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Abstract

Using the restrictions implied by the heteroskedasticity of stock returns, we identify four fac-

tors in the U.S. industry returns. The first correlates highly with the market portfolio; the

second is a portfolio of stocks that produce investment goods minus stocks that produce con-

sumption goods; the third differentiates between cyclical and noncyclical stocks. The fourth, a

portfolio of industries that produce input goods minus the rest of the market, is a robust predic-

tor of excess returns on the market portfolio and bond returns. The extracted factors are shown

to contain significant information about future macroeconomic and financial variables.

1 Introduction

In this paper we aim to understand the informational content of factors that affect industry returns.
If the economy is subject to multiple shocks, then the cross-section of asset returns should be a
valuable source of information about the future state of the economy. The major problem is to
separate structural shocks from the noise. Factor analysis partially achieves this goal. However,
it suffers from a major drawback. Under the standard assumption of a constant factor covariance
matrix, one cannot identify individual factors, but only their linear span. This lack of identification
makes interpretation of the corresponding economic shocks difficult and often leads to unstable
factors, i.e., factors extracted from different subsamples do not resemble each other.
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We relax the standard assumptions of factor analysis and allow the factor variance-covariance
matrix to change over time. We require factors to be orthogonal at every point in time, which re-
sults in exactly identified factors. The assumption of multiple heteroskedastic factors has intuitive
appeal. A wealth of evidence suggests that the world is far from homoskedastic: many macroe-
conomic quantities, stock and bond returns, and even consumption growth display time-varying
volatility1. Casual empiricism also seems to support this view. For example, the late 1990s was a
relatively calm time for oil stocks. In contrast, by 2008 oil prices had reached all-time highs, and
the returns of oil stocks had displayed considerably more fluctuation.

Using identification through heteroskedasticity, we isolate four factors from industry returns.
We show that accounting for time-varying volatility significantly improves the stability of the fac-
tors: analysis applied to different subsamples identifies essentially the same factors. At the same
time, factor heteroskedasticity suggests a possible explanation for the instability we observe in pre-
vious applications of the method. The inability to separate the right factors from their linear span
often results in arranging factors that are ranked according to their ability to explain the amount
of variation in stock returns. If the relative volatility of the factors varies over time, this ranking
will be time-dependent. Using Monte Carlo simulations, we show that if the underlying factors
are heteroskedastic, then our method significantly outperforms static factor analysis and principal
components in identifying the true factors. We perform the analysis by using data from both the
United States and the United Kingdom and show that our procedure identifies essentially the same
factors in the UK as those identified in the US. Since we do not a priori impose any economic
structure on our factors, the fact that the extracted factors are similar across different countries
suggests that these factors might be identifying structural economic shocks.

The first factor has similar loadings on all industries, explains the highest proportion of vari-
ation in realized returns, and is highly correlated with the value-weighted market portfolio. The
second factor is highly correlated with a portfolio of stocks that produce investment goods minus
stocks that produce consumption goods (IMC), and might capture shocks to the relative produc-
tivity of capital versus consumption goods. The third factor differentiates between cyclical and
non-cyclical industries, such as auto manufacturers compared to healthcare providers, and is likely
to capture information related to the business cycle. The fourth factor loads positively on industries
that produce commodities such as oil, gas, and metals, and negatively on the rest of the market.
Therefore, it might capture changes in the relative price of input goods.

Our main finding is that our extracted factors are robust predictors of both financial and macroe-

1Several authors have documented the presence of heteroskedasticity in macroeconomic and financial variables.
An incomplete list includes Officer, 1973; Schwert, 1989; Longstaff and Schwartz, 1992; Lauterbach, 1989; Bansal,
Khatchatrian and Yaron, 2005.
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conomic variables. The fourth factor contains information about future excess returns on the mar-
ket portfolio and bond returns in addition to well-known predictors such as the short rate, the term
spread, and the dividend yield. This is consistent with the results of Hong, Torous and Valkanov
(2007), who find that 12 out of 38 industries lead the market. We find that the predictive power of
industries is subsumed by the fourth factor: if this factor is included in the predictive regression,
no industry remains a statistically significant predictor of the market.

Furthermore, we show that following positive realizations of the first factor, aggregate output,
consumption, and investment increase, but unemployment falls. The second factor predicts an
increase in the real interest rate, an increase in industrial production and a fall in unemployment.
The third factor appears to capture a component of the business cycle that is orthogonal to the first
factor: it predicts an increase in industrial production and a fall in unemployment. The positive
realizations of the fourth factor are followed by an increase in inflation, and a fall in productivity
and consumption growth.

The paper is organized as follows. In Section 2 we briefly review the related literature. In
Section 3 we present the econometric framework and we explain how factors are estimated and
identified. In Section 4 we provide details of the empirical implementation and present our find-
ings. In Section 5 we explore the informational content of the extracted factors for aggregate
quantities and prices. In Section 6 we repeat the analysis using data from the United Kingdom.
Section 7 concludes.

2 Related Literature

Understanding the forces that jointly determine aggregate output and stock prices has always been
at the heart of the macro-finance agenda. Chen, Roll and Ross (1986) show that industrial pro-
duction growth, default and term premiums are priced risk factors. Connor and Korajczyk (1991)
project the Chen, Roll, and Ross factors on factors extracted from stock returns to study the per-
formance of mutual funds. Campbell (1996) presents evidence that revisions in forecasts of future
labor income growth is a risk factor that helps price the cross-section of stock returns. Vassalou
(2003) finds that news related to future GDP growth is related to the HML and SMB factors of
Fama and French (1993). Petkova (2006) relates the HML and SMB factors to innovations in the
short-term T-bill, term spread, aggregate dividend yield, and default spread. Similar to Petkova
(2006), our focus is on the informational content and interpretation of the extracted factors.

Stock and Watson (2003) provides an excellent review of the literature examining the ability
of stock returns to predict financial and macroeconomic variables. Lamont (2001) uses bond and
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industry returns to construct factor-mimicking portfolios for expectations about future economic
variables. He concludes that the resulting portfolios can be useful in forecasting macroeconomic
variables. We differ from Lamont (2001), in that we are agnostic about macroeconomic shocks
and use heteroskedasticity in stock returns to identify the underlying shocks.

Ludvigson and Ng (2007) apply the approach of Stock and Watson (2002) to extract factors
from a very large cross-section of macroeconomic and financial variables. The authors find that
the extracted factors can forecast excess returns and volatility of the market portfolio. In contrast
to Ludvigson and Ng (2007), we extract factors from the cross-section of stock returns and identify
them through heteroskedasticity.

Our paper is related to Stock and Watson (1999) and Stock and Watson (2003), who explore
the informational content of the market portfolio in predicting future inflation movements. These
authors conclude that the relation is very fragile. Rather than focusing on the market portfolio,
we use the information contained in the cross-section of returns, and we also examine the rela-
tion between stock returns and other economic variables. Consistent with these authors, we find
that the market portfolio is a weak predictor of inflation, the same however is not true for other
portfolios constructed from the cross-section of returns. In this paper, we show how to exploit the
factors’ time-varying volatilities to obtain identification in classical factor analysis. Classical fac-
tor analysis assumes that N is relatively small and fixed but T → ∞. The standard model has been
extended in several ways. Connor and Korajczyk (1988) develop asymptotic principal component
analysis to estimate approximate factor models when T is fixed and N → ∞. Jones (2001) extends
the Connor and Korajczyk analysis to allow for time series heteroskedasticity in the factor model
residuals. Stock and Watson (2002) consider the case when N,T → ∞ jointly. The various meth-
ods described above identify the factors’ linear span. To obtain the individual factors, researchers
usually assume a particular rotation. Our approach is robust, computationally easy to implement,
and can be adjusted to any of the methods above.

