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The combination of power utility and i.i.d. 
lognormal consumption growth makes for a 
benchmark model in which asset prices and 
expected returns can be found in closed form. 
Introducing the consumption-based model, John 
H. Cochrane (2005, 12) writes, “The combina-
tion of lognormal distributions and power utility 
is one of the basic tricks to getting analytical 
solutions in this kind of model.” A message of 
this paper is that the lognormality assumption 
can be relaxed without sacrificing tractability.

Working under two assumptions—that there 
is a representative agent with power utility and 
that consumption growth is i.i.d.—I introduce, in 
Section I, a mathematical object (the cumulant-
generating function, or CGF) in terms of which 
four fundamental quantities that are at the heart 
of consumption-based asset pricing can be sim-
ply expressed. Those quantities are the equity 
premium, riskless rate, consumption-wealth 
ratio, and mean consumption growth.

The expressions derived relate the funda-
mentals directly to the cumulants (equivalently, 
moments) of consumption growth. The log
normal assumption is equivalent to the assump-
tion that all cumulants above the second are 
zero.

If one is in the business of making up stochas-
tic processes, many suggest themselves most 
naturally in continuous time. Although there is 
an obvious discrete-time analogue of Brownian 
motion—a random walk with Normally dis-
tributed increments—it is less natural to map 
Poisson processes, say, into discrete time, and 
therefore harder to deal with the possibility of 
jumps in consumption. In Section II, I show that 
these results carry over to the continuous-time 
setting. The i.i.d. growth assumption is replaced 
by its continuous-time analogue: log consump-
tion is a Lévy process.
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The first few cumulants of consumption 
growth can, in principle, be estimated from con-
sumption data, though this approach is not taken 
in the present paper because, given the sizes of 
the relevant samples in practice, estimates of 
higher cumulants have large standard errors. 
This is especially troubling because the higher 
cumulants, which are hardest to estimate, are 
extremely influential for asset prices.

I illustrate this point, and the CGF framework 
more generally, by investigating a continuous-
time model featuring rare disasters as in Thomas 
A. Rietz (1988) or Robert J. Barro (2006a). 
Worryingly, the model’s predictions are sensi-
tively dependent on the calibration assumed.

As a stark illustration within the i.i.d. frame-
work, suppose that the representative agent has 
relative risk aversion equal to four. Now imagine 
adding to the model a certain type of disaster 
that destroys 90 percent of wealth and strikes, 
on average, once every 100,000 years. (Barro 
(2006a) documents that Germany and Greece 
each suffered a 64 percent fall in per capita real 
GDP in the course of the Second World War, so 
such a disaster is not beyond the bounds of pos-
sibility.) The introduction of the very rare, very 
severe disaster drives the riskless rate down by 
10 percent—1,000 basis points—and increases 
the equity premium by 9 percent. Very rare, very 
severe events exert an extraordinary influence, 
and we do not expect to estimate their frequency 
and intensity directly from the data.

We can, however, detect the influence of 
such events indirectly by observing asset prices.  
I argue, therefore, that the standard approach—
which consists of calibrating a particular model 
and trying to fit the fundamental quantities—is 
not the way to go. By turning things round—
viewing the fundamental quantities as observ-
able and seeing what they imply—it becomes 
possible to make statements that are robust to 
the details of the consumption growth process.

In Section III, I take up the question, sur-
veyed by Robert E. Lucas (2003), of the cost 
of consumption risk. This cost turns out to 
depend on the time discount rate, r, and the risk 
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aversion parameter, g, and on two observables: 
mean consumption growth and the consump-
tion-wealth ratio—which, unlike Lucas (2003), I 
view as observable. The cost does not depend on 
risk aversion other than through the consump-
tion-wealth ratio, which summarizes all relevant 
information about the attitude to risk of the rep-
resentative agent and the amount of risk in the 
economy, as captured by the cumulants.

Using plausible parameters, the cost of con-
sumption uncertainty is on the order of 14 per-
cent. This cost is largely attributable to higher 
cumulants: I estimate that the representative 
agent would sacrifice only about 1 percent of 
initial consumption to reduce the standard devi-
ation of consumption growth from 2 percent to 
1 percent.

Proofs are provided in an Web Appendix (http:// 
www.aeaweb.org/articles.php?doi=10.1257/ 
aer.98.2.74).

