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Disasters Implied by Equity Index Options
DAVID BACKUS, MIKHAIL CHERNOV, and IAN MARTIN*

ABSTRACT

We use equity index options to quantify the distribution of consumption growth dis-
asters. The challenge lies in connecting the risk-neutral distribution of equity returns
implied by options to the true distribution of consumption growth. First, we compare
pricing kernels constructed from macro-finance and option-pricing models. Second,
we compare option prices derived from a macro-finance model to those we observe.
Third, we compare the distribution of consumption growth derived from option prices
using a macro-finance model to estimates based on macroeconomic data. All three
perspectives suggest that options imply smaller probabilities of extreme outcomes
than have been estimated from macroeconomic data.

THE FIELD OF MACRO-FINANCE offers an attractive opportunity to explore links
between asset returns and the real economy. Many of the most influential pa-
pers in the field do just that, most commonly by using macroeconomic data as
inputs to models designed to account for asset returns. There is also promise in
doing the reverse, that is, in using properties of asset returns to characterize
macroeconomic risk. The growing literature on disaster risk is a clear exam-
ple of where macroeconomic research might benefit from greater input from
finance.

Barro (2006), Longstaff and Piazzesi (2004), and Rietz (1988) show that
macroeconomic disasters—large declines in aggregate consumption growth—
produce dramatic improvement in the ability of representative agent models
to reproduce prominent features of U.S. asset returns, including the equity
premium. They disagree, however, about their distribution. Rietz (1988) sim-
ply chooses an arbitrary distribution and illustrates its impact. Julliard and
Ghosh (2008) and Longstaff and Piazzesi (2004) argue that a distribution based
on U.S. experience cannot match the equity premium with modest degrees of
risk aversion. Barro (2006), Barro and Ursua (2008), and Barro et al. (2009)
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study broader collections of countries, which in principle can tell us about
alternative histories the United States might have experienced. In their panel
of international macroeconomic data, the frequency and magnitude of disas-
ters are significantly larger than those we have seen in U.S. history. Their
estimated distribution of consumption disasters, which we refer to as the inter-
national macroeconomic evidence, has become the industry standard in both
macroeconomic and finance research.

The issue, then, is the distribution of extreme negative outcomes, that is,
the shape of the left tail of the probability distribution of consumption growth.
In virtually all of this research, the distribution is modeled by combining a
normal component with a jump component. A jump component, in this context,
is simply a mathematical device that produces nonnormal distributions. The
debate in the literature concerns the parameter values of this component.

The range of opinion about jump parameters reflects the nature of the prob-
lem: they are not easily estimated from the relatively short history of U.S.
macroeconomic data. We follow a different but complementary path, estimat-
ing them from prices of equity index options. Equity index options are a useful
source of additional information here because their prices tell us how mar-
ket participants value extreme events—whether they happen in our sample
or not. By looking at options with different strike prices, we learn more about
the distribution of equity index returns than we do from returns alone. The
cyclical behavior of equity returns and the range of strike prices make this
class of assets a natural choice. Other cyclical assets, including corporate and
government bonds, might be studied in future work.

The idea is straightforward, but the approaches taken in the macro-finance
and option-pricing literatures are different enough that it takes some work to
put them on a comparable basis. The most salient differences for our purposes
are as follows: (i) The macro-finance literature is concerned with properties of
consumption growth, while the option-pricing literature is concerned with eq-
uity returns. (i1) Macro-finance is concerned with the true or objective probabil-
ity distribution, while option prices characterize the risk-neutral distribution.
(iii) The relation between true and risk-neutral probability distributions is dif-
ferent in the two literatures. In the macro-finance literature, the risk-neutral
distribution is derived from the true distribution of consumption growth and
the preferences of a representative agent (power utility, for example). In the
option-pricing literature, the two distributions are specified separately, which
leads to a different structure for the pricing kernel. These differences pose non-
trivial challenges to anyone attempting to use evidence from equity options to
quantify features of consumption growth.

Our objective is to compare models based on consumption and option data,
respectively, but the differences in approach lead us to compare the models
from several different perspectives. Each comparison uses a different analytical
structure and focuses on a different aspect of the model. In our first comparison,
we focus on pricing kernels, which exist in any arbitrage-free model. In macro-
finance models, the properties of pricing kernels are closely related to those
of consumption growth. A natural first step then is to compare the pricing
kernel generated by a representative agent model calibrated to international
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macroeconomic data to one implied by an estimated option-pricing model. A
second comparison focuses on option prices. We follow the macro-finance route,
using macroeconomic data and the preferences of a representative agent to
value options as well as equity, and compare these option prices to those of an
estimated option-pricing model. Here and elsewhere, we report option prices
as implied volatility smiles, which represent departures from normality in an
intuitive way.

A third comparison delivers on our goal of estimating the distribution of
consumption growth disasters from options: we compare the distribution es-
timated from international macroeconomic data with one derived from op-
tion prices. Here we reverse the procedure of the previous comparison, using
our estimated implied volatility smile and the preferences of a representative
agent to compute the consumption distribution from option prices. By con-
struction, the distribution is consistent with both option prices and the equity
premium. This approach differs from the substantial body of work that infers
risk aversion from option prices. See, for example, Ait-Sahalia and Lo (2000),
Jackwerth (2000), Rosenberg and Engle (2002), and Ziegler (2007). In that
literature, preferences are defined directly over wealth, which is proxied by
equity, so the distribution of consumption is not studied.

In our comparison of pricing kernels, we find the concept of entropy (a
measure of dispersion) useful. Alvarez and Jermann (2005) and Bansal and
Lehmann (1997) show that the entropy of the pricing kernel of a given model
is the maximum risk premium, defined as the mean excess log return. En-
tropy can be represented as an infinite sum of the cumulants (close relatives
of moments) of the log of the pricing kernel. If the log of the pricing kernel is
normal, entropy is proportional to its variance. Departures from lognormality
such as those generated by jumps can increase cumulants, and hence entropy,
thereby improving a model’s ability to account for observed excess returns.
Odd cumulants, in particular, reflect the asymmetry inherent in disaster re-
search. Despite the difference in functional forms, entropy can be computed
for both the macro-finance and option-pricing models. We find that, while both
consumption- and option-based models generate substantial contributions to
entropy from odd cumulants, the relative contribution is much smaller in the
model based on option prices. We also find that the contribution of the vari-
ance is much higher in the option model, which results in greater entropy
overall.

In our comparison of option prices, we start with a consumption distribution
based on macroeconomic assessments of jumps, link dividends to consumption,
price assets with a representative agent with power utility, select risk aversion
to match the equity premium, and use the model to value options on equity. We
then compare implied volatility smiles derived this way from consumption data
to those from an option model estimated by Broadie, Chernov, and Johannes
(2007). We find that the volatility smile is much steeper in the consumption-
based model.

In our comparison of consumption growth distributions we do the reverse. We
take estimates of the risk-neutral jump parameters from Broadie et al.’s (2007)
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study of equity index options. This ensures that the model matches the im-
plied volatility smile. As before, we use a representative agent with power
utility and choose risk aversion to match the equity premium. This allows
us to infer the true distribution of consumption growth implied by option
prices. The consumption growth distribution implied by option prices agrees
with consumption-based estimates of the probability of modest disasters: con-
sumption growth more than three standard deviations to the left of the mean.
In this respect, the distribution is similar to U.S. data. (The Great Depres-
sion includes one year in which consumption declined by slightly more than
three standard deviations). However, the distribution differs significantly for
more extreme events: the probability of consumption growth more than five
standard deviations to the left of its mean is much smaller than estimates
based on international macroeconomic evidence. The parameter values de-
rived from options match not only the equity premium, as in the Barro cal-
ibration, but also option prices and moments of consumption growth. We
think these parameter values provide a more realistic distribution of disas-
ters in U.S. data than the international macroeconomic evidence used in the
literature.

The second and third comparisons are based on a model in which consump-
tion growth and equity returns are perfectly correlated. There is a long tradition
of similar models in the macro-finance literature, but the correlation in U.S.
data is 0.57. We therefore consider a bivariate model in which the correlation
can be set to match the evidence. If we choose parameters based on interna-
tional macroeconomic evidence, the volatility smile for option prices remains
much steeper than we see in the model based on option prices. Conversely, if
we choose parameters to match option prices, the probability of large negative
realizations of consumption growth (more than five standard deviations to the
left of the mean) remains much smaller than suggested by the macroeconomic
evidence. It nevertheless matches basic features of equity returns and option
prices.

We conclude that option prices imply smaller probabilities of macroeconomic
disasters than suggested by Barro and his coauthors. Nevertheless, we would
not say that we reject “the Barro model.” We would say instead that the model
makes a useful point about the role of asymmetries and other departures from
normality in asset pricing. Certainly there is evidence of both in prices of equity
index options.

The paper is organized as follows. Section I presents the initial empirical
evidence, distinguishes disasters from jump models, and introduces the main
analytical tools used in the paper, that is, cumulant-generating functions, en-
tropy, and their connection to the pricing kernel. Section II illustrates the tools
using a macro-based model of disasters. Section IIT shows how to relate true
probabilities to risk-neutral probabilities in the context of such a macro-based
model. Section IV builds an option-based model of disasters. Section V com-
pares the macro-based and option-based approaches. Section VI concludes. All
the technical material is relegated to eight appendices.
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Table I
Properties of U.S. Consumption Growth and Asset Returns

Entries are statistics computed from annual observations for the U.S. economy. Mean is the sample
mean, Std Dev is the standard deviation, Skewness is the standard measure of skewness, Kurtosis
is the standard measure of excess kurtosis. Consumption growth is log(c:/c;—1), where ¢ is real
per capita consumption. Returns are logarithms of gross real returns and the excess return is the
difference between the log-returns on equity and the 1-year bond. The 1-year bond is the Treasury
security of maturity closest to 1 year. Equity is the S&P 500. Consumption and return data are
from Shiller (2009).

Variable Mean Std Dev Skewness Kurtosis

(a) Consumption growth and returns, annual, 1889-2009

Consumption growth 0.0198 0.0350 -0.34 1.11

Return on equity 0.0587 0.1795 -0.61 0.43

Excess return on equity 0.0407 0.1812 -0.72 0.91
(b) Consumption growth and returns, annual, 1986-2009

Consumption growth 0.0178 0.0150 -0.87 0.66

Return on equity 0.0641 0.1845 —-1.24 1.56

Excess return on equity 0.0434 0.1808 -1.39 2.01

I. Preliminaries

We start with an overview of the evidence we are trying to understand and
the tools we use to shed light on it. The tools allow us to characterize departures
from lognormality, including disasters, in a convenient way.

A. Evidence

We provide a quick overview of U.S. evidence on consumption growth, asset
returns, and option prices.