Several other papers also explore the idea of using heteroskedasticity in the data for pur-
poses of identification. Using four observable and two latent heteroskedastic factors, specified as
GARCH(1,1) processes, King, Sentana and Wadhwani (1994) explore the links between interna-
tional stock markets. They show that changes in correlations between markets are driven primarily
by movements in latent factors. Sentana and Fiorentini (2001) provide a theoretical account of
identification in factor models using heteroskedasticity in return series. Rigobon (2003) uses het-
eroskedasticity of the structural shocks to get identification in simultaneous equation models. Our
contribution is that we propose a robust and easily implementable two-stage estimation technique.
In the first stage, we use the limited information likelihood method to estimate the unconditional
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version of the model. In the second stage, we find the correct rotation matrix employing a GMM-
type estimator.

3 Econometric Framework

We assume that returns obey the following factor model:

rt = C ft + εt, t=1,..T,

ft = Λ
1
2
t ut, EΛt = I, (1)

ut ∼ N(0, I), εt ∼ N(0,Γ),

where rt is an n-vector of returns, ft - is a k-vector of common factors, C is the n-by-k matrix of
factor loadings, with rank(C) = k, εt is an n-vector of residuals conditionally orthogonal to ft, Λt

is a k-by-k diagonal matrix of factor variances at time t, I is an identity matrix of size k, and Γ is
k-by-k the diagonal matrix of residual variances. The special case of constant factor covariance
matrix, Λt = I,∀t, corresponds to the traditional factor model.

In the traditional factor model, it is well-known that the matrix of residual variances Γ is identi-
fied, but factors are identified only up to an orthogonal rotation matrix O. Harman (1976) provides
a textbook treatment. To see this, we note that a matrix O is called a rotation matrix if O′O = I. If
f̃t = O ft is a new set of factors after an orthogonal transformation, then their variance-covariance
matrix is O′IO = I. The new factor loadings are C̃ = CO′. But then, the new factors ( f̃t) are
observationally equivalent to the old ones ( ft) since C̃ f̃t = CO′O ft = C ft. Hence, in the traditional
factor analysis framework we can identify the linear subspace created by factors, but not the factors
themselves, which is a substantial drawback of the procedure.

If the volatility of factors is time-varying, then the model still implies an unconditional k factor
structure for returns, since EΛt = I. More importantly, it imposes additional identification re-
strictions by requiring that factors be conditionally orthogonal as well. To illustrate the additional
restrictions, consider a simple example. Suppose we have two orthogonal factors f1,t and f2,t whose
variances at time t equal λ2

1,t and λ2
2,t respectively. If f̃1,t = ( f1,t + f2,t)/2 and f̃2,t = ( f1,t − f2,t)/2

is a linear transformation of the original factors then Et( f̃1,t f̃2,t) = (λ2
1,t − λ

2
2,t)/4. The last equation

implies that factors are identified, provided there exists a time t such that λ2
1,t , λ

2
2,t. In contrast,

in the homoscedastic case, the constraint is degenerate, resulting in underidentification. As long
as factor volatilities, λit, i = 1..k are linearly independent, the factors are identified up to row per-
mutations. Since identification does not depend on the exact dynamics of Λt, we do not need to
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specify unnecessary restrictions on its evolution.
We estimate the model in two stages. In the first stage, we use the limited information likeli-

hood method to estimate the unconditional version of the model. This step does not require any
knowledge of Λt, and it gives consistent estimates of idiosyncratic variances Γk, factors and factor
loadings C, up to rotation.

The second stage involves estimating the rotation matrix O such that the extracted factors are
close to being conditionally uncorrelated. We start with the factors fit, i = 1..K, which we obtained
in the first stage. Since EΛt = I, the factors are by construction unconditionally orthogonal.
However, these factors need not be conditionally orthogonal. Identification boils down to finding
the “right” rotation matrix such that the rotated factors are conditionally orthogonal, i.e. the matrix
O′ΛtO is diagonal for all t = 1, 2, . . . ,T .

Any rotation matrix O ∈ S O(k) can be represented as a product of L = k× (k−1)/2 elementary
rotation matrices Ti j,

O =
∏
j>i

Ti j , (2)

where

Ti j =

i

j



1 0 . . . 0 0

0 cosαl 0 sinαl 0
... 0 0 0

...

0 − sinαl 0 cosαl 0

0 0 . . . 0 1


.

i j

The matrix Ti j represents a two-dimensional rotation on the plane created by axis i and j. The
angle αl, where l = 1..L, is restricted to lie in [0, 2π]. This representation of the rotation matrix, O,
is unique up to row permutations.

In practice, we need to estimate the factor covariance matrix Λt. We do not impose any par-
ticular restrictions on the volatility process and estimate Λt in monthly increments using a rolling
window of daily factor realizations over the past six months2:

Λ̂t =
∑
s∈S t

w∑
j=0

B( j) fs fs− j, (3)

2A similar estimator of volatility is also used in French, Schwert and Stambaugh (1987) and Schwert (1989).
Andersen, Bollerslev, Diebold and Labys (2003) provides a rigorous treatment of the realized volatility.
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where S t are days between months t and t − 5. We use the Bartlett window, B( j) of width w = 2
to adjust for possible (cross)auto-correlations. As a robustness check, we vary both parameters:
window length (three months, one year) and the length of the Bartlett window (3,5,10). In all cases,
the results are qualitatively and quantitatively similar.

Due to estimation noise, the matrix O′Λ̂tO is unlikely to be diagonal for any choice of the
rotation matrix O. Therefore, we use a GMM-type estimator. We choose the O∗ that minimizes the
squared off-diagonal elements of the factor correlation matrix. Therefore, O∗ is the solution to

O∗ = arg min
α1,...,αL

∑
t

∑
i, j

(P̂t)2
i j, (4)

where the factor correlation matrix, P̂t, is given by

P̂t ≡ diag(O′Λ̂tO)−1/2(O′Λ̂tO)diag(O′Λ̂tO)−1/2. (5)

The minimization is over the axes of rotation, α1, . . . , αL that characterize the rotation matrix, as
shown in Equation 2.

