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In this paper, I survey a recent literature that uses information in derivative and other

asset prices to forecast movements in financial markets. This literature aims to provide

answers to questions such as:

1. What is the expected return on the market over the next six months?

2. What is the expected return on Apple stock over the next year?

3. By how much is the euro expected to appreciate or depreciate against the dollar over

the next two years?

4. What is the probability that Apple stock drops by 30% over the next quarter?

5. How do long-run expectations currently compare with short-run expectations?

6. What is the expected future path of interest rates?

7. What is the expected inflation rate?

8. What is the expected growth rate of aggregate dividends?

9. How autocorrelated are market returns expected to be?

10. . . . and so on.

There is, of course, no single answer to any of these questions. Almost any survey, formal

or informal, will elicit a range of responses to each one; different econometricians will come

up with different “objective” measures of conditional expectations. Some people—even

perhaps some economists—will give answers that seem obviously false to other people. At

best, we might hope to come up with answers to these questions that could be broadly

accepted as reasonable.

I will emphasize various distinctive, and interrelated, features of the literature I survey.

First, minimal assumptions are made about the underlying price processes. It is common

in the asset pricing literature to assume that asset prices and returns are lognormally

distributed, or that they follow diffusion processes. These assumptions lead to tractable

models, but they are not plausible in reality.

Second, measures of volatility come in at least three different flavors: true, risk-neutral,

and historical. In lognormal models all three are essentially the same. In general, they are

all different. I will emphasize measures of implied volatility based on option prices. In a

lognormal world, option prices are uninteresting, determined passively from the underlying

asset (as in the groundbreaking paper of Black and Scholes (1973)). In general, however,

the dynamic replication of options or other derivatives is impossible, so that they must be

viewed as genuinely distinct assets priced in equilibrium rather than by the pure theory of
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no arbitrage—and their prices convey genuinely distinct information.

Third, the theory is set up with measurement in mind. The classical theory of financial

economics relates risk premia to conditional covariances (with the return on the market in

the capital asset pricing model (CAPM) or with risk factors in the arbitrage pricing theory).

These quantities are not observable in practice, so it is conventional to proxy for them with

historical measures of realized covariance. But, as Martin and Wagner (2019) put it,“when

markets are turbulent, historical betas may not accurately reflect the idealized forward-

looking betas called for by the CAPM, or by factor models more generally; and if the goal

is to forecast returns over, say, a one-year horizon, one cannot respond to this critique by

taking refuge in the last five minutes of high-frequency data.” The papers surveyed here

relate risk premia to risk-neutral variances, covariances and other risk-neutral quantities

that are directly observable from forward-looking asset prices.

Section 1 introduces the formula of Merton (1980) that connects the market’s risk

premium to its variance, and discusses some extensions. In Section 2, I show how the

beliefs of a representative investor with log utility can be inferred from asset prices. I derive

connections between the market’s risk premium and its risk-neutral variance, and between

arbitrary assets’ risk premia and their risk-neutral covariances with the market, and show

how these quantities can be calculated from appropriate derivative prices. In Section 3, I

derive an identity which holds without any assumptions on the form of the SDF, and use

it to generalize the approach beyond the log investor. Section 4 concludes.

1. MERTON’S FORMULA

Merton (1969, 1971) considered the problem of how an individual with power utility should

invest in an iid world with a fixed riskless rate rf and a risky asset whose price, St, follows

a geometric Brownian motion,
dSt
St

= µdt+ σ dZ. 1.

The optimal share of wealth allocated to the risky asset, α, is

α =
µ− rf
γσ2

, 2.

where µ − rf is the expected excess return1 on the risky asset and γ is the coefficient of

relative risk aversion.

If all individuals have the same level of risk aversion, and if the risky asset is interpreted

as the market portfolio, equilibrium requires that α = 1, so that equation 2 provides a

relationship between the expected excess return on the market and the volatility of the

market:

µ− rf = γσ2. 3.

The appeal of this relationship, which was derived and analyzed by Merton (1980), is that

the expected return on the market is hard to estimate directly from time series data, whereas

market volatility is easy to calculate in the geometric Brownian motion setting.

More generally, if individuals with different levels of risk aversion γi face the price pro-

cess described by equation 1, they will choose different risky shares αi = (µ − rf )/(γiσ
2).

1The analog of µ − rf in a discrete time model is logEt
Rt+1

Rf,t+1
, where Rt+1 is the one-period

gross risky return and Rf,t+1 is the one-period gross riskless rate.
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In this case, the equilibrium requirement is that the wealth-weighted-average risky portfo-

lio allocation should equal one: writing wi for individual i’s wealth share, we must have∑
i wiαi = 1. This implies that

µ− rf = γσ2, 4.

where γ =
(∑

i
wi
γi

)−1

is wealth-weighted harmonic mean risk aversion.

Two aspects of this aggregate risk aversion measure deserve emphasis. First, wealthy

individuals receive more weight in the calculation of γ. Observers wishing to understand

the behavior of financial markets should devote particular attention to the risk preferences

of the rich.

Second, the harmonic mean is particularly sensitive to the presence of individuals with

low risk aversion. If there are two equally wealthy individuals with risk aversion 1 and

1,000,000, respectively, then arithmetic mean risk aversion is slightly more than 500,000

and geometric mean risk aversion is 1,000; and yet harmonic mean risk aversion, γ, is

slightly less than two! People with low risk aversion have a disproportionate influence on

financial markets because they trade aggressively. Carried to the extreme, the presence of

even one unconstrained and truly risk-neutral agent (γi = 0) drives aggregate risk aversion

to zero. Conversely, someone with infinite risk aversion will not participate in risky financial

markets, and so will have almost no impact on the pricing of risky assets.

In this GBM setting, volatility, σ, can be calculated either by computing realized

quadratic variation directly from the price process using high-frequency data over any finite

time interval or by observing option prices. Indeed we could use the price of an option with

any strike and any time to maturity: as the Black and Scholes (1973) model would hold,

all options would have the same implied volatility which—like the expected return on the

market under the model assumed in equation 1—would be constant over time.

In practice, the empirical literature has tended to use rolling measures of realized volatil-

ity to proxy for forward-looking conditional volatility, with results that are typically only

weakly supportive of the basic equation 3.2

1.1. Jumps and lumpy information

Casual observation quickly reveals, however, that asset prices do not follow geometric Brow-

nian motions. Volatility moves around over time; and prices jump discontinuously, some-

times at unexpected times (a terrorist attack occurs, a major bank fails, a war breaks out)

and sometimes at predictable times (an economic number is released, an election takes

place).3 Consequently, implied volatility, inferred from option prices on some fixed under-

lying asset, varies with strike and time to maturity, and over time, and is itself subject to

jumps.4

The idea that information can arrive in lumps is a fundamental challenge to the Brow-

nian motion view of the world. As Karatzas and Shreve (1998) write, at the start of their

2See, for example, Merton (1980), French et al. (1987), Baillie and DeGennaro (1990), Camp-
bell and Hentschel (1992), and Harvey (2001). In the other direction, Guo and Whitelaw (2006),
Ludvigson and Ng (2007) and Pastor et al. (2008) argue for a positive relationship between risk
and return. In a different style, Bekaert et al. (2009) present evidence supportive of a positive
relationship between risk and return in the context of a consumption-based asset pricing model.

3See, for example, Aı̈t-Sahalia (2002), Chernov et al. (2003), Barndorff-Nielsen and Shephard
(2004), Todorov (2009), and Aı̈t-Sahalia and Jacod (2012).

4See, for example, Bates (1991), Carr and Wu (2003), and Broadie et al. (2007).
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textbook on financial markets driven by Brownian motions: “Our assumption that asset

prices have no jumps is a significant one. It is tantamount to the assertion that there are

no ‘surprises’ in the market”.

