that surplus depends on the number and distribution of signals above the threshold.
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This is reflected in the fact that the surplus v(π) under the optimal investment policy is a

convex function of π for π ≥ π∗ in the general case, while it is linear in the case of binary action.

Provided that v(π) is not too convex our result that small markets dominate large markets

continue to hold; see Section 5.1 for an example with scalable investments.

4 Remedies for the informational black hole

The source of inefficiency in our model is the effect the winner’s curse has on the participation of

pessimistic investors, an effect that becomes stronger as the market grows larger. In this section

we discuss a number of other market characteristics that affect the size of the informational black

hole, and possible remedies that can help reduce it. First, we show that it may be beneficial

to raise capital before important information is learnt in order to increase the option value

embedded in the project. Second, we show that allowing a larger set of investors to co-finance

the project helps reduce the informational black hole but does not eliminate it. Third, we show

that if the monotonicity condition is relaxed, a carefully designed shorting market can in theory

eliminate the informational black hole, but its elaborate construction points to its fragility.

Finally, we show that informational black holes continue to exist for mature firms with assets

in place.

4.1 Choosing when to finance and the linkage principle

The size of the informational black hole depends on public information just before fundraising,

as summarized by the common prior π0, as well as any extra public information after fundrais-

ing that can influence the investment policy choice.9 So far, we have taken the informational

environment around the time of fundraising as exogenous. However, the entrepreneur can of-

ten influence this environment. If there is some public resolution of uncertainty over time, the

entrepreneur can choose whether to start fundraising before or after resolution of uncertainty.

Alternatively, if the entrepreneur has private information that can be credibly communicated,

she can choose how much and when to release this information. We now show the implications

of our model for these types of choices.

Suppose that there is some exogenous signal X that helps predict the value of the project.

This could be a signal about demand conditions for the products the project is meant to cre-

ate, or in general, any relevant information the entrepreneur might have that can be credibly

communicated to the investors. We assume that X satisfies the following properties:

Assumption 8

(i) Investors’ signals Si are symmetric and conditionally independent given X and the project

type θ.

9Any public information that becomes available after fundraising is implicitly captured in the policy choice set
A, which can contain flexible strategies that react to information—see our example in Section 5.2.
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(ii) The conditional density Pr(Si = s|X = x, θ) ≡ fθ(s|x) exists and for any x satisfies the

strict MLRP:

∀s > s′,
fG(s|x)

fB(s|x)
>
fG(s′|x)

fB(s′|x)
.

Assumption 8 guarantees that if fundraising is done after the public realization of X, the

participation policy is still of threshold type. Any signal X which is independent of investor

signals conditional on project type trivially satisfies Assumption 8.

Note that it is always optimal to make all possible information available at the time of the

investment policy choice, since firm value is maximized when the policy is more informed. Our

question is whether it is better to raise funds before or after the information is released.

For a standard setting in which an existing asset is sold, the linkage principle of Milgrom

and Weber (1982) suggests that it is better to raise funds after all value-relevant information

is realized in order to lower the informational asymmetry among investors. However, in our

setting there is a countervailing effect. Any signal which is revealed after the funds are raised

but before investments are made adds extra option value to the project. Proposition 7 shows

that this option value prompts investors with lower signals to participate in the hope that the

project turns out to be positive NPV. As a result, the participation cut-off when the signal is

released after the funds are raised is always lower compared to that when the signal is released

before the fundraising process. As a consequence, social surplus is higher if funds are raised

before the signal is released:

Proposition 7 Suppose there is a signal X that satisfies Assumption 8. The maximal surplus

is always higher if X is released after funds are raised but before the investment policy choice is

made, rather than releasing information before fundraising.

Proof: See the Appendix.

Social surplus depends only on the participation cut-off, and the participation cut-off depends

only on whether there exists some scenario in which a marginal investor can break even—not

on how likely that scenario is. Hence, the participation threshold when funds are raised before

the release of information is the minimal threshold that can occur if fundraising is done after

release of information.

Of course, the entrepreneur may care more about her revenues than social surplus. Once

investors have made their participation decision, our setting is similar to the standard setting.

Any information released to participants during bidding will tend to lower informational rents

and increase revenues. Hence, our model suggests that information should be released in stages.

In the first stage, to increase participation and get as much information as possible from investors,

the entrepreneur can reveal only some general information. Then, in the second stage, after

serious investors are identified and before the bidding starts, she can reveal full information to

make bidding more competitive. This multi-stage process is indeed the typical procedure in

private equity and M&A transactions (see e.g., Zeisberger, Prahl, and White (2017)).
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4.2 Co-financing

In the previous sections we assumed that only one investor ends up with a stake in the project. In

this section we allow for the possibility that K > 1 investors can co-finance the project. Allowing

for more investors to receive an allocation weakens the winner’s curse and hence encourages more

investors to submit non-zero bids, which has a positive effect on efficiency.

We establish three results. First, we show that our results on the failure of information

aggregation are robust to having multiple investors in the capital structure, and that a uniform-

price equity auction is constrained efficient. In a K-unit uniform-price equity auction, investors

bid their pre-money valuation. If less than K investors participate, fundraising fails. Otherwise,

the price p is the K + 1st highest bid (or zero if there are only K participants). The K highest

bidders share the investment costs and get the same number of shares, so that their payoff is

wi,a =
1

K

I + βp

I + p
(Va − p) .

Second, we show that if the entrepreneur can commit to ration allocations so that the

number of investors who receive an allocation grows proportionately with N, a uniform-price

equity auction delivers the first-best surplus in the limit. Finally, in Section 4.2.1, we study

the case where the competitiveness assumption is violated because investors on the buy side

can collude through the formation of bidding clubs or syndicates. We show that co-financing

through collusion can, maybe surprisingly, increase surplus and revenues.

Assume first that the number of possible co-investors the firm can have is bounded by a

constant K > 1. This could be because K investors have enough aggregate resources to finance

the firm and the competitiveness assumption prevents a marginal participant to make profits

when there are K other participants. Alternatively, as is typical in venture capital or private

equity situations, there may be an upper limit on the number of investors a firm can have in its

capital structure to avoid excess costs of coordinating the exercise of control rights.

We will restrict attention to financing mechanisms in which the decision to start the project

is ex post efficient based on the information of all investors who receive an allocation:

Assumption 9 A financing mechanism is ex post efficient if given information ω available for

the investment decision, with Si ∈ ω if wi > 0, the project is only started when it is efficient to

do so:

a = 0 if arg max
a

E (Va|ω) = 0.

This restriction simplifies our proof by ruling out mechanisms in which investors hold dif-

ferent securities, and a marginal investor holds a stake that makes it profitable to hide negative

information so that negative net present value projects get started. The restriction is sufficient

but not necessary for our results.

Denote the order statistics of the N signals received by investors by Y1,N , ..., YN,N so that

Y1,N represents the highest signal, Y2,N represents the second-highest signal, et cetera. We have:
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Proposition 8 In any robust ex post efficient equilibrium where no more than a finite number

K investors can get an allocation, the participation threshold is no smaller than the smallest

value ŝK,N such that

max
a6=0

E(Va|YK,N = ŝK,N , YK−1,N ... = Y1,N = 1) ≥ 0. (31)

Information is not aggregated and the limiting social surplus as N →∞ is strictly lower than the

first-best social surplus. There is a robust symmetric equilibrium in the K-unit equity auction

that delivers maximum possible social surplus given the cut-off ŝK,N .

Proof. See the Appendix.

Next, we show that our result on the behavior of surplus in large markets also generalizes to

the case of multiple security holders:

Proposition 9 Suppose that the project choice is binary. For any s∗ < 1 there exist δ > 0 and

N∗ <∞ such that for any fG and fB satisfying

fG(1)

fB(1)
− fG(s∗)

fB(s∗)
< δ

social surplus and the entrepreneur’s revenue in the K-unit equity auction strictly decrease with

N for N > N∗.

Proof: See the Appendix.

These results show that when the feasible number of security holders has an upper bound,

whether due to competitiveness or some other reason, the inefficiency created by the informa-

tional black hole is unavoidable for any market size, and may grow larger with the market.

Nevertheless, since the winner’s curse and hence the informational black hole decrease with

K, efficiency is improved when allocations are more dispersed. We next show that if the en-

trepreneur can commit ex ante to ration the allocation so that a non-vanishing fraction K/N of

investors receive an allocation as N grows large, the K-unit auction fully aggregates information

as N →∞.

Proposition 10 Suppose there exists limN→∞K/N = α, α ∈ (0, 1). Then the K-unit auction

delivers the first-best social surplus in the limit.

Proof: See the Appendix.

These results provide one rationale for crowd-funding, in which start-ups seek financing on

a platform that looks very much like a multi-unit auction, and may also help explain rationing

in IPO allocations. Rationing in IPOs, where there is excess demand at the issue price and

some investors do not get their desired allocation even if they are willing to pay a higher price,

have been extensively documented and studied in the academic literature (see e.g., Cornelli and

Goldreich (2001) and Ritter and Welch (2002)). Such rationing also occurs more generally in

fundraising processes—top PE- and VC funds are typically oversubscribed at the issue price. The
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puzzle is why issuers leave money on the table instead of increasing prices until the market clears.

Several explanations for this phenomenon have been proposed (Rock (1986), Benveniste and

Spindt (1989), Parlour and Rajan (2005)). We propose a new explanation—rationing increases

participation, which improves information aggregation and productive efficiency.

Note that rationing requires commitment power on the side of the entrepreneur, as it is

typically ex post optimal to increase prices—hence, this type of rationing violates our compet-

itiveness assumption. A prediction of our model is therefore that rationing and dispersion of

allocations should be more commonly observed in settings where the issuer has more commit-

ment power. This prediction is consistent with the observation that oversubscribed issues are

more commonly observed for repeat issuers in fundraising markets, such as established, reputable

venture capital and private equity firms. For one-time issuers such as entrepreneurs in startups

or firms going public, who have little commitment power on their own, our results suggests a

new rationale for the use of intermediaries such as underwriters and crowdfunding platforms.