Once the rotation matrix O∗ is estimated, we construct estimates of the factors and the factor
loadings as

f̂t = O∗ ft (6)

and
Ĉ = CO∗′ (7)

respectively, where ft and C are the factor realizations and factor loadings estimated in stage 1.
To test the efficiency of the proposed identification, we perform a number of Monte Carlo

experiments. We simulate Model (1) using parameter values obtained from fitting the model to the
data. For each simulation we compare the performance of our method to three benchmarks. In the
first case, we assume that the matrix of factor loadings C and the matrix of residual variances Γ are
known. This case yields the most efficient estimates of the factors given by GLS:

f̂t = (C′Γ−1C)−1C′Γ−1 rt. (8)

It provides an upper bound on how well the factors can be recovered in the presence of noise. In the
second case, we use traditional factor analysis (FA) with a popular rotation technique “varimax”.
For the third case, we utilize the estimates given by principal component analysis (PCA). In all
cases, we set the true number of factors to four.
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Figure 1 shows the distribution of the correlation coefficient of the estimated factors with the
true ones derived by our methods. We observe that factors identified using our methodology are
remarkably close to the most efficient estimates. At the same time, estimates produced by FA with
the varimax rotation, and by PCA, are significantly worse. The difference is especially noticeable
for the PCA method: PCA can only successfully separate the first factor (market), which accounts
for the highest variability in the data. For FA and PCA, respectively, the estimate of the first factor
has an average correlation with the true factor of 72.4% and 91.7%, while our technique produces
a correlation of 96.7%. If the true matrices C and G were known, then the average correlation
of the GLS estimate would be 97.4%. However, if we use both FA and PCA, we have difficulty
separating the remaining factors. For instance, the average correlation between the FA and PCA
estimates and the remaining factors are 78.6% and 59.1%, compared to 86.7% for our method, and
88.2% if C and G were known. The bottom line is that our method significantly outperforms both
FA and PCA in identifying the true factors. Our method is in fact close to the upper bound, i.e.,
the GLS estimates we would obtain if the rotation were known.

An important question is to what extent these results are sensitive to particular parameter val-
ues. Simulation results indicate that the critical parameter is G, the matrix of residual variances,
and not the specific dynamics of the factors. This is good news, since estimation of the residual
variances G does not depend on the particular form of identification. This result is intuitive be-
cause, given the finite number of assets, the amount of idiosyncratic noise determines how well
factor analysis can identify the factors, even when the rotation (matrix C) is known.

4 Empirical Implementation and Results

We apply our analysis to the set of 30 industry portfolios created by Fama and French (1997).
The authors classify all stocks into industries based on SIC codes. In our estimation we omit the
“Other” industry, which comprises unsorted firms. The industry portfolios are good candidates
as basis assets, since the industry loadings on macroeconomic factors are likely to be significantly
more stable than are those of individual stocks. While it is true that the structure of an industry, and
thus its response to systematic risk factors, may change over time, changes at the industry level
are likely to occur far less often than changes at the firm level. Bansal, Fang and Yaron (2005)
demonstrate that even though the relative shares of industries change over time, this shift has little
impact on the moments of stock returns.

We compute portfolio returns by using CRSP data at both daily and monthly frequencies. We
use data from January 1963 to December 2004. We use the 30 industry portfolios because they
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are well diversified, even in the beginning of our sample. Our results are similar when we extract
factors from the Fama and French (1997) 17 or 49 industry portfolios.

4.1 The Number of Factors

The number of common factors in the data is the main parameter of any factor model. The econo-
metrics literature has proposed a number of tests to determine the number of common factors. We
utilize the test developed in Onatski (2006), which uses results from the distribution theory of ran-
dom matrices, and the model selection criteria developed in Bai and Ng (2002). Both approaches
allow for heteroskedasticity, and for weak serial and cross-sectional dependence.3 The results are
given in Table 1. Onatski’s test suggests that the number of factors in the data is between three and
four. This is consistent with the selection criteria in Bai and Ng. The most conservative criterion,
BIC3, gives the number of factors as one or two. The least conservative criteria, PCi, assign five
to eight factors.

Our identification technique provides another way to check the number of factors in the data.
For example, consider the case where the true number of factors in the data is N, and we extract M

factors. If M < N, then the M extracted factors will be linear combinations of the true N factors.
On the other hand, if M > N , then, given that the model is identified, we expect to see the N true
factors among the extracted factors, with the remaining M−N being noise. This reasoning suggests
that we should start the estimation of the model with one factor, and then gradually increase the
number of factors by one, until the additional factor is not correlated with the previously estimated
factors.

In Table 2 we present correlations between factors that we obtain when we estimate the model
with three, four, and five factors. When we extract three factors, the first and the third factors
spread among the first, third, and fourth factors in a four-factor version of the model. When we
estimate five factors, four factors are almost exactly the same as when we estimate the model with
four factors, but the fifth extracted factor has low correlation with the previously estimated factors.
This finding is consistent with the results provided by the Bai and Ng (2002) and Onatski (2006)
tests. If the fifth extracted factor is truly a common factor and not noise, then it should be correlated
with the previously extracted factors. Therefore, we conclude that there are four common factors
in the data.

Our identification of factors relies on the assumption that the variance-covariance matrix of the
factors is time varying. Therefore, it is important to verify that the extracted factors are indeed

3Both tests require an upper bound on the true number of factors rmax. We use the values of rmax = 8, 9 and 10
suggested in these two papers for our dimension of the data.
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heteroskedastic. Table 3 shows the parameter estimates when the GARCH(1,1) model is fitted to
the extracted factors. We find that both ARCH and GARCH coefficients are significantly different
from zero for all factors, which implies the presence of substantial time-variation in factor volatil-
ities. Figure 2 displays the conditional variances obtained from GARCH(1,1) estimation. The
figure further confirms the heteroskedastic nature of the factors, and demonstrates that changes in
their volatilities are not perfectly correlated.

4.2 Sample Dependence

One of the main concerns of factor analysis is that the resulting factors are very sample-dependent,
and so results estimated in-sample may not hold out-of-sample. To address this issue, we divide
our sample in two sub-samples, 1963 to 1983 and 1984 to 2004. For each subperiod, we use
the matrix of factor loadings (C) and idiosyncratic variances (Γ) estimated using data within that
period to provide GLS estimates of the factor realizations for the entire sample using Equation 8.
We then compute the correlation between factors extracted from the whole sample ( f̂ ) and the
factors extracted from each sub-sample ( f̂ A, f̂ B). We show the results in Table 4. In all cases
the correlation is consistently higher than 90%. In what follows, we report our results for the
factors extracted from the full sample since utilizing the full sample is the most efficient means of
summarizing the covariation in the data.

4.3 Estimation Results and Interpretation

Table 5 shows the correlation of industry returns with factor returns. We report our results for
estimating the model over the whole sample for the period 1963-2004.

When we look at correlations, we see that the first factor correlates highly with all industry re-
turns, and thus can be interpreted as a common market shock. We also see that the factor correlates
more with industries, such as Food, Beer, Consumer Goods, and Health, that are less sensitive to
business cycles. When we look at how the second factor correlates with industry portfolios, we see
that final consumption good industries, such as Food, Beer, Tobacco, and Utilities, have negative
correlations. At the same time, industries such as Fabricated Products, Electrical Equipment, and
Business Equipment, which produce capital goods, have positive correlations. These results sug-
gest that we can interpret the second factor as investment minus consumption industries. Looking
at the third factor, we see that, unlike the first factor, it correlates more with industries that have
returns sensitive to business cycle conditions, such as Auto and Apparel, and less with acyclical in-
dustries, such as Food, Health, and Services. The fourth factor correlates positively with industries
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whose outputs are raw inputs for the production of other goods, such as Chemicals, Steel, Coal
and Petroleum, and negatively with other industries. Our interpretation is that the first and third
factors capture information about the business cycle, the second factor contains information about
the relative price of capital, and the fourth factor contains information about factor input prices.