But manifestly there are ‘surprises’ in the market. Several recent papers formally doc-

ument the impact of major macroeconomic announcements on asset prices, consistent with

the lumpy information view of the world.5

The analysis above can be adapted to accommodate the case of a jump that takes place

at a known point in time, if we imagine that, at time t, the market will be multiplied by

a lognormal random variable J = e(µ−
1
2
σ2)+σZ , where Z is standard Normal. To induce a

representative investor with power utility to continue to invest fully in the market over a

short interval around time t, we must have µ − rf = γσ2 as before. (This follows from a

direct calculation, or simply by noting that the units of time in equations 1–3 are indeter-

minate so that we can choose them as we wish, provided that µ, σ and rf are interpreted

appropriately.) Suppose, for example, that at the time of an announcement known to be

occurring in the next ten seconds, the market price will experience (i.e., be multiplied by)

a lognormal jump with standard deviation σ = 2%. In this case, the equilibrium expected

excess return would be γ × (2%)2 = 4γ basis points over the next ten seconds.6 This order

of magnitude is consistent with results reported by Savor and Wilson (2013), who find that

the average excess return on major macroeconomic news announcement days from 1958 to

2009 is 11.4 basis points.

To illustrate what happens when news arrives unexpectedly, suppose that the asset price

experiences jumps at times determined by a Poisson process with arrival rate ω:

dSt
St

= µdt− L (dN − ω dt) . 5.

To keep things simple, suppose that when news arrives, the jump is of fixed size L, where

L > 0, so that a jump represents bad news, and L < 1, so that the asset’s price always

remains positive. This is a highly stylized example, but it is an important counterpoint to

the GBM specification of equation 1.

The pure jump model has two free parameters, ω and L, to compare with the single

parameter σ in the Brownian case. To put them on the same footing, we choose ω and L

so that volatility is the same in each case, i.e., we set ω = σ2/L2. We can imagine fixing

volatility, σ, and then choosing the parameter L freely. Large values of L correspond to rare

extreme disasters, whereas values of L close to zero correspond to frequent small jumps.

We can think of information arriving occasionally in large lumps if L is large; or arriving

frequently in small pieces when L is close to zero. The optimal share of wealth invested in

the risky asset is then7

αjump =
1

L

[
1−

(
σ2

(µ− rf )L+ σ2

)1/γ
]
. 6.

5See, for example, Savor and Wilson (2013), Savor and Wilson (2014), Lucca and Moench (2015),
Ai and Bansal (2018), Cieslak et al. (2019), and Hillenbrand (2024). Backus et al. (2011) argue that
the jumps whose influence is evident in option prices should be thought of as frequently occurring
small jumps rather than large rare disasters of the type emphasized by Barro (2006).

6Moreover, as the 10-second riskless return is approximately zero, the 4γ bp expected excess
return in the example is almost exactly equal to the expected return.

7See the NBER working paper by Campbell and Martin (2021) for a derivation.
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Imposing the requirement that αjump = 1 in equilibrium, equation 6 implies that

µ− rf =
(1− L)−γ − 1

L
σ2. 7.

This is the analog of the Merton formula given in equation 3. Expanded as a power series

in L, equation 7 becomes

µ−rf = γσ2+
γ(γ + 1)L

2!
σ2+

γ(γ + 1)(γ + 2)L2

3!
σ2+

γ(γ + 1)(γ + 2)(γ + 3)L3

4!
σ2+· · · . 8.

In the limit as L tends to zero—with small pieces of information arriving very frequently—

this simplifies to the Merton formula shown in equation 3. More generally, though, the

equity premium depends not only on risk aversion and variance but also on higher moments

of the asset return (determined here by the jump size and arrival rate, as captured by L).

At first sight this is discouraging, as estimating the stochastic properties of jumps that may

only occur infrequently is econometrically challenging.

2. THE LOG INVESTOR

Given a traded payoff Xt+1, the time t risk-neutral expectation of Xt+1 is defined to be

E∗t Xt+1 = Rf,t+1 Et (Mt+1Xt+1) . 9.

Although risk-neutral expectations are often8 used as a rough guide to true expectations,

equation 9 shows that the two types of expectations are only identical in the special, and

counterfactual, case in which pricing is genuinely risk-neutral—that is, only if

Mt+1 = 1/Rf,t+1. 10.

This is, undeniably, a crude assumption. And yet the appeal of risk-neutral quantities

reflects the fact that—as they can be inferred from asset prices alone, without the need for

infrequently updated macroeconomic or accounting data—they are observable in real time.

A second advantage is that there are no free parameters to be estimated or calibrated: to

give one example, breakeven (that is, risk-neutral) inflation is an unambiguous quantity on

which market participants can agree whatever their personal views on the macroeconomy.

In this section, I discuss an approach that has echoes of the Merton formula, but which

(like the risk-neutral approach) makes no assumptions about the stochastic processes fol-

8Notably, practitioners do not use risk-neutral expected returns as approximations to true ex-
pected returns. The reason is that the risk-neutral expected return on any asset equals the riskless
rate. As risk premia are large relative to riskless rates for most asset classes of interest, risk-neutral
expected returns have not been useful measures of “market-implied expected returns.” (If we lived
in a world with high and widely fluctuating interest rates, risk-neutral expected returns might come
to seem a more sensible measure.) Nor can they differentiate cross-sectionally, with one exception:
if exchange rates are involved then there are multiple different riskless rates in play, one for each
currency. And, indeed, in this context, the risk-neutral approach does have an interesting role: the
risk-neutral expected appreciation of one currency relative to another is determined by the two cur-
rencies’ interest rates. That is, the risk-neutral forecast equals the uncovered interest parity (UIP)
forecast, a quantity which is often viewed as a benchmark in the international finance literature.

6 Martin



lowed by asset prices, other than that they are arbitrage-free.9 Specifically, I adopt the per-

spective of an unconstrained, rational, marginal investor with log utility over next-period

wealth. This individual may coexist with other (rational or irrational) individuals with dif-

ferent preferences and/or different beliefs, but we assume that he or she chooses to hold the

market.10 As we will see, it is possible to use derivative prices to infer the perceptions such

an investor must have about (for example) expected returns on the market, on currencies,

and on other assets.11

I study this simple case throughout this section for several reasons. First, it represents

a useful benchmark with no free parameters that exhibits the main ideas in a particularly

simple way. Second, it has the pedagogical advantage that the resulting expressions have

echoes of familiar relationships that arise in traditional models: for instance an asset’s

risk premium is proportional to its (risk-neutral) covariance with the market. Third, the

discussion around equation 4 motivates the choice of a utility function with relatively low

risk aversion. Fourth, it helps to emphasize that a single model makes coherent predictions

across a range of asset classes: we will have a comprehensive view of “the world according

to the log investor.” Fifth, utility should properly be defined over real quantities: thus we

should think of the log investor as maximizing expected log real return. But expected log

real returns decompose nicely—Et log
Rt+1

πt+1
= Et logRt+1 − Et log πt+1—so we can simply

think of the investor as maximizing expected log nominal returns, Et logRt+1, and work in

nominal terms throughout.

The resulting theory can be generalized in several ways: for example, via an identity that

generalizes the key equation 13 below, or by deriving bounds that relax the exact equalities

of this section. We can also make different assumptions on the rational investor whose

perspective is taken. For example, for some applications it is easy to allow the investor

to have an arbitrary utility function; alternatively, we might continue to think from the

perspective of a log investor, but allow for the possibility that he or she chooses to hold an

asset other than the market. I discuss these and other issues in Section 3.

Today is time t, and we suppose that there is an investor operating in the market who

has log utility over next-period wealth. If this investor is rational, he or she solves the

problem

max
w1,...,wN

Et

[
log

N∑
i=1

wiRi,t+1

]
s.t.

N∑
i=1

wi = 1. 11.

The associated first-order conditions are that

Et

[
Rj,t+1∑N

i=1 wiRi,t+1

]
= 1 for all j ∈ {1, . . . , N}. 12.

9Santa-Clara and Yan (2010) take an approach that is similar in spirit, but impose considerably
more structure, estimating an equilibrium model featuring stochastic volatility and stochastic jump
intensity. The model yields a forecasting relationship that expresses the equity premium in terms
of the model’s diffusive volatility and jump intensity, each of which is inferred from option prices.

10Martin and Papadimitriou (2022) present an equilibrium model with heterogeneous beliefs in
which, at every point in time, there is a representative log investor who holds the market; but the
degree of optimism of the representative investor shifts depending on market conditions.

11For a related approach, see Bliss and Panigirtzoglou (2004), who use option prices from a
somewhat different angle, using option prices to make inferences about the representative agent’s
relative risk aversion.
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We assume that the investor is marginal in all assets, so that the first-order conditions have

an interior solution. The collection of equations 12 then shows that the reciprocal of the

investor’s chosen portfolio return is an SDF.