In Table I, we report evidence on annual consumption growth and equity
returns (the S&P 500 index) for both a long sample (1889 to 2009) and a shorter
one (1986 to 2009) that corresponds approximately to the option data used by
Broadie et al. (2007). Similar evidence is summarized by Alvarez and Jermann
(2005, Tables I to III), Barro (2006, Table IV), and Mehra and Prescott (1985,
Table I). In both samples, consumption growth and equity returns exhibit the
negative skewness we would expect from occasional disasters. Our estimates
of the equity premium (0.0407 in the long sample, 0.0434 in the short sample)
are somewhat smaller than those reported elsewhere. One reason is that we
measure returns in logs; in levels, the mean excess return on equity is 0.0571
in the long sample and 0.0613 in the short sample. Another reason is that the
2008 return (—0.38 in levels) has a significant impact on the estimated mean,
particularly in the short sample.

The next issue is option prices. Options are available on the S&P 500 in-
dex and on its futures contracts. Prices are commonly quoted as implied
volatilities, the value of the volatility parameter that equates the price
with the Black—Scholes—Merton (BSM) formula. These volatilities have two
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well-documented features that we examine more closely in Section IV. Similar
evidence has been reviewed recently by Bates (2008, Section I), Drechsler and
Yaron (2008, Section II), and Wu (2006, Section II). The first feature is that
implied volatilities are greater than sample standard deviations of returns.
Since prices are increasing in volatility, this implies that options are expensive
relative to the lognormal benchmark that underlies BSM. As a result, selling
options generates high average returns. The second feature is that implied
volatilities are higher for lower strike prices (the well-known volatility skew).
This feature is intriguing from a disaster perspective, because it suggests that
market participants value adverse events more than would be implied by a
lognormal model. The question for us is whether the extra value assigned
to bad outcomes corresponds to the disasters documented in macroeconomic
research.

In the following sections, we use round-number versions of the estimates
in Table I to illustrate the quantitative importance of disasters. We report
the properties of numerical examples in which log consumption growth has a
mean of 0.0200 (2%) and a standard deviation of 0.0350 (3.5%). Similarly, the
log excess return on equity has a mean of 0.0400 and a standard deviation
of 0.1800 and the log return on the one-period bond is 0.0200. Most of these
numbers are similar across the long and short samples. The exception is the
standard deviation of log consumption growth. We use an estimate based on the
long sample because it includes the Great Depression, the one clear disaster
in this sample. None of these numbers are definitive, but they are close to the
values in the table and give us a starting point for considering the quantitative
implications of disasters.

B. Jumps and Disasters

We use a jump model as a way to generate departures from normality and, in
particular, disasters. We follow Barro (2006) in using a two-component struc-
ture for consumption growth g; = ¢,/c;_1,

loggii1 = wep1 + 241, @)

with components (w;, z;) that are independent of each other and over time. The
first component is normal: w ~ A (u, o2). The second component, the “jump,” is
a Poisson mixture of normals. Its central ingredient is a random variable j (the
number of jumps) that takes on nonnegative integer values with probabilities
e “/[j!. The parameter o (“jump intensity”) is the mean of j. Conditional on j,
the jump component is normal:

zlj ~ N(j6, j&*) for j=0,1,2..... 2)

If w is small, the jump model is well approximated by a Bernoulli mixture of
normals. In this case, there is at most one jump per unit of time and it occurs
with probability w. But if w is large, as it is in the option model of Section IV,
there can be a significant probability of multiple jumps.
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This functional form comes with a number of benefits. One is that it is
a flexible functional form that can approximate a wide range of nonnormal
behavior. Another is that it is easily scaled to the different time intervals
observed in option markets (it is “infinitely divisible”). For this reason and
others, this specification is commonly used in work on option pricing, where it
is referred to as the Merton (1976) model. In the macro-finance literature, it
has been applied by Bates (1988), Martin (2007), and Naik and Lee (1990).

If the jump model provides a way to represent departures from normality,
cumulants provide a way to quantify their magnitude. Recall that the moment-
generating function (if it exists) for a random variable x is defined by

h(s;x) = E(e™),

a function of the real variable s. With enough regularity, the cumulant-
generating function, k(s) = log i(s), has the power series expansion

k(s;x) = log E (e%) = Y _ k;(x)s’ /! (3)

J=1

for some suitable range of s. This is a Taylor (Maclaurin) series representation
of k(s) around s = 0 in which the “cumulant” ; is the jt* derivative of k at s = 0.
Cumulants are closely related to moments: «; is the mean, x4 is the variance,
and so on. Skewness Y1 and excess kurtosis y o are scaled versions of the third
and fourth cumulants:

3/2
V1= K3/K2/ . Y2 = kKa/Kg. 4)

The normal distribution for w has the quadratic cumulant-generating function
us + o2s%/2, which implies zero cumulants after the first two. Nonzero high-
order cumulants (k; for j > 3) therefore summarize departures from normality.
We derive the cumulant-generating function for z in Appendix A. Note for
future reference that k(s; ax) = k(as; x) (replace s with as in (3)). Therefore, if x
has cumulants «;, ax has cumulants &/«;. This use of the cumulant-generating
function was suggested by Martin (2009) and recurs throughout the paper.

Since the components are independent, the cumulant-generating function
of logg is the sum of those for w and z. We find cumulants of logg by taking
derivatives of k. The first four are

K1 =u+ wd (5)
ke = 02 + w02+ 82) (6)
K3 = 0)9(92 + 382) (7)

ke = w(0* + 66252 + 35%). (8)
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Note that cumulants reflect complex combinations of parameters. Negative
skewness, for example, requires 6 < 0, but its magnitude depends on w (govern-
ing the probability of jumps), 6 (the mean jump), and § (the dispersion of jumps).

It is important to distinguish between jumps (a modeling tool) and disasters
(the left tail of a distribution). To be concrete, we define disasters as negative
realizations of consumption growth below a threshold —b, for large b > O:
Dy = {logg < —b}. The probability of event D, implied by the jump model (1) is

= ) . > —b—pu—jo\ e “wl
(Dp) = (logg < -blj)-p(j)=) N C— 9
p(De sz(:)p ogg < —blj)- plj ; (\/W) H 9)

where N(-) is a cumulative distribution function of a standard normal variable.
This expression tells us that a specific disaster probability can be generated by
the model in a number of ways. For example, if w is small, as in Barro (2006),
p(Dyp) is approximately equal to a sum of the first two terms (j = 0 and 1).
Thus, one needs relatively large values of 6 and/or § to obtain a nonnegligible
probability value. In contrast, if @ is large, all the terms in the sum contribute
to the p(Dy). Therefore, jump sizes need not be large to generate the same
probability value.

This discussion should not be taken to imply that the jump probability and
sizes are interchangeable. Different values imply different high-order cumu-
lants of consumption and different properties of assets that are sensitive to
high-order cumulants. This is why we need to use information about financial
assets that are sensitive to the probabilities of disasters. High-quality corpo-
rate bonds could be one example. Presumably, such bonds default only in the
case of a disaster. Assuming risk neutrality and zero recovery, the price of a
zero-coupon bond is 1 — p(D). Equity is a cyclical asset as well, so digital put
options on equity will be informative because their price is simply p(D;) under
risk neutrality. Moving to less exotic derivatives, out-of-the-money puts will be
informative about the probability of a disaster as well. In this paper, we focus
on regular puts and calls on equity as our source of additional information
about disasters. This asset class possesses a nice combination of high-quality
data and reliable models. Thus, we are able to extract information from options
in a credible manner.

C. Pricing Kernels, Entropy, and Cumulants

So far, we have been discussing the true probabilities of disasters. However,
extracting these probabilities from option prices requires that one thinks about
the pricing of risks. The pricing kernel is the central tool for this purpose. In
this section, we connect the pricing kernel to a concept of entropy (a measure
of dispersion) that we think clarifies how the risks of departures from lognor-
mality are valued.
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In any arbitrage-free environment, there is a positive random variable m
(the pricing kernel) that satisfies the pricing relation,

Ei(mearl,y) = 1, 10)

for (gross) returns 7/ on all traded assets j. Here E, denotes the expectation
conditional on information available at date ¢. In stationary ergodic settings,
the same relation holds unconditionally as well, that is, with an expectation
E based on the ergodic distribution. In finance, the pricing kernel is often a
statistical construct designed to account for returns on assets of interest. In
macroeconomics, the pricing kernel is tied to macroeconomic quantities such
as consumption growth. In this respect, the pricing kernel is a link between
macroeconomics and finance.

Asset returns alone tell us some of the properties of the pricing kernel,
and hence indirectly about macroeconomic fundamentals. A notable example
is the Hansen—Jagannathan (1991) bound. We use a similar “entropy bound”
derived by Alvarez and Jermann (2005) and Bansal and Lehman (1997). Both
bounds relate measures of pricing kernel dispersion to expected differences in
returns. With this purpose in mind, we define the entropy of a positive random
variable x as

L(x) = log Ex — Elogx. 11)

We account for this use of the term shortly. Entropy has a number of properties
that we use repeatedly. First, entropy is nonnegative and equal to zero only
if x is constant (Jensen’s inequality). In the familiar lognormal case, where
logx ~ N(k1, ko), entropy is L(x) = k9/2 (one-half the variance of logx). We will
see shortly that L(x) also depends on features of the distribution beyond the
first two moments. Second, L(ax) = L(x) for any positive constant a. Third, if x
and y are independent, then L(xy) = L(x) + L(y).

The entropy bound relates the entropy of the pricing kernel to expected
differences in log returns,

L(m) > E(logr/ —logr?), (12)

for any asset j with positive returns. See Appendix B. Here r! is the (gross)
return on a one-period risk-free bond, so the right-hand side is the mean excess
return or premium on asset j over the short rate. Inequality (12) therefore
transforms estimates of return premiums into estimates of the lower bound of
the entropy of the pricing kernel.

The beauty of entropy as a dispersion concept for the study of disasters is
that it includes a role for the departures from normality that they tend to
generate. We can express the entropy of the pricing kernel in terms of the
cumulant-generating function and cumulants of log m:

L(m) = log E(e'*8™) — Elogm

= k(1;logm) — k1(logm) = Zlcj(logm)/j!. (13)
=2
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If logm is normal, entropy is one-half the variance (k2/2), but in general there
will be contributions from skewness («3/3!), excess kurtosis («4/4!), and so on.

Zin (2002, Section II) points out that we can use high-order cumulants to
account for properties of returns that are difficult to explain in lognormal set-
tings. We implement his insight with a three-way decomposition of entropy:
one-half the variance (the lognormal term) and contributions from odd and
even high-order cumulants. Although disasters typically show up in both odd
and even high-order cumulants, odd cumulants reflect their inherent asymme-
try. More generally, the contribution of odd high-order cumulants represents
an adaptation and extension of work on skewness preference by Harvey and
Siddique (2000) and Kraus and Litzenberger (1976): adaptation because it
refers to properties of the log of the pricing kernel rather than its level, and
extension because it involves all odd high-order cumulants, not just skewness.
We compute odd and even cumulants from the odd and even components of the
cumulant-generating function:

Roaa(s) = [k(s) —k(=9)1/2 =Y k;(x)s’ /]!

j=1.3....

Feven(s) = [k(s) + R(—s)1/2 = > kj(x)s’/j!.

j=2.4,..

Odd and even high-order cumulants follow from subtracting the first and second
cumulants, respectively.

