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Disasters and the Welfare Cost of Uncertainty

By IAN W. R. MARTIN*

The combination of power utility and i.i.d.
lognormal consumption growth makes for a
benchmark model in which asset prices and
expected returns can be found in closed form.
Introducing the consumption-based model, John
H. Cochrane (2005, 12) writes, “The combina-
tion of lognormal distributions and power utility
is one of the basic tricks to getting analytical
solutions in this kind of model.” A message of
this paper is that the lognormality assumption
can be relaxed without sacrificing tractability.

Working under two assumptions—that there
is a representative agent with power utility and
that consumption growth is i.i.d.—I introduce, in
Section I, a mathematical object (the cumulant-
generating function, or CGF) in terms of which
four fundamental quantities that are at the heart
of consumption-based asset pricing can be sim-
ply expressed. Those quantities are the equity
premium, riskless rate, consumption-wealth

ratio, and mean consumption growth.

The expressions derived relate the funda-
mentals directly to the cumulants (equivalently,
moments) of consumption growth. The log-
normal assumption is equivalent to the assump-
tion that all cumulants above the second are

Z€r0.

If one is in the business of making up stochas-
tic processes, many suggest themselves most
naturally in continuous time. Although there is
an obvious discrete-time analogue of Brownian
motion—a random walk with Normally dis-
tributed increments—it is less natural to map
Poisson processes, say, into discrete time, and
therefore harder to deal with the possibility of
jumps in consumption. In Section II, I show that
these results carry over to the continuous-time
setting. The i.i.d. growth assumption is replaced
by its continuous-time analogue: log consump-

tion is a Lévy process.
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74

The first few cumulants of consumption
growth can, in principle, be estimated from con-
sumption data, though this approach is not taken
in the present paper because, given the sizes of
the relevant samples in practice, estimates of
higher cumulants have large standard errors.
This is especially troubling because the higher
cumulants, which are hardest to estimate, are
extremely influential for asset prices.

Iillustrate this point, and the CGF framework
more generally, by investigating a continuous-
time model featuring rare disasters as in Thomas
A. Rietz (1988) or Robert J. Barro (2006a).
Worryingly, the model’s predictions are sensi-
tively dependent on the calibration assumed.

As a stark illustration within the i.i.d. frame-
work, suppose that the representative agent has
relative risk aversion equal to four. Now imagine
adding to the model a certain type of disaster
that destroys 90 percent of wealth and strikes,
on average, once every 100,000 years. (Barro
(2006a) documents that Germany and Greece
each suffered a 64 percent fall in per capita real
GDP in the course of the Second World War, so
such a disaster is not beyond the bounds of pos-
sibility.) The introduction of the very rare, very
severe disaster drives the riskless rate down by
10 percent—1,000 basis points—and increases
the equity premium by 9 percent. Very rare, very
severe events exert an extraordinary influence,
and we do not expect to estimate their frequency
and intensity directly from the data.

We can, however, detect the influence of
such events indirectly by observing asset prices.
I argue, therefore, that the standard approach—
which consists of calibrating a particular model
and trying to fit the fundamental quantities—is
not the way to go. By turning things round—
viewing the fundamental quantities as observ-
able and seeing what they imply—it becomes
possible to make statements that are robust to
the details of the consumption growth process.

In Section III, I take up the question, sur-
veyed by Robert E. Lucas (2003), of the cost
of consumption risk. This cost turns out to
depend on the time discount rate, p, and the risk
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aversion parameter, y, and on two observables:
mean consumption growth and the consump-
tion-wealth ratio—which, unlike Lucas (2003), I
view as observable. The cost does not depend on
risk aversion other than through the consump-
tion-wealth ratio, which summarizes all relevant
information about the attitude to risk of the rep-
resentative agent and the amount of risk in the
economy, as captured by the cumulants.

Using plausible parameters, the cost of con-
sumption uncertainty is on the order of 14 per-
cent. This cost is largely attributable to higher
cumulants: I estimate that the representative
agent would sacrifice only about 1 percent of
initial consumption to reduce the standard devi-
ation of consumption growth from 2 percent to
1 percent.

Proofsareprovidedinan Web Appendix (http://
www.aeaweb.org/articles.php?doi=10.1257/
aer.98.2.74).

I. Asset Pricing and the CGF
My analysis rests on two assumptions.

ASSUMPTION Al: There is a representative
agent with constant relative risk aversion vy and
time discount rate p.

ASSUMPTION A2: The consumption growth,
G = log C,/C,_,, of the representative agent is
i.i.d., and the cumulant-generating function of
G (defined below) exists on the interval [—v, 1].

Assumption A2 is strong, and it is essen-
tial for the calculations of this paper. Timothy
Cogley (1990) and Barro (2006b) present evi-
dence in support of A2 in the form of variance-
ratio statistics close to one, on average, across
nine (Cogley) or 19 (Barro) countries.