Suppose that in equilibrium the investor holds the S&P 500, which we think of as a

proxy for the idealized “market portfolio” that comes out of theory, i.e. the market-cap-

weighted portfolio of all assets in positive supply.12 Writing Rt+1 for the gross return on

the S&P 500, we then have
∑N
i=1 wiRi,t+1 = Rt+1, so that Mt+1 = 1/Rt+1. I neglect the

effect of dividends, writing Rt+1 = St+1/St. In some of the cases considered below this

could be replaced by an assumption that dividends are known one period ahead so that for

example var∗t Rt+1 = var∗t
St+1+Dt+1

St
= var∗t

St+1

St
.

Suppose now that we want to infer the log investor’s expectations about some variable

Xt+1. As

EtXt+1 = Et
(
Xt+1Rt+1

Rt+1

)
=

1

Rf,t+1
E∗t (Xt+1Rt+1)︸ ︷︷ ︸

price of a claim to Xt+1Rt+1

13.

this converts the belief inference problem to a derivative pricing problem: if we can observe,

or can calculate, the price of a claim to Xt+1Rt+1, then we can infer the log investor’s

expectations about Xt+1.

2.1. The market

2.1.1. The expected return on the market. Setting Xt+1 = Rt+1 in equation 13,

EtRt+1 =
1

Rf,t+1
E∗t
(
R2
t+1

)
. 14.

As the risk-neutral expectation of any asset’s return equals the riskless rate, we find a

relationship between the log investor’s expected excess return and the risk-neutral variance

of the market:

EtRt+1 −Rf,t+1 =
1

Rf,t+1
var∗t Rt+1. 15.

This equation, which was first derived in Martin (2011), is reminiscent of Merton’s

formula (3) specialized to the case γ = 1; but, unlike Merton’s formula, it does not require

assumptions on the underlying price process. It also applies if, say, the market experiences

stochastic volatility, or jumps as in the example of Section 1.1. In the presence of jumps,

risk-neutral variance can be very different from true variance, as equation 7 implicitly shows.

Risk-neutral variance has the great advantage that it is directly observable from option

prices. More generally, Breeden and Litzenberger (1978) showed that it is possible to

calculate risk-neutral expectations of the form E∗t g(St+1) for any random variable St+1—

usually an asset price—on which European-style options are traded. For, assuming g(·) is

a suitably well-behaved function, we have the relationship

g(St+1) = g(F ) + g′(F )(St+1 − F ) +

+

∫ F

0

g′′(K) max {0,K − St+1} dK +

∫ ∞
F

g′′(K) max {0, St+1 −K} dK. 16.

12By market-clearing, the wealth-weighted average investor must hold the market portfolio. By
making the assumption that the investor holds the S&P 500 index explicit, we are acknowledging
the force of the Roll (1977) critique.
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Table 1: Forecasting the market. Daily data.

Rt+1

Rf,t+1
− 1 = α+ β SVIX2

t +εt+1

1996.01–2022.12 2012.02–2022.12

horizon α β R2 (%) α β R2 (%)

1mo
0.014 1.569 1.302 −0.015 4.280 7.809

[0.041] [1.024] [0.035] [0.822]

3mo
0.015 1.439 2.201 −0.008 3.620 12.334

[0.051] [1.269] [0.041] [0.997]

6mo
−0.025 2.418 6.840 0.011 3.007 11.454
[0.037] [0.806] [0.053] [1.633]

12mo
0.003 1.858 4.727 0.008 3.188 11.316

[0.043] [0.824] [0.070] [2.368]

SVIX is constructed using S&P 500 index option price data from OptionMetrics. Total

returns are calculated from CRSP daily returns. Observations are daily. Newey–West

standard errors (with 21, 65, 130, and 260 lags at horizons of 1, 3, 6 and 12 months,

respectively) are reported in square brackets.

There is no economics here: this is simply an equation reminiscent of a Taylor expansion,

but the second-order terms are weighted integrals over option-like payoffs.

We can allow F to be an arbitrary constant, but it will now be convenient to set it

equal to the time t + 1 forward price of the asset, Ft, which is chosen to make the value

of the forward trade equal to zero at initiation: thus E∗t (St+1 − Ft) = 0. Using this fact,

taking conditional risk-neutral expectations and discounting by the riskless rate, the price

of a claim to g(St+1) is

1

Rf,t+1
E∗t g(St+1) =

g(Ft)

Rf,t+1
+

∫ Ft

0

g′′(K) putt(K) dK +

∫ ∞
Ft

g′′(K) callt(K) dK, 17.

where I write callt(K) for the time t price of a European call on St+1 that expires at time

t+ 1 with strike K and putt(K) for the corresponding put option. This form of the result

is due to Carr and Madan (1998).

To find an expression for risk-neutral variance, we consider the case g(K) = K2 (and

recall that Ft = E∗t St+1 = StRf,t+1 and the return on the asset is Rt+1 = St+1/St). We

then have

var∗t Rt+1 =
2Rf,t+1

S2
t

{∫ Ft

0

putt(K) dK +

∫ ∞
Ft

callt(K) dK

}
. 18.

Martin (2017) defined the SVIX index via the formula

SVIX2
t = var∗t

Rt+1

Rf,t+1
=

2

Rf,t+1S2
t

{∫ Ft

0

putt(K) dK +

∫ ∞
Ft

callt(K) dK

}
, 19.

so that the equity premium perceived by the log investor satisfies

EtRt+1 −Rf,t+1 = Rf,t+1 SVIX2
t . 20.

Equation 20 makes it possible to measure the log investor’s perceived risk premium in

real time via option prices. Knox and Vissing-Jorgensen (2024) and Knox et al. (2024)

exploit this feature to interpret market responses to news events.

www.annualreviews.org • Information in Derivatives 9



Table 1 reports results of regressions of realized returns onto SVIX2
t , with Newey–West

standard errors reported in square brackets. The left panel shows results over a sample

period running from January 1996 to December 2022, extending the sample period studied

in Martin (2017). Equation 20 predicts that we should find α = 0 and β = 1. These

predictions are not rejected by the data; and at the 6- and 12-month horizons (though not

the 1- and 3-month horizons) we can reject the hypothesis that β = 0 at the 5% level.

As the data of Martin (2017) ended in January 2012, the right panel of Table 1 conducts

an out-of-sample test by reporting coefficients estimated over the later part of the sample

period, from February 2012 to December 2022. Over this shorter period, SVIX2
t is highly

significant at the shorter forecasting horizons, marginally significant at the 6-month horizon

(with a p-value of 0.066) and not significant at conventional levels at the 12-month horizon

(with a p-value of 0.18).13

The point estimates of β in Table 1 are larger than one at all horizons, and for both

sample periods; and they are statistically significantly larger than one at the shorter horizons

over the recent sample period. This raises the possibility that equation 20 understates the

true equity premium. Back et al. (2022) argue that this is indeed the case; I return to this

issue in Section 3.2.

SVIX, VIX, CVOL . . . and SVIX

The SVIX index can be compared with the VIX index, which is defined by the formula

VIX2
t = 2Rf,t+1

{∫ Ft

0

1

K2
putt(K) dK +

∫ ∞
Ft

1

K2
callt(K) dK

}
. 21.

Due to the weighting function 1/K2 inside the integrals, the VIX index places more weight on deep-out-

of-the-money put options than SVIX, and less weight on deep-out-of-the-money calls; empirically, it spikes

even more dramatically than SVIX at times of crisis. It is easy to check, using equation 17, that VIX2
t =

2 L∗t

(
Rt+1

Rf,t+1

)
, where the risk-neutral entropy operator, L∗t , is defined by L∗t (X) = logE∗t X − E∗t logX.

Martin (2011) and Martin (2017) discuss the relationship between SVIX, VIX, and variance swap markets

in more detail; note, however, that Martin (2011) uses a definition of SVIX2
t that differs from the definition

given in equation 19 by a factor of R2
f,t+1.

Recently the Chicago Mercantile Exchange has launched a suite of volatility indices (“CVOL”) based

on the SVIX formula given in equation 19. These indices measure the risk-neutral variances of a range of

asset classes.