D. Risk-Neutral Probabilities

In option-pricing models, there is rarely any mention of a pricing kernel,
although theory tells us one must exist. Option pricers speak instead of true and
risk-neutral probabilities. We use a finite-state iid (independent and identically
distributed) setting to show how pricing kernels and risk-neutral probabilities
are related.

Consider an iid environment with a finite number of states x that occur with
(true) probabilities p(x), positive numbers that represent the frequencies with
which different states occur (the data-generating process, in other words). With
this notation, the pricing relation (10) becomes

E(mri) =) plm(xr/(x) = 1

for (gross) returns r/ on all assets j. A particularly simple example is a one-
period bond, whose price is ¢! = Em = Y ,p(x)m(x) = 1/rl. Risk-neutral (or
better, risk-adjusted) probabilities are

p*(x) = plx)m(x)/Em = p(x)m(x)/q?. (14)

The p*s are probabilities in the sense that they are positive and sum to one,
but they are not the data-generating process. The role of ¢! is to make sure
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they sum to one. They lead to another version of the pricing relation,
') porix) =q'Eri =1, (15)
X

where E* denotes the expectation computed from risk-neutral probabilities. In
(10), the pricing kernel performs two roles: discounting and risk adjustment.
In (15), those roles are divided between q' and p*, respectively.

Option pricing is a natural application of this approach. Consider a put
option, the option to sell an arbitrary asset with future price g(x) at strike
price b. Puts are bets on bad events—the purchaser sells prices below the
strike, the seller buys them—so their prices are an indication of how they
are valued by the market. If the option’s price is ¢” (p for put), its return is
rP(x) = [b — q)]*/g?, where (b — @)t = max {0, b — g}. Equation (15) gives us
its price in terms of risk-neutral probabilities:

q°? = q'E*(b—q)*. (16)

This highlights the role of risk-neutral probabilities in option pricing: as we
vary b, we trace out the risk-neutral distribution of prices g(x) (Breeden and
Litzenberger (1978)).

But what about the pricing kernel and its entropy? Equation (14) gives us
the pricing kernel:

m(x) = q* p*(x)/ p(x). an
Since ¢! is constant in our iid world, the entropy of the pricing kernel is
L(m) = L(p*/p) = log E(p*/p) — Elog(p*/p) = —Elog(p*/p). (18)

The first equality follows because g! is constant (recall that L(ax) = L(x)).
The second follows from the definition of entropy (equation (11)). The last one
follows from

E(p*/p) =) _[p"@)/p®)]pkx) =Y p*x) = 1.

X

The expression on the right of (18) is sometimes referred to as the entropy of
p* relative to p, which accounts for our earlier use of the term.

As before, entropy can be expressed in terms of cumulants. The cumu-
lants in this case are those of log (p*/p), whose cumulant-generating function
is

kls;log(p*/p)] = log E(e*#"/P) = 3 " ;llog(p"/ p)ls’ /.. (19)
j=1
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The definition of entropy (11) contributes the analog to (13) in which entropy
is related to cumulants:

L(p*/p) = kl1;1og(p*/p)] — k1llog(p*/p)]
=Y k;llog(p*/p)l/j! = —r1llog(p*/p). (20)
j=2

The second line follows from k[1; log (p*/p)] = log E(p*/p) = 0 (see above). Here
we can compute entropy from the first cumulant, but it is matched by an ex-
pansion in terms of cumulants two and above, just as it was in the analogous
expression for logm. All of these cumulants are readily computed from deriva-
tives of the cumulant-generating function (19).

To summarize, we can price assets using either a pricing kernel (m) and
true probabilities (p) or the price of a one-period bond (¢') and risk-neutral
probabilities (p*). The three objects (m, p*, p) are interconnected: once we know
two (and the one-period bond price), equation (14) gives us the other. That
leaves us with three kinds of cumulants corresponding, respectively, to the
true distribution of the random variable x, the risk-neutral distribution, and
the true distribution of the log of the pricing kernel. We report all three.

I1. Disasters in Macroeconomic Models and Data

Representative-agent exchange economies generate larger risk premiums
when we include infrequent large declines in consumption growth. We describe
the mechanism with numerical examples that highlight the role of high-order
cumulants. Here and in our study of options we restrict our attention to iid
environments. There are many features of the world that are not iid, but this
simplification allows us to focus without distraction on the distribution of re-
turns, particularly the possibility of extreme negative outcomes (reported in
Table I). We think it is a reasonably good approximation for this purpose, but
return to the issue briefly in Section V.

The economic environment consists of preferences for a representative agent
and a stochastic process for consumption growth. Preferences are governed by
an additive power utility function,

EO Z ﬁtu(ct)5

t=0

with u(c) = ¢1™/(1 — @) and « > 0. We refer to o as risk aversion. The pricing
kernel is

logmy 1 =log B — aloggsy1. (21)

With power utility, the second derivative is negative (risk aversion), the third
positive (skewness preference), and the fourth negative (kurtosis aversion).
The properties of the pricing kernel follow from those of consumption growth.
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Entropy and cumulants follow from the two-component process (1) for con-
sumption growth and the pricing kernel (21). Entropy is

L(m) = L(e=*1988) = L(e=*") + L(e~*?). (22)
The entropy of the components follows from its definition (11):

Le ") = (—a0)?/2 (23)

Lie™?) = wle™*+@*/2 _ 1] 4+ awo. (24)
See Appendix A. The cumulants of logm are related to those of logg by
k;j(logm) = kj(logg)(—a)! /j! = (—a¥ kj(w)/j! + (—a} k;(2)/ ! (25)

for j > 1. See Section I.C.

If log consumption growth is normal, then so is the log of the pricing kernel.
Entropy is then one-half the variance of consumption growth times the risk
aversion parameter squared. The impact of high-order cumulants depends on
(—a)/j!. The minus sign tells us that negative odd cumulants of log consumption
growth generate positive odd cumulants in the log pricing kernel. Negative
skewness in consumption growth, for example, generates positive skewness in
the pricing kernel and thus increases the entropy of the pricing kernel. The
contributions of high-order cumulants are controlled by the coefficient o//;!.
Eventually the denominator grows faster than the numerator, but for moderate
values of j risk aversion can magnify the contributions of high-order cumulants
(those with j > 3) relative to the variance.

We can see the quantitative significance of the jump component with nu-
merical examples based on international macroeconomic evidence. Its role is
evident in Table II in the difference between column (1), the lognormal case,
and column (2), which incorporates a Poisson jump component. In both cases,
the mean and variance of log consumption growth are «;(logg) = 0.020 and
ko(logg) = 0.0352. In column (1), we set u = k1(logg) and o2 = ks(logg). In
column (2), we set @ = 0.01, 6 = —0.3, and § = 0.15, which implies a 1%
chance of a 30% fall (on average) in consumption growth relative to its mean.
Given these values, we adjust the parameters of the normal component to
maintain the mean and variance, whose theoretical values are given in (5)
and (6).

The parameters of the jump component are derived from studies of interna-
tional macroeconomic data by Barro (2006), Barro and Ursua (2008), and Barro
et al. (2009). Each of these studies looks at aggregate output or consumption
over the last century or more for 20-plus countries. Martin (2009) uses the em-
pirical distribution reported by Barro (2006) to set w =0.017,6 = —0.38,and § =
0.25. Wachter (2009) uses exactly the same specification of jump sizes as Barro
(2006). Barro et al. (2009, Section VI.2) estimate a dynamic model, but argue
that its asset pricing implications are the same as an iid model with « = 0.0138
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Table IT
Parameter Values and Properties of Model Economies

Entries are parameters and properties of the models considered. The labels at the top of the
columns describe the model used and the variable on which it is based. Columns (1) to (2) and (4)
to (5) are based on consumption growth. In each one, log consumption growth has a mean of 0.0200
and a standard deviation of 0.0350. We assume that equity is a levered claim on consumption with
leverage A = 5.1 that is selected to match volatility of returns (0.1800). Risk aversion « is chosen
to match the mean equity premium (0.0400). Column (3) is the Merton model parameterized to
option prices and equity returns. Columns (4) and (5) take this model and infer true parameters
of consumption growth by applying the relations implied by power utility. y; and yg are the
measures of skewness and excess kurtosis, defined in equation (4). We report these for the true
distribution of log consumption growth or the log return on equity, the risk-neutral distribution,

and the distribution of the pricing kernel. Tail probabilities, p(Djp), are defined in equation (9)
1/2

with —b = «1 — nky’",n =3 or 5.
Bivariate
Lognormal Poisson Merton Implied Implied
Cons Gr Cons Gr Returns  Cons Gr Cons Gr
Parameter (6] (2) (3) (4) (5)
Preferences
«a (risk aversion) 8.92 5.19 — 8.70 14.94
True distribution
1 (mean) 0.0200 0.0230 0.0792 0.0303 0.0269
o (volatility) 0.0350 0.0100 0.1699 0.0253 0.0265
o (jump intensity) — 0.0100 1.5120 1.3987 1.3452
0 (mean jump size) — —0.3000 —-0.0259 —-0.0074 —0.0051
3 (volatility of jumps) — 0.1500 0.0407 0.0191 0.0191
Risk-neutral distribution
u* (mean) 0.0091 0.0225 0.0584 0.0247 0.0233
®* (jump intensity) — 0.0642 1.5120 1.5120 1.5120
0* (mean jump size) — —-0.4168 —-0.0542 —0.0105 —0.0105
§* (volatility of jumps) — 0.1500 0.0981 0.0191 0.0191
Skewness, excess kurtosis, and tail probabilities
y1 (true skewness) 0 —11.02 —0.04 —-0.28 -0.19
yo (true kurtosis) 0 145.06 0.02 0.48 0.41
v} (risk-neutral skewness) 0 —4.51 -0.25 —0.38 —0.36
s (risk-neutral kurtosis) 0 21.96 0.30 0.53 0.49
y1 (logm skewness) 0 11.02 -0.12 0.28 0.18
y9 (logm kurtosis) 0 145.06 2.21 0.48 0.41
p(Dy) (tail prob < —3 st dev) 0.0013 0.0090 0.0032 0.0081 0.0056
p(Dy) (tail prob < —5 st dev) 0.0000 0.0079 0.0000 0.0001 0.00005
Entropy
L(m) = L(p*/p) 0.0487 0.0400 0.7747 0.0478 0.1424

(corresponding to their p) and = —0.357 (corresponding to their log (1 — b)). We
use more modest values to avoid overstating the role of jumps and to keep the
variance of the normal component positive. These numbers nevertheless sug-
gest what may seem to be an excessively large probability of an extremely bad
outcome given U.S. history, but that is what the international evidence implies.
We return to this issue when we look at the distribution implied by options.
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Figure 1. Poisson jumps: cumulants of log consumption growth and contributions to
entropy. The panels graph terms in the power series expansion of entropy, equation (13), for the
consumption-based asset pricing model with a Poisson-normal jump component. The top panel
plots the j* cumulant of log consumption growth, « j(log g), against its order j. The next two panels
plot the contribution to entropy of the j™ term, kjlogm)j! = (—aYx;(logg)lj!, against j for risk
aversion « equal to 2 and 10, respectively. The model and parameter values are reported in Section
IIT and in column (2) of Table II.