To verify this initial interpretation, we construct several auxiliary portfolios. First, we use
the 1997 Bureau of Economic Analysis (BEA) Input-Output tables to construct a portfolio of
investment minus consumption industries (IMC). As in Papanikolaou (2008), we classify industries
according to their contribution to Consumption Expenditures or Private Investment, and we then
construct the portfolio as the difference of two value-weighted portfolios for firms that belong to
each sector.

We project the four extracted factors on the market portfolio, the IMC portfolio and a small
number of industry portfolios. We project our third factor on two cyclical goods industries (Fabri-
cated Products, Apparel) and two acyclical industries (Beer, Health), and our fourth factor on the
market portfolio and four input industries (Mines, Steel, Oil, Coal).

Table 6 presents the results. The first factor is highly correlated (85%) with the value-weighted
market portfolio. The second factor is highly correlated (87%) with the investment minus con-
sumption portfolio. The third factor is related to the business cycle. When projecting the third
factor on selected industries, we see that the industries enter with the right signs, i.e., positive for
cyclical, and negative for acyclical industries, and the correlation of the extracted factor with the
fitted values is over 90%. The fourth factor is an input-price factor. The four input industries
enter with a positive sign, but the market portfolio enters with a negative sign. The correlation of
the fourth factor with its projection is about 85%. These results confirm our initial interpretation
regarding the economic content of the extracted factors.

5 Predictive Regressions

In this section we explore the informational content of the extracted factors for aggregate economic
and financial variables. For financial variables we focus on the CRSP value-weighted market
portfolio, the Fama and Bliss (1987) zero-coupon bonds with maturities from one to five years,
the one-month Treasury-bill rate, and the default premia measured as the difference in Moody’s
seasoned Aaa and Baa corporate bond yields. The economic variables of interest are inflation,
industrial production and unemployment.

Given our interpretation of the first and the third factors as capturing business cycle risk, these
factors should predict variables which vary across the business cycle, such as output, unemploy-
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ment, and default spreads.
The second factor is highly correlated with the investment minus consumption portfolio, and

as such it likely proxies investment-specific shocks as in Papanikolaou (2008). If this is the case,
then it should predict an increase in output and employment as the economy allocates increased
resources to the investment sector. Moreover, this reallocation of resources implies that consump-
tion is expected to be higher in the future, and thus the second factor should also predict increases
in the real interest rate.

Finally, the fourth factor, which might proxy for commodity prices, should predict an increase
in inflation, and thus nominal interest rates. Pollet (2005) and Driesprong, Jacobsen and Maat
(2008) find that changes in oil prices predict future market returns. Thus, we explore whether the
same holds for our fourth factor, and also examine if it can predict bond returns, as in most general
equilibrium models equity and bond premia are positively correlated.

Whenever possible, we report results for the period January 1951 to December 2004. Our
factors are estimated in the January 1963 to December 2004 sample due to the need for daily
return data. We obtain estimates of realizations of the factors for the period 1951-1963 by f̂ =

(C′Γ−1C)−1C′Γ−1 rt, where the matrix of coefficients (C) and idiosyncratic variance (Γ) are esti-
mated using the 1963-2004 sample period.

5.1 Asset Prices

Here, we wish to determine whether our factors capture information about the investment oppor-
tunity set faced by investors. If the factors can predict the evolution of moments of asset returns,
then they could be used to hedge investor’s exposure to such risks, in the spirit of Merton (1973).

5.1.1 Equity Risk Premium

We examine the ability of the input-price factor to predict future returns on the market portfolio.
We estimate

mktt+1 = α0 + β f4,t + α1 r f ,t + α2 yieldt + α3 spreadt + α4 ldpt + εt+1. (9)

The dependent variable (mkt) refers to the simple return on the CRSP value-weighted stock
market index over the one-month Treasury-bill rate, r f refers to the one-month Treasury-bill rate,
yield refers to the Moody’s seasoned Aaa corporate bond yield minus one-month Treasury-bill
rate, spread is the difference in Moody’s seasoned Aaa and Baa corporate bond yields, and ldp is
the log dividend-price ratio. We compute the dividend-price ratio as dividends over the past year
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divided by the current price. We compute heteroskedasticity and autocorrelation consistent (HAC)
standard errors using the Newey and West (1987) procedure.

Table 7 presents the results of predictive regressions of the excess market return by the fourth
factor. The regression results show that the fourth factor does have the ability to predict the market,
and that the coefficient of the factor is very stable across different subsamples. The predictive power
is stronger in the second half of the sample (1978-2004). Given the increased importance of oil
shocks during this period, this finding is consistent with our intuition of the fourth factor being a
proxy for shocks to input prices. We note that, as documented in Goyal and Welch (2008), it is in
this sample that most of the known predictors do not perform well.

The reported predictive regressions are in-sample. Goyal and Welch (2008), among others,
demonstrate that many successful predictors in-sample fail to deliver the same performance out-
of-sample. One of the main indicators for the poor out-of-sample performance is the instability of
coefficients estimated over different subsamples. However, as evident from Table 7, the coefficient
at the fourth factor is reasonably stable over time, which suggests that its ability to predict the
market is not sample-driven. As a further robustness check, we estimate the parameters only on
the data available at the time τ, and we use the estimated parameters to predict the market return
one month ahead. Thus, the parameters are re-estimated each month, and the best forecast of the
market return at t = τ + 1 is given by

m̂ktτ+1 = âτ + b̂τ f4,τ, (10)

where âτ and b̂τ denote the parameter estimates at time τ. We compute the out-of-sample R2 as

R2 = 1 −
∑T

t=1(mktt − m̂ktt)2∑T
t=1(mktt − mktt)2

, (11)

where mktt is the realized value of the market return, m̂ktt is its prediction and mktt is the prevail-
ing historical mean. Finally, we use the first half of the sample (1951-1977) to obtain the initial
estimates, and compute the out-of-sample R2 for the second half (1978-2004).

We find that the input factor improves on the historical average. Using the input factor alone
results in an out-of-sample R2 statistic of 0.5% at monthly frequency. In contrast, 38 out of the
39 predictive regressors considered by Goyal and Welch (2008) underperformed the prevailing
historical mean, resulting in negative out-of-sample R2.

Our results are related to the findings of Hong et al. (2007), who document that some industries
lead the market. They find that in the U.S. stock market, 12 out of 38 industries are statistically
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significant predictors of market portfolio returns one month ahead. They also show that similar
results hold for the eight largest stock markets outside the U.S. Since they include lagged market
portfolio returns in their predictive regressions, they essentially show that it is not the industries
per se that predict the market, but rather some industry components which are orthogonal to the
market.

Given the ability of the fourth factor to predict the market, we verify whether industry portfolios
have residual predictive power once the fourth factor is taken into account. Therefore, we estimate

mktt+1 = α0 + β f4,t + α1 indit + α2 mktit + εt+1. (12)

As before, the dependent variable mkt is the simple return on the CRSP value-weighted stock
market index over the one-month Treasury-bill rate, f4,t refers to our fourth factor, and indit refers
to returns of an industry portfolio constructed by Fama and French (1997). The regressions are
similar to those in Hong et al. (2007) except that we run a horse race between the fourth factor and
the 49 Fama and French industry returns. Due to data availability, the sample period is July 1963
to December 2004.