Lastly, note that an ETF has recently been introduced under the name SVIX. This is an “inverse”

or “short” ETF that dynamically shorts VIX futures contracts, so that it typically moves in the opposite

direction to VIX and to SVIX as defined above.

13The short-horizon results differ sharply when the earlier data is included because of the period
from October 2008 to March 2009. SVIX exploded in October and November 2008—predicting
very high returns according to the theory of this section—but in the event the market continued to
decline until March 2009 before rebounding.

10 Martin



2.1.2. The market’s expected log return. Equation 13 straightforwardly supplies the log

investor’s expectations about other functions of the market return. For example, the ex-

pected log return represents a useful measure of risk-adjusted returns. Indeed, from the log

investor’s point of view, the expected log return is precisely the right measure of investment

opportunities, as it represents his or her expected utility if current wealth is normalized to

one.

Expected log returns are also the natural quantity of interest when working with log-

linear approximate identities as in Campbell and Shiller (1988). For this reason Gao and

Martin (2021) use equation 13 to infer the log investor’s expected log return:

Et logRt+1 = logRf,t+1 +
1

St

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
. 22.

Another illustration of the convenience of log returns is provided by Gandhi et al. (2023),

who seek to measure “forward return expectations”. For example, Et logRt+1→t+2 =

Et logRt→t+2 − Et logRt→t+1, so that forward expectations from t + 1 to t + 2 can be

inferred from one- and two-period expected log returns; and, under the log investor as-

sumption, these can be evaluated using options maturing in, respectively, one and two

periods in the formula given in equation 22.

2.1.3. The autocorrelation of the market. The corresponding relationship for simple returns

does not decompose in this convenient way: as EtRt+1→t+2 = Et Rt→t+2

Rt→t+1
6= Et Rt→t+2

Et Rt→t+1
, the

relationship between spot and forward simple returns is sensitive to the autocorrelation in

returns. As it happens, Martin (2021) shows that it is possible to infer the log investor’s

perceived autocorrelation of the stock market if forward-start index option prices are ob-

served; but unfortunately these are rather exotic derivatives and the market for them is not

very liquid.

2.1.4. The probability of a market crash. By setting Xt+1 = 1Rt+1<x in equation 13, we

find that

Pt (Rt+1 < x) =
1

Rf,t+1
E∗t
(
Rt+11Rt+1<x

)
. 23.

1Rt+1<x: an
indicator function

that takes the
value 1 if Rt+1 < x

and 0 otherwise

Martin (2017) shows that the quantity on the right-hand side of equation 23 can be

inferred from index option prices:

Pt (Rt+1 < x) = x

[
put′t(xSt)−

putt(xSt)

xSt

]
. 24.

Here put′t(xSt) is the slope of the put price curve, plotted as a function of strike, K, at the

point K = xSt.

Goetzmann et al. (2024) use the formula (24) as a measure of the market-implied prob-

ability of a crash, and compare it to survey expectations of crashes.

2.1.5. The variance risk premium. We can calculate the log investor’s perceived forward

looking true market variance, vartRt+1, by setting Xt+1 = R2
t+1 in equation 13. The

variance risk premium as perceived by the log investor is determined by the relationship

between risk-neutral variance and risk-neutral skewness, via the formula

var∗t
Rt+1

Rf,t+1
− vart

Rt+1

Rf,t+1
=

(
var∗t

Rt+1

Rf,t+1

)2

− E∗t

[(
Rt+1

Rf,t+1
− 1

)3
]
. 25.
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Once again, the risk-neutral quantities can be calculated from option prices using equa-

tion 17. Essentially this formula is derived by Hsieh et al. (2024) and proposed as an index

of the variance risk premium.

Martin (2017, Online Appendix) carries out this exercise—though without explicitly

stating the above equation—and reports time series of true and risk-neutral volatility over

the period 1996–2012. Over this period, risk-neutral volatility typically exceeds true volatil-

ity by on the order of 1 to 2 percentage points (annualised) at the 1-month and 1-year

horizons; but at the height of the subprime crisis, the gap between the two spikes to around

6 percentage points at the 1-month horizon and 4 percentage points at the 1-year horizon.

Empirically, the variance risk premium (as calculated in equation 25) is always positive.

In contrast, the approach of Bollerslev et al. (2009), which uses recent realized variance

to proxy for forward-looking variance, delivers the puzzling finding that the variance risk

premium sometimes spikes downwards and below zero at times of market stress.

2.2. Other assets

The same logic that led to equation 15 implies, under the log investor assumption, that the

expected return on an arbitrary asset i must satisfy

EtRi,t+1 −Rf,t+1 =
1

Rf,t+1
cov∗t (Ri,t+1, Rt+1) . 26.

At first sight, equation 26 takes a familiar form: it says that the asset’s expected excess

return should be proportional to its covariance with the market return, as in the CAPM.

Here, though, the relevant quantity is the conditional risk-neutral covariance.

In principle, this has the advantage exploited in the previous subsection: one can hope

to measure risk-neutral covariance directly from asset prices without further assumptions.

But whereas it is easy to use option prices to pin down risk-neutral expectations of functions

of a single variable, as in equation 17, one cannot in general hope to determine risk-neutral

expectations of arbitrary functions of two or more variables given the assets that are traded

in practice (Martin 2018). Vanilla options provide information about the univariate risk-

neutral distributions of the assets on which they are written, but they do not identify the

joint risk-neutral distribution.

2.2.1. Currencies. In the case of currencies, however, a minor miracle occurs: a contract

that reveals the risk-neutral covariance between (say) the yen and the S&P 500 index

happens to be traded.

To apply equation 26 to currencies, we need to interpret Ri,t+1 as the return on a

currency trade. If the time t price of a unit of foreign currency is $ei,t, then at time t we

can take $1 and convert it to 1/ei,t units of foreign currency. Having done so, we invest it

until time t+ 1 at the foreign-currency interest rate, Rif,t+1, then convert back to dollars at

time t+ 1. The dollar return on the currency trade is therefore
ei,t+1

ei,t
Rif,t+1. Substituting

this quantity for Ri,t+1 in equation 26 and rearranging, we have

Et
ei,t+1

ei,t
− 1 =

Rf,t+1

Rif,t+1

− 1︸ ︷︷ ︸
IRDi,t

+
1

Rf,t+1
cov∗t

(
ei,t+1

ei,t
, Rt+1

)
︸ ︷︷ ︸

QRPi,t

. 27.

Equation 27 expresses expected currency movement as the sum of two terms. The first

is the interest-rate differential, IRDi,t. This is the expected currency appreciation according

12 Martin



Table 2: Forecasting currency movements. Monthly data, 2009.12–2017.10

Pooled panel regression:
ei,t+1

ei,t
− 1 = α+ βQRPi,t + γIRDi,t + εi,t+1

horizon α β γ R2 (%)

24mo
−0.048 3.394 1.769 16.01
[0.020] [1.726] [1.045]

24mo
−0.030 0.168 0.16
[0.014] [0.651]

Panel regression with fixed effects:
ei,t+1

ei,t
− 1 = αi + βQRPi,t + γIRDi,t + εi,t+1

horizon β γ R2 (%)

24mo
5.456 1.717 20.56

[2.047] [1.414]

24mo
−0.363 0.20
[1.007]

Bootstrapped standard errors are reported in square brackets. Results are from Table 5 of

Kremens and Martin (2019).

to the theory of uncovered interest parity (UIP), in which exchange rates are expected to

appreciate or depreciate in such a way that all currency trades earn identical expected

returns. This simplistic prediction neglects the impact of risk, which is captured above

in the second term. From the log investor’s point of view, a currency’s risk premium is

revealed by its risk-neutral covariance with the market. Kremens and Martin (2019) derive

equation 27 and show that the risk-neutral covariance term is revealed by comparing the

forward price of the market to the quanto forward price of the market.