With these numbers, we can explore the ability of the model to satisfy the
entropy bound. The observed equity premium implies that the entropy of the
pricing kernel is at least 0.0400. In the lognormal case, the entropy bound
implies o%k9(logg)/2 = «?0.0350%/2 > 0.0400 or o > 8.08. We can satisfy the
entropy bound for the equity premium, but only with a risk aversion parameter
greater than eight. There is a range of opinion about this, but some argue that
risk aversion this large implies implausible behavior along other dimensions;
see, for example, the discussion in Campanale, Castro, and Clementi (2010,
Section IV.3) and the references cited there.

When we add the jump component, a smaller risk aversion parameter suf-
fices. Since the mean and variance of log consumption growth are the same,
the experiment has a partial derivative flavor: it measures the impact of high-
order cumulants, holding constant the mean and variance. The jump com-
ponent introduces negative skewness and positive excess kurtosis into log
consumption growth. Both are evident in the first panel of Figure 1, where
we plot cumulants two to eight for log consumption growth. Each cumulant
«;(logg) makes a contribution «;(logg)(—a)/j! to the entropy of the pricing
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Table IIT
Components of Entropy for Model Economies
Entries include entropy of the pricing kernel and its components for a variety of models. Entropy
is the sum of contributions from the variance and from odd and even high-order cumulants (those
of order j > 3). An asterisk denotes a value of risk aversion o that matches the observed equity
premium.

High-Order
Cumulants
Model Entropy Variance/2 Odd Even
Normal consumption growth
a=2 0.0025 0.0025 0 0
a=5 0.0153 0.0153 0 0
a=10 0.0613 0.0613 0 0
o = 8.92% 0.0487 0.0487 0 0
Poisson-normal consumption growth
a=2 0.0033 0.0025 0.0007 0.0002
a=5 0.0356 0.0153 0.0132 0.0071
a=10 0.5837 0.0613 0.2786 0.2439
a =10, 6 = +0.3 (boom) 0.0265 0.0613 -0.2786 0.2439
« = 5.19% 0.0400 0.0165 0.0151 0.0084
Models fit to option prices
Merton equity returns 0.7747 0.4720 0.1127 0.1900
Implied consumption growth (univariate) 0.0478 0.0464 0.0013 0.0002
Implied consumption growth (bivariate) 0.1424 0.1368 0.0044 0.0013

kernel. The next two panels of the figure show how the contributions de-
pend on risk aversion. With o = 2, negative skewness in consumption growth
translates into a positive contribution to entropy, but the contribution of high-
order cumulants overall is small relative to the contribution of the variance.
That changes dramatically when we increase «. Even small high-order cumu-
lants make significant contributions to entropy if « is large enough (see also
Table III).

Figure 2 gives us another perspective on the same issue: the impact of high-
order cumulants on the entropy of the pricing kernel as a function of the risk
aversion parameter «. The horizontal line is the lower bound, our estimate
of the equity premium in U.S. data. The line labeled “lognormal” is entropy
without the jump component. We see, as we noted earlier, that the entropy of
the pricing kernel for the lognormal case is below the lower bound until « is
above eight. The line labeled “disasters” incorporates the jump component. The
difference between the two lines shows that the overall contribution of high-
order cumulants is positive and increases sharply with risk aversion. Table III
implies that when o = 2 the extra terms increase entropy by 32%, but when
«a = 10 the increase is 850%.

It is essential that the jumps be bad outcomes. If we reverse the sign of 9,
so that the mean jump is positive, the result is the line labeled “booms” in
Figure 2. We see that, for every value of «, entropy is below even the lognormal
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Figure 2. Poisson jumps: entropy of the pricing kernel. The lines represent versions of the
consumption-based asset pricing model with Poisson jumps outlined in Section III. The middle line
is the lognormal model: log consumption growth is normal and there is no jump component. The
top line shows how a jump component (infrequent large negative realizations) increases entropy.
The bottom line shows how this changes when the jump is positive (infrequent large positive
realizations).

case. Table III shows us exactly how this works. With jumps (and « = 10),
the entropy of the pricing kernel (0.5837) comes from the variance (0.0613),
odd high-order cumulants (0.2786), and even high-order cumulants (0.2439).
When we switch to booms, the odd cumulants change sign—see equation (25)—
reducing total entropy.

The jump model increases the probability of extreme negative values of
consumption growth D, relative to the lognormal benchmark. We see in
Table II that the probability of log consumption growth more than three
standard deviations to the left of its mean (—b:/cl—3/<;/2 in (9)) is 0.13% in
the lognormal case (column (1)) but 0.9% in the Poisson case (column (2)).
This corresponds to a drop in consumption of more than 8.5%, some-
thing seen only once in U.S. history—in 1931, when consumption fell by
9.9%. Thus, a 1% event has occurred once in slightly more than a century
of U.S. history. In this respect, the examples correspond roughly to U.S.
experience.

In other respects, the examples are more extreme than U.S. history, implying
larger departures from lognormality that we have observed. The model implies,
for example, skewness of log consumption growth of —11.02 (the entry labeled
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y1(true) in Table II). In U.S. data, our estimate is a much more modest —0.34
(the entry labeled skewness in Table I). Excess kurtosis (y9) is similar. This
is, of course, Barro’s (2006) argument: that what we have seen in U.S. data
may not accurately reflect the distribution of what might have happened. That
discussion leads us to study options, which in principle reflect the distribution
used by market participants.

II1. Risk-Neutral Probabilities in Representative-Agent Models

As a warmup for our study of options, we derive the risk-neutral probabilities
implied by the examples of the previous section and use them to compute the
risk-neutral parameters reported in Table II. The state spaces have continuous
components, but the logic of Section I.D follows with integrals replacing sums
where appropriate. In representative-agent models, risk aversion generates
risk-neutral distributions that are shifted left (more pessimistic) relative to
true distributions. The form of this shift depends on the distribution. More
generally, we might think of any such shift as representing something like risk
aversion.

Our first example has lognormal consumption growth. Suppose logg = w
with w ~ N(u, 02). Then we have

p(w) = 2ro?) 12 exp[—(w — n)?/202].

The pricing kernel is m(w) = Bexp(—aw) and the one-period bond price is
q' = Em = Bexp[— au + (x0)?/2]. Equation (14) gives us the risk-neutral
probabilities:

p*(w) = pw)m(w)/q' = 2ro2)" 12 exp[—(w — u + ac2)?/202].

Thus, the risk-neutral distribution has the same form (normal) with mean
w* = u — ao? and standard deviation o* = o. The former shows us that the
distribution shifts to the left by an amount proportional to risk aversion « and
risk o2. The log probability ratio is

log[p*(w)/p(w)] = [(w — w)? — (w — u*)?1/202,
which implies the cumulant-generating function

(o — p*)?

952 (—s +s2).

kls;log(p*/p)] = log E(es1o8P"/P) =
The cumulants are (evidently) zero after the first two. Entropy follows from
equation (20),

(1 — p*)?

552 = (@o)?/2,

L(p*/p) =

which is what we reported in equation (23).
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In our second example, consumption growth follows the Poisson-normal mix-
ture described by equation (2). We derive the risk-neutral distribution from the
cumulant-generating function. This approach works with the previous exam-
ple, too, but it is particularly convenient here. With power utility, the cumulant-
generating function of the risk-neutral distribution is

k*(s) = k(s — a) — k(—a).
See Appendix C. Since k(s) = wlexp (s6 + (s8)%/2) — 1] (Appendix A), we have

E(s) = we—@0H@P/2[ps(0—as®)+(s8)%/2 _ 1],

This has the same form as k(s) and describes a Poisson-normal mixture with
parameters

wf = we @2 gr — g g52 5 =, (26)

Similar expressions are derived by Bates (1988), Martin (2007), and Naik and
Lee (1990). Risk aversion (¢ > 0) places more weight on bad outcomes in two
ways: they occur more frequently (w* > w if # < 0) and are on average worse
(0* < 0). Entropy is the same as equation (24).

Multi-component models combine these ingredients. If log consumption
growth is the sum of independent components, then entropy is the sum of
the entropies of the components, as in equation (22).

IV. Disasters in Option Models and Data

In the macro-finance literature, pricing kernels are typically constructed
as in Section III: we apply a preference ordering (power utility in our case)
to an estimated process for consumption growth (lognormal or otherwise). In
the option-pricing literature, pricing kernels are constructed from asset prices
alone: we estimate true probabilities from time-series data on prices or returns,
estimate risk-neutral probabilities from the cross-section of option prices, and
compute the pricing kernel from the ratio. The approaches are complementary;
they generate pricing kernels from different data. The question is whether they
lead to similar conclusions. Do options on U.S. equity indexes imply the same
kinds of extreme events that Barro and Rietz suggested? Equity index options
are a particularly informative class of assets for this purpose, because they tell
us not only the market price of equity returns overall, but the prices of specific
outcomes.

A. The Merton Model

We look at option prices through the lens of the Merton (1976) model, a
functional form that has been widely used in the empirical literature on option
prices. The starting point is a stochastic process for asset prices or returns.
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Since we are interested in the return on equity, we let
logrf,; —logr! = wei1 4 241 27

We use the return, rather than the price, but the logic is the same either way.
As before, the components (w;, z;) are independent of each other and over time.
Market pricing of risk is built into differences between the true and risk-neutral
distributions of the components. We give the distributions the same form, but
allow them to have different parameters. The first component, w, has true
distribution N(u, 02) and risk-neutral distribution AV («*, 62). By convention, o
is the same in both distributions, a byproduct of its continuous-time origins.
The second component, z, is a Poisson-normal mixture. The true distribution
has jump intensity » and the jumps are N (6, §2). The risk-neutral distribution
has the same form with parameters (o*, 6%, §*). The structure and notation will
be familiar from Section I.B. Appendix D summarizes the option valuation in
the framework of this model.

The Merton model has been widely used in empirical studies of asset pricing,
where the parameters of the jump component provide flexibility over the form
of departures from normality. It also scales easily to different time intervals,
as we show in Appendix E. That is helpful here because it allows us to use the
model to price options for a range of maturities. The simplest way to describe
this is with the cumulant-generating function, which is proportional to the time
interval. Entropy and cumulants scale the same way.

Related work supports a return process with these features. Ait-Sahalia,
Wang, and Yared (2001) report a discrepancy between the risk-neutral density
of S&P 500 index returns implied by the cross-section of options and the time
series of the underlying asset returns, but conclude that the discrepancy can
be resolved by introducing a jump component. One might go on to argue that
two jumps are needed: one for macroeconomic disasters and another for more
frequent but less extreme financial crashes. However, Bates (2010) studies the
U.S. stock market over the period 1926 to 2009 and shows that a second jump
component plays no role in accounting for macroeconomic events like the Great
Depression.

Given this structure, the pricing kernel follows from equation (17). Its en-
tropy is

L(m) = L(p*/p)

(= p)?
o 202

. w § (0 —6%2 4 (82 —5*2)
(28)

This expression and the corresponding cumulant-generating function are de-
rived in Appendix F.