These intermediaries can substitute for the lack of commitment power by being repeat players

themselves, and by having payoffs that are less strongly linked to the issue price.

4.2.1 Co-financing through buy-side collusion: syndicates and club bids

Another way to increase participation is through buy-side collusion, in which investors form

consortia and submit joint bids. Joint bids can facilitate profitable participation of less optimistic

investor, if other members of the consortium have sufficiently positive information to justify a

competitive bid. A full analysis of club bidding is challenging for several reasons. First, club

formation is an endogenous process which may result in clubs of different size, and therefore

requires analysis of financing mechanisms with asymmetric bidders. Second, there may be

incentive problems within the club that prevent full sharing of information among club members.

Dealing with these issues is beyond the scope of our paper and we therefore consider a

simplified setting where we assume clubs are of equal and exogenously given size, the number

of investors is large, and information is freely shared within the club. We assume that there are

N ×M investors in the market. We will contrast two market settings. In the first, there is no

collusion among investors and everyone submits bids independently. In the second, investors are

randomly allocated to N symmetric clubs each consisting of M investors, whereupon each club

submits a joint bid in one of the standard auction formats.

In the standard setting, where the asset for sale is already in place, surplus is always the

same so collusion among investors tends to lower seller revenues (see e.g, Axelson (2008)). There

are two countervailing forces favoring club bidding in our setting. First, club bidding reduces the

effective number of bidders, which is beneficial when markets are inefficiently large, even if the

club would submit a bid based on the signal of only one member. Second, signals become more

informative whenever there is some information sharing within the club. When these effects

outweigh the reduced competition, the entrepreneur gains. Proposition 11 shows that for large

N , the information sharing channel always dominates the competition effect even when signal

structure favors having as large markets as possible.
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Proposition 11 For large enough N , the entrepreneur’s revenue in any of the standard auction

formats among N clubs consisting of M investors is higher than social surplus with N × M

individual investors.

Proof: See the Appendix.

Proposition 11 provides a benign rationale for the prevalent use of club bids in private

equity and the use of syndicates in venture capital that has come under scrutiny by competition

authorities.10 Our theory predicts that some arrangement for sharing/selling of signals via

co-ownership should develop when feasible. In general, the extent of co-investment/syndication

depends on the trade-off between increased informational efficiency and the extra costs of adding

more investors to the capital structure. In VC markets, practitioners view the cost of adding

members to a syndicate as quite large. The main costs come from the difficulty of coordinating

the exercise of control rights, free-riding problems in the governance of the firm, and the cost to

the lead VC of sharing some of the surplus with other investors. As a result, when syndicates do

exist, they tend to be of very limited size relative to the set of potential investors. In comparison,

bank syndicates in loan markets tend to be of larger size, possibly reflecting the more limited

role banks play in the governance of the firm.

We can also interpret a club as the boundary of a firm. For example, a VC partnership

is a club in which expert investors share linearly in the profits of deals and have a long term

relationship, so that incentive compatible information sharing is easier than through market

transactions. Proposition 11 then says that there is social value to forming such partnerships,

at least if the number of expert investors in the market is large enough.

4.3 Relaxing monotonicity: Shorting markets

The driving force behind our results is the combined effect of competitiveness and monotonicity

on marginal participants. A marginal participant needs to break even in the state where no

competitors are trying to finance the firm, which is not only the state in which expected surplus

conditional on winning is the lowest, but also the state in which no other market information is

learned. The fact that the marginal participant must be happy to always start the project based

on this minimal information is what creates sizable inefficiencies regardless of market size.

We now show that if the monotonicity condition is relaxed, a carefully designed shorting

market can improve efficiency by increasing the information learned by a winning marginal

investor. Our goal in this section is not to describe a realistic solution to the information

problem, but rather to illustrate the driving forces behind our results—in fact, the elaborate

construction needed for a shorting market to function points to its fragility. Contracts, decision

rights, and information sharing arrangements need to be carefully balanced, and the outcome

is not ex post rational—there are no ex post gains from trade between a holder of a shorting

contract and the firm and its investors, so one side would always prefer to renege. Conflicts of

interests about the preferred investment policy also makes the market outcome vulnerable to

manipulation.

10See Bailey (2007) for further discussion.
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The way we construct the shorting market is as follows. The entrepreneur runs two simul-

taneous second-price auction markets, the financing market and the shorting market. In the

financing market, she runs an equity auction to raise I + c1 where I is enough to finance the

project and c1 > 0 are extra proceeds used to subsidize the shorting market. In the shorting

market, she runs an auction of a shorting derivative contract {c1, c2} that pays c1 > 0 if the firm

receives financing but does not start the project, and loses c2 > 0 if the firm receives financing

and starts the project. If the firm is financed, the entrepreneur pockets the sales proceeds from

the shorting market. If there are bids for the shorting contract but the firm does not manage

to raise financing, the contract is canceled and no bids are paid. The investor who financed the

firm decides on the investment policy after getting to observe all bids in both markets except

the winning bid in the shorting market, and the shorting contract is settled.

There are a number of critical features of this construction that point to the difficulty of

creating such a market. First, the shorting market needs to be subsidized—there are no gains

from trade between third parties taking opposite positions in the shorting market. Since the

entrepreneur has no resources of her own, the subsidy must come from the participants in

the regular financing market. Second, since the key economic role of the shorting market is to

produce information that helps a marginal investor avoid bad projects, the contract must pay off

when the project is not started. Hence, it cannot be a standard derivative or short position that

is contingent on the value of an existing asset. As in Edmans, Goldstein, Jiang (2017), because

such a contract would not pay off unless the project is started, it would not attract sufficient

participation. Third, to prevent conflicts of interest from distorting the investment decision,

the agent taking the decision should have no stake on either side of the shorting market. In

our construction, the entrepreneur acts as a budget breaker that takes the opposite side in the

shorting contract, and the winning investor has all the decision rights.

We show that every participation threshold ŝ ∈ [ŝN , ŝN ] in the financing market can be

supported by constructing an appropriate shorting contract, where ŝN is defined in Equation

24.

For ease of exposition, we assume that fG(0) > 0 and N is sufficiently large so that even if

two investors have the lowest possible signal, the project can still break even if other investor

signals are sufficiently optimistic.

Assumption 10 fG(0) > 0 and N is large enough so that

Maxa6=0E(Va|Y1,N = ... = YN,N−2 = 1, YN,N−1 = YN,N = 0) > 0.

We have the following result:

Proposition 12 For any ŝ ∈ [ŝN , ŝN ), define s(ŝ) as the solution to

Maxa6=0E(Va|Y1,N = ŝ, YN,N = s(ŝ)) = 0,

where 0 < s(ŝ) ≤ ŝN ≤ s and s(ŝ) is strictly decreasing with s(ŝN ) = ŝN .
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There exists a symmetric robust equilibrium with a shorting contract {c1(ŝ), c2(ŝ)} such that

all investors with signals in (ŝ, 1] participate in the financing market with strictly increasing

bids, and all investors with signals in [0, s(ŝ)) participate in the shorting market with strictly

decreasing bids. Surplus and entrepreneurial revenues are strictly higher than without a shorting

market, and increase with higher participation (lower ŝ).

For ŝ = ŝN , all investors participate, c1 = c2 = 0, and a(S) = MaxaE(Va|Y1,N ..., YN,N−1),
so that all signals except the lowest are used efficiently.

Proof. See the Appendix.

The last part of the proposition may seem surprising—when the monotonicity condition is

relaxed, there exists a robust equilibrium with full participation where the monotonicity condi-

tion holds! The reason for this is that there is no “close” equilibrium with a small participation

cost where the monotonicity condition holds, but there is such a close equilibrium with a non-

monotonic shorting contract.

4.4 Relaxing limited liability: Assets in place

The limited liability constraint 4 stems from the assumption that the entrepreneur cannot pledge

any assets other than the incremental value of the new project when entering into a financing

contract. Although this is a natural assumption for start-up firms, where assets consists mainly

of human capital and the new project idea, it is less appropriate for more mature firms with

substantial assets in place. We now show that when the firm does have assets in place, our

results continue to hold if we introduce the realistic assumption that the firm cannot commit

to a financing contract that, based on the information learned during fund raising, makes firm

insiders worse off.

We introduce assets in place by assuming that the firm value V0 when the project is aban-

doned is positive and correlated with the type of the project, so that V0 ≥ 0 and E(V0|G) >

E(V0|B) > 0. For policy a 6= 0, the firm now has value Va+V0. We assume that feasible contracts

can now be contingent on firm cash flows Va + V0, and have to satisfy the extended version of

the limited liability constraint:

Assumption 11 Limited Liability: Va + V0 − wa ≥ 0,

and

Assumption 12 Ex post participation constraint of the entrepreneur:

E (Va|ω) ≥ E (wa|ω) . (32)

Recall that ω is information learned during a financing process. We assume that the minimal

information the entrepreneur can learn is the contract wa and the number of participating

investors κN . Assumption 12 states that the entrepreneur cannot commit not to back out of a

contract that makes her worse off based on the information learned in the fundraising process.

This lack of commitment power is a reasonable assumption in most unstructured financing
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environments involving start-ups and small businesses, and is also in line with the explicit

fiduciary duty of the board of directors in larger companies to look out for the best interest of

shareholders when voting on corporate decisions.

The following result shows that having assets in place backing financing contracts does not

help in alleviating investment inefficiencies when firms cannot commit ex ante:

Proposition 13 With assets in place, the maximal surplus achievable as N → ∞ in a robust

symmetric equilibrium satisfying the ex post participation constraint is no higher than without

assets in place. Any fundraising equilibrium in which the proposed action a is efficient given the

information of participating investors and in which the entrepreneur learns the proposed action

has a participation threshold no smaller than ŝN .

Proof. See the Appendix.

5 Extensions and robustness

The main goal of this section is to demonstrate the general robustness of our results. We relax

some of the assumptions made in the main text and show that our results continue to hold. We

first show that our base setup covers the case of scalable investments.