I.  Asset Pricing and the CGF

My analysis rests on two assumptions.

Assumption A1: There is a representative 
agent with constant relative risk aversion g and 
time discount rate r.

Assumption A2: The consumption growth, 
G ; log Ct /Ct21, of the representative agent is 
i.i.d., and the cumulant-generating function of 
G (defined below) exists on the interval 32g, 14 .

Assumption A2 is strong, and it is essen-
tial for the calculations of this paper. Timothy 
Cogley (1990) and Barro (2006b) present evi-
dence in support of A2 in the form of variance-
ratio statistics close to one, on average, across 
nine (Cogley) or 19 (Barro) countries.

My starting point is the Euler equation

(1) 	  price 5 E aa
`

t51
e2rt aCt

C0
b

2g

 Dtb .

Consider an asset that pays dividend stream Dt 
; 1Ct 2 l for some constant l. I write Pl for the 
price of this asset at time 0, and Dl for the divi-
dend at time 0. Using A1, A2, and (1),

(2) 	  Pl 5 Dl a
`

t51
e2rt AE Ae 1l2g 2GB B t.

To make further progress, I now introduce:

Definition 1: The cumulant-generating 
function, or CGF, c 1u 2 is defined by

(3) 	  c 1u 2 ; log E exp 1uG2 .
(Observe in particular that c 112 equals log mean 
gross consumption growth.)

The CGF can be thought of as capturing infor-
mation about all moments of G. More precisely, 
we can expand c 1u 2 as a power series, c 1u 2 5 
g`

n51  knun/n!, and define kn to be the nth cumu-
lant of log consumption growth. A small amount 
of algebra confirms that, for example, k1 ; m is 
the mean, k2 ; s2 the variance, k3/s3 the skew-
ness, and k4/s4 the excess kurtosis of log con-
sumption growth. Knowledge of all cumulants 
implies knowledge of all moments, and vice 
versa.

Using this definition and setting dl/pl ; log 
11 1 Dl/Pl2 < Dl/Pl, it follows from (2) that 
dl/pl 5 r 2 c 1l 2 g 2 . If l 5 0, the asset in 
question is the riskless bond, whose dividend 
yield is the riskless rate. If l 5 1, the asset pays 
consumption as its dividend, and can therefore 
be interpreted as aggregate wealth; its dividend 
yield is then the consumption-wealth ratio.

The gross return on the consumption claim is

	 1 1 Rt11 5 
Pt11

Pt
 a1 1 

Dt11

Pt11
b

	 5 
Dt11

Dt
 Aer2c(12g)B

and thus the expected gross return is 1 1 E Rt11 
5 er2c(12g) 1 c 112 . Once again, it is more conve-
nient to work with log expected gross return, 
er ; log 11 1 E Rt112 5 r 1 c 112 2 c 11 2 g 2 , 
and to define the risk premium rp ; er 2 rf .

Theorem 2: Summarizing the results above, 
we have

(4) 	  rf 5 r 2 c 12g 2 ,
(5) 	  c/w 5 r 2 c 11 2 g 2 ,
(6) 	  rp 5 c 112 1 c 12g 2 2 c 11 2 g 2 .

When consumption growth is deterministic, 
the CGF is linear, and equation (6) shows as 
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expected that there is no risk premium. Roughly 
speaking, the CGF of the driving consump-
tion process must have a significant amount of 
convexity over the range 32g, 14 to generate an 
empirically reasonable risk premium.

Given a sufficiently long data sample, expres-
sions (4)–(6) could be applied by estimating the 
cumulants of log consumption directly, without 
imposing any further structure on the model. 
In practice, we cannot estimate infinitely many 
cumulants from a finite dataset; one solution to 
this is to truncate after the first N cumulants, N 
being determined by the amount of data avail-
able. (The assumption that consumption growth 
is lognormal is equivalent to truncating at N 
5 2, since when log consumption growth is 
Normal, all cumulants above the variance are 
equal to zero.)

II.  The Continuous-Time Case

For the purposes of constructing concrete 
examples, it is often convenient to work in con-
tinuous time. The utility function is modified in 
the obvious manner by replacing a summation 
with an integral; the assumption that dividend 
growth is i.i.d. is replaced by an assumption that 
the log consumption path, Gt , of the representa-
tive agent follows a Lévy process.