B. Parameter Values

We use parameter values from Broadie et al. (2007), who summarize and
extend the existing literature on equity index options. Their estimates also
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include stochastic volatility. We make volatility constant, but we think the
simplification is innocuous for our purposes. For one thing, the volatility smile
of our iid model is almost the same as the smile generated by the more general
model with the volatility state variable set equal to its mean. For another,
the smile in the iid model is very close to the average smile in the stochastic
volatility model.

The parameters of the true distribution are estimated from the time se-
ries of excess returns on equity. We use the parameters of the Poisson-normal
mixture—namely, (w, 6, §)—reported in Broadie et al. (2007, Table I, the line
labeled SVJ EJP). The estimated jump intensity w is 1.512, which implies much
more frequent jumps than we used in our consumption-based model. With this
value, the probability of zero jumps per year is 0.220, one jump per year 0.333,
two jumps 0.25, three jumps 0.13, four jumps 0.05, and seven or more jumps
about 0.001. The jumps have mean § = —0.0259 and standard deviation § =
0.0407. Given parameters for the Poisson-normal component, the mean x and
standard deviation o of the normal component are chosen to match the mean
and variance of excess returns to their target values (0.0400 and 0.18002, re-
spectively). In the model, the mean excess return (the equity premium) is u +
w0, which determines . The variance is 02 + w(6? + §2), which determines o.
All of these numbers are reported in column (4) of Table II.

The risk-neutral parameters for the Poisson-normal mixture are estimated
from the cross-section of option prices: specifically, prices of options on the S&P
500 over the period 1987 to 2003. The depth of the market varies both over
time and by the range of strike prices and maturities, but there are enough
options to allow reasonably precise estimates of the parameters. The numbers
we report in Table II are from Broadie et al. (2007, Table IV, line 5). In practice,
option prices identify only the product w*6%*, so they set v* = w and choose 6*
and §* to match the level and shape of the implied volatility smile. Given values
for (w*, 6%, §%), we set u* to satisfy (15), which implies u* 4+ 02/2 + w*[exp (0* +
§%2/2) — 1] = 0.

Figure 3 shows how the jump mean 6* and standard deviation 6% affect
the cross-section of 3-month option prices. The relevant formulas are reported
in Appendices D and E. We express prices as implied volatilities and graph
them against “moneyness,” with higher strike prices to the right. We measure
moneyness as the proportional deviation of the strike from the price: (strike —
price)/price. A value of zero is therefore equivalent to an at-the-money option
(strike = price) or an option on the return at a strike of zero. We use 3-month
rather than 1-year options because departures from lognormality (flat volatil-
ity smiles) are more obvious at the shorter maturity. In the figure, the solid
line represents the implied volatility smile in the model. Since the model fits
extremely well, we can take this as a reasonable representation of the data.
The downward slope and convex shape are both evidence of departures from
lognormality. The second line illustrates the role of the jump mean 6*: when we
divide it by two, the line is flatter. By making the mean jump size smaller, we
reduce the value of out-of-the-money puts. The third line illustrates the role of
the jump variance §%2: when we divide it by two, the smile has less curvature.
Both lines lie below the estimated one, so the estimated parameters evidently
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Figure 3. Option model: implied volatility smiles for 3-month options. The lines represent
implied “volatility smiles” for the Merton model with estimated parameters and some alternatives.
Moneyness is measured as the proportional difference of the strike from the price, (strike —
price)/price. For the solid line the parameters are those reported in column (4) of Table II. For the
second line, we divide the jump mean 6* by two. For the bottom line, we divide the jump variance
8*2 by two.

help to account for the observed premium of implied volatilities over the true
standard deviation of equity returns (0.1800 in our model).

C. Pricing Kernel Implied by Options

We compute the pricing kernel from the ratio of risk neutral to true prob-
abilities, as in equation (17). It therefore incorporates evidence on the time
series of returns (the source of information about p) as well as option prices
(the source of information about p*). The properties of the pricing kernel are
reported in Tables II and III and Figure 4. We compare the pricing kernel
with consumption-based models in the next section, but for now simply note its
salient features.

The most striking feature of the pricing kernel is its entropy of 0.7747,
which is more than an order of magnitude larger than the equity premium
(0.0400) (column (3) of Table II). This reflects, in large part, the high price of
options. Prices are high in the sense that selling them generates high average
returns; see, for example, the extensive literature review in Broadie et al. (2009,
Appendix A). These high average returns imply high entropy via the entropy
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Figure 4. Option model: cumulants of equity returns and contributions to entropy. The
figure summarizes properties of the estimated Merton model using parameters reported in column
(4) of Table II. The top panel shows cumulants of the log excess return on equity based on its
(estimated) true distribution. The second panel shows contributions to entropy of the cumulants
of logm. The contribution of order j is «;(log m)/j!, where «;(logm) is the ™ cumulant of logm. The
third panel is the same with #* and §*2 each divided by two.

bound, even though the model’s parameters are chosen to match the equity
premium exactly. Evidently a bound based on the equity premium is too loose:
other investment strategies generate significantly higher average excess re-
turns and therefore imply higher entropy.

The primary source of entropy in this case is the variance of the implied log-
pricing kernel: the contribution of the variance is 0.4720, or 61% of the total.
High-order cumulants also make significant contributions: 0.1127 (15%) and
0.1900 (25%) from, respectively, odd and even high-order cumulants (Table III).
Like the smile itself, these numbers verify that departures from the lognormal
model are quantitatively important.

Figure 4 illustrates the impact of individual cumulants. The top panel shows
that high-order cumulants of equity excess returns are small relative to the
variance. We know, however, that the model generates nonzero skewness and
excess kurtosis (Table IT). Contributions of high-order cumulants to entropy are
reported in the second panel. As we noted, the contributions are small relative
to the variance but quantitatively important. When we divide the jump mean 6*
and variance §*2 by two (the third panel of Figure 4), the contributions decline



1992 The Journal of Finance®

across the board, much as when we reduce risk aversion in consumption-based
models.

V. Comparing Macroeconomic and Option Models

So far, we show that both option prices and international macroeconomic
data suggest significant departures from the lognormal model. Here we ex-
plore their differences. As we have seen, the macro- and option-based modeling
approaches have two degrees of separation: the latter characterizes the risk-
neutral distribution of equity returns, while the former is concerned with the
true distribution of consumption growth. The challenge is to link these two
objects. Since there is no standard resolution of this problem, we compare
the two approaches along the three dimensions suggested by equation (17):
the true distribution, the risk-neutral distribution, and their ratio, the pric-
ing kernel. Each gives us a different perspective on the two sources of data
and is based on different theoretical structure. First, we compare the macro-
based pricing kernel to one derived from option prices and returns (Section
1.D). Second, we compare the macro-based risk-neutral distribution of equity
returns (Sections II and III) to the same distribution based on option prices
(Section IV). Third, we compare the true distribution of consumption growth
evident in international macroeconomic data to the same distribution derived
from option prices.

We need one final piece of theory to connect equity returns to consumption
growth. Equity returns then allow us to calibrate the risk aversion parameter
a. We define levered equity as a claim to the dividend

d, = c. (29)

This is not, of course, either equity or levered, but it is a convenient functional
form that is widely used in the macro-finance literature to connect consumption
growth (the foundation for the pricing kernel) to returns on equity (the asset
of interest). See Abel (1999, Section I1.2). In the iid case, the log excess return
is a linear function of log consumption growth:

logr?

¢ 1 —logr},; = Alog g1 + constant. (30)

See Appendix G. This tight connection between equity returns and consumption
growth overstates how closely these two variables are related, but it captures
in a simple way the obvious cyclical variation in the stock market. We consider
alternatives later in this section, but for now it serves as a useful simplification.
Given these assumptions, the equity premium has a compact representation in
terms of the cumulant-generating function of consumption growth:

E (logrf , —logr} ) = ici(logg) + k(—a;logg) — k(A — a;logg).  (31)

See Appendix G.
The leverage parameter A allows us to control the variance of the equity
return separately from the variance of consumption growth and thus to match
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both. We use an excess return variance of 0.18002, so A is the ratio of the
standard deviation of the excess return (0.1800) to the standard deviation of
log consumption growth (0.0350), approximately 5.1.

A. Comparing Pricing Kernels

We start with a direct comparison of the pricing kernels derived in Sections
IT and IV. Their entropies and the relevant parameter values are reported in
columns (2) and (3) of Table II. In the macro or consumption-based model, we
set « = 5.19 to match the target equity premium of 0.0400, computed from
equation (31).

One clear difference between the two models is their total entropy, which is
much larger in the option model. Another is the relative contribution of high-
order cumulants, which is significantly smaller in the option model. High-order
cumulants contribute 59% of the entropy in the consumption model (the row
of Table III labeled “Poisson consumption growth, @ = 5.19”) but only 39% in
the option model (the row labeled “Merton equity returns”). Most relevant to
disaster research, the contribution of odd high-order cumulants is 38% in the
consumption model but only 15% in the option model. These numbers indicate
significant departures from lognormality in both models, but they are relatively
smaller in the option model.

Thisis, to be sure, a somewhat odd result. Options imply lots of entropy, which
is, after all, one of the benefits of introducing disasters into asset pricing models.
But it does so primarily by increasing the variance of the log pricing kernel.
The relative contribution of odd high-order cumulants remains important but
smaller than we see in the consumption-based model.

B. Comparing Option Prices

Our second comparison involves option prices, which reflect the risk-neutral
distribution of equity returns. We compute option prices for the consumption
model in two steps. First, the parameters of the risk-neutral distribution of
log consumption growth follow from power utility and the transformations
described in equation (26). The results are reported in column (2) of Table II.
Second, equation (30) implies that equity excess returns are a scaled version
of consumption growth with scale parameter A. This scaling leads us to replace
the parameters (o *, w*, 0%, §%) with (Ac*, w*, A0%, A6¥). See Appendix E. The
result has the same form as the Merton model but different parameters.

Implied volatility smiles for the consumption- and option-based models are
pictured in Figure 5 . Similar consumption-based option prices are reported by
Benzoni, Collin-Dufresne, and Goldstein (2011) and Du (2008). What is new is
the explicit comparison to an estimated option-pricing benchmark. As before,
we use 3-month options to highlight departures from the lognormal model.
The top line (labeled “option-based model”) refers to the model based on option
prices. It is the same as the top line in Figure 3. The bottom line (labeled
“consumption-based model”) refers to the model derived from consumption
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Figure 5. Implied volatility smiles based on option and consumption data. The lines rep-
resent implied volatility “smiles” for the Merton model with three different sets of parameters.
The top line comes from Figure 3 and uses parameters estimated from option prices. The shape
looks different from that in Figure 3 because of the difference in ranges on the y-axes. The bot-
tom line uses parameters estimated from consumption data, extrapolated to equity returns using
equation (30). The middle line is based on a bivariate model of consumption growth and equity
returns with correlation chosen to match U.S. data.

data as described in the previous paragraph. The implications of the two sets
of parameter values are clearly different. The consumption-based calibration
has a steeper smile, greater curvature, and lower at-the-money volatility. This
follows, in part, from its greater risk-neutral skewness and excess kurtosis
(columns (3) and (4) of Table II). They suggest higher risk-neutral probabilities
of large disasters (the left side of the figure) and lower probabilities of less
extreme outcomes (the middle and right of the figure). These differences in the
underlying distributions result in significantly different option prices.