Quanto contracts

Someone who goes long a conventional forward contract on the market commits, at time t, to pay the

known amount Ft at time t + 1 in exchange for the then prevailing level of the market, Pt+1. Here both

Ft and Pt+1 are denominated in dollars. By contrast, someone who goes long a currency-i quanto forward

contract on the market commits, at time t, to pay the known amount Qi,t units of currency i at time t+ 1

in exchange for Pt+1 units of currency i. This contract is sensitive to the correlation between currency i

and the market: if, say, currency i depreciates catastrophically whenever the market does well, then all else

equal this makes the quanto contract unattractive, so that Qi,t will have to be small. Specifically, Kremens

and Martin (2019) show that

Qi,t − Ft
Rif,t+1Pt

=
1

Rf,t+1
cov∗t

(
ei,t+1

ei,t
, Rt+1

)
, 28.

and refer to the quantity on the left-hand side as the quanto-implied risk premium, QRPi,t.

Table 2 reports the results of regressions of realized currency appreciation onto QRP

and IRD, or onto IRD alone, taken from Kremens and Martin (2019). The forecasting

horizon is two years, to match the horizon of observable quanto contracts. According to

equation 27 we should expect to find a zero intercept, and estimated coefficients β = 1
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on QRP and γ = 1 on IRD. In a pooled panel regression, the results do not reject this

hypothesis, and the coefficient on QRP is significantly different from zero. The inclusion

of QRP in the panel regressions increases R2 by two orders of magnitude relative to what

IRD achieves on its own; and the estimated coefficient on IRD moves in the right direction

(i.e., towards 1) when QRP is included, though it is not significantly different from zero in

either specification.

The bottom panel of the table reports broadly consistent results when currency fixed

effects are included, but the coefficient on QRP, which remains statistically significant, is

now also significantly greater than one, suggesting that the log investor’s view understates

the magnitude of currency risk premia. (I discuss this fact further, and explain the motiva-

tion for including currency fixed effects, in Section 3.) Once again, including QRP increases

R2 by two orders of magnitude.

Kremens et al. (2024) connect this theory to the data in a different way, showing, for six

high-income currencies, that expected two-year currency movements drawn from surveys

of professional forecasters successfully forecast outcomes and correlate strongly with QRP

and a small number of other macro-finance variables (notably the real exchange rate and

current account-GDP ratio).

2.2.2. Individual stocks. To apply equation 26 to individual stocks, we would like to be able

to observe the risk-neutral covariance between stock i and the S&P 500 index. This would be

feasible if, say, there were a liquid market in “outperformance options” (that is, options on

Ri,t+1 − Rt+1): as cov∗t (Ri,t+1, Rt+1) = 1
2

[var∗t Ri,t+1 + var∗t Rt+1 − var∗t (Ri,t+1 −Rt+1)],

we could infer risk-neutral covariance by observing stock i options, index options, and

outperformance options. But there is no such market at present.

Martin and Wagner (2019) therefore take another tack, exploiting the fact that typical

stocks have betas close to one. Note first that equation 26 can be rewritten

Et
Ri,t+1

Rf,t+1
− 1 = β∗i,t var∗t

Rt+1

Rf,t+1
. 29.

Here β∗i,t is the risk-neutral beta of stock i with respect to the market, associated with the

decomposition
Ri,t+1

Rf,t+1
= α∗i,t + β∗i,t

Rt+1

Rf,t+1
+ ε∗i,t+1 30.

where

β∗i,t =
cov∗t (Ri,t+1, Rt+1)

var∗t Rt+1
31.

E∗t ε∗i,t+1 = 0 32.

cov∗t
(
ε∗i,t+1, Rt+1

)
= 0. 33.

Equations 30–33 can be viewed as characterizing a “risk-neutral regression” of stock i’s

return onto the market return. They imply that

var∗t
Ri,t+1

Rf,t+1
= β∗2i,t var∗t

Rt+1

Rf,t+1
+ var∗t ε

∗
i,t+1. 34.

As already noted, the quantity on the right-hand side of equation 29 cannot be directly

observed from vanilla option prices. But it is related to the quantity on the right-hand
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side of equation 34, and hence to var∗t Ri,t+1—and this is observable given option prices

on stock i. To make this relationship precise, we use the linearization β∗2i,t ≈ 2β∗i,t − 1 in

equation 34 to find, after some rearrangement,

β∗i,t var∗t
Rt+1

Rf,t+1
=

1

2
var∗t

Rt+1

Rf,t+1
+

1

2
var∗t

Ri,t+1

Rf,t+1
− 1

2
var∗t ε

∗
i,t+1. 35.

It follows from equation 29 that

Et
Ri,t+1

Rf,t+1
− 1 =

1

2
var∗t

Rt+1

Rf,t+1
+

1

2
var∗t

Ri,t+1

Rf,t+1
− 1

2
var∗t ε

∗
i,t+1. 36.

Multiplying by value weights, wi,t, and summing over i,

Et
Rt+1

Rf,t+1
− 1 =

1

2
var∗t

Rt+1

Rf,t+1
+

1

2

∑
i

wi,t var∗t
Ri,t+1

Rf,t+1
− 1

2

∑
i

wi,t var∗t ε
∗
i,t+1. 37.

Subtracting equation 37 from equation 36 and using the fact that Et Rt+1

Rf,t+1
−1 = var∗t

Rt+1

Rf,t+1
,

we have

Et
Ri,t+1

Rf,t+1
− 1 = var∗t

Rt+1

Rf,t+1
+

1

2

{
var∗t

Ri,t+1

Rf,t+1
−
∑
j

wj,t var∗t
Rj,t+1

Rf,t+1

}

− 1

2

{
var∗t ε

∗
i,t+1 −

∑
j

wj,t var∗t ε
∗
j,t+1

}
. 38.

The third term on the right-hand side of equation 38 is zero on value-weighted aver-

age. Martin and Wagner (2019) make the econometrically convenient assumption that

it is constant over time so that it can be replaced by a fixed effect αi. By analogy

with the definition of SVIX given in equation 19, they define SVIX2
i,t = var∗t

Ri,t+1

Rf,t+1
and

SVIX
2
t =

∑
j wj,t var∗t

Rj,t+1

Rf,t+1
: these quantities can be inferred using options on individual

stocks in the formula given in equation 19. The end result is the formula

Et
Ri,t+1

Rf,t+1
− 1 = αi + SVIX2

t +
1

2

(
SVIX2

i,t−SVIX
2
t

)
. 39.

The fixed effects αi are zero on weighted average, so if they are constant across i then they

must all equal zero. In this case

Et
Ri,t+1

Rf,t+1
− 1 = SVIX2

t +
1

2

(
SVIX2

i,t− SVIX
2
t

)
. 40.

Table 3 reports results from Martin and Wagner (2019), who test these equations by

regressing realizations onto predictions. The top panel shows pooled results, testing the

more aggressive prediction in equation 40 (according to which α = 0, β = 1, and γ = 1/2);

the bottom panel shows results with fixed effects, testing the prediction of equation 39

(according to which the time series average of the value-weighted sum of fixed effects,∑
i wiαi, equals zero, β = 1, and γ = 1/2). Fixed effects appear to matter: when they are

included, the predictions of equation 39 are not rejected at any horizon, and the null that

the coefficients are zero is strongly rejected at horizons of 6, 12, and 24 months.
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Table 3: Forecasting individual stock returns. S&P 500 firms. Monthly, 1996.01–2014.10

Pooled panel regressions:
Ri,t+1

Rf,t+1
− 1 = α+ β SVIX2

t +γ
(

SVIX2
i,t− SVIX

2
t

)
+ εi,t+1

horizon α β γ R2 (%)

1mo
0.057 0.743 0.214 0.096

[0.074] [2.311] [0.296]

6mo
−0.038 3.483 0.463 3.218
[0.059] [1.569] [0.320]

12mo
−0.021 3.032 0.512 4.423
[0.071] [1.608] [0.318]

24mo
−0.054 3.933 0.324 5.989
[0.076] [1.792] [0.200]

Panel regressions with fixed effects:
Ri,t+1

Rf,t+1
− 1 = αi + β SVIX2

t +γ
(

SVIX2
i,t− SVIX

2
t

)
+ εi,t+1

horizon
∑
wiαi β γ R2 (%)

1mo
0.080 0.603 0.491 0.650

[0.072] [2.298] [0.325]

6mo
−0.008 3.161 0.892 10.356
[0.055] [1.475] [0.336]

12mo
0.012 2.612 0.938 17.129

[0.070] [1.493] [0.308]

24mo
−0.026 3.478 0.665 24.266
[0.079] [1.681] [0.205]

Bootstrapped standard errors are reported in square brackets. Results are from Tables IV

and V of Martin and Wagner (2019).