The following result confirms that the sim-
plicity of the framework carries over to the con-
tinuous-time case.

Theorem 3: Theorem 2 holds in continuous 
time, except that c/w, rf  , and rp are replaced 
by the instantaneous consumption-wealth ratio 
C/W, the instantaneous riskless rate Rf  , and the 
instantaneous risk premium RP.

A. A Concrete Example: Disasters

Suppose that log consumption follows the
jump-diffusion process Gt 5 m,t 1 sBBt 1

gN 1t2
i51Yi, where Bt is a Brownian motion, N 1t 2 is a

Poisson counting process with parameter v, and
Yi are i.i.d. N 12b, c22 random variables.

A simple calculation reveals that

(7) 	 c 1u 2 5 m,u 1 s2
Bu2/2 1 v 1e2bu1c2u2/2 2 1).

With the explicit expression 172 for the CGF in 
hand, it is easy to investigate the sensitivity of a 

disaster model’s predictions to the parameter val-
ues assumed. Table 1 shows how changes in the 
calibration of the distribution of disasters affect 
the relevant fundamentals. The baseline mean 
and variance of disaster sizes are set equal to the 
mean and variance of the disasters reported in 
Barro (2006a), and the baseline disaster arrival 
rate v 5 0.017 is taken from the same paper. As 
is evident from the table, the predictions of the 
disaster model are sensitively dependent on the 
precise calibration. Small changes in the disas-
ter parameters v and b have large effects on the 
riskless rate and equity premium. For example, 
increasing v (the rate of arrival of disasters, in 
percent) from 1.7 percent to 2.2 percent drives 
the riskless rate down by more than 3 per cent. 
Given that these parameters are hard to esti-
mate—disasters happen rarely—this is a sig-
nificant difficulty.

III.  The Cost of Consumption Fluctuations

The discussion above suggests that it is 
desirable to try to make statements that do not 
depend on a particular calibration of the disaster 
process. I illustrate this approach by estimating 
the cost of consumption fluctuations.

An easy calculation reveals that—assuming 
g Z 1 for simplicity—expected utility can be 
expressed in terms of the CGF:

(8) 	 U 1C0; c 2 5 
C0

12g

1 2 g
 a1 1 

1
er2c 112g2 2 1

b .

Expression (8) permits the calculation of 
expected utility under alternative consumption 
processes via the corresponding CGFs. The cost 
of uncertainty of the status quo, relative to some 
counterfactual summarized by c,, is the value of 
f
,, which solves

(9) 	  U 3 11 1 f
,2C0; c 4 5 U 3C0;  c,4 .

Table 1—The Impact of Different Assumptions about 
the Distribution of Disasters

v b Rf C/W RP 

Baseline 1.7 0.39 1.0 4.8 5.7
High v 2.2 0.39 22.4 3.1 7.4
Low v 1.2 0.39 4.5 6.4 4.1
High b 1.7 0.44 21.9 3.6 7.5
Low b 1.7 0.34 3.5 5.8 4.4
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I consider two counterfactuals: (a) a scenario 
in which all uncertainty is eliminated, and (b) 
a scenario in which the variance of consump-
tion growth is reduced by a2 but higher cumu-
lants are unchanged. I hold mean consumption 
growth constant: c 112 5 c, 112 .

A. The Elimination of All Uncertainty

Since EC1/C0 5 EeG 5 ec 112 , keeping mean 
consumption growth constant is equivalent to 
holding c 112 constant. If, also, log consumption 
is deterministic, it must follow the trivial Lévy 
process with CGF c– 1u 2 5 c 112 · u.

From equations (8) and (9), and replacing r 2 
c 11 2 g 2 with c/w, we find

(10) 	  f
–
 5 a1 1 

W 0

C0
b

1/ 1g212

	

3 e1 2 e2r cE aC1

C0
b d

12g

f
1/ 1g212

21.

Equation (10) shows that if the mean consump-
tion growth rate in levels, consumption-wealth 
ratio, and preference parameters r and g can be 
estimated accurately, then the gains notionally 
available from eliminating all uncertainty can 
be estimated without needing to make assump-
tions about the particular stochastic process 
followed by consumption. In particular, f

–
 is 

not—directly—dependent on estimates of the 
variance (or higher cumulants) of consumption 
growth: the relevant information is encoded in 
the consumption-wealth ratio.