My starting point is the Euler equation

© C -y
(1) price = [ <Ee’” (Z) D,).
t=1 CO

Consider an asset that pays dividend stream D,
= (C,)" for some constant A. I write P, for the
price of this asset at time 0, and D, for the divi-
dend at time 0. Using A1, A2, and (1),

@  Py=D, > e (E(e™ M)
=1
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To make further progress, I now introduce:

DEFINITION 1: The cumulant-generating
function, or CGF, ¢(0) is defined by

3) ¢(0) =log E exp(6G).

(Observe in particular that ¢ (1) equals log mean
gross consumption growth.)

The CGF can be thought of as capturing infor-
mation about all moments of G. More precisely,
we can expand ¢ (6) as a power series, ¢(0) =
So_1 k,0"/n!, and define k, to be the nth cumu-
lant of log consumption growth. A small amount
of algebra confirms that, for example, k; = u is
the mean, k, = ¢ the variance, k;/o° the skew-
ness, and k,/o* the excess kurtosis of log con-
sumption growth. Knowledge of all cumulants
implies knowledge of all moments, and vice
versa.

Using this definition and setting d,/p, = log
(1 + D,/P)) = D,/P,, it follows from (2) that
dypy, = p — ¢(A — y). If A = 0, the asset in
question is the riskless bond, whose dividend
yield is the riskless rate. If A = 1, the asset pays
consumption as its dividend, and can therefore
be interpreted as aggregate wealth; its dividend
yield is then the consumption-wealth ratio.

The gross return on the consumption claim is

P D
1+ R = ;'<1 + P’“)
t t+1
— % (ep*c(lfv))
D

t

and thus the expected gross returnis 1 + ER,,,
= er~c=n +c() Opce again, it is more conve-
nient to work with log expected gross return,
er=1log(l + ER,)=p +c(l)—c(l — ),
and to define the risk premium rp = er — ;.

THEOREM 2: Summarizing the results above,
we have

“) rF=p— c(—y),
) cw=p—c(l—1vy),
©® m=c)te(=y)—c(l—7).

When consumption growth is deterministic,
the CGF is linear, and equation (6) shows as
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expected that there is no risk premium. Roughly
speaking, the CGF of the driving consump-
tion process must have a significant amount of
convexity over the range [—v, 1] to generate an
empirically reasonable risk premium.

Given a sufficiently long data sample, expres-
sions (4)—(6) could be applied by estimating the
cumulants of log consumption directly, without
imposing any further structure on the model.
In practice, we cannot estimate infinitely many
cumulants from a finite dataset; one solution to
this is to truncate after the first N cumulants, N
being determined by the amount of data avail-
able. (The assumption that consumption growth
is lognormal is equivalent to truncating at N
= 2, since when log consumption growth is
Normal, all cumulants above the variance are
equal to zero.)

II. The Continuous-Time Case

For the purposes of constructing concrete
examples, it is often convenient to work in con-
tinuous time. The utility function is modified in
the obvious manner by replacing a summation
with an integral; the assumption that dividend
growth is i.i.d. is replaced by an assumption that
the log consumption path, G,, of the representa-
tive agent follows a Lévy process.

The following result confirms that the sim-
plicity of the framework carries over to the con-
tinuous-time case.

THEOREM 3: Theorem 2 holds in continuous
time, except that c/w, ry, and rp are replaced
by the instantaneous consumption-wealth ratio
C/W, the instantaneous riskless rate Ry, and the
instantaneous risk premium RP.

A. A Concrete Example: Disasters

Suppose that log consumption follows the
jump-diffusion process G, = @t + ozB, +
Eﬁvz(t)l Y;, where B, is a Brownian motion, N(¢)is a
Poisson counting process with parameter w, and
Y; are i.i.d. N(—b, ) random variables.

A simple calculation reveals that

() ¢(0) = HO+0%0%2+w(e V02— 1,

With the explicit expression (7) for the CGF in
hand, it is easy to investigate the sensitivity of a
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TABLE 1—THE IMPACT OF DIFFERENT ASSUMPTIONS ABOUT
THE DISTRIBUTION OF DISASTERS

) b R, /W RP
Baseline 1.7 0.39 1.0 4.8 5.7
High w 2.2 039 24 3.1 7.4
Low 1.2 0.39 4.5 6.4 4.1
High b 1.7 0.44 -1.9 3.6 7.5
Low b 1.7 0.34 35 5.8 44

disaster model’s predictions to the parameter val-
ues assumed. Table 1 shows how changes in the
calibration of the distribution of disasters affect
the relevant fundamentals. The baseline mean
and variance of disaster sizes are set equal to the
mean and variance of the disasters reported in
Barro (2006a), and the baseline disaster arrival
rate w = 0.017 is taken from the same paper. As
is evident from the table, the predictions of the
disaster model are sensitively dependent on the
precise calibration. Small changes in the disas-
ter parameters w and b have large effects on the
riskless rate and equity premium. For example,
increasing w (the rate of arrival of disasters, in
percent) from 1.7 percent to 2.2 percent drives
the riskless rate down by more than 3 per cent.
Given that these parameters are hard to esti-
mate—disasters happen rarely—this is a sig-
nificant difficulty.