2.2.3. Dividends. Throughout the paper, I have neglected the distinction between total

returns and capital gains, effectively treating the contribution of dividends to returns as

negligible. This assumption is forced because at present options on US stocks and indices

are typically written on ex-dividend prices, rather than on total returns.14 The assumption

is tolerable over shorter horizons (or for non-divided-paying assets such as currencies) but

would become problematic once the forecasting horizon rises substantially above a year or

two, as I will discuss further in Section 2.2.4.

There is, however, a growing market in claims on the dividends of the aggregate market

paid over a given year. Gormsen et al. (2021) use them to understand expectations about

aggregate dividends, building on earlier work of Gormsen and Koijen (2020). I will write

P dt for the price of a claim to dividends over the period from t to t+1, and Rdt+1 = Dt+1/P
d
t

for the return on this claim. From the perspective of the log investor, we then have

EtRdt+1 −Rf,t+1 =
1

Rf,t+1
cov∗t

(
Rdt+1, Rt+1

)
. 41.

If we separately observed options on the total return, on the market capital gain, and on

dividends, we could determine var∗t (St+1 +Dt+1), var∗t St+1, and var∗t Dt+1. Together these

would pin down cov∗t (Dt+1, St+1), and it would then be possible to calculate the covariance

14There is no obvious reason for this to be the case other than market convention—and options
on a total return would be easier for market-maker to hedge than options on a capital gain—so
things may change in future.
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term in equation 41 without further assumptions.

In the absence of such data, Gormsen et al. (2021) make an observation that may be

useful in other contexts. They note that if two gross returns—in this case, Rdt+1 and Rt+1—

are jointly lognormal, then their risk-neutral correlation equals their true correlation. In

this case, we can decompose the risk-neutral covariance as the product of true correlation

and two risk-neutral volatility terms:

cov∗t

(
Rdt+1, Rt+1

)
= ρtσ

∗
t

(
Rdt+1

)
σ∗t (Rt+1) . 42.

The two risk-neutral volatility terms are observable from traded option prices, so this equa-

tion could be implemented either by assuming that ρt takes a particular value, or lies in

some range, or by using realized correlation over a recent time period to proxy for ρt.

2.2.4. Interest rates. To illustrate how the log investor perspective can suggest directions

that future research might take, we can ask which asset prices would, in principle, reveal

the log investor’s expectations of future interest rates.

Consider two alternative ways of investing money in bond markets. One is a rolling

investment at a floating short rate of interest. This strategy is riskless when considered one

period at a time, but is exposed to variation in interest rates over the long run. I write

Rc,u→v to denote the gross return, from time u to time v, on a “cash” strategy that repeat-

edly invests at the short (i.e., one-period) interest rate: thusRc,t→T = Rf,t+1Rf,t+2 · · ·Rf,T .

The other strategy is to invest at a fixed long rate of interest. I write Rb,u→v to denote the

gross fixed riskless rate that can be locked in between time u and time v: this is the gross

return, between time u and time v, on a zero-coupon bond, which can be determined from

the (v − u)-period yield at time u. (Note that Rb,t→t+1 = Rf,t+1.)

The difference between EtRc,t→T and Rb,t→T (the latter being a known constant at

time t) is a measure of the expected future path of interest rates. To determine the equilib-

rium value of this quantity in the mind of the log investor, we exploit a relationship between

futures and forward prices derived by Cox et al. (1981).

Consider an index futures contract with settlement date T . On date t, the futures price

is Gt. By definition of the contract, at date T the futures price settles at the then prevailing

index price: GT = ST . (As noted above, we assume that the index is quoted as a total

return, so Rt→T = ST /St.) No money changes hands at initiation of a trade, on (say) day t.

The next day—day t+ 1—the long side of the trade receives Gt+1−Gt from the short side.

As it was costless to enter the trade, it must be the case that Et [Mt+1 (Gt+1 −Gt)] = 0.

As this relationship holds for all t < T , we can work backwards to conclude that

Gt = Et [Mt+1 · · ·MTRc,t→TST ] . 43.

We suppose now that the log investor is maximizing expected utility of wealth at some

future date T ; as before, today is date t.15 I write Rt→T for the gross return on the market

from time t to time T . From the log investor’s perspective, EtRc,t→T equals the price of a

claim to Rc,t→TRt→T , by equation 13: so, from equation 43, our measure of the expected

15This is consistent with what we did before: as long-horizon log returns decompose separably
into a sum of per-period log returns, this log investor will continue to ensure that he or she is at an
optimum for the problem depicted in equation 11.
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future path of interest rates is

EtRc,t→T −Rb,t→T =
Gt
St
−Rb,t→T =

Gt − Ft
St

44.

where Ft and Gt are, respectively, the forward and futures prices of the index to time T ,

calculated at time t, and St is the spot price.16 If the futures price exceeds the forward

price, this signals that there is a positive risk-neutral correlation between short rates and

the market, so that the cash trade underperforms when the market underperforms; as a

result, the cash trade must earn a risk premium.

As noted above, this subsection is illustrative of a direction that future research might

take. For this approach to deliver interesting predictions, we would need to look at reason-

ably long horizons, with T on the order of five years or more. At present, however, there

are no liquid long-dated index futures contracts on US stock markets.17

3. A GENERAL FRAMEWORK

The results of the last section all followed from equation 13, which relies on the log investor

assumption. That equation can be generalized to the following identity, which requires no

assumptions on the form of the SDF:

EtXt+1 = E∗t Xt+1 +
1

Rf,t+1
cov∗t (Xt+1, Rt+1)− covt (Mt+1Rt+1, Xt+1) . 45.

Essentially this identity (specialized to the case in which Xt+1 = Rif,t+1ei,t+1/ei,t is the

return on a currency trade) was derived by Kremens and Martin (2019). It holds for

arbitrary Xt+1 and an arbitrary gross return Rt+1.

If Rt+1 is chosen to equal the return on the market, the second of the two covariance

terms drops out entirely in the log investor case as Mt+1Rt+1 = 1. Alternatively, if Rt+1 is

chosen to equal the riskless rate, the identity 45 reduces to the more familiar identity

EtXt+1 = E∗t Xt+1 − covt (Mt+1Rf,t+1, Xt+1) 46.

which, when applied to a return, Xt+1 = Ri,t+1, shows that an asset’s risk premium is

determined by the covariance between its return and the SDF. (Recall that E∗t Ri,t+1 =

Rf,t+1 for any return.)

The identities 45 and 46 each relate the expectation of interest, EtXt+1, to its risk-

neutral counterpart—which is, in principle, observable directly from asset prices—and to

covariance terms.

Identity 46 tells us that for the risk-neutral expectation E∗t Xt+1 to be a useful measure

of EtXt+1, Xt+1 must be approximately conditionally uncorrelated with the SDF. This is

the (explicit or implicit) assumption when CDS rates are used as surrogates for expected

16I continue to assume that the index is quoted on a total return basis. If not, the forward and
futures prices are each adjusted to account for dividends not received. As equation 44 exploits the
gap between the two, however, we can expect some cancellation so that the importance of neglecting
dividends may be relatively minor even at longer horizons.

17The CME has introduced an Adjusted Interest Rate (AIR) Total Return futures contract, but
the contract is explicitly designed not to have the exposure to future short interest rates that a
conventional index futures contract has, and which the above analysis exploits, as in equation 43.
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default rates, breakeven inflation for expected inflation, forward rates for expected future

interest rates, and so on. Unfortunately, the assumption is implausible in these cases, and

in most other cases of interest to observers of financial markets.

In contrast, the identity 45 includes a further risk-neutral quantity, cov∗t (Xt+1, Rt+1).

If the identity is applied with Rt+1 equal to the return on the market, this quantity is pro-

portional to a “risk-neutral market beta”: it is a risk adjustment that is potentially directly

observable from asset prices, as in Subsection 2.2.1. Moreover, as the SDF and market

return typically move in opposite directions, it is then reasonable to hope that the remain-

ing “nuisance” covariance term, covt (Mt+1Rt+1, Xt+1), is smaller than the corresponding

term, covt (Mt+1Rf,t+1, Xt+1), in identity 46.