Table 8 shows the result of estimating Equation (12). Once we include the fourth factor as a
control variable, none of the 49 industry coefficients is significant. At the same time, the results for
the fourth factor are virtually unchanged with regard to inclusion of any specific industry return.
The only exception is a lower t-statistic when we include the Mines industry.

Hong et al. (2007) interpret the finding that industries lead the market as evidence in favor of the
limited information-processing capacity of investors. We show that this predictability comes from
a systematic component of returns. Therefore, it is possible that the source of this predictability is
systematic movements in risk premiums, rather than underreaction to industry-specific news.

5.1.2 Bond Risk Premiums

In many general equilibrium models equity and bond risk premiums move together. If that is the
case, then the input factor should be able to predict both equity returns and bond returns. We use
the data of Fama and Bliss (1987) to investigate whether the fourth factor has the ability to predict
excess bond returns. We estimate the regression:

r(k)
t,t+12 − y(1)

t = ak + bk f4,t + ckYt + et, k = 2..5 (13)

where r(k)
t,t+12 refers to the return of a bond with maturity k between months t and t +12 and Yt refers

to a vector of controls that includes the short rate, slope, default spread, log dividend yield, and the
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Cochrane and Piazzesi (2005) factor, which is a linear combination of forward rates.
Table 9 shows the results. The fourth factor is a statistically significant predictor of excess bond

returns for all maturities from two to five years. When we include the vector of controls, the fourth
factor is still statistically significant for all bond maturities. This finding suggests that the input
price factor captures information about expected returns on bonds as well as on equity; and that this
information is somehow not fully incorporated into the dividend yield, the Cochrane and Piazzesi
(2005) factor, the term and default spreads, or the short rate. The source of this predictability is not
obvious, but the fact that it predicts both excess bond and stock returns with the same sign provides
additional evidence that is consistent with a risk-based story.

5.1.3 Interest Rates

Here, we estimate
Xt+k − Xt = a0 + A(k)Ft + B(L) Xt + ckYt + et, (14)

where Xt is a vector containing the short term rate (one-month Treasury bill); the slope of the yield
curve, which we define as the difference between the yield on 10-year Aaa bonds and the short
rate; and the default premium, which we define as the difference between the Baa and Aaa rated
bonds.

The results appear in Table 10. The second factor predicts increases in the level of nominal
interest rates, which partly verifies our hypothesis. What remains to be seen is that the second
factor has no ability to predict movements in inflation, which implies it is predicting movements in
real interest rates. The first and third factors predict a tightening of default spreads, which is con-
sistent with their interpretation as business cycle factors. Finally, the fourth factor is a statistically
significant predictor of the short rate at horizons of up to one year.

5.2 Macroeconomic Series

Here, we explore the informational content of our extracted factors for aggregate quantities and
prices. We focus on inflation, aggregate output, and unemployment. In particular, given that the
second and fourth factors predict future interest rates, their ability to predict inflation may shed
some light on whether they predict real or nominal rates.
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5.2.1 Inflation, Output and Employment

To examine the ability of the extracted factors to predict inflation, we estimate

πt+k − πt = a0 + A(k)Ft + B(L)∆πt + ckYt + et, (15)

where πt = ln(CPIt) − ln(CPIt−1) is inflation, Ft are the factor realizations obtained in Section 4.3,
and Yt is a vector of control variables that includes three lags of industrial production growth and
unemployment. We follow Stock and Watson (1999) and include three lags of inflation to account
for serial correlation in the data. We measure inflation with the CPI-U index, which is available
from the Bureau of Labor Statistics (BLS)

To find out whether the extracted factors can predict output and employment, we estimate

Xt+k − Xt = a0 + A(k)Ft + B(L) Xt + ckYt + et, (16)

where Xt is log output or log unemployment, Ft are the factor realizations, and Yt is a vector
of control variables that includes lags of first differences in inflation. We include three lags of
the dependant variable to account for serial correlation in the data. We measure output with the
Industrial Production Index, which is available from the Federal Reserve Board of Governors (G17
Release). We measure employment with the Civilian Unemployment Rate, which is available from
the BLS. We estimate Equations 15 and 16 using monthly data.

We present the results in Table 11. The fourth factor is a statistically significant predictor
of inflation for horizons of up to one year. This result is in sharp contrast with Stock and Watson
(2003) who document that asset prices have no predictive power for inflation. The market portfolio
indeed has little predictive ability. However, the forth factor appears to be a valuable addition to
other predictors.

As a robustness check, we explore the ability of the fourth factor to predict inflation out of sam-
ple. We estimate the parameters only on the data available at the time τ, and we use the estimated
parameters to predict inflation one month ahead. We compare the out-of-sample performance of
a reference model that includes three lags of inflation versus a model that also includes the fourth
factor. The parameters are re-estimated each month, and the best forecast of inflation at t = τ + 1
is given by

π̂τ+1 = πτ + âτ + b̂τ f4,τ + ĉτ(L)∆πτ, (17)

where âτ, b̂τ and ĉτ(L) denote the parameter estimates at time τ. We compare the performance of

16



this forecast to the model that excludes the fourth factor, i.e.

πτ+1 = πτ + aτ + cτ(L)∆πτ, (18)

where aτ and cτ(L) denote the parameter estimates at time τ. We compute the out-of-sample R2 as

R2 = 1 −
∑T

t=1(πt − π̂t)2∑T
t=1(mktt − πt)2

. (19)

Finally, we use the first half of the sample (1951-1977) to obtain the initial estimates, and compute
the out-of-sample R2 for the second half (1978-2004). We find that including the fourth factor has
a lower out-of-sample mean squared error and the fourth factor alone has an out-of-sample R2 of
0.4%.

We see that the first factor predicts an increase in industrial production. The first factor also
predicts an increase in employment, as demonstrated by the fall in the unemployment index. Most
of the responses are statistically significant at horizons beyond three months. The third factor
exhibits similar responses. Industrial production and employment rise sharply following positive
realizations of the third factor, and the coefficients are statistically significant for horizons from
one month to a year. The second factor shows some statistically significant short-run responses:
both industrial production and employment rise in the short run (up to six months). Given that
the second factor has no ability to predict inflation, coupled with the observation that it predicts
changes in the level of nominal interest rates, suggests that it captures movements in real interest
rates. This is consistent with the interpretation of the second factor capturing investment-specific
shocks and thus movements in the expected growth of consumption. We perform additional ro-
bustness checks (not reported) and find that these results are robust to controlling for the short rate,
the slope of the term structure and the default spread, as well as measuring output by GDP and
measuring employment by non-farm payrolls.

6 Factors in the United Kingdom

To find out if our results can be replicated in a different sample, we perform an additional ro-
bustness check, using the stock market data for the United Kingdom that is available through the
London Share Price Database (LSPD). We use the Financial Times Stock Exchange (FTSE) index
as the market portfolio. We replicate the Fama and French (1997) industry classification to map
stocks into 30 industry portfolios. Because of data availability, we have to drop the coal and textile
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industries. We exclude the Other industry, and we extract factors using the method we describe in
Section 3.