C. Comparing Consumption Disasters

Now consider the reverse, thatis, the true distribution of consumption growth
implied by option prices. How does it compare to the distribution estimated from
international macroeconomic data? For the option model, this involves taking
the risk-neutral distribution of returns implied by option prices and computing
the true distribution of consumption growth. We no longer need an estimate
of the true distribution from returns data. Instead, we use power utility to
link true to risk-neutral parameters and equation (30) to link consumption
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growth to returns. This imposes different structure from the option model on
the connection between true and risk-neutral parameters. For example, the
restriction w = w* used in the option model no longer holds.

The calculations are analogous to the previous comparison. First, we use
the scale parameter A to transform risk-neutral parameters for equity returns
in the Merton model into risk-neutral parameters for consumption growth.
This involves replacing (w*, 6%, §*) in column (3) of Table II with (w™*, 6%/A,
8*/)), as outlined in Appendix E. Second, expressions (26) link the risk-neutral
parameters of the consumption distribution to their counterparts (w, 6, §) for
the true distribution. Finally, © and o are selected to match our target values
for the mean and standard deviation of log consumption growth; see equations
(5) and (6). Risk aversion « is then chosen to match the equity premium. The
jump parameters w and 6 depend on «, the two true normal parameters 1 and o
depend on the true jump parameters, and « depends on all the true parameters.
Thus, we have a system of five equations in five unknowns.

The consumption process derived this way from option prices (column (4) of
Table II) has the same Poisson-normal distribution as the consumption process
estimated from international macroeconomic data (column (2)). The parame-
ters, however, are much different. In the consumption-based model, there is
a small chance (governed by the jump intensity @ = 0.01) of a large jump
(the mean jump 6 = —0.3 is 8.6 standard deviations of consumption growth).
In the option-based model, there is a larger chance (jump intensity is w =
1.3987) of a much smaller jump (the mean jump 6 = —0.0074 is 0.21 standard
deviations). Both models generate disasters in the sense that the probabili-
ties of tail events are much larger than in the lognormal case (column (1)).
The probability of a three standard deviation drop in consumption (=6 = «;
- BK;/ Zin (9)), similar to the United States in the Great Depression, is about
1% in each case. However, declines in consumption of more than five standard
deviations are much more likely in the consumption-based model (probability
0.0079) than in the option-based model (0.0001). Events of this magnitude have
not been observed in U.S. history, so the models disagree on events that have
never occurred. The difference in tail probabilities is reflected in their cumu-
lants. Skewness and excess kurtosis are —11.01 and 145.06, respectively, in the
consumption-based model, but only —0.28 and 0.48 in the option-based model.
The latter are much closer to the sample statistics reported in Table I than the
former.

This leaves us with an alternative to the popular “Barro” calibration of disas-
ters. The parameter values in column (4) have three useful properties: (i) they
match the equity premium, (ii) they match the implied volatility smile of option
prices, and (iii) they are consistent with U.S. consumption data. Properties (i)
and (ii) are true by construction; (iii) is an implication.

The mechanism for matching these properties is different from the Barro
calibration: while leverage X is the same as in the Poisson consumption-based
model (column (2) of Table II), risk aversion is not much smaller than in the log-
normal case (column (1) of Table II) and much larger than in the Poisson model.
So, the difference in jump parameters leads to the difference in risk aversion
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Figure 6. Equity returns and consumption growth in U.S. data. The dots represent annual
observations of the log excess return on equity and the log of per capita consumption growth over
the period 1889 to 2009. The data come from Shiller (2009), updated as needed.

that is required to match equity premium. Relatively high risk aversion does
not imply that nonnormalities do not matter: the log-normal model would not
be able to match items (ii) and (iii).

Finally, our alternative implied calibration does not solve all the problems.
There is a tension in the model highlighted by the fact that the entropy of the
implied calibration is not much higher than that in the Poisson consumption-
based model and much lower than that in the Merton option-based model. This
suggests that the implied calibration will have difficulty matching option risk
premia (option excess returns).

D. A Bivariate Model of Consumption and Equity Returns

Our comparisons of option prices and consumption growth rely on the tight
connection between consumption growth and equity returns imposed by (30).
We follow a long tradition in doing so, but consider an alternative here that is
more closely based on the evidence. Figure 6 shows that consumption growth
and equity returns have been strongly correlated, but the sample correlation
is 0.566, not one.

Consider, then, a bivariate model of consumption growth and dividends (we
will come to returns shortly) with arbitrary correlation between the two. Does
allowing imperfect correlation affect our conclusion that option prices imply
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smaller probabilities of disasters than international macroeconomic data? The
answer is no, but we think it is worth working through the details.

Let logg™ = (logg, loggs) be a vector whose elements are log consumption
and dividend growth: g1;11 = ¢;11/c; and gos 11 = dysy1/d;. A bivariate jump process
analogous to (1) is

loggii1 = 8 + w1 + 2e41,

where w and z are bivariate and independent of each other and over time.
The intercept 2 has elements n§. The first component is bivariate normal:
w; ~ N(0, ), where ¥ has elements o;;. The second component is a Poisson
mixture of bivariate normals. Jumps occur with Poisson intensity ». Each
jump generates a draw from the bivariate normal distribution N'(6, A), where
6 and A have elements 0; and §;;. This process is a special case of that used by
Ait-Sahalia, Cacho-Diaz, and Hurd (2009) and similar to consumption-dividend
processes used by Gabaix (2010) and Longstaff and Piazzesi (2004). This bi-
variate process is a modest generalization of (29). It allows us to maintain
the scaling performed by (29) without imposing a correlation of one. Scaling
includes Mg = )L[Lgl, 092 = )\.2011, 092 = )\.01, and 322 = )\2511.

With this process for consumption and dividend growth, the joint process for
consumption growth and equity returns has a similar structure. If

x| = (x1, x9) = (log gy, logr® —logr?),
then

Xpp1 = M+ Weg1 + Zp41-
Here w and z are the same as above and 1 has elements
(11, po) = (15, E (logrf,; —logri,) — wnréy).
The equity premium is
E (logrf ; —logrl ;) = A (1§ + wb1) + k((—a, 0);logg) — k((—a, 1);1logg). (32)

See Appendix G.

We choose parameter values that reproduce the mean and variance of log
consumption growth, the mean and variance of the log excess return on equity,
and the correlation between them. Consider the components in turn. We use
the parameters reported in column (2) of Table II for the (true) consumption
process. Here we label them (11, 0142, w, 01,8 }{2). The parameters of the return
process are scaled versions of the same numbers as described above. The jump
intensity w is, of course, the same. We choose risk aversion « to match the equity
premium (32). The correlation depends on the mean jumps and the correlations
Pw = 0'12/(011022)1/2 and Pz = 512/(811322)1/2. If Pw = Pz = P, then the correlation
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between consumption and returns is

po11 + o(0F + pd11)
o11 + (67 + 811)

Corr(x1, x9) = (33)

See Appendix H. We set p to match the correlation in the data (0.566).
Option pricing follows directly from the risk-neutral distribution over equity
returns. With power utility, we have

2
w* = we 0T 511/2, 92* =60y — ad19, 8;2 = 899.

See Appendix H. With appropriate redefinition of parameters, option pricing
has the same structure as in Section IV and Appendix D.

If consumption growth and equity returns are perfectly correlated, this proce-
dure reproduces the calculation of consumption-based option prices in Figure 5.
For the correlation observed in the data, the result is the middle line in the
same figure. We see that the two consumption-based lines are similar to each
other and notably different from the smile estimated from option prices. It
appears, then, that the perfect correlation between consumption growth and
equity returns is not the source of the sharp difference between volatility smiles
based on option prices and consumption data.

Now consider the consumption growth process implied by option prices in this
bivariate setting. First, we use the scale parameter A to transform risk-neutral
parameters for equity returns into risk-neutral parameters for consumption
growth. This involves setting (w*, 6%, §%,) = (0*, 6%/1, §*2/A?) for reasons outlined
in Appendix E, where (0¥, 6%, §*%) are parameters estimated from option prices
and reported in column (3) of Table II. Second, the expressions

(1)* — we—a91+a2811/2 ,

0] =61 —ad11, 87 =41

from Appendix H link the risk-neutral parameters of consumption to their
counterparts (w, 01, §11) of the true distribution. The parameters of the normal
component of consumption growth, 1; and 011, are chosen to match our target
values for the mean and standard deviation of log consumption growth:

0.0200 = /q(loggl) = U1+ wbq
0.03502 = ko(loggy) = 011 + w(912 + 511).

The correlation p is chosen to match the sample correlation between consump-
tion growth and equity returns, as in (33). Risk aversion « is chosen to match
the equity premium (32). The two true jump parameters o and 6; depend
on «, the two true normal parameters u; and o1; depend on the true jump
parameters, p depends on true jump parameters and 011, and o depends on all
the true parameters. Thus, we have to solve a system of six equations in six
unknowns.

As in the univariate case, the consumption process derived this way from
option prices (column (5) of Table II) has the same Poisson-normal distribu-
tion as the consumption process estimated from international macroeconomic
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evidence (column (2)). The parameters are, however, different. With the ex-
ception of risk aversion, the difference between columns (2) and (5) is similar
to the difference between columns (2) and (4), the latter being the univariate
case. The need for higher risk aversion reflects the lower correlation between
dividends and consumption. Again, it seems that allowing a smaller correlation
does not have a large impact on the consumption process derived from option
prices.

E. Discussion

One might ask, in the end, whether options reliably identify extreme events
(disasters) in consumption. We think the answer is yes, but let us run through
the argument. There are two degrees of separation between equity options
and consumption: options identify the risk-neutral distribution of returns and
we are interested in the true distribution of consumption growth. The first
link is between true and risk-neutral returns. We have seen that a direct
estimate of the true distribution of returns shares with the estimated risk-
neutral distribution modest values of skewness and excess kurtosis (column
(3) of Table II). The second link is between returns and consumption growth.
When the two are perfectly correlated, as they are in equation (30), their skew-
ness, excess kurtosis, and tail probabilities (measured in standard deviation
units) are the same. The contrast along these dimensions between distribu-
tions based on international consumption data (column (2)) and option prices
(columns (3)—(5)) is striking. So, too, is the difference between implied volatil-
ities based on option prices and consumption data (Figure 5). Finally, the
evidence on the relation between equity returns and consumption growth
(Figure 6) and the limited impact of imperfect correlation on option prices
(Figure 5) and on option-implied consumption growth (columns (4) and (5)
of Table II) suggest that option prices are a reasonably good indicator of the
likelihood of disasters in consumption growth. It is possible that future work
using other methods will detect a significant difference between the tail be-
havior of consumption growth and equity returns. In the meantime, we think
the evidence indicates that equity index options imply smaller probabilities of
consumption disasters than the international macroeconomic evidence.