The remainder of this section discusses various approaches proposed in the literature to

handle the term covt (Mt+1Rt+1, Xt+1). Under the log investor assumption, it is literally

zero, as already noted; and this continues to be true with Epstein and Zin (1989) and

Weil (1990) preferences with unit risk aversion and arbitrary coefficient of intertemporal

substitution; or, more generally, if Mt+1Rt+1 is uncorrelated with Xt+1.

3.1. A reduced-form approach

A pragmatic reaction is that we should include other explanatory variables, in addition

to 1
Rf,t+1

cov∗t (Xt+1, Rt+1), to proxy for − covt(Mt+1Rt+1, Xt+1). As equation 45 is an

identity, this approach is free of assumptions. Analogously, one can think of the predictor

variables in the conventional reduced-form approach to return forecasting as capturing the

term − covt(Mt+1Rf,t+1, Xt+1) in identity 46.

When identity 45 is applied with Rt+1 equal to the return on a broad market index such

as the S&P 500, it is highly plausible that Rt+1 offsets some of the movement in Mt+1, so

that Mt+1Rt+1 comoves less with Xt+1 than Mt+1Rf,t+1 does. Identity 45 therefore has

the advantage, relative to identity 46, that these other explanatory variables have less to

explain than they do in the conventional approach.

As an illustration of this approach, the fixed effects included in Tables 2 and 3 can

be thought of as capturing the cross-sectional, time-invariant component of the covariance

term in applications to currencies and to stocks. Moreover, Kremens and Martin (2019)

find that while QRP is a highly significant predictor of currency movements in the time

series and cross-section, as shown in Table 2, other variables, notably the real exchange rate

(Dahlquist and Pénasse 2022) and a dollar factor (the average forward discount of Lustig

et al. (2014)) also enter significantly into currency forecasting regressions and substantially

increase R2 above what QRP achieves on its own.

3.2. Lower bounds

In some circumstances, it is possible to sign the second of the covariance terms in identity 45.

Working in the case Xt+1 = Rt+1, Martin (2017) shows that the negative correlation condi-

tion (NCC) covt (Mt+1Rt+1, Rt+1) ≤ 0 holds from the perspective of an investor who holds

the market if risk aversion is at least one, or alternatively under various conditions that

cover leading macro-finance models such as Campbell and Cochrane (1999), Bansal and

Yaron (2004), Wachter (2013), Bansal et al. (2014), and Campbell et al. (2018). Under the

NCC, we then have the lower bound

EtRt+1 −Rf,t+1 ≥
1

Rf,t+1
var∗t Rt+1, 47.
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and this bound is valid under considerably weaker assumptions than were required for

equality to hold, as in equation 15.

The lower bound (47) is extremely volatile, right-skewed, and fat-tailed, exhibiting sharp

peaks that die away fairly rapidly. As the peaks are far larger than reasonable measures

of the unconditional equity premium, Martin (2017) emphasizes that these facts point to a

spiky, volatile equity premium, and hence to a qualitatively different view than comes out

of the literature that uses valuation ratios to forecast returns.18

Similarly, Gao and Martin (2021) exploit a lower bound on the expected log return based

on the modified negative correlation condition (mNCC) covt (Mt+1Rt+1, logRt+1) ≤ 0.

This holds under very similar conditions to the NCC, and in particular it holds in the

macro-finance models mentioned above. When it holds, we have a lower bound Et logRt+1 ≥
1

Rf,t+1
E∗t (Rt+1 logRt+1), and the right-hand side of this equation can be calculated from

put and call prices using the formula 17.

Kadan and Tang (2020) determine conditions under which the lower bound (47) can

be applied at the level of an individual stock. As the lower bound is given by the indi-

vidual stock’s risk-neutral variance—that is, by stock-level SVIX—it avoids the problem

of measuring (or approximating, as in Section 2.2.2) the stock’s risk-neutral covariance of

the market. The cost of doing so is that the bound only applies for a stock i if the ratio

vartRi,t+1/ covt(Ri,t+1, Rt+1) exceeds the level of risk aversion.

3.3. Sharpening the lower bound

If we write Bt+1 = Rt+1 − Rf,t+1 − 1
Rf,t+1

var∗t Rt+1, then the lower bound (47) asserts

that EtBt+1 ≥ 0. Back et al. (2022) test the validity of this claim, exploiting the fact that

it implies an unconditional bound E (ztBt+1) ≥ 0 for any vector of positive conditioning

variables zt.

Using a range of variables drawn from Goyal and Welch (2008) in the conditioning vector

zt, they do not reject the hypothesis that the bound is valid—that is, that risk-neutral

variance supplies a lower bound for the equity premium. But they also test the hypothesis

that the bound is tight (i.e., holds with equality, as in the log investor case of Section 2.1.1),

and this they can reject with moderate confidence (with finite-sample p-values of 3.6% and

8.3% at the one-month and one-year horizons over the period 1990–2020).

Taken at face value, this finding suggests at least two potential refinements of the log

investor approach.

3.3.1. Allowing the log investor to trade more aggressively. Rather than assuming that the

log investor holds the market, we can estimate the portfolio that a log investor would hold.

The return on this portfolio, Rg,t+1, is referred to as the growth-optimal return (Kelly 1956,

Long 1990), and its reciprocal is a stochastic discount factor if the first-order conditions in

equation 12 have an interior solution. Then we have

EtRi,t+1 −Rf,t+1 =
1

Rf,t+1
cov∗t (Ri,t+1, Rg,t+1) . 48.

This equation, which is the starting point of Martin and Wagner (2019), replaces the market

return that appears in equation 26 with the growth-optimal return, whatever that may be.

18Early papers in this literature include Keim and Stambaugh (1986), Fama and French (1988),
and Campbell and Shiller (1988).
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Tetlock (2023) pursues this idea by estimating the growth-optimal return attainable by

an investor who can trade the market and derivatives whose payoffs are the first, second,

third, and fourth powers of the market’s excess return. (As always, such contracts are

observable from index option prices, by equation 17.) The key challenge is in the estimation

of the portfolio weights (on the market and on the various power contracts) that determine

the growth-optimal portfolio: Tetlock determines them by requiring the model to accurately

match a measure of the variance risk premium. The estimated growth-optimal portfolio

takes a levered position in the market that is largely funded by shorting the second and

third power contracts. In other words, Tetlock argues that it would be optimal for a log

investor to short volatility in order to lever up his or her market position, and finds that

this estimated growth-optimal return forecasts market returns more accurately than does

the lower bound (47), consistent with the results of Back et al. (2022).

The growth-optimal approach has the advantage that no assumptions need to be made

about the identity of an investor who holds the market; but it has the disadvantage that

the growth-optimal portfolio weights must be estimated. They are in general time-varying,

and in principle may change suddenly at times of market turmoil.

3.3.2. Allowing the representative investor to be more risk-averse. As an alternative to

thinking about the portfolio choices of the log investor, we can also take the perspective of

an investor who has power utility with risk aversion γ over next period wealth, and who

chooses to hold the market. The case γ > 1 allows for the possibility that a log investor

would wish to trade more aggressively, as described in the previous subsection; but it has

the advantage that there are no time-varying portfolio weights or other parameters to be

estimated.

The logic that led to equation 12 implies that Mt+1 = λtR
−γ
t+1, where λt is known at

time t, and Martin (2017) shows that equation 13 is then replaced by

EtXt+1 =
E∗t
(
Rγt+1Xt+1

)
E∗t
(
Rγt+1

) or EtXt+1 − E∗t Xt+1 =
cov∗t

(
Rγt+1, Xt+1

)
E∗t Rγt+1

. 49.

If Xt+1 is a function of the return on the market itself, then the right-hand side is a

ratio of risk-neutral expectations of functions of Rt+1 that is easily evaluated using index

options and the Breeden–Litzenberger approach, as in equation 17. For example, we can

use equation 49 to write the market risk premium in a form comparable with the GBM case

(equation 3). We have

logEt
Rt+1

Rf,t+1
= log

E∗t R1+γ
t+1

E∗t Rt+1 E∗t Rγt+1

. 50.