This result applies to arbitrary consump-
tion processes and so nests results obtained by 
Lucas (2003) and Barro (2006b). Unlike these 
authors, I treat the consumption-wealth ratio as 
an observable that encodes information about 
the underlying consumption process.

To make this concrete, I will impose the base-
line parameters c/w 5 0.06, c 112 5 0.02, r 5 
0.03, g 5 4. Substituting into (10) gives f

–
 < 

14 percent. This cost estimate is roughly two 
orders of magnitude higher than that obtained 
by Lucas (2003), even allowing for the higher 
risk aversion assumed in this paper.

Figure 1 shows how the cost of uncertainty 
varies with c/w. The maximum possible value 
of c/w, 0.09, is achieved if there is no uncer-

tainty; then, of course, the cost of uncertainty 
is zero. As c/w decreases from this maximum 
possible level, the implied cost of uncertainty 
increases rapidly. Although Lucas’s calculations 
do not take c/w as observable, his assumptions 
on the consumption process, combined with my 
assumptions on r and g, imply c/w 5 0.0896. 
Substituting into (10), we recover the far lower 
cost estimate f

–
 < 0.14 percent.�

Figure 2 shows how the cost of uncertainty 
depends on g. As g becomes very large, the 
cost of uncertainty ultimately declines: if g is 
extremely large, it must be the case, given that 
c/w is held fixed, that there is very little risk 
in the economy. Similarly, when r 5 0.03, 

� Lucas’s calculations do not assume i.i.d. consumption 
growth. In fact, though, expression (10) does not require any 
assumptions on the consumption process: it follows directly 
from the Euler equation. When I consider the cost of vari-
ance uncertainty below, the i.i.d. assumption is required.

Figure 1. Cost of Uncertainty against c/w

Figure 2. Cost of Uncertainty against g  
r 5 0.03 (solid), 0.06 (dashed), 0.09 (dot-dashed)
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the line hits zero at g 5 2.5 because the only 
possibility consistent with r 5 0.03, g 5 2.5, 
c 112 5 0.02, c/w 5 0.06 is that consumption is 
deterministic.

B. A Reduction in Variance

I now investigate an alternative counterfactual 
in which the variance of log consumption growth 
is reduced by a2. (It is possible to consider such 
an adjustment in variance alone—leaving higher 
cumulants unchanged—because the Brownian 
component of log consumption growth affects 
only the second cumulant. Conversely, it is not 
clear how to adjust, say, kurtosis without chang-
ing other cumulants.) The new CGF is then

(11) 	  c, 1u 2 5 c 1u 2 1 a2u/2 2 a2u2/2.

The term of order u2 decreases the variance of 
log consumption growth by a2. The term of order 
u adjusts the drift of log consumption growth to 
hold mean consumption growth constant in lev-
els, that is, to ensure that ca 112 5 c 112 .

Substituting (11) into (9) and replacing r 2 
c 11 2 g 2 with the observable c/w, we find

(12) 	 fa 5 e1 1 
W 0

C0
 C1 2 e21/2a2g 1g212 D f

1/ 1g212
 21.

With g 5 4, and setting c/w 5 0.06 as usual, 
it follows from (12) that a reduction in variance 
of 0.0003 —a decline in the standard deviation 
of log consumption growth from 2 percent to 
1 percent, for example—is equivalent in welfare 
terms to an increase in current consumption (or 
equivalently wealth) of 1.0 percent. Most of the 
cost of uncertainty can be attributed to higher-
order cumulants.

IV.  Conclusion

Cumulant-generating functions render the 
general power utility–i.i.d. model tractable. The 
mere fact that they simplify notation makes them 
useful modelling tools. In more complicated 
settings (Martin 2007), it may even be easier 
to work with a CGF than to consider a special 
case such as lognormality, simply because the 
CGF’s progress can be easily tracked through 
the algebra.

The other theme of this paper is that it is 
desirable, when thinking about disasters, to 
try to make statements that are not sensitively 
dependent on the assumed pattern of higher 
cumulants. Section III showed that it is possible 
to use the observed consumption-wealth ratio to 
estimate the welfare cost of uncertainty without 
specifying a consumption process, and argued 
also that the cost is high.
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