We have described, in a relatively simple theoretical setting, how option
prices can be used to infer probabilities of extreme outcomes, including the
infrequent sharp declines in consumption growth documented in international
macroeconomic data by Barro and others. We find that the distribution of
outcomes implied by option prices is less extreme than the macroeconomic
evidence suggests. Nonetheless, this option-implied distribution is capable of
matching the equity premium, option prices, and consumption moments in
a simple setting of iid consumption growth and power utility over aggregate
consumption.

Can we make further progress by relaxing these assumptions? In general, the
answer must be yes. The most recent generation of dynamic asset pricing mod-
els is capable of capturing important features of the data by combining exotic
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preferences with non-iid consumption dynamics. However, this work focuses
on intertemporal properties of the asset prices, such as return predictability,
volatility persistence, and yield curve modeling. Here we focus on the drivers
of the unconditional moments of consumption and asset prices listed in Table I.
Although this is not the last word on the subject, we think the models we con-
sider are well suited to the task. They are also relatively transparent, which
we think adds to our understanding of their properties.

Consider the iid assumption. Our objective is to characterize the uncon-
ditional distribution of consumption growth, particularly the distribution of
large adverse outcomes. The question is whether the kinds of time dependence
we see in asset prices are quantitatively important in assessing the role of
extreme events. It is hard to make a definitive statement without knowing the
precise form of time dependence, but there is good reason to think its impact
could be small. The leading example in this context is stochastic volatility, a
central feature of the option-pricing model estimated by Broadie et al. (2007).
However, average implied volatility smiles from this model are very close to
those from an iid model in which the variance is set equal to its mean. Further-
more, stochastic volatility has little impact on the probabilities of tail events,
which is our interest here.

Power utility is the workhorse of macroeconomics and finance, but our op-
tion model suggests much higher entropy than implied by macro models with
these preferences, even the ones that were calibrated to match option prices.
One possible remedy is to explore alternative preferences, including skew-
ness preferences (Harvey and Siddique (2000)), recursive preferences (Garcia,
Luger, and Renault (2003) and Wachter (2009)), state-dependent preferences
(Chabi-Yo, Garcia, and Renault (2008)), ambiguity (Drechsler (2008) and Liu,
Pan, and Wang (2005)), learning (Shaliastovich (2008)), and habits (Bekaert
and Engstrom (2010) and Du (2008)). Another promising avenue is heterogene-
ity across agents. Certainly there is strong evidence of imperfect risk sharing
across individuals and good reason to suspect that this affects asset prices.
Bates (2008), Chan and Kogan (2002), Guvenen (2009), Longstaff and Wang
(2008), and Lustig and Van Nieuwerburgh (2005) are notable examples. The
question for future work is whether these extensions provide a persuasive ex-
planation for prices of equity index options.

VI. Final Remarks

In this paper, we use prices of equity index options to infer probabilities
of large negative realizations of consumption growth that we can compare to
the macroeconomic evidence summarized by Barro and coauthors. This exer-
cise faces two issues from the start: equity index options refer to equity, not
consumption, and they reflect risk neutral rather than true probabilities. We
address these issues in a number of ways. Each approach indicates that the
probabilities of extreme adverse events implied by option prices are smaller
than we see in international macroeconomic data. Turning to the broader ques-
tion of the role of disasters in asset pricing, we find that a pricing kernel
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constructed from option prices includes substantial contributions from high-
order cumulants. In this sense, the departures from lognormality suggested by
the disaster literature remain quantitatively important in the option-pricing
model. Furthermore, the contribution of odd high-order cumulants is sugges-
tive of the market pricing of return asymmetries noted in research on skewness
preference.

This exercise leads us to two useful byproducts. One is a reminder that match-
ing the equity premium may not be enough. Growing evidence suggests that
other trading strategies can generate average returns that are substantially
higher, so that models designed to account for the equity premium may not be
able to account for higher returns on other assets. The other byproduct is a
reminder of the value of transform methods, particularly cumulant-generating
functions. These are not new to finance, but they are nevertheless extremely
helpful. We find that they are not only a source of intuition and compact nota-
tion, but also a convenient approach to a number of practical problems.

Appendix A: The Cumulant-Generating Function of Poisson-Normal
Mixtures

We look at a Poisson-normal mixture shortly, but it is useful to start with
a Poisson random variable that equals j with probability e “«//j! for j =
0,1, 2,....Recall that the power series representation of the exponential func-
tion is

0 .
e’ =Y ol/jl.
j=0

From this we see that the probabilities sum to one. The moment-generating
function is

h(s) = Ze“"wf/j!esf = Ze“”(wes)j/j! = explw(e® — 1)].

j=0 j=0
The cumulant-generating function is therefore
k(s) = log h(s) = w(e® — 1).

Cumulants follow by differentiating.

The Poisson-normal mixture has a similar structure. Conditional on j, z
is normal with mean j6 and variance j§2. The conditional moment-generating
function is exp [(s6 + s262/2)j]. The moment-generating function for the mixture
is the probability-weighted average,

h(s) =) e “w’ /jlexpl(st + s%6%/2)j] = exp(w[es!T9/2 _ 1]),
Jj=0
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which implies the cumulant-generating function
k(s) = C()[(3307L(ss)2/2 —1].

The same approach can be used for jumps with other distributions. If we set
6 =1 and § =0, we get the cumulant-generating function of the original Poisson.
We find cumulants by taking derivatives of k. The first five are

K1 = w0

Ko = w(6? 4 §2)

k3 = wh(0? + 352)

K4 = w(0* + 60252 + 35%)

k5 = wh(0* + 100282 + 158*).

Here you can see that the sign of the odd moments is governed by the sign
of 6.

Appendix B: The Entropy Bound

The entropy bound (12) is derived by Alvarez and Jermann (2005) as a
byproduct of their Proposition 2. Bansal and Lehmann (1997, Section 2.3) have
a similar result that treats variation in the short rate differently (the term
L(g') in (B3) below). We derive the bound as follows:

e Bound on mean log return. Since log is a concave function, Jensen’s in-
equality and the unconditional version of the pricing relation (10) imply
that for any positive return r,

Elogm+ Elogr <log(l) = 0,

with equality if and only if mr = 1. Therefore, no asset has higher expected
(log) return than the inverse of the pricing kernel:

Elogr < —Elogm. (BD

The asset with this return is sometimes called the “growth optimal portfo-
lio.” We call it the “high-return asset.”

e Short rate. A one-period (risk-free) bond has price g} = E;m;.1, so its return
is 7"t1+1 = l/Etth.

e Entropy of the one-period bond price. With the bound in mind, our next
step is to express Elogr! in terms of unconditional moments. The entropy

of the one-period bond price does the trick:
L) =logEq' — Elogq' =log Em+ Elogr!. (B2)
e Entropy bound. Expressions (B1) and (B2) imply

L(m) > E (logr’ —logr!) + L(g"). (B3)
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Inequality (12) follows from L(g') > 0 (entropy is nonnegative). In practice,
L(g') is small; in the iid case, it is zero.

We find the loglinear perspective of the entropy bound convenient, but the
familiar Hansen-Jagannathan bound also depends (implicitly) on high-order
cumulants of logm. The bound is

Var(m)'/2/Em > E(r7 —r')/Var(r/ —r1)1/2 = SR,

where SR is the Sharpe ratio. If k(s) is the cumulant-generating function for
logm, the bound depends on

Em = E(elogm) — ek(l)
Var(m) = E(m2) _ (Em)2 — ek(2) _ eZk(l).

Since k(1) and £(2) involve high-order cumulants of log m, the bound does, too.
The squared Sharpe ratio is bounded below by

Var(m)/E(m)z — ek(2)72k(1) —1.

If the cumulants are small (true for a small enough time interval), this is
approximately £(2) — 2k(1). Expressed in similar form, entropy is £(1) — £/(0).

Appendix C: Risk-Neutral Distributions with Power Utility

A similar approach reveals the connection between true and risk-neutral
cumulants of log consumption growth logg = w (w because it is easier to type).
The cumulant-generating function for the true distribution is

k(s) = log E (e®¥).

The pricing kernel is m(w) = e, which implies ¢! = Bk(—a). Risk-neutral
probabilities are p*(w) = p(w)m(w)lqg! = p(w)e *“/k(— «). The cumulant-
generating function is therefore

k*(s) = k(s — a) — k(—a). (C1)
This is a standard math result. We find its cumulants by differentiating:
ki = an+j(—a)j/j!.
j=0

Thus, risk-neutral cumulants depend on higher-order true cumulants. Positive
excess kurtosis, for example, reduces risk-neutral skewness.

Appendix D: Risk-Neutral Option Pricing

We review option pricing in the Merton model, starting with its primary
ingredient, the BSM formula. For convenience, we define options on returns
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rather than prices and drop the time subscripts. All of the parameters in what
follows refer to the risk-neutral distribution.

Let the risk-neutral distribution of the return on an arbitrary asset be log-
normal: logr ~ N(logr! + k1, k2). The pricing relation (15) implies the restric-
tion «1 + «9/2 = 0, which we will hold in reserve. The BSM formula is the
solution to

q? = q'E*(b—r)*.
The implicit integral on the right includes the terms

q'b Prob(r < b) = q'bN(d)
logb
—q*E*(rir <b) = —q* / e'*8"(21k) /2 exp [ — (logr —logr! — k1)?/2k2] dlogr

—00

= —explic1 + k2/2)N(d — /%),
where
d = (logb —logr! — icy) /i’
and N is the standard normal cdf. We use this to define the function
qP(b) = f(b; k1, 12) = g'BN(d) — explicy + k2/2)N(d — Ky?). (D1)

In the conventional BSM formula, we set k1 + «2/2 = 0 and simplify, but this
version is more useful in what follows.

The Merton model with normal jumps is a Poisson-weighted average of BSM
option prices. The model is described in Section IV.A and has (risk-neutral)
parameters (u, o, w, 0, §). The first two pertain to the normal component, the
remainder to the Poisson-normal mixture. Option prices in this setting are

qP(b) =Y (e’ /N f(b;k1j, k2))

=0

with K1ij =l -‘,—J@ and K9j = 0'2 +]82

Appendix E: Two Scaling Issues

Two scaling issues come up in the paper. The first is the relation between eq-
uity returns and consumption growth: for most of the paper, log equity returns
are a linear function of log consumption growth. The second is time: option
prices for intervals other than 1 year depend on the distribution of returns
over other time intervals.

Consider the relation between the distributions of x and ix for some scale
factor A. Consumption growth and equity returns have this structure if we ig-
nore intercepts (equation (30)). The general result follows from this property
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of cumulant-generating functions: k(s; Ax) = k(As; x). If x (think log consump-
tion growth) has the Poisson-normal structure of Section I.B, its cumulant-
generating function is

R(s; ) = s + (08)2/2 + w[e®+09%/2 _ 1], (E1)
The cumulant-generating function for Ax (think excess returns) is therefore
R(s; 1x) = pis + (018)%/2 + wle?s+07/2 _ 1],

This has the same form as the cumulant-generating function of consumption
growth with (i, o, w, 6, §) replaced by (A, Ao, w, A0, A8). A similar result applies
to the relation between the true distribution of x = logg and the risk-neutral
distribution of Ax with power utility. Given (C1), their cumulant-generating
functions are connected by

k*(s;Ax) = k*(As;x) = k(As — a;x) — k(—o; x).