We show the results in Tables 12 and 13. The UK factors are similar to the US factors. The
first factor corresponds to the market portfolio, the second factor loads positively on industries that
produce investment goods, and negatively on industries that produce consumption goods. The third
factor loads positively on cyclical industries such as manufacturing and negatively on acyclical
industries such as utilities. The fourth factor is positively correlated with industries that produce
commodities and negatively correlated with the market portfolio.

We also examine whether our main predictability results hold in this sample. We repeat the
exercise in Section 5.2.1 to investigate if the extracted factors predict inflation in the United King-
dom. We show the results in Table 14. The results are somewhat sensitive to the inclusion of bond
yields, so we also report results with (Panel B) and without (Panel A), controlling for the three-
month and ten-year bond yield. The fourth factor is a statistically significant predictor of inflation
at all horizons, regardless of whether we include bond yields in the specification. The third factor
is also a statistically significant predictor of inflation at horizons greater than six months, but only
if we also include bond yields.

In addition, we explore the ability of the fourth factor to predict excess stock market (FTSE
Index) and bond returns (the 10-year Gilt) in the United Kingdom. We present the results in
Table 15. The fourth factor is a statistically significant predictor of one-month ahead returns on
the market portfolio and ten-year government bonds. In addition to the sign, the magnitude of
coefficients is also comparable to those in Tables 7 and 9.

Based on our results, we conclude that our UK analysis delivers results that are qualitatively
and quantitatively similar to those obtained for the U.S. This similarity reinforces our view that
these factors represent macroeconomic shocks. Moreover, even though we do not take a stand as
to the mechanism through which these shocks affect asset prices and real quantities, the results
suggest that it is robust across different samples.

7 Conclusion

The volatility of many economic and financial variables changes over time. Rather than treating
this heteroskedasticity as an econometric problem, we exploit it in the data, thus achieving a com-
plete identification of factors in factor analysis. We develop a two-stage estimation procedure that
has a GMM interpretation and is easy to implement. This method is essentially model-free, since
it does not rely on a structural model to achieve identification.
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We demonstrate the value of this method by studying the returns of the US industry portfolios.
Our analysis reveals four factors that should correspond to different sources of systematic risk in the
economy. These factors contain information about future macroeconomic quantities, and variables
that characterize the investment opportunity set in the economy. These extracted factors and their
responses can serve as a rough guide for the types of shocks that are included in production-based
models.

We investigate the robustness of these results by repeating the analysis in a different sample,
the United Kingdom, and we find that they are qualitatively and quantitatively similar to the results
we obtain for the United States. Finally, our method is quite general and can be applied equally
well to other settings. For example, our method can be used to study the comovement in exchange
rates across countries or to analyze the factors that affect the term structure of interest rates.
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Tables and Graphs

Figure 1: Correlation between extracted and true factors, comparison across methodologies
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Figure 1 compares the performance of our method (black solid line) to three benchmarks. The first is the GLS estimate

when the matrix of factor loadings is known (grey dotted line). The second is principal component analysis (solid grey)

and the third is static factor analysis using the ’varimax’ criterion (dotted black line). The graphs plot the distribution

of correlation coefficients between the extracted and true factors. Each simulation sample has a length of 600 months.

The data generating process for each factor is assumed to be univariate GARCH(1,1), using the parameter estimates

shown in Table 3. We simulate a cross-section of 29 assets using the point estimates of the factor loadings estimated

in Section 4. We repeat the procedure 4,000 times.
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Table 1: The number of factors in the 29 Industry Portfolios

Data Frequency
Onatski Bai and Ng

rmax N rmax PC1,2 PC3 ICi BIC3

Daily
8,9 3

8 5 5 2 1
10 4

Monthly
8 3

8 7 8 5 2
9 4

Table 2: Specification check

ρ(%) f1 f2 f3 f4

f1 90.60 -2.20 27.63 -29.18
f2 2.66 99.70 0.87 6.65
f3 3.78 -4.83 63.67 75.70
f1 99.07 -0.40 -5.07 1.07
f2 0.27 98.37 -10.76 1.73
f3 2.92 9.57 98.16 -7.65
f4 8.80 -8.72 -3.26 82.96
f5 8.82 -12.12 -13.06 -55.76

Table 1 reports the number of factors in 29 industry portfolios according to the tests developed in Onatski (2006a) and

Bai and Ng (2002). There are seven information criteria in Bai and Ng (2002): PCi, ICi, i = 1, 2, 3, and BIC3. Their

results are reported separately only if they give different number of factors. All tests require an upper bound on the

true number of factors rmax. We follow Onatski (2006) and Bai and Ng (2002) and use values of rmax = 8, 9, and 10

in the tests. The sample period is January 1963 to December 2004. Table 2 reports correlation between extracted

factors when the model in Section 3 is estimated with three, four, and five factors. The data are returns on 29 industry

portfolios constructed in Fama and French (1997). We use the 30 industry classification and drop the ’Other’ industry.

The industry return data are from Kenneth French’s website. The sample period is January 1963 to December 2004.
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Table 3: GARCH(1,1) estimates of fi

Garch(1,1) f1 f2 f3 f4

κ 0.091 0.023 0.049 0.040
(0.037) (0.012) (0.017) (0.014)

a 0.099 0.131 0.129 0.114
(0.023) (0.031) (0.032) (0.025)

b 0.810 0.838 0.825 0.854
(0.047) (0.041) (0.035) (0.030)

Figure 2: Conditional Variance of fi
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Table 3 reports estimates of GARCH(1,1) parameters for the factors extracted from 29 Fama-French industry portfolios

using the two step estimation method described in Section 3. We demean each factor and fit the following model:

fi,t = σi,tεi,t, where εi,t is an independent, identically distributed (i.i.d.) sequence ∼ N(0,1). The time-conditional

variance, σ2
i,t, process is modeled as σ2

i,t = κ + bσ2
i,t−1 + aε2

i,t. Standard errors are provided in parenthesis. Figure 2

plots the time series of estimated conditional volatilities.
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Table 4: Alternative Estimation Period

ρ(%) f1 f2 f3 f4

f A
1 99.40 1.72 3.92 5.85

f A
2 -0.56 91.15 25.61 -17.47

f A
3 -0.06 -24.04 93.54 10.21

f A
4 3.38 8.18 -13.44 96.65

f B
1 98.31 -7.82 -4.45 -0.14

f B
2 2.96 92.65 -28.93 -0.14

f B
3 2.32 33.48 90.68 -2.66

f B
4 -2.21 8.47 2.87 97.45

Table 4 reports correlation between factors extracted over different sub-samples. We estimate Equation (1) over the

whole sample, the 1963-1983 and the 1984-2004 period. For each subperiod, we use the estimated matrix of factor

loadings (C) and idiosyncratic variances (Γ) to provide estimates of the factor realizations for the entire sample, as

f̂ j = (C′Γ−1C)−1C′Γ−1 rt, where rt is a vector of returns on the industry portfolios. Thus we obtain estimates of the

factors estimated using the entire sample ( f̂ ), the first half ( f̂ A) and the second half ( f̂ B). We use the 30 industry

classification of Fama and French (1997) and drop the ’Other’ industry. The industry return data are from Kenneth

French’s website.