5.1 Scalable investments

Suppose that the project’s production function is state-dependent and equal to

kθ ln(1 + I)− I,

where I ≥ 0 is an investment, and kG > 1 > kB. Taking the first-order conditions it is straight-

forward to see that the investment is positive if only if

πkG + (1− π)kB > 1.

Hence, the critical value π∗ belows which the project should be abandoned is

π∗ = (1− kB)/(kG − kB) > 0.

Figure 3 plots social surplus as a function of the number of investors when π0 = 1/2, and

signals are discrete as in our motivating example. We can see that social surplus is maximized

with just two investors.

5.2 Real options

We next show that our model incorporates situations where the firm has real options available

after fundraising. Consider a typical Dixit-Pindyck type model (Dixit and Pindyck (1994)).
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Suppose that right after the fundraising process, investors can observe news about the project

type. The news process evolves according to

dXt = µθdt+ σdBt,

where Bt is a standard Brownian motion, µθ = µG if the project is good, and µθ = µB otherwise.

At each time t, the entire history of news {Xs}0≤s≤t is observable. The parameters µG, µB and

σ are common knowledge. Without loss of generality, we set µG−µB ≥ 0. Define the signal-to-

noise ratio ϕ = (µG−µB)/σ. When ϕ = 0, the news is completely uninformative. Larger values

of ϕ imply more informative news. In what follows, we assume ϕ > 0.

At each time t, the winner of the fundraising process faces the following decision tree. He

can either start the project, postpone it, incur the cost c > 0 per unit of time and observe the

news, or completely abandon the project. We have the following standard result:

Lemma 2 There exist probabilities π∗ > 0 and π∗∗ > π∗. For π < π∗ the project is abandoned,

for π ≥ π∗∗ the project is started immediately, and for π∗ ≤ π ≤ π∗∗ the project is postponed.

Proof. See the Appendix.

The action set A for this setting can be specified as a set of barrier pairs {X(ω), X(ω)} such

that the project is abandoned if Xt ≤ X(ω), started if Xt ≥ X(ω), and postponed otherwise.

As a numerical example, consider a simple case where a bad project, if started, has negative

NPV of −1/2, and a good project when started has positive NPV of 1/2. Assume the following

parameter values: (µG − µB) = 10%, σ = 20%. The table below shows values π∗ and π∗∗ for

different values of cost c.

c π∗ π∗∗

0.025 0.25 0.75

0.05 0.35 0.65

0.1 0.42 0.58

0.2 0.46 0.54

5.3 Private values

One could also imagine a more general model in which along with a common value component

there is a private value one. For example, suppose that the NPV of the project for investor i is

Va+αSi, where as before, Va is the common value component, and αSi is an extra private value

component, which is perfectly correlated with investor’s signal Si. Provided that there exists a

π∗ > 0 such that for all π < π∗ and all a 6= 0,

πE(Va|G) + (1− π)E(Va|B) + α < 0,
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the informational black hole and investment inefficiencies will continue to exist. In particular,

the participation threshold will still solve

P (G|max
i
Si = ŝN ) = π∗.

Propositions 5 and 6, which show that small markets can be more efficient and can create higher

revenue than large markets, go through when the private value component α is not too large—

increasing the size of the market now has the benefit that there is more likely to be an investor

with a high private value, which acts as a countervailing force to the investment inefficiencies in

large market.11

5.4 Stochastic number of investors

In this section, we extend our theory to a stochastic number of investors. We show that for

a wide class of distributions of the number of investors, informational black holes not only

continue to exist but lead to even less efficient investment decisions than in the deterministic

case (Proposition 14). We also show that under some conditions, informational black holes can

disappear and full information can be achieved (Proposition 15). Overall, our results suggest

that the existence of informational black holes is a robust phenomenon.

Consider the following extension of our main case. Consider a sequence of markets indexed

by N = 1, 2, . . . , and assume that each investor thinks that the number of other investors in

market N is Nν, where ν is a non-negative random variable with a cumulative distribution

function F over [0,∞). Investors know N and F but not the realization of ν. If ν is one with

probability one we are back to the deterministic case considered in main part of the paper.12

We make the following assumptions about distribution F :

Assumption 13 F has a continuous density at zero.

Assumption 14 ν is smaller in the likelihood ratio ordering than λν.

Assumption 13 implies that the probability that the market is populated by any finite number

of investors as N goes to infinity goes to zero, which is necessary for markets to ever become fully

efficient in the limit. Assumption 14 is not important for our results on when markets feature

informational black holes and investment inefficiencies. The main role of this assumption is

to ensure the uniqueness of the informational black hole equilibrium. Without it, there could

potentially be multiple black hole equilibria. The assumption is satisfied for many distributions.

Examples include the uniform and exponential distributions.

Proposition 14 Suppose that Assumptions 13 and 14 hold. Suppose that either (i) π0 < π∗,

or (ii) there is an ν̂ > 0 such that F (ν̂) = 0. Then for large enough N , in each market N , there

11One can also show that all our results are robust to investors having a private value component which is
independent of their common value component.

12We allow the number of investors Nν to be non-integer. Our results would not change if we round Nν to the
nearest integer, but formulas become cumbersome.
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exists a robust equilibrium in any standard auction format. Any robust equilibrium has the same

participation threshold ŝN . The threshold ŝN goes to one with N , and is a unique solution to

Equation (33):
Ee−λτν

Ee−τν
=

1

λ

π∗

1− π∗
1− π0
π0

. (33)

where λ = fG(1)/fB(1). Furthermore, there exist limits

lim
N→∞

Pr(Project is started |B) = 1− Ee−τν > 0, (34)

lim
N→∞

Pr(Project is not started |G) = Ee−λτν > 0. (35)

When the action space is binary, the limiting social surplus with stochastic number of bidders is

strictly lower than limiting social surplus with a known number of bidders.

Proof: See the Appendix.

Proposition 14 shows that the existence of informational black holes is robust to having a

stochastic number of investors. Investors with sufficiently negative information will not want to

participate, and the informational black hole grows with the expected size of the market, even

when there is a possibility that the actual number of investors is small. Investment efficiency is

lower than in the deterministic case because the inference of a winning investor about project

quality is confounded with inference about the size of the market.

The randomness in the number of investors makes the winner’s curse weaker, because winning

with a low bid is a signal that there may be fewer potential investors in the market. As we show

in Proposition 14, this effect is not strong enough to eliminate the informational black hole if

the unconditional NPV of the project is negative, or if there is a lower bound on the potential

number of investors which grows with N . The following Proposition shows conditions under

which the markets can aggregate information:

Proposition 15 Suppose that π0 > π∗, that F (ν) has a strictly positive continuous density

at zero, and that fB(s) and fG(s) are continuously differentiable. Then there exists a robust

equilibrium that leads to full efficiency as N →∞ if bids are revealed ex post.

Proof: See the Appendix.

The economics behind Proposition 15 are as follows. When F has a strictly positive con-

tinuous density at zero, it may be possible to sustain equilibria with a participation threshold

that does not go to one. In such an equilibrium, when the marginal investor wins the auction,

he concludes that he is in a market with very few potential investors independent of how large

N is. If the unconditional NPV of the project is positive, he can then break even. Because the

participation threshold is bounded away from one, the set of observed bids generates a lot of

information and investment inefficiencies are eliminated as N →∞.

Propositions 14 and 15 are derived under the assumption that the number of potential

investors Nν does not depend on the quality of the project. There may be settings where it

is more natural to assume that the expected number of potential investors is larger when the
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project is good. For example, this would be the case if VCs do a quick check initially and only

acquire a serious signal if the initial check is positive. Our results can be easily extended to such

a case by assuming that ν is drawn from a distribution FG(ν) when the project is good and

from a distribution FB(ν) when the project is bad. One can show that informational black hole

equilibria are then even easier to sustain, because the winner’s curse gets stronger. Winning

with a low bid signals that the market is small, but this is now negative information for the

NPV of the project.

6 Conclusion

Our paper studies how well primary financial markets allocate capital when information is

dispersed among market participants, and how the efficiency of the market is affected by market

size. We show that markets fail to aggregate information once information has real value for

guiding investment decisions, and that the resulting investment inefficiencies can grow larger with

the size of the market. Our analysis shows that several intuitive prescriptions from standard

theory need to be reexamined when information has a real allocational role: a more competitive,

larger financial market may reduce welfare and increase a firm’s cost of capital, early releases of

information may be suboptimal, and rationing allocations and allowing collusion among investors

may be beneficial for a firm seeking financing.

Our framework is sufficiently general to be usefully adopted in applied work across a range

of firm investment settings. Our theory could also be extended in several fruitful directions. For

example, we have not investigated the implications of our model for how a profit-maximizing

firm should optimally design the cash flow and control rights of securities. As a second example,

a more fully developed general equilibrium framework, in which investors act as intermediaries

who must raise capital and enter endogenously, would give richer predictions about the aggregate

consequences of informational black holes and would allow for a more nuanced welfare analysis.

We think these topics would be interesting areas for future research.
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Figure 1. The blue line plots social surplus as a function of number of investors in the setting of the Example,

where E(V |G) = −E(V |B) = 1 and investors get a high or a low signal about the project, with Pr(H|G) = 1,

Pr(H|B) = 1/2. The red line plots maximum possible surplus if all signals are used efficiently.

0 5 10 15 20 25

Number of investors

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

S
o
ci

a
l s

u
rp

lu
s 

a
n
d
 e

n
tr

e
p
re

n
e
u
r's

 p
ro

fit

5 10 15 20 25

Number of investors

0

0.2

0.4

0.6

0.8

1

1.2

In
ve

st
o

r's
 p

ro
fit

 a
n

d
 c

o
st

10-4

Panel A Panel B

Figure 2. Equilibrium market size. Panel A of Figure 2 shows social surplus gross of investor costs and the

expected revenues to the entrepreneur as a function of the size of the market. Panel B shows expected gross profits

to investors from participating in the auction as a function of market size, as well as a particular specification for

the cost ci of information gathering for each investor. The parameters are as follows: The project is good or bad

with equal probabilities. A good project has net present value of 1 and a bad project has net present value of

-1; fB(s) ≡ 1; fG(s) is the normal distribution with unit mean and standard deviation truncated to the interval

[0, 1].
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Figure 3. Figuree 3 plots social surplus as a function of number of investors in the setting where investors get a

high or a low signal about the project, with Pr(H|G) = 1, Pr(H|B) = 1/2. The project’s production function is

as in Section 5.1.
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Internet Appendix. Proofs

Proof of Lemma 1: To prove (i), note that for each a,

va = πE(Va|G) + (1− π)E(Va|B) (A1)

is an increasing and convex function of π, therefore, the pointwise maximum, maxa va(π), is also

an increasing and convex function of π.