If, say, the investor who holds the market has risk aversion γ = 2, then the risk premium is

determined by the first, second, and third risk-neutral moments of the market return (or,

equivalently, by the risk-neutral skewness, variance, and mean of the market return). The

right-hand side of equation 50 can be calculated using the following formula, which applies

for arbitrary θ ∈ R as yet another consequence of equation 17:

E∗t Rθt+1 = Rθf,t+1+
Rf,t+1θ(θ − 1)

Sθt

{∫ StRf,t+1

0

Kθ−2 putt(K) dK +

∫ ∞
StRf,t+1

Kθ−2 callt(K) dK

}
.

51.

The left panel of Figure 1 reports the 1-month equity premium, calculated as in equation

50 and annualized by multiplying by 12, for γ equal to 1, 2, and 3. The right panel shows
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Figure 1: Left panel: Annualized 1-month equity premium calculated using equations 50

and 51, for γ equal to 1 (black), 2 (red), and 3 (blue). Right panel: The ratio of the implied

equity premium to the log investor’s equity premium, for γ equal to 2 (red) and 3 (blue).
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Figure 2: Left panel: 1-year equity premium calculated using equations 50 and 51, for γ

equal to 1 (black), 2 (red), and 3 (blue). Right panel: The ratio of the implied equity

premium to the log investor’s equity premium, for γ equal to 2 (red) and 3 (blue).

the ratio of the implied equity premium to the log investor’s equity premium for γ equal to

2 and 3. The implied equity premium grows more slowly with γ than would be predicted by

a lognormal model. (If Rt+1 were lognormal under the risk-neutral measure, with volatility

σ, then the risk premium (50) would simplify to γσ2 so that the lines in the right panel

would be constant at 2 and 3, respectively.)

Figure 2 repeats this exercise at the 1-year horizon. The non-linear scaling with γ is

even more visible: the risk premium associated with γ = 3 is considerably less than three

times as large as the log investor’s perceived risk premium, and the ratio of the two tends

to shrink in periods of high volatility.

More generally, once a functional form Mt+1 = f(Rt+1) is specified,19 one can calculate

Et g(Rt+1) = Et
[
Mt+1

g(Rt+1)

f(Rt+1)

]
=

1

Rf,t+1
E∗t
[
g(Rt+1)

f(Rt+1)

]
52.

and the quantity on the right-hand side can be determined from observable option prices

using equation 17. Chabi-Yo and Loudis (2020) use this approach with g(Rt+1) = Rt+1 to

estimate the equity premium.

19In fact, as Et [Mt+1h(Rt+1)] = Et [Et (Mt+1 | Rt+1)h(Rt+1)], all we need is that
Et (Mt+1 | Rt+1), is a known function f(Rt+1) of the market return.
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3.4. The correlation structure

If the variable we wish to forecast, Xt+1, is a function of quantities other than the market

return, then the inference problem is challenging even with log utility, as discussed in

Section 2.2. Quanto contracts reveal risk-neutral covariances of the market with currency

movements, so we can infer the log investor’s expectations about currency movements. But

we do not at present observe contracts that reveal, say, the risk-neutral covariance of the

market with inflation, so we cannot infer inflation expectations.

The problem in this example is pervasive—and fundamental, because of the importance

of covariances throughout financial economics. Option prices are observable on a wide range

of underlying payoffs—equity indices, individual stocks, currencies, interest rates, bond

prices, inflation, and so on—and they reveal the associated univariate (or marginal) risk-

neutral distributions. But vanilla options do not reveal the joint risk-neutral distributions

we need to observe to implement equation 26 or 49 (Martin 2018).

As noted in Section 2.2.2, this fact provides a motivation for the introduction of new

markets. If, say, we observed options on the outperformance of the market relative to a

10-year bond, Rt+1 − R10yr,t+1, then this would reveal var∗t (Rt+1 − R10yr,t+1), and hence

(in conjunction with index options and bond options) the covariance cov∗t (Rt+1, R10yr,t+1).

But such markets do not currently exist, and in the meantime there is no easy solution

to this problem. One pragmatic response is to assume that the relevant returns are jointly

lognormal. In this case, risk-neutral and true correlation are equal to each other, as noted

by Gormsen et al. (2021) (see Section 2.2.3), so if, for example, Ri,t+1 and Rt+1 are jointly

lognormal then the risk-neutral covariance that arises on implementing equation 49 with

Xt+1 = Ri,t+1 can be written as

cov∗t
(
Rγt+1, Ri,t+1

)
= ρtσ

∗
t (Rγt+1)σ∗t (Ri,t+1). 53.

This expresses risk-neutral covariance as the product of true correlation, which might be

proxied by a backward-looking historical estimate, and two risk-neutral volatilities that are

each observable (using options on the index and on asset i, respectively).

Della Corte et al. (2024) take this approach to forecast currency movements from the

perspective of an investor with power utility and risk aversion γ > 1. (This exercise can

be motivated by the coefficient estimates in Table 2, which are significantly larger than

one in the presence of fixed effects.) As the approach is broadly applicable, requiring only

that options on the appropriate asset are traded, it could for example be used to estimate

inflation risk premia, bond risk premia, commodity risk premia and so on.

The lognormality assumption is a strong one, however, and one has to estimate correla-

tions whose sizes may shift quickly, notably at times of market turmoil. Even the signs of

correlations may switch: Campbell et al. (2017) show that the realized correlation between

bond and stock returns was positive from around 1980 to the late 1990s, switched sign

several times between 1995 and 2008, and was generally negative from 2008 to 2015.

Martin and Shi (2024) propose a different way to deal with—or rather to avoid dealing

with—the correlation structure. They consider the problem of forecasting crashes in indi-

vidual stocks and allow the representative agent who holds the market to have power utility.

Applying equation 49 with Xt+1 = 1Ri,t+1<x, where the size of x indexes the severity of

the crash, we have

Pt (Ri,t+1 < x) =
E∗t
(
Rγt+11Ri,t+1<x

)
E∗t
(
Rγt+1

) . 54.
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This generalizes the earlier equation 23 to allow for γ 6= 1 and for arbitrary returns Ri,t+1.

Applied to the market itself (that is, with Ri,t+1 = Rt+1), the risk-neutral expectations on

the right-hand side of equation 54 are easily calculated from index option prices.

More generally, however, the risk-neutral expectation in the numerator is not pinned

down by observable asset prices. Martin and Shi get around this problem by using the

Fréchet–Hoeffding bounds to derive upper and lower bounds on the crash probability that

are expressed in terms of the univariate (hence observable) risk-neutral distributions of the

stock in question and the market. They argue on a priori grounds that the lower bound

is likely to be closer to the truth than the upper bound, and find empirically that it is a

highly statistically and economically significant forecaster of crashes.

4. CONCLUSION

Practitioners have long been interested in predictor variables based on asset prices. These

risk-neutral quantities have the great advantage of being almost continuously observable,

and they embody the collective views of market participants. They are used as indices

of market expectations in several different settings. Forward rates (risk-neutral expected

future interest rates) are used as indicators of future interest rates. Breakeven inflation (risk-

neutral expected future inflation) is used as a measure of market-expected inflation. CDS

rates (risk-neutral default probabilities) are used as measures of true default probabilities.

Implied volatility (risk-neutral volatility) is used as a measure of true volatility.

It is important for financial economists to confront the fact that such variables—perhaps

accompanied by an approximate mental adjustment to “allow for risk”—are far more widely

used as a rough guide to expectations than are the predictions of the leading equilibrium

models of the macro-finance literature. The appeal of risk-neutral quantities reflects the fact

that they can be inferred from asset prices alone, without the need for infrequently updated

macroeconomic or accounting data, or for the calibration of unobserved parameters.

The literature surveyed in this paper exploits asset prices in a similar way. But by

taking the perspective of a risk-averse investor it injects a small amount of economics into

the standard risk-neutral calculation. The resulting indicators account for market risk, and

because they exploit risk-neutral measures of variance or covariance, we avoid the need to

use realized variances or covariances as proxies for true forward-looking covariances, as in

the conventional approach. The indicators point to risk premia that are volatile, skewed,

and fat-tailed, spiking in times of crisis. As they are observable in real time, they provide

useful information when information is most needed—during periods of market turmoil,

or in the aftermath of major pieces of market-relevant news—and make risk premia more

“visible” for policymakers, for academics, and for investors.
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