26



Table 5: Correlations of Industry Portfolios with extracted factors

Industry
Correlations

f1 f2 f3 f4

Food Products 0.80 -0.27 0.26 -0.16
Beer & Liquor 0.81 -0.19 0.04 -0.23
Tobacco Products 0.63 -0.18 -0.03 0.01
Recreation 0.59 0.26 0.57 -0.13
Printing & Publishing 0.68 0.11 0.52 -0.16
Consumer Goods 0.85 -0.02 0.13 -0.19
Apparel 0.55 0.04 0.72 -0.17
Healthcare 0.89 0.03 -0.03 -0.13
Chemicals 0.75 0.02 0.46 0.25
Textiles 0.52 0.04 0.68 -0.07
Construction and Construction Materials 0.78 0.05 0.50 0.12
Steel Works 0.58 0.39 0.46 0.37
Fabricated Products and Machinery 0.69 0.35 0.50 0.22
Electrical Equipment 0.73 0.23 0.42 0.02
Automobiles and Trucks 0.53 0.17 0.55 0.06
Aircraft, Ships, & Railroad equipment 0.67 0.11 0.47 0.15
Mining 0.39 0.11 0.32 0.47
Coal 0.40 0.04 0.19 0.36
Petroleum and Natural Gas 0.57 -0.06 0.22 0.48
Utilities 0.59 -0.30 0.20 0.13
Communication 0.62 0.15 0.22 -0.10
Personal & Business Services 0.66 0.54 0.17 -0.12
Business Equipment 0.65 0.69 0.25 -0.03
Business Supplies & Shipping Containers 0.78 0.01 0.43 0.18
Transportation 0.68 0.10 0.54 0.13
Wholesale 0.71 0.14 0.51 0.08
Retail 0.66 0.09 0.54 -0.32
Restaurants, Hotels & Motels 0.69 0.05 0.45 -0.20
Banking, Insurance, Real Estate & Trading 0.78 -0.05 0.41 -0.03

Table 5 presents the correlations of the 29 industry portfolios with the four factors fi. The factors are extracted from

a cross-section of 29 industry portfolios using the two step estimation method described in Section 3. We use the 30

industry classification of Fama and French (1997) and drop the ’Other’ industry. The industry return data are from

Kenneth French’s website. Correlations are computed using monthly data over the period January 1963 to December

2004.
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Table 6: Factor Interpretation

Factor Portfolio R2(%)

f1

MKT
0.851 73.0
(36.91)

f2

IMC
0.87 75.8

(39.73)

f3

Fab. Prod Clothes Beer Health
3.590 0.969 -0.204 -0.542 81.7
(-3.99) (-11.46) (9.85) (10.98)

f4

MKT Steel Mines Coal Oil
-1.173 0.895 0.241 0.168 0.795 70.1
(-24.98) (15.75) (7.52) (5.85) (19.47)

Table 6 reports coefficients from a projection of factors fi on the market portfolio, the IMC portfolio constructed in

Papanikolaou (2008) and a subset of industries, for the period 1963-2004. The factors fi are extracted from 29 industry

portfolios using the two step estimation method described in section 3. We use the 30 industry classification of Fama

and French (1997) and drop the ’Other’ industry. The industry return data are from Kenneth French’s website. All

portfolio returns have been normalized to zero mean and unit variance. t statistics are reported in parenthesis.
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Table 7: Predictability of Equity Returns
Period const f4(%) r f yield spead ldp R2(%) T

1951-2004

0.01 -0.46
0.87 647

(3.32) (-2.41)
70.03 -0.46 -3.82 -1.46 21.02 0.01

3.24 647
(1.94) (-2.49) (-3.46) (-0.77) (2.52) (1.50)

1951-1977

0.01 -0.38
0.24 323

(2.21) (-1.31)
0.03 -0.28 -8.00 -7.14 45.05 0.01

6.32 323
(0.98) (-1.18) (-3.25) (-1.59) (2.83) (0.62)

1978-2004

0.01 -0.49
1.08 323

(2.56) (-2.00)
0.18 -0.59 -10.35 -10.54 21.06 0.03

5.19 323
(4.17) (-2.45) (-4.06) (-2.93) (2.00) (3.68)

Table 7 reports estimates from OLS predictive regressions of the market excess return across different sub-samples

mktt+1 = α0 + β f4,t + α1 r f ,t + α2 yieldt + α3 spreadt + α4 ldpt + εt+1.

The dependent variable (mkt) refers to the simple return on the CRSP value-weighted stock market index over the

one-month Treasury-bill rate. r f refers to the one-month Treasure bill rate, yield refers to the Moody’s seasoned Aaa

corporate bond yield minus one month T-bill rate, spread is the difference in Moody’s seasoned Aaa and Baa corporate

bond yields and ldp is the log dividend-price ratio. The dividend-price ratio is computed as dividends over the past

year divided by the current price. Newey and West (1987) corrected t-statistics are reported in parentheses. Adjusted

R2 and number of observations in each case are displayed. We report results for the entire sample period (January

1951-December 2004) and the first and second half separately. We obtain estimates of realizations of the fourth factor

for the period 1951-1963 by f̂ = (C′Γ−1C)−1C′Γ−1 rt, where the matrix of coefficients (C) and idiosyncratic variance

(Γ) are estimated using the 1963-2004 sample period. Newey and West (1987) (with three lags) corrected t-statistics

are reported in parentheses.
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Table 9: Predictability of Bond Returns
Maturity f4(%) r f yield spread ldp cp R2(%) T

2 Years

-0.33 3.11 468
(-3.07)
-0.22 3.32 1.92 -2.50 -1.59 0.41 41.06 468

(-2.99) (2.00) (0.85) (-0.33) (-2.31) (5.59)

3 Years

-0.59 2.94 468
(-3.00)
-0.40 4.59 2.46 -7.07 -2.79 0.84 42.06 468

(-2.95) (1.56) (0.61) (-0.53) (-2.31) (6.36)

4 Years

-0.81 2.90 468
(-3.00)
-0.55 6.47 4.71 -18.72 -3.44 1.23 44.78 468

(-3.02) (1.65) (0.88) (-1.05) (-2.14) (6.90)

5 Years

-0.99 2.90 468
(-3.01)
-0.70 8.65 9.03 -27.45 -3.94 1.37 42.21 468

(-3.07) (1.80) (1.38) (-1.26) (-2.01) (6.22)

Table 9 presents estimates of:

r(k)
t,t+12 − y(1)

t = ak + bk f4,t + ckYt + et, k = 2..5

where r(k)
t,t+12 refers to the return of a bond with maturity k between months t and t + 12 and Yt refers to a vector of

controls that includes the short rate (r f ), the 10-year yield on Aaa rated bonds minus the short rate (yield), the Aaa

minus Baa credit spread (spread), the log dividend yield (ldp) and the Cochrane and Piazzesi (2005) hump-shaped

factor (cp). f4,t refers to the fourth factor extracted in Section 4. The data on discount bonds are from Fama and Bliss

(1987) and are available through WRDS. The data on the hump-shaped factor are from John Cochrane’s website. The

sample period is January 1964 to December 2002. t statistics with Hansen and Hodrick (1980) errors are reported in

parenthesis. The coefficients on ldp and cp are multiplied by 100.
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Table 12: UK: Correlations of Industry portfolios with extracted factors