Next, let π∗ = 1/(1 + k), where

k = sup
a6=0

∣∣∣∣E(Va|G)

E(Va|B)

∣∣∣∣ <∞.
Suppose there exists π ≤ π∗ such that v(π) > 0. Then there is an action a such that

πE(Va|G) + (1− π)E(Va|B) > 0. (A2)

Equation (A2) implies that ∣∣∣∣E(Va|G)

E(Va|B)

∣∣∣∣ > 1− π
π
≥ 1− π∗

π∗
= k∗.

Thus, we arrive at contradiction. The proof that v(π) = 0 for π ∈ [0, π∗] is similar.

Finally, that E(v(π(S)) is strictly increasing in N follows from Jensen’s inequality. As N

goes to ∞, π(s) converges to one if the project is good and to zero if the project is bad. Hence,

lim
N→∞

E(v(π(S)) = E(max
a

E(Va|θ)).

Q.E.D.

Proof of Proposition 1: We first prove that participation decisions are monotone, that is, if

an investor with signal ŝ participates in the financing mechanism with participation cost ε > 0

then any investor with signal above ŝ will also choose to participate. Denote the region of signals

where investors do not participate as B ⊆ [0, 1]. Note that by individual rationality the expected

profit of the investor with signal ŝ must cover his participation cost:

E
[
wi,aε(S−i,ŝ)(S

−i, ŝ)|Si = ŝ
]
≥ ε > 0. (A3)

Because signals are conditionally independent we can rewrite the expected profit as∑
θ∈{G,B}

Pr(θ|Si = ŝ)E
[
wi,aε(S−i,ŝ)(S

−i, ŝ)|θ
]
. (A4)

Note that by the monotonicity condition (Assumption 5)

E
[
wi,aε(S−i,ŝ)(S

−i, ŝ)|B
]
≤ 0
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Hence, it must be that

E
[
wi,aε(S−i,ŝ)(S

−i, ŝ)|G
]
> 0.

Consider now an investor with signal s > ŝ. From strict MLRP, Pr(θ|Si = s) > Pr(θ|Si = ŝ).

Therefore, if this investor plays a strategy of the investor with signal ŝ his expected payoff is

strictly larger than that of the investor with signal ŝ. From the incentive compatibility condition

(7) it then follows that such an investor will participate in the financing mechanism.

Next, we show that a participation cut-off cannot be lower than ŝN defined in (11). Suppose,

on the contrary, that there is a financing mechanism with a robust symmetric competitive

equilibrium where the participation cut-off is strictly less than ŝN . Hence, there is a symmetric

competitive equilibrium with a participation cost ε > 0 and a participation cut-off ŝ < ŝN .

Consider an investor with a signal s′ such that ŝ ≤ s′ < ŝN just above the participation

cut-off. In a competitive mechanism (Assumption 6) such an investor is always outbid by other

investors whenever other investors participate. Hence, the only time when such an investor

expects to make profit is when he is the only participant. In this case, he only learns that his

signals is the highest of all investors. Thus, it must be that

E

[
wi,aε(S−i,s′)(S

−i, s′)|max
i
Si = s′

]
> 0.

Since other investors do not participate wj,aε = 0 for j 6= i. Therefore, by the limited liability

Assumption 4 wi,aε ≤ Vaε . Thus, it must be that

E

[
Vaε |max

i
Si = s′

]
> 0.

From MLRP condition,

E

[
Vaε |max

i
Si = ŝN

]
≥ E

[
Vaε |max

i
Si = s′

]
> 0.

The above condition, however, contradicts the definition of ŝN . Thus, we arrived at contradic-

tion. Q.E.D.

Proof of Proposition 2: Equation (11) implies that ŝN is the smallest value such that(
FG(ŝN )

FB(ŝN )

)N−1 fG(ŝN )

fB(ŝN )
≥ (1− π0)

π0

π∗

(1− π∗)
. (A5)

The MLRP implies that for any s < 1, the ratio FG(s)/FB(s) is strictly less than one and is

increasing in s. Thus, the left-hand side of equation (A5) strictly increases in s. It is equal to

λ = fG(1)/fB(1) at s = 1 and (fG(0)/fB(0))N at s = 0. Assumption 7 guarantees that the right-

hand side of equation (A5) is less than λ. By assumption the densities fG and fB are continuous

functions. Therefore, for large enough N , equation (A5) has a unique solution ŝN > 0.

For any fixed ŝN < 1, the left-hand side of equation (A5) goes to zero as N goes to infinity.
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Therefore, it must be that limN→∞ ŝN = 1. Taking the logarithm of both parts of equation (A5)

we have

lim
N→∞

(N − 1) ln

(
FG(ŝN )

FB(ŝN )

)
= ln

(
(1− π0)
π0

π∗

(1− π∗)

)
− lnλ. (A6)

Since both fG and fB are continuous functions there exist limits

lim
s→1

1− FG(s)

1− s
= fG(1),

lim
s→1

1− FB(s)

1− s
= fB(1).

Hence, there exist limits

lim
N→∞

−(N − 1) ln(FB(ŝN )) = τ,

lim
N→∞

−(N − 1) ln(FG(ŝN )) = λτ,

where λ = fG(1)/fB(1). From equation (A6) then τ solves

(λ− 1)τ = lnλ− ln

(
(1− π0)
π0

π∗

(1− π∗)

)
. (A7)

By Theorem 4.2.1 of Embrechts, Klüppelberg and Mikosch (2012), for k = 0, 1, . . . ,

lim
N→∞

Pr(κN = k|B) = e−τ
τk

k!
,

lim
N→∞

Pr(κN = k|G) = e−λτ
(λτ)k

k!
.

Since ŝN goes to one, then conditional on κN = k

π(S≥ŝN )

1− π(S≥ŝN )

d−→ π0
1− π0

λk
(
FG(ŝN )

FB(ŝN )

)N−k
. (A8)

Equation (A5) implies that for large N

π0
1− π0

λ

(
FG(ŝN )

FB(ŝN )

)N−1
=

π∗

(1− π∗)
. (A9)

Therefore, equation (A8) implies that

π(S≥ŝN )

1− π(S≥ŝN )

d−→ λκN−1
π∗

1− π∗
,

which completes the proof of the proposition. Q.E.D.

Proof of Proposition 3: Consider a sequence of participation cost εm > 0 converging to zero
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as m→∞. For each εm > 0 let ŝεm,N be the smallest value such that

Pr(max
j 6=i

Sj ≤ ŝεm,N |Si = ŝεm,N ) max
a6=0

E(Va|Si = ŝεm,N ,max
j 6=i

Sj ≤ ŝεm,N ) ≥ εm. (A10)

Clearly, ŝεm,N → ŝN as εm → 0. Following similar steps as in the standard setting of Milgrom

and Weber (1982) one can verify that it is a dominant strategy for each investor who participates

in a second-price auction to bid his pre-money valuation of the project conditional on marginally

winning the auction:

bi(si) = max
a6=0

E(Va|Si = si,max
j 6=i

Sj = si). (A11)

From (A11) it is clear that bi(si) increases in si for si ≥ ŝεm,N . Also, since the function

Pr(max
j 6=i

Sj ≤ s|Si = s) max
a6=0

E(Va|Si = s,max
j 6=i

Sj ≤ s). (A12)

increases in s each investor will participate in the auction if and only if his signal is above the

cut-off ŝεm,N .

The proof for ascending-price auction is similar. Since both auction formats have the same

limiting cut-off ŝN and post-auction information available for investment decisions is the same

each auction format delivers the same maximal social surplus. Q.E.D.

Proof of Proposition 4: We can write social surplus (25) as

U(ŝN , N) = π0E(V1|G) Pr(max
i
Si > ŝN |G) + (1− π0)E(V1|B) Pr(max

i
Si > ŝN |B)

= π0E(V1|G)(1− FG(ŝN )N ) + (1− π0)E(V1|B)(1− FB(ŝN )N )

= π0E(V1|G)

(
(1− FG(ŝN )N )− (1− π0)

π0

π∗

(1− π∗)
(1− FB(ŝN )N )

)
. (A13)

Recall that ŝN solves
FG(ŝN )N−1fG(ŝN )

FB(ŝN )N−1fB(ŝN )
=

(1− π0)
π0

π∗

(1− π∗)
. (A14)

Note that one can extend U(ŝN , N) to real N using the above formulas. Equation (A14) implies

that ∂
∂ŝN

U(ŝN , N) = 0. Therefore, we have

d

dN
U(ŝN , N) =

∂

∂ŝN
U(ŝN , N)

dŝN
dN

+
∂

∂N
U(ŝN , N) =

∂

∂N
U(ŝN , N). (A15)

From equation (A13),

∂
∂NU(ŝN , N)

π0E(V1|G)
=

(1− π0)
π0

π∗

(1− π∗)
ln(FB(ŝN ))FB(ŝN )N − ln(FG(ŝN ))FG(ŝN )N . (A16)
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Using equation (A14), we can rewrite equation (A16) as

∂
∂NU(ŝN , N)

π0E(V1|G)
= fG(ŝN )FG(ŝN )N−1

(
ln(FB(ŝN ))

FB(ŝN )

fB(ŝN )
− ln(FG(ŝN ))

FG(ŝN )

fG(ŝN )

)
. (A17)

(
ln(FG(ŝN ))

ln(FB(ŝN ))

)′
=

fG(ŝN )

FG(ŝN ) ln(FB(ŝN ))
− ln(FG(ŝN ))fB(ŝN )

FB(ŝN ) ln(FB(ŝN ))2

=
fG(ŝN )fB(ŝN )

FG(ŝN )FB(ŝN ) ln(FB(ŝN ))2

(
ln(FB(ŝN ))

FB(ŝN )

fB(ŝN )
− ln(FG(ŝN ))

FG(ŝN )

fG(ŝN )

)
.