In words, we compute the cumulant-generating function of the risk-neutral
distribution of Ax by, first, computing the cumulant-generating function of the
risk-neutral distribution of x and, second, scaling by A. It is important the steps
be done in that order.

The second issue concerns the time interval. In an iid setting, suppose the
cumulant-generating function (E1) applies to the distribution over a unit time
interval. The cumulant-generating function for an arbitrary time interval 7 >
0, if it exists, is the cumulant-generating function for a time interval of one
multiplied by . In the Poisson-normal case, we have

k(s;7) = s + 1(08)2/2 + twle?s+0%/2 _ 1],

The cumulant-generating function has the same form as (E1) with (u, 62, o,
6, 82) replaced by (tu, 102, Tw, 6, §2).

Appendix F: Cumulant-Generating Functions Based on True and
Risk-Neutral Probabilities

We derive the salient features of models in which the true and risk-neutral
distributions are Poisson mixtures of normals with different parameters.

We start with a normal example that serves as a component of the Poisson
mixture. Let the log return follow (27), where z = 0 and w has true distribution
of N(it, 02) and risk-neutral distribution N (;.*, 0*2). The density functions are

p(w) = 2r02) Y2 expl—(w — u)?/202]
prw) = 2no*2) 12 exp[—(w — u*)?/20*2].

This differs from the examples in Section IV in allowing the variance to differ
between the two distributions. In continuous time, 0* = ¢ is needed to assure
absolute continuity of the true and risk-neutral probability measures with
respect to each other. In discrete time, there is no such requirement; see, for
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example, Buhlmann et al. (1996). The risk-neutral pricing relation (15) implies
w* 4+ o*2/2 = 0.

We can derive all of the relevant properties from these inputs. The log prob-
ability ratio is

log[p*(w)/p(w)] = (1/2)log ¢ + [(w — w)* — p(w — u*)*1/202,

where ¢ = 02/0*2 > 0. The moment-generating function of the log probability
ratio is

h(S;lng*/p) — E(eSIng*/p)

= / P (w)’ p(w)—*dw

= (2ro2)7Y2p/2 /w exp{—[(1—s)(w — u)? +sp?(w — u*)?1 /202 }dw

s(s — D" — )2 ) (F1)
2072[1 — s(1 — ¢)]

= ¢*2[1 —s(1 — )]~ Y2exp (

for 1 — s(1 — ¢) > 0 (automatically satisfied if s = 0 or s = 1). The last line
follows from completing the square. Thus, the cumulant-generating function is

s(s — D(p* — p)? )
20%2[1 —s(1—¢)] )

k(s;log p*/p) = (s/2)log ¢ — (1/2)1og[1 — s(1 — )] + <

Entropy is minus the first derivative evaluated at zero:
—k1(log p*/p) = (1/2)[log ¢ + 1 — 9] + (n — n*)?/20*2. (F2)
Ifo =1(c* =0), we have
k(s;log p*/p) = s(s — D)(u* — u)?/202,

and the only nonzero cumulants are the first two. Otherwise, high-order cumu-
lants are generally nonzero.

Now let us ignore the normal component and focus on z. Both the true and
risk-neutral distributions have Poisson arrivals and normal jumps, but the
parameters differ. Conditional on a number of jumps j, the density functions
are

p(zlj) = e ®w//j! - (27 j§2) Y2 exp[—(z; — jO)?/(275%)]
p*zlj) =e 0 /j!- (27 j5*2) V2 exp[—(2; — jO*)?/(2/82)].

The moment-generating function for log p*/p is

[o¢]
h(s;log p*/p) = Ze_wa)j/j![eS(w_w*)+j810g(w*/w)h(8;Z)‘j].
j=0
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Using (F1) we have

_ * _ 0)2
h(8;2>=¢S/2[1—s(1—¢>]—1/2exp< e )

25*2[1 — s(1 — @)]
where ¢ = §2/6%2. Therefore, the cumulant-generating function is

k(s;log p*/p) = s(w — w*)

_ * _ n)2
+w [(w*/w)s(psﬂ[l _ S(]. _ (0)]71/2 exp ( S(S 1)(9 9) ) _ 1:| -

25%2[1 — s(1 — )]

Entropy is minus the first derivative evaluated at zero:

— k1(log p*/p) (F3)
= (0* — o) + wlloglw/w*) —1/2 -loge + 1/2 - (¢ — D] + w(® — )2 /25*2.

Because the normal and Poisson mixture components are independent, their
cumulant-generating functions are additive. Therefore, the entropy for the full
model is the sum of the entropy of the normal case (equation (F2) with ¢ = 1)
and the entropy of the Poisson mixture of normals (equation (F3)).

Appendix G: Equity Premium

Most of our analysis is loglinear, which allows us to express asset prices
and returns as functions of cumulant-generating functions of (say) the log of
consumption growth. The notation is wonderfully compact. The idea and many
of the results follow Martin (2009).

Perfectly Correlated Consumption and Dividend Growth

Let us start with the short rate. A one-period risk-free bond sells at price
q} = E;m;;1 and has return r} | = 1/q} = 1/E;m;,1. In the iid case, the short

t+1 =
rate is constant and equals
logr! = —log E(m)
= —log B —log E(e=*1°28) = —log B — k(—a;log g).

The second equality is based on the definition of the pricing kernel,
equation (21). The last one follows from the definition of the cumulant-
generating function &, equation (3).

We now turn to equity, defined as a claim to a dividend process d; = ¢}. If the
price-dividend ratio on this claim is ¢¢, the return is

T = g?+1(1 + qte+1)/qf'

In the iid case, ¢°¢ is again constant. The pricing relation (10) and our power
utility pricing kernel (21) then imply

qe/(l =+ qe) = E(ﬁg)“*“) — 'BE(e(Afa)logg)'
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Thus, we have, in compact notation,

loglg®/(1 4+ q°)] = log B + k(L — a;logg)

e

logr,; = Aloggi1 —log B — k(A — a;logg)
logr/,; = —log p — k(—a;logg)

logre, ; —logrl; = Aloggii1 + k(—a;logg) — k(A — o;log g).
The equity premium is therefore

E (logrf ; —logr} ;) = ik1(logg) + k(—a;logg) — k(x — a;logg)
— L(e—alogg) _ L(e(k—a)logg)

=D wjlogg)l(—ay — (x —a)]/j!.

Jj=2

The second line follows because the first-order cumulants cancel. The third is
the usual cumulant expansion of entropy. They tell us that the equity premium
is the entropy of the pricing kernel minus a penalty (entropy must be positive).
It hits its maximum when A = «, in which case equity is the high return asset.

A Bivariate Model of Consumption and Dividend Growth

As before, a one-period risk-free bond sells at price q} = E;m;,; and has
return r;,; = 1/q} = 1/E;my,1. In the iid case, the short rate is constant and
equals

logr! = —log E(m)
= —log B —log E(e=@10881) = —log B — k((—«, 0);log g).

The last equality follows from using a cumulant-generating function of a bi-
variate variable logg = (loggi, loggs) given by

k(s) = log E(eS’IOgg) =s'uf +s'Ss/2 + w[es’9+s’As/2 —1].

We now turn to equity, defined as a claim to a dividend process d;. If the
price-dividend ratio on this claim is ¢¢, the return is

ri = e (14q7,,) /g5

In the iid case, ¢¢ is constant. The pricing relation (10) and our power utility
pricing kernel (21) then imply

qe/(l + qe) — E(ﬂe_“hgglﬂ"gg?)_
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Thus, we have

loglg®/(1+g®)] = log B + k((—a, 1);log g)
logry, ; = loggat+1 —log B — k((—a, 1);10g g)
logr},; = —log B — k((—a, 0);log g)
logry,; — IOgrtl-s-l = loggor+1 + k((—, 0)';logg) — k((—a, 1);log g)

and the equity premium is

E (logrg ; —logrl, ;) = k1(log ge) + k((—a, 0);log g) — k((—a, 1)';1og g).

Appendix H: Risk-Neutral Distribution of Returns in a Bivariate
Model

Consider a bivariate model in which equity returns are (potentially) less
closely tied to consumption growth. Let x' = (x1, x2) = (logg, logr® — logr!) have
the two-component structure used throughout the paper:

Xe41l = Wil + 2441

The first component is bivariate normal: w; ~ N(u, ), where u and ¥ have
elements u; and o5, respectively. The second component is a Poisson mixture
of bivariate normals. As in Section I.B, jumps occur with Poisson intensity w
so that the probability of j jumps is e “«//j!. Each jump adds a draw from the
bivariate normal distribution N (8, A).

Option pricing (indeed equity pricing) requires us to deal with the bivari-
ate distribution of equity returns and the pricing kernel. We derive the risk-
neutral distribution of returns from its cumulant-generating function. The
(joint) cumulant-generating function is

k(s) = log E(e5*) = s’ + s'£5/2 + wles0+5'25/2 _ 1],

The logic here is virtually identical to the univariate case outlined in
Appendix A. Derivatives of this expression lead to the following formulas:
Var(x;) = o;; + w(@f + 3ii)
Cov(x1, x2) = 012 + (6162 + 812).
The correlation is
o12 + (6162 + 812)
[o11 + (02 + 81112 (092 + w(02 + 822)]1/2
_ puw(011022)1% + w[6162 4 p.(811822)/%]
[o11 + w(0F + 81112 (092 + (02 + 822)]1/2

Corr(x1, x9) =

with p, = 012/(011022)"? and p, = §12/(811822)/2.
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The remaining step is to find the risk-neutral distribution for returns. With
power utility, the cumulant-generating function corresponding to the risk-
neutral distribution is

k*(s1, s2) = k(s1 — a, s3) — k(—a, 0).

The logic is analogous to Appendix C. The cumulant-generating functions cor-
responding to marginal distributions follow from setting the other elements of
s equal to zero. (This follows from the definitions of the marginal distribution
and cumulant-generating function.) Thus, the cumulant-generating function
for xo is k(0, s2). The risk-neutral cumulant-generating function for the log
equity excess return is therefore

E*(0, s3) = so(pug — o12) + 85022/2 + we oS 2 [gs: b —abn)+siin /2 _ ]

= Sopul + s2092/2 + w*[enf 02/ _ 1]
with the implicit definitions

/,L; = U2 — K012, 9; =0y — ad12, 5;2 = 022

* 70(914’012511/2

w” = we

This has the same form as the Merton model with suitably defined parameters.
Options can therefore be priced using the methods of Appendix D. Similarly,
k*(s1, 0) implies the risk-neutral distribution of consumption growth:

ni = p1 — oo, 607 =601 —adyr, 877 =du.
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