Industry
Correlations

f UK
1 f UK

2 f UK
3 f UK

4

Food Products 0.84 -0.20 0.06 -0.22
Beer & Liquor 0.80 -0.22 0.09 -0.21
Tobacco Products 0.63 -0.20 -0.18 0.02
Recreation 0.76 0.16 0.25 0.14
Printing & Publishing 0.70 0.45 0.24 0.03
Consumer Goods 0.75 -0.05 0.24 -0.13
Apparel 0.57 0.05 0.24 0.11
Healthcare 0.67 0.01 -0.23 -0.20
Chemicals 0.75 0.07 0.043 0.09
Construction and Construction Materials 0.79 0.05 0.36 0.24
Steel Works 0.40 0.28 0.33 0.25
Fabricated Products and Machinery 0.72 0.14 0.56 0.15
Electrical Equipment 0.57 0.34 0.62 0.09
Automobiles and Trucks 0.56 0.19 0.41 -0.02
Aircraft, Ships, & Railroad equipment 0.66 0.06 0.36 0.12
Mining 0.61 0.14 0.17 0.52
Petroleum and Natural Gas 0.64 0.00 -0.11 0.63
Utilities 0.63 -0.01 -0.24 -0.08
Communication 0.57 0.50 -0.06 0.04
Personal & Business Services 0.66 0.63 0.21 0.01
Business Equipment 0.44 0.88 0.15 0.03
Business Supplies & Shipping Containers 0.67 0.08 0.42 0.18
Transportation 0.79 0.10 0.35 0.05
Wholesale 0.75 0.20 0.41 0.17
Retail 0.83 -0.05 0.07 0.00
Restaurants, Hotels & Motels 0.82 0.12 0.17 0.03
Banking, Insurance, Real Estate & Trading 0.89 0.19 0.02 0.17

Table 12 presents the correlations of the 27 industry portfolios with the four factors fi for the United Kingdom. The

stock return data are from the London Share Price database (LSPD). The industry portfolios are constructed using the

classification scheme of Fama and French (1997), mapping SIC codes to 30 industries. Due to lack of data, we drop

the Coal, Textiles and Other industries in the UK sample. The factors are extracted from 27 Fama-French industry

portfolios using two step estimation method described in Section 3. Correlations are computed using monthly data

over the period January 1985 to December 2004.
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Table 13: UK: Factor Interpretation

Factor Portfolio R2(%)

f UK
1

MKT
0.936 88.1

(42.50)

f UK
2

Business Equip. Telecom. Food Beer
0.949 0.040 -0.271 -0.206 95.7

(53.14) (2.15) (-13.83) (-10.45)

f UK
3

Fab. Prod Autos Utilities Health
0.704 0.207 -0.390 -0.399 66.3
(-7.35) (-9.67) (9.55) (8.05)

f UK
4

MKT Steel Mines Coal Oil
-0.965 0.266 0.564 - 0.821 77.9
(-24.98) (15.75) (7.52) - (19.47)

Table 13 reports coefficients from a projection of the UK factors ( fi) on a subset of industries, for the period 1987-

2007. The UK stock data is from the London share Price Database (LSPD). The industry portfolios are constructed

using the classification scheme of Fama and French (1997), mapping SIC codes to 30 industries. Due to lack of data,

we drop the Coal, Textiles and Other industries in the UK sample. The factors are extracted from 27 Fama-French

industry portfolios using two step estimation method described in Section 3. All returns have been normalized to zero

mean and unit variance.
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Table 14: UK: Inflation
Horizon A (no controls) B (controlling for yields)

(months) f UK
1 f UK

2 f UK
3 f UK

4 f UK
1 f UK

2 f UK
3 f UK

4

1 -0.17 -0.04 0.06 0.54 -0.20 -0.11 0.11 0.45
(-1.08) (-0.26) (0.42) (3.35) (-1.38) (-0.76) (0.79) (3.01)

2 -0.08 0.00 0.07 0.41 -0.10 -0.06 0.13 0.33
(-0.78) (0.04) (0.59) (3.24) (-1.03) (-0.59) (1.32) (3.16)

3 0.02 0.01 0.08 0.31 -0.00 -0.05 0.14 0.23
(0.22) (0.06) (0.72) (2.94) (-0.03) (-0.55) (1.64) (2.65)

6 0.07 -0.09 0.10 0.26 0.03 -0.15 0.17 0.16
(0.86) (-0.88) (1.06) (2.56) (0.45) (-1.89) (2.83) (2.39)

12 0.07 -0.03 0.04 0.27 0.03 -0.08 0.11 0.16
(1.32) (-0.30) (0.43) (2.73) (0.56) (-1.01) (2.37) (2.77)

Table 14 presents estimation results for

πt+k − πt = a0 + A(k)FUK
t + B(L)∆πt + ckYt + et

where πt ≡ ln(RPIt) − ln(RPIt−1) and πt+k ≡
1
k (ln(RPIt+k) − ln(RPIt)). RPI refers to the UK Retail Prices Index (RPI),

Ft refers to the factors extracted in section 6 using stock market data from the United Kingdom. Standard errors are

adjusted using the Hansen and Hodrick (1980) estimator. Sample includes data from 1987 to 2007. In panel A the

vector of controls, Yt, includes three lags of industrial production growth. In Panel B we also control for the 3m and

10y bond yields. The inflation data are from the Office for National Statistics, bond yield data are from the Bank of

England.
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Table 15: UK: Predictability of Stock Market and Bond Returns.

Asset (rett+1) const f4(%) r f yield rett R2

FTSE

0.321 -0.487 0.78%
(1.12) (-1.87)
0.061 -0.559 0.036 0.172 0.084 0.56%
(0.04) (-1.94) (0.23) (0.81) (1.34)

10-y bond

0.008 -0.151 1.13%
(1.51) (-2.14)
0.014 -0.147 0.113 0.077 0.1530 4.11%
(0.06) (-1.99) (1.93) (0.53) (2.56)

Table 15 reports estimates from OLS predictive regressions of

rett+1 − r f ,t+1 = const + a f UK
4,t + α1r f ,t + α2yieldt + α3rett + εt+1.

The dependent variable, ret, refers to 1-month returns of UK market portfolio and the 10-year bond. The UK market

portfolio is the Financial Times Stock Exchange (FTSE) Index. f UK
4,t refers to the fourth factor extracted using stock

market data from the United Kingdom. r f is the 1-month LIBOR. The yield is the 10-year yield minus the 3-month

rate. Newey and West (1987) corrected t-statistics are reported in parentheses. Adjusted R2 in each case are displayed.

The sample period is January 1987 to December 2007. The data on LIBOR and bond yields are from the Bank of

England. The data on stock market (FTSE), interest rate and bond returns are from the Global Financial database.

37


	Introduction
	Related Literature
	Econometric Framework
	Empirical Implementation and Results
	The Number of Factors
	Sample Dependence
	Estimation Results and Interpretation

	Predictive Regressions
	Asset Prices
	Equity Risk Premium
	Bond Risk Premiums
	Interest Rates

	Macroeconomic Series
	Inflation, Output and Employment


	Factors in the United Kingdom
	Conclusion