Thus, the surplus U(ŝN , N) increases(decreases) with N whenever ln(FG(s))/ ln(FB(s)) is an

increasing(decreasing) function at ŝN . It is straightforward to verify that ln(FG(s))/ ln(FB(s))

is an increasing(decreasing) function on (x, 1] if fG(s)
FG(s)

/ fB(s)
FB(s) is an increasing(decreasing) function

on (x, 1]. Q.E.D.

Proof of Proposition 5: Denote the space of continuous functions on [0, 1] equipped with the

uniform norm as C. For each N , social surplus (25) defines a continuous nonlinear functional

SN that maps (fG, fB) ∈ C × C to R. Note that by making if necessary a change of variables

t = FB(s) we can always ensure that fB ≡ 1. Therefore, without loss of generality we assume

that fB ≡ 1. To simplify the notation we write SN (fG, 1) simply as SN (fG).

Consider first-price cash auction. Following similar steps as in the standard setting of Mil-

grom and Weber (1982) one can show that an equilibrium bid in the first-price auction, bI(s; ŝN ),

is an average of the bids bII(s; ŝN ) investors with lower signals would have submitted in the

second-price auction:

bI(s; ŝN ) =

∫ s

ŝN

bII(s′; ŝN )dL(s′|s), (A18)

where

bII(s; ŝN ) = E[V1|Y1,N = Y2,N = s], (A19)

and

L(s′|s) = exp

(∫ s

s′

h(t|s)
H(t|s)

dt

)
.

The function H(·|s) is the distribution of Y2,N conditional on Y1,N = s and h(·|s) is the associated

conditional density function. It can be verified that the expected revenue in the first-price

auction is also a continuous functional RN that maps (fG, fB) ∈ C×C to R. As before, we write

RN (fG, 1) simply as RN (fG).

Consider first the case in which fB(s) = 1 for all s ∈ [0, 1] and fG(s) = λ for s ∈ (s∗, 1],

s∗ > 1 − 1/λ. By Proposition 3 there exists large enough N∗ such that for all N > N∗ the

participation threshold ŝN ∈ (s∗, 1). For such N , ŝN satisfies the first-order condition:(
1− λ(1− ŝN )

ŝN

)N−1
= − 1

λ

1− π0
π0

E(V1|B)

E(V1|G)
. (A20)
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Let

ξ = − 1

λ

1− π0
π0

E(V1|B)

E(V1|G)
.

Assumption 7 guarantees that ξ < 1. Therefore, (A20) has a unique solution. Solving (A20) for

ŝN we have

ŝN =
1− 1/λ

1− (1/λ)ξ
1

N−1

. (A21)

Plugging (A21) into (25) we obtain an explicit expression for social surplus:

χN = π0E(V1|G) + (1− π0)E(V1|B)− (1− π0)E(V1|B)
(1− 1/λ)N(

1− (1/λ)ξ
1

N−1

)N−1 . (A22)

It can be verified that χN strictly decreases with N. Let ∆N = χN − χN+1.

Consider N > N∗. By continuity of ψN , for any ε > 0 there exists δ > 0 such that for any fG

satisfying fG(1)− fG(s∗) < δ we have |χN −ψN (fG)| < ε. In particular, we can always choose δ

small enough so that ψN (fG) decreases with N and ψN (fG)−ψN+1(fG) > ∆N/2. Furthermore,

we can also ensure that the participation threshold ŝN is greater than s∗.

Note that if fG(s) = λ for s ∈ (s∗, 1] then for N > N∗ RN (fG) = χN (fG). In other words, the

entrepreneur captures all social surplus. This follows from the fact that all investor with signals

in the interval (s∗, 1] must make the same expected profits because their signals have the same

informational content. Investors with signals in [s∗, ŝN ] do not participate and hence make zero

profits, which implies that all investors make zero profits. Therefore, by continuity of RN , there

exists δ′ > 0 such that for any fG satisfying fG(1)−fG(s∗) < δ′ we have |χN−RN (fG)| < ∆N/4.

Hence, the expected revenue with N investors is strictly larger than that with N ′ > N investors.

Finally, note that the above proof implies that the proposition also holds for equity auctions,

and second-price and ascending-price auction because they deliver larger expected profit to the

entrepreneur. Q.E.D.

Proof of Proposition 6: Suppose all costs are zero. Then by Proposition 4 there is an N∗

such that surplus decreases with N > N∗. Thus, the optimal size of the market cannot be larger

than N∗. Because the MLRP holds strictly all investors earn strictly positive expected profit.

Fix any N > N∗. Let pN be the expected profit of an individual investor in the market with N

investors. It is clear then that if c < pN than the size of the market will be larger than socially

optimal size N∗.

To show that a proportional decrease in costs for all investors can lead to a decrease in social

surplus consider the following situation. Fix N > N∗ and let ∆ be the difference in social surplus

in the market with N and N + 1 investors. Since N > N∗ this difference is positive. Suppose

that gathering costs are such that cN < pN+1 and cN+1 > pN+1. In this case, the market size

is N . Let C =
∑N+1

i=1 ci. Suppose γ > 0 is small enough so that γC < ∆ and γC < CN+1, and

that cN+1(1 − γ) < pN+1. Then a proportional decrease in all costs by a factor of γ will lead

to a new new market size of N + 1 and a overall reduction in both net and gross of fees social
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surplus. Q.E.D.

Proof of Proposition 7: As before, if X is released before the fundraising process than the

participation threshold ŝN (x) solves as

Pr(G|Y1,N = ŝN (x), X = x)

Pr(B|Y1,N = ŝN (x), X = x)
=

π∗

1− π∗
. (A23)

If X is released after the fundraising process than investors will bid a positive amount as long as

there is a nonzero probability that after X is released the updated probability that the project

is good is above π∗. Hence, the participation threshold ŝN solves

Pr(G|Y1,N = ŝN )

Pr(B|Y1,N = ŝN )
× ess sup

x

Pr(X = x|G, Y1,N = ŝN )

Pr(X = x|B, Y1,N = ŝN )
=

π∗

1− π∗
. (A24)

Note that

Pr(G|Y1,N = ŝN (x), X = x)

Pr(B|Y1,N = ŝN (x), X = x)
=

Pr(G|Y1,N = ŝN )

Pr(B|Y1,N = ŝN )
×

Pr(X = x|G, Y1,N = ŝN )

Pr(X = x|B, Y1,N = ŝN )
.

Therefore, we can write Equation (A24) as

ess sup
x

Pr(G|Y1,N = ŝN , X = x)

Pr(B|Y1,N = ŝN , X = x)
=

π∗

1− π∗
. (A25)

By Assumption 8 the likelihood ratio

Pr(G|Y1,N = ŝN , X = x)

Pr(B|Y1,N = ŝN , X = x)

is increasing in ŝN . Therefore, for any x, ŝN ≤ ŝN (x). Q.E.D.

Proof of Proposition 8: Proposition 1 establishes that participation decisions are monotone.

The proof is general and does not depend on a particular value of K. Thus, we have to show

that a participation cut-off cannot be lower than ŝK,N defined in (31). Suppose, on the contrary,

that there is a financing mechanism with a robust symmetric competitive equilibrium where

the participation cut-off is strictly less than ŝK,N . Hence, there is a symmetric competitive

equilibrium with a participation cost ε > 0 and a participation cut-off ŝ < ŝK,N .

Consider an investor with a signal s′ such that ŝ ≤ s′ < ŝK,N just above the participation

cut-off. In a competitive mechanism (Assumption 6) such an investor is always outbid by other

investors whenever at least K other investors participate. Hence, the only time when such

an investor expects to make profit is when there are no more than K − 1 other participating

investors. In this case, by the definition of ŝK,N the project is negative NPV and therefore, is

not started. Hence, the investor makes profit irrespective of whether the project is good or bad,

which contradicts the monotonicity Assumption 5. Thus, we arrived at contradiction.
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Next, consider any ŝ > ŝK,N . Note there is a sufficiently small participation cost εm > 0 and

ε > 0 such that

Pr(YK,N = ŝ, YK−1,N > 1− ε|Si = ŝ) max
a6=0

E(Va|Si = YK,N = ŝ, YK−1,N > 1− ε) ≥ εm.

Since the above function increases in ŝ any investor with signal above ŝ will participate in

the auction. Because, ŝ can be arbitrary close to ŝK,N this proves that that there is a robust

symmetric ex post efficient equilibrium in the K-unit auction with a participation cut-off ŝK,N .

Equation (31) implies that for large enough N ŝK,N solves

FG(ŝK,N )N−K

FB(ŝK,N )N−K
fG(ŝK,N )

fB(ŝK,N )
=

1

λK−1
(1− π0)
π0

π∗

(1− π∗)
. (A26)

Following similar steps as in the proof of Proposition 3 one can show that there exist limits

lim
N→∞

−(N −K) ln(FB(ŝK,N )) = τ,

lim
N→∞

−(N −K) ln(FG(ŝK,N )) = λτ.

where τ > 0 is unique solution the following equation:

(λ− 1)τ = K lnλ− ln

(
(1− π0)
π0

π∗

(1− π∗)

)
. (A27)

By Theorem 4.2.3 of Embrechts, Klüppelberg and Mikosch (2012)

lim
N→∞

Pr(YK,N ≤ ŝK,N |B) = e−τ
K−1∑
i=0

τ i

i!
,

lim
N→∞

Pr(YK,N ≤ ŝK,N |G) = e−λτ
K−1∑
i=0

(λτ)i

i!
.

Since τ > 0 some bad projects are financed with positive probability and some good projects

are not financed. Thus, social surplus is strictly lower than the first-best social surplus. Q.E.D.

Proof of Proposition 9: As in the proof of Proposition 5 consider first the case in which

fB(s) = 1 for all s ∈ [0, 1] and fG(s) = λ for s ∈ (s∗, 1], s∗ > 1 − 1/λ. Equation (A26) implies

that for large enough N , the participation cut-off ŝK,N ∈ (s∗, 1) and solves(
1− λ(1− ŝK,N )

ŝK,N

)N−K
= − 1

λK
1− π0
π0

E(V1|B)

E(V1|G)
. (A28)

Let

ξ = − 1

λK
1− π0
π0

E(V1|B)

E(V1|G)
.
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Assumption 7 guarantees that ξ < 1. Therefore, (A28) has a unique solution. Solving (A28) for

ŝK,N we have

ŝK,N =
1− 1/λ

1− (1/λ)ξ
1

N−K
. (A29)

Since the project is started if and only if the K-highest signal is above the participation cut-off

ŝK,N social surplus is equal to

χK,N = π0 Pr(YK,N ≥ ŝK,N |G)E(V1|G) + (1− π0) Pr(YK,N ≥ ŝK,N |B)E(V1|B). (A30)

Recall that

Pr(YK,N ≤ s) =

N∑
i=N−K+1

CiNF (s)i(1− F (s))N−i, (A31)

where F (s) is a cumulative distribution function of a signal. Using (A31) and (A28) we obtain

an explicit expression for social surplus (A30):

χK,N = π0E(V1|G) + (1− π0)E(V1|B)− (A32)

(1− π0)E(V1|B)
N∑

i=N−K+1

CiN ŝ
i
K,N (1− ŝK,N )N−i

(
1−

(
(1/λ)ξ

1
N−K

)i−N+K
)
. (A33)

Direct but tedious calculations show that χK,N strictly decreases with N for any finite K. The

rest of the proof follows similar lines as the proof of Proposition 5 and therefore, is omitted.

Q.E.D.

Proof of Proposition 10: As N →∞ and K/N → 1−α the k-order statistics YK,N becomes

an αth sample quantile. It is well-known that

√
N(YK,N − sα)

d−→ N(0, α(1− α)/f(sα)2),

where f(x) and F (x) are pdf and cdf of observations and F (sα) = α. Let sα,G and sα,B be such

that FG(sα,G) = α and FB(sα,B) = α. Because of the MLRP, sα,B < sα,G.

We showed in the proof of Proposition 8 that the participation cut-off ŝK,N is the smallest

value such that

λK−1
FG(ŝK,N )N−K

FB(ŝK,N )N−K
fG(ŝK,N )

fB(ŝK,N )
≥ (1− π0)

π0

π∗

(1− π∗)
. (A34)

If K/N = 1− α then we can write equation (A34) as(
λ1−α

FG(ŝK,N )α

FB(ŝK,N )α

)N fG(ŝK,N )

fB(ŝK,N )
≥ 1

λ

(1− π0)
π0

π∗

(1− π∗)
.

Note that for any s
1− FG(s)

1− FB(s)
≤ λ.

51



Therefore,

λ1−α
FG(ŝK,N )α

FB(ŝK,N )α
≥
FG(ŝK,N )α(1− FG(ŝK,N ))1−α

FB(ŝK,N )α(1− FB(ŝK,N ))1−α
. (A35)

Consider equation

FG(sα)α(1− FG(sα))1−α = FB(sα)α(1− FB(sα))1−α. (A36)

Notice that xα(1 − x)1−α is a single-peaked function that reaches its maximum at x = α.

Therefore, sα,B < sα < sα,G. Equation (A35) implies that ŝK,N ≤ sα. Thus, ŝK,N ≤ sα,G.

Therefore, if the project is good the probability that at least K investors will participate in the

auction goes to one. Since ŝK,N is bounded away from one, observing the censored vector signal

S≥ŝK,N allows one to deduce the project type with probability one. Q.E.D.

Proof of Proposition 11: In general, auctions with multi-dimensional signals are notoriously

difficult to analyze. What makes our model amenable for analysis is that one can reduce a multi-

dimensional signal to a one-dimensional one. To see this, for each club i = 1, ..., N partition

the signal space [0, 1]M into a collection of (M − 1)-dimensional hyperplanes such that on each

hyperplane, the likelihood ratio of M club signals is constant:

Li(s) = {si1, ..., siM ∈ [0, 1]M :
M∏
j=1

fG(sij)

fB(sij)
=

(
fG(s)

fB(s)

)M
}, s ∈ [0, 1]. (A37)

Note that because signals are conditionally independent Li is a sufficient statistics to update the

likelihood that the project is good given club i′s investor signals Si1, ..., SiM . Requiring then club

bids to be measurable with respect to the partition induced by hyperplanes Li reduces a fundrais-

ing process with multi-dimensional signals to a fundraising process with a one-dimensional signal,

to which all theory we have developed in this paper applies.

For each s ∈ [0, 1] define

F̂G(s) = Pr(

M∏
j=1

fG(Sj)

fB(Sj)
≤
(
fG(s)

fB(s)

)M
|G),

F̂B(s) = Pr(
M∏
j=1

fG(Sj)

fB(Sj)
≤
(
fG(s)

fB(s)

)M
|B).

It is straightforward to verify that functions F̂G and F̂B satisfy

lim
s→1

F̂G(s) = 1− cfG(1)M (1− s)M ,

lim
s→1

F̂B(s) = 1− cfB(1)M (1− s)M ,

where c is some constant. Let ŝM,N be a participation threshold with N clubs where each club

consists of M investors. Following similar steps as in the proof of Proposition 2 one can show
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that ŝM,N satisfies

F̂G(ŝM,N )N−1

F̂B(ŝM,N )N−1
fG(ŝM,N )M

fB(ŝM,N )M
=

(1− π0)
π0

π∗

(1− π∗)
, (A38)

and that there exist limits

lim
N→∞

−(N − 1) ln(F̂B(ŝM,N )) = τ,

lim
N→∞

−(N − 1) ln(F̂G(ŝM,N )) = λMτ.

From Equation (A38) then τ must solve

(λM − 1)τ = M lnλ− ln

(
(1− π0)
π0

π∗

(1− π∗)

)
. (A39)

Thus, the limiting participation threshold with clubs is the same as the participation threshold

with individual investors where the informativeness of the top signal is λM . Proposition 2 imply

that the asymptotic social surplus when the number of investor is large depends only on the

informativeness of the top signal λ, and is equal to

π0E(V1|G)

(
1− (1− π0)

π0

π∗

1− π∗
+ (λ− 1)

(
1

λ

(1− π0)
π0

π∗

(1− π∗)

) λ
λ−1

)
. (A40)

It can be directly verified that (A40) is increasing in λ. Since the top club signal is more

informative than a top signal of a single investor social surplus with club bids is higher than

that with individual investors for large N . Therefore, for large N , the entrepreneur will obtain

higher revenues with club bids in any competitive fundraising mechanism where her share of the

total surplus goes to one with the number of investors. Q.E.D.

Proof of Proposition 12: Consider any ŝ ∈ (ŝN , ŝN ]. We will show that there is a contract

{c1, c2} such that there is a robust equilibrium as described in the proposition. Denote the

equilibrium bidding function in the shorting market by b(s), where we set b(s) = 0 if s ≥ s(ŝ).

Let Υ(bi) be the event such that investor i wins the shorting auction with a bid bi > 0 and the

project is financed:

Υ(bi) ≡ {S−i : Y −i1 > ŝ, b(Y −iN−1) ≤ bi}

where Y −ik is the kth highest signal, or order statistic, amongst bidder i′s N − 1 competitiors.

Denote by a(S−i) the equilibrium action taken by a winning investor in the primary market

when investor i wins the shorting auction given other investor signals S−i. Note that this action

is independent of both the bid and the true signal of investor i as the winning bid in the shorting

market is not revealed to the winning investor in the primary market. Let W be the payoff of

the shorting contract to investor i when the firm is financed. We have

W (S−i, c1, c2) ≡ 1{a(S−i)=0}(c1 + c2)− c2.
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Lemma 3 establishes the following intermediate result, which will lead to standard second-price

auction equilibrium bidding in the shorting market:

Lemma 3 W (s−i, c1, c2) is a decreasing function. If E
[
W (S−i, c1, c2)|Υ(0), Si = s

]
= 0, then

E
[
W (S−i, c1, c2)|Υ(bi), Si = s

]
is strictly increasing in bi for bi ≥ 0 and strictly decreasing in s for s ≤ s, and

E
[
W (S−i, c1, c2)|Υ(bi), b(Y

−i
N−1) = q, θ

]
is strictly increasing in q and bi for 0 < q < bi and strictly decreasing in θ.

Proof: Let A(s−i) be the information set available to the winning investor in the primary

market given the realization of other signal S−i = s−i. The decision maker will set a(s−i) = 0 if

Pr(G|A(s−i)) ≤ π∗,

or equivalently if

L(s−i) ≡ Pr(A(s−i)|G)

Pr(A(s−i)|B)
≤ π∗

1− π∗
1− π0
π0

.

From the definition of ŝ and s we have

L(A(s−i)) =
FG(min(s−i, s)Πs−ij /∈[s,ŝ]fG(s−ij )Πs−ij ∈[s,ŝ]

(FG(s)− FG(s))

FB(min(s−i, s)Πs−ij /∈[s,ŝ]fB(s−ij )Πs−ij ∈[s,ŝ]
(FB(s)− FB(s))

,

which is strictly increasing in all s−ij /∈ [s, ŝ]. Hence,

1{a(s−i)=0} = 1{L(A(s−i))≤ π∗
1−π∗

1−π0
π0
}

is a decreasing function, and so is W . From the definition of ŝ and s and by Assumption 10,

0 < Pr(a(S−i) = 0|θ, b(Y −iN−1) = q,Υ(bi)) < 1

for any θ, q ≥ 0, bi ≥ 0. Thus, W is not constant over any of the conditioning sets in the lemma.

Since S−i is strictly affiliated with Si and θ when MLRP holds strictly, the results in the Lemma

then follows from Milgrom and Weber (1982) Theorems 1-5. Q.E.D.

From Lemma 3, it then follows from standard arguments (see, e.g., Milgrom and Weber

(1982)) that if E
[
W (S−i, c1, c2)|Υ(0), Si = s

]
= 0, the equilibrium bidding function b(s) for

s ≤ s is given by

b(s) = E(W (S−i, c1, c2)|Si = Y −iN−1 = s, Y −i1 > ŝ),

that is, participants bid their valuation of the shorting contract contingent on marginally win-

ning and conditional on the project being financed (Y −i1 > ŝ). For N large enough so that
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Assumption 10 holds, b(s) is a strictly decreasing function of s.

It remains to show that s and ŝ are indeed participation cut-offs in the shorting and primary

markets. To ensure that s is a participation cut-off in the shorting market, set c2/c1 so that

c2
c1

=
E(1{a(S−i)=0}|Y −i1 > ŝ, Y −iN−1 ≥ s, Si = s)

1− E(1{a(S−i)=0}|Y −i1 > ŝ, Y −iN−1 ≥ s, Si = s)
. (A41)

Note that from the definition of cut-offs, for any c1 > 0, there is always such a c2/c1.

To ensure that ŝ is a participation threshold in the primary market, set

E(Va(S)|Si = ŝ, Y −i1 ≤ ŝ, Y −iN−1 ≥ s)P (Y −iN−1 ≥ s|Si = ŝ, Y −i1 ≤ ŝ) = c1.

Note that for ŝ > ŝN , there is always such a c1 > 0. Showing that bidding in the financing

market is strictly increasing for s > ŝ follows the same steps as for the financing market without

a shorting market present.

Hence, we have shown that there is an equilibrium, but it remains to show that it is robust.

We show that we can always implement the same cut-offs for a sufficiently small participation

cost ε > 0 with c1ε, c2ε > 0 that converge to c1, c2 as ε→ 0. Note that bidding for participants

in both the shorting and primary market is unchanged, after replacing c1, c2 with c1ε, c2ε > 0 in

the expression for W. Let us set c1ε and c2ε so that the following equations hold.

c1ε = E(Va(S)|Si = ŝ, Y −i1 ≤ ŝ, Y −iN−1 ≥ s) Pr(Y −iN−1 ≥ s|Si = ŝ, Y −i1 ≤ ŝ)− ε

Pr(Y −i1 ≤ ŝ|Si = ŝ)
,

c2ε =
c1εE(1a(S−i)=0|Y −i1 > ŝ, Y −iN−1 ≥ s, Si = s)− ε

Pr(Y −iN−1≥s, Y
−i
1 >ŝ|Si=s)

1− E(1a(S−i)=0|Y −i1 > ŝ, Y −iN−1 ≥ s, Si = s)
.

The above values of c1ε and c2ε ensure that investors with signals s and s are marginal in

the financing and shorting markets respectfully. To conclude the proof we need to show that

participation in both markets is monotone in the signal. The proof of monotone participation

in the financing market is straightforward and follows same steps as the proof of Proposition 1.

To show that participation in the shorting market is monotone consider the expected payoff

of the shorting contract for an investor with Si = s with a bid of bi

Pr(G|s) Pr(Υ(bi)|G)E
[
W (S−i, c1ε, c2ε)|Υ(bi), G

]
+ Pr(B|s) Pr(Υ(bi)|B)E

[
W (S−i, c1ε, c2ε)|Υ(bi), B

]
− ε.

(A42)

Note that equation (A41) implies that

E
[
W (S−i, c1, c2)|Υ(0), G

]
< 0,

E
[
W (S−i, c1, c2)|Υ(0), B

]
> 0.

55



By setting ε sufficiently small, we can have c1ε and c2ε sufficiently close to c1 and c2 so that

E
[
W (S−i, c1ε, c2ε)|Υ(0), G

]
< 0, (A43)

E
[
W (S−i, c1ε, c2ε)|Υ(0), B

]
> 0. (A44)

Since by the strict MLRP Pr(G|s) increases in s equation (A42) together with (A43) and (A44)

imply that any investor with a signal s < s will find it profitable to participate in the shorting

market. Q.E.D.

Finally, to show that we can have ŝ = ŝN in a robust equilibrium, for any δ > 0, take sδ > s

such that allocations with ε = 0 with this new cut-off are within δ/2. Then, find ε(δ) > 0 such

that allocations with cut-off sδ and contracts c1,ε(δ), c2ε(δ) are within δ/2 of allocations with

ε = 0 and cut-off sδ. Q.E.D.

Proof of Proposition 13: We showed in the proof of Proposition 2 that limiting surplus is

completely determined by the value of

τ = lim
N→∞

−(N − 1) ln(FB(ŝN )).

Hence, in order for limiting surplus to be improved, it is necessary to have a sequence of cut-off

signals s′N < ŝN such that

lim
N→∞

−(N − 1) ln(FB(s′N )) = τ ′ > τ. (A45)

Note that for such cut-offs when N is sufficiently large, the expected present value of the project

with only one participating bidder under any other action than abandoning is strictly negative:

lim
N→∞

P (G|Y1,N = 1, Y2,N ≤ s′N ) < π∗. (A46)

This follows from the fact that

limN→∞ P (G|Y1,N = 1, Y2,N ≤ s′N )

limN→∞ P (B|Y1,N = 1, Y2,N ≤ s′N )
=

λπ0
1− π0

e−(λ−1)τ
′
<

λπ0
1− π0

e−(λ−1)τ =
π∗

1− π∗
. (A47)

Suppose there is such a sequence of equilibrium cut-offs s′N that a marginal investor with

Si = s′N participates. This investor can only make profit when he is the only participating

bidder, so that κN = 1. From (A46) for large enough N , when the marginal investor wins in

equilibrium we have

E (Va|κN = 1) ≤ 0, (A48)

and hence, from the ex post participation constraint 12 of the entrepreneur,

E (wa|κN = 1) ≤ 0, (A49)

so that this marginal investor can never recoup his participation cost. Hence, such s′N cannot
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be the equilibrium cut-off.

To prove the last part of the proposition, suppose that the equilibrium cut-off is some s′N <

ŝN . By the definition of ŝN , for a marginal participating investor with signal S = s′N , the

efficient action contingent on winning is to abandon the project. But when the investor learns

that a = 0 is efficient, the ex post participation constraint reduces to

0 ≥ E (Va|ω) ≥ E (wa|ω) , (A50)

so that the investor can never break even at any positive participation cost. Hence, the equilib-

rium cut-off cannot be smaller than ŝN .Q.E.D.

Proof of Proposition 14: Recall that the threshold ŝN is defined as the highest signal such

that if a investor with signal ŝN wins the auction he concludes that the project is zero NPV.

When the number of potential investors is stochastic, ŝN solves

Pr(G|Y1,Nν+1 = ŝN ) = π∗, (A51)

where Y1,Nν+1 is the first-order statistic from a random sample of size Nν + 1. Equation (A51)

can be written explicitly as

fG(ŝN )

fB(ŝN )

∫∞
0 FG(ŝN )NvdF (ν)∫∞
0 FB(ŝN )NvdF (ν)

=
(1− π0)
π0

π∗

(1− π∗)
. (A52)

Let φ(τ) denote the Laplace transform of the random variable ν :

φ(τ) =

∫ ∞
0

e−τνdF (ν).

Let

τG,N (ŝN ) = −N ln(FG(ŝN )),

τB,N (ŝN ) = −N ln(FB(ŝN )).

Equation (A52) can be written as

fG(ŝN )

fB(ŝN )

φ(τG,N (ŝN ))

φ(τB,N (ŝN ))
=

(1− π0)
π0

π∗

(1− π∗)
. (A53)

Consider a sequence of τB,N (ŝN ) as N goes to infinity. There can be two cases: either τB,N (ŝN )

stays bounded or it goes to infinity. We will show that the latter case cannot realize. Suppose

that τB,N (ŝN ) goes to infinity. Note that by the MLRP FB(s) ≥ FG(s) for any s. Therefore, if

τB,N (ŝN ) goes to infinity then τG,N (ŝN ) also goes to infinity.

Suppose first that F (ν̂) > 0 for any ν̂ > 0 and that π0 < π∗. Since ν has a continuous

57



density at zero

F (t) ∼ tρL
(

1

t

)
, t→ 0,

where L is some positive function varying slowly at ∞ (see e.g., Feller (1971), ch 8 for a def-

inition), and ρ ≥ 1. Therefore, for large N , by theorems 2 and 3 in Feller (1971), ch 8.5, we

have
φ(τG,N (ŝN ))

φ(τB,N (ŝN ))
∼
(
τB,N (ŝN )

τG,N (ŝN )

)ρ
=

(
ln(FB(ŝN ))

ln(FG(ŝN ))

)ρ
.

The condition π0 < π∗ implies that

(1− π0)
π0

π∗

(1− π∗)
> 1.

Hence, if τB,N (ŝN )→∞ with N the limit of ŝN must solve

lim
N→∞

fG(ŝN )

fB(ŝN )

(
ln(FB(ŝN ))

ln(FG(ŝN ))

)ρ
=

(1− π0)
π0

π∗

(1− π∗)
. (A54)

The above equation, however, has no solution. To see this, note that for 0 ≤ x ≤ y ≤ 1

ln y

lnx
≤ 1− y

1− x
.

Therefore,
fG(ŝN )

fB(ŝN )

(
ln(FB(ŝN ))

ln(FG(ŝN ))

)ρ
≤ fG(ŝN )

fB(ŝN )

(
1− FB(ŝN )

1− FG(ŝN )

)ρ
≤ 1,

where the last inequality follows from the MLRP.

Suppose now that there exists ν̂ > 0 such that F (ν̂) = 0. Then as τB,N (ŝN ) and τG,N (ŝN )

go to infinity
φ(τG,N (ŝN ))

φ(τB,N (ŝN ))
→ 0.

Hence, equation (A53) cannot have a solution.

Thus, we arrive at a contradiction and it must be that τB,N (ŝN ) stays bounded as N goes

to infinity. Hence, there is a subsequence Nk such that there is a finite limit

τ = lim
Nk→∞

τB,Nk(ŝNk).

Since τB,N (ŝN ) = −N ln(FB(ŝN )) has a finite limit, ŝNk must go 1 with Nk. Since

FG(s) ∼ 1− fG(1)(1− s), s→ 1

FB(s) ∼ 1− fB(1)(1− s), s→ 1

fG(1)/fB(1) = λ,

there also exists a limit

λτ = lim
Nk→∞

τG,Nk(ŝNk).
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Thus, τ must solve equation (33).

Note that the lhs of equation (33) is a continuous function of τ. Since φ(τ) → 1 as τ goes

to 0, the lhs of Equation (33) goes to one as τ goes to 0. Suppose again that F (ν̂) > 0 for any

ν̂ > 0 and that π0 < π∗. As sN goes to 1 and τ goes to ∞ the lhs of equation (33)

lim
Nk→∞

φ(τG,N (ŝNk))

φ(τB,N (ŝNk))
= lim

Nk→∞

(
ln(FB(ŝNk))

ln(FG(ŝNk))

)ρ
= λ−ρ.

If there exists ν̂ > 0 such that F (ν̂) = 0 then the lhs of equation (33) goes to zero with Nk. By

Assumption 7
1

λ

(1− π0)
π0

π∗

(1− π∗)
< 1.

The condition π0 < π∗ implies that

1

λ

(1− π0)
π0

π∗

(1− π∗)
>

1

λ
.

Therefore, equation (33) has a solution.

By Assumption 14 the lhs of equation (33) is a strictly decreasing function of τ . Therefore,

Equation (33) has, in fact, a unique solution. As a result, τB,N (ŝN ) converges to τ with N . The

last fact implies

ŝN = 1− τ

N
+ o(

1

N
) (A55)

By Theorem 4.3.2 of Embrechts, Klüppelberg and Mikosch (2012)

lim
N→∞

Pr(Y1,Nν+1 ≥ ŝN |B) = 1− Ee−τν ,

lim
N→∞

Pr(Y1,Nν+1 ≤ ŝN |G) = Ee−λτν ,

which are the same as equations (34) and (35). Therefore, to prove (34) and (35) it remains

to show that if an investor with signal above ŝN wins the auction he always starts the project

even after observing bids of other investors. We showed Section 2 that this is always the case

when the number of investors is known. When the number of investors is stochastic this may

not necessarily be the case because by observing the number of investors above the participation

cut-off the winner may conclude that were many potential investors, and so his signal is actually

not so good.

Assumption 14, however, ensures that if an investor with signal above ŝN wins the auction

he always starts the project even after observing bids of other investors. Intuitively, under

Assumption 14, the likelihood of the project being good increases with the observed number

of investors. Formally, suppose an investor with signal ŝ > ŝN wins the auction. Fix k signal

thresholds

s(1) = ŝ > s(2) > s(3) > · · · > s(k−1) > s(k) = ŝN .
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Define the variables

Bi =
Nν∑
j=1

1Sj>s(i) , i = 1, . . . , k,

which count the number of investors with signals above the thresholds s(i), i = 1, . . . , k. Define

numbers τi, i = 1, . . . , k as

s(k) = 1− τk
N
.

By Theorem 4.3.1 of Embrechts, Klüppelberg and Mikosch (2012), for all integers li ≥ 0, i =

1, . . . , k,

lim
N→∞

Pr (B1 = l1, B2 = l1 + l2, . . . , Bk = l1 + · · ·+ lk|B)

= E

[
(ντ1)

l1

l1!

(ν(τ2 − τ1))l2
l2!

(ν(τ − τk−1))lk
lk!

e−ντ
]
,

and

lim
N→∞

Pr (B1 = l1, B2 = l1 + l2, . . . , Bk = l1 + · · ·+ lk|G)

= E

[
(λντ1)

l1

l1!

(λν(τ2 − τ1))l2
l2!

(λν(τ − τk−1))lk
lk!

e−λντ
]
.

Therefore,

lim
N→∞

Pr (B1 = l1, B2 = l1 + l2, . . . , Bk = l1 + · · ·+ lk|G)

Pr (B1 = l1, B2 = l1 + l2, . . . , Bk = l1 + · · ·+ lk|B)

E
[
(λντ1)l1

l1!
(λν(τ2−τ1))l2

l2!
(λν(τ−τk−1))

lk

lk!
e−λντ

]
E
[
(ντ1)l1

l1!
(ν(τ2−τ1))l2

l2!
(ν(τ−τk−1))

lk

lk!
e−ντ

] =
E
[
λLνLe−λντ

]
E [νLe−ντ ]

=
λLφ(L)(λτ)

φ(L)(τ)
, (A56)

where L = l1 + · · ·+ lk, and ψ(L) is the L-order derivative of ψ. By theorem 2.1 of Jarrahiferiz,

Borzadaran and Roknabadi (2016), for all L ≥ 0, φ(L)(λτ)/φ(L)(τ) is decreasing in τ . Therefore,

λLφ(L)(λτ)

φ(L)(τ)
≥ λL−1φ(L−1)(λτ)

φ(L−1)(τ)
≥ · · · ≥ φ(λτ)

φ(τ)
.

Thus, we have shown that the likelihood of the project being good increases with the observed

number of investors. Therefore, if an investor with signal above ŝN wins the auction he always

starts the project. Thus, social surplus is

π0 Pr(Y1,Nν ≥ ŝN |G)E(V1|G) + (1− π0) Pr(Y1,Nν ≥ ŝN |B)E(V1|B). (A57)

Using formulas (34) and (35) we can write the limiting social surplus as

π0E(V1|G)

(
1− (1− π0)

π0

π∗

1− π∗
+ (λ− 1)Ee−λτν)

)
.
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Therefore, to find ν that maximizes the limiting social surplus one needs to solve

sup
ν
Ee−λτν (A58)

s.t. E(e−λτν − ξe−τν) = 0. (A59)

where

ξ =
1

λ

(1− π0)
π0

π∗

1− π∗
.

Let us introduce a new random variable v = e−λτν . We can rewrite the above problem as

sup
v∈[0,1]

Ev (A60)

s.t. Eg(v) = 0, (A61)

where

g(x) = (x− ξx
1
λ ).

Note that g(x) is a convex function. Therefore, by the Jensen’s inequality

0 = Eg(v) ≥ g(Ev).

Hence, the maximum possible value of Ev is ξ
λ
λ−1 and is achieved when v takes value ξ

λ
λ−1 with

probability one. Thus, the limiting social surplus is maximized when there is no uncertainty

about the number of investors. Q.E.D.

Proof of Proposition 15: Consider the following equation:

fG(ŝN )

fB(ŝN )

ln(FB(ŝN ))

ln(FG(ŝN ))
=

π∗

1− π∗
1− π0
π0

. (A62)

The condition π0 > π∗ implies that

π∗

1− π∗
1− π0
π0

< 1.

Suppose
fG(0)

fB(0)
<

π∗

1− π∗
1− π0
π0

.

Then,

lim
ŝN→0

fG(ŝN )

fB(ŝN )

ln(FB(ŝN ))

ln(FG(ŝN ))
=
fG(0)

fB(0)
<

π∗

1− π∗
1− π0
π0

.

We showed in the proof of Proposition 14 that

lim
ŝN→1

fG(ŝN )

fB(ŝN )

ln(FB(ŝN ))

ln(FG(ŝN ))
= 1 >

π∗

1− π∗
1− π0
π0

.
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Since
fG(ŝN )

fB(ŝN )

ln(FB(ŝN ))

ln(FG(ŝN ))

is a continuous function of ŝN , Equation (A62) has a solution. Let s∗ ∈ (0, 1) be the largest

solution to Equation (A62) such that(
fG(ŝN )

fB(ŝN )

ln(FB(ŝN ))

ln(FG(ŝN ))

)′
|ŝN=s∗

6= 0.

Fix a small neighborhood B(s∗) of s∗. For any ŝ ∈ B(s∗) define

τG,N (ŝ) = −N ln(FG(ŝ)),

τB,N (ŝ) = −N ln(FB(ŝ)).

We showed in the proof of Proposition 14 that

lim
N→∞

φ(τG,N (ŝ))

φ(τB,N (ŝ))
=

ln(FB(ŝ))

ln(FG(ŝ))
,

where we use the fact that if F has a strictly positive density at zero then ρ = 1. By the implicit

function theorem, for large enough N , there is a solution ŝN to Equation (A51):

Pr(G|Y1,Nν+1 = ŝN ) = π∗.

Furthermore,

lim
N→∞

ŝN = s∗.

Since s∗ < 1 as N goes to infinity the number of signals above ŝN goes to ∞ with N . Since

bids are strictly increasing observing them leads to perfect knowledge of the project type in the

limit. Q.E.D.

Proof of Lemma 2: Let πt be the probability that the project is good given the history of

news up to the moment t. It is well-known (see e.g., Liptser and Shiryaev (1978)) that πt evolves

according to

dπt = ϕπt(1− πt)dB̂t, π0 = π̂

where

B̂t = (µθ/σ)t− ϕ
∫ t

0
πsds+Xt

is a standard Brownian motion under investors’ filtration. Since πt is a Markov process we can

write the value of the project (which now includes the real option value to wait) as V (πt). The

standard result then is that in the continuation region (see e.g., Dixit and Pindyck (1994)) the

value function satisfies the Bellman equation:

1

2
ϕ2π2(1− π)2V ′′(π)− c = 0.
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A general solution to the above equation is given by

V (π) = C1 + C2π −
c

ϕ2
(1− 2π) ln

(
π

1− π

)
, (A63)

where constants C1 and C2 are determined from the boundary conditions:

V (π∗) = 0, (A64)

V ′(π∗) = 0, (A65)

V (π∗∗) = v(π∗∗), (A66)

V ′(π∗∗) = v′(π∗∗). (A67)

Note that if c > 0, V (π) in Equation (A63) goes to −∞ as π → 0. Therefore, it must be that

π∗ > 0. Q.E.D.
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