III. The Cost of Consumption Fluctuations

The discussion above suggests that it is
desirable to try to make statements that do not
depend on a particular calibration of the disaster
process. I illustrate this approach by estimating
the cost of consumption fluctuations.

An easy calculation reveals that—assuming
v # 1 for simplicity—expected utility can be
expressed in terms of the CGF:

CiY 1
1+ .
11—y ep—cll-v) _

Expression (8) permits the calculation of
expected utility under alternative consumption
processes via the corresponding CGFs. The cost
of uncertainty of the status quo, relative to some
gg)unterfactual summarized by ¢, is the value of
¢, which solves

®) U(Cyc)=

© U[(1 + ¢)Cpic]=U[Cy; 1.
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I consider two counterfactuals: (a) a scenario
in which all uncertainty is eliminated, and (b)
a scenario in which the variance of consump-
tion growth is reduced by & but higher cumu-
lants are unchanged. I hold mean consumption
growth constant: ¢ (1) = ¢ (1).

A. The Elimination of All Uncertainty

Since EC,/Cy = Ee® = ‘W, keeping mean
consumption growth constant is equivalent to
holding ¢ (1) constant. If, also, log consumption
is deterministic, it must follow the trivial Lévy
process with CGF ¢ (0) = ¢(1) - 6.

From equations (8) and (9), and replacing p —
¢(1 = y) with ¢/w, we find

0 Fefe )
10 o= G,

C\ 1= V-1
- (D)7
G

Equation (10) shows that if the mean consump-
tion growth rate in levels, consumption-wealth
ratio, and preference parameters p and y can be
estimated accurately, then the gains notionally
available from eliminating all uncertainty can
be estimated without needing to make assump-
tions about the particular stochastic process
followed by consumption. In particular, ¢ is
not—directly—dependent on estimates of the
variance (or higher cumulants) of consumption
growth: the relevant information is encoded in
the consumption-wealth ratio.

This result applies to arbitrary consump-
tion processes and so nests results obtained by
Lucas (2003) and Barro (2006b). Unlike these
authors, I treat the consumption-wealth ratio as
an observable that encodes information about
the underlying consumption process.

To make this concrete, I will impose the base-
line parameters c¢/w = 0.06, ¢(1) = 0.02, p =
0.03, v = 4. Substituting into (10) gives ¢ =
14 percent. This cost estimate is roughly two
orders of magnitude higher than that obtained
by Lucas (2003), even allowing for the higher
risk aversion assumed in this paper.

Figure 1 shows how the cost of uncertainty
varies with ¢/w. The maximum possible value
of ¢/w, 0.09, is achieved if there is no uncer-
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FIGURE 1. CoST OF UNCERTAINTY AGAINST ¢/w

80

60 |

40 BN

20 ———_T=-— .

FIGURE 2. COST OF UNCERTAINTY AGAINST 'y
p = 0.03 (solid), 0.06 (dashed), 0.09 (dot-dashed)

tainty; then, of course, the cost of uncertainty
is zero. As c¢/w decreases from this maximum
possible level, the implied cost of uncertainty
increases rapidly. Although Lucas’s calculations
do not take c/w as observable, his assumptions
on the consumption process, combined with my
assumptions on p and 7y, imply ¢/w = 0.0896.
Substituting into (10), we recover the far lower
cost estimate ¢ =~ 0.14 percent.!

Figure 2 shows how the cost of uncertainty
depends on vy. As vy becomes very large, the
cost of uncertainty ultimately declines: if vy is
extremely large, it must be the case, given that
c/w is held fixed, that there is very little risk
in the economy. Similarly, when p = 0.03,

! Lucas’s calculations do not assume i.i.d. consumption
growth. In fact, though, expression (10) does not require any
assumptions on the consumption process: it follows directly
from the Euler equation. When I consider the cost of vari-
ance uncertainty below, the i.i.d. assumption is required.
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the line hits zero at y = 2.5 because the only
possibility consistent with p = 0.03, y = 2.5,
¢(1) = 0.02, ¢/w = 0.06 is that consumption is
deterministic.

B. A Reduction in Variance

I'now investigate an alternative counterfactual
in which the variance of log consumption growth
is reduced by . (It is possible to consider such
an adjustment in variance alone—leaving higher
cumulants unchanged—because the Brownian
component of log consumption growth affects
only the second cumulant. Conversely, it is not
clear how to adjust, say, kurtosis without chang-
ing other cumulants.) The new CGF is then

a1y & (0)=c(6) + a26/2 — a26*/2.

The term of order 6* decreases the variance of
log consumption growth by *. The term of order
0 adjusts the drift of log consumption growth to
hold mean consumption growth constant in lev-
els, that is, to ensure that ¢, (1) = ¢(1).

Substituting (11) into (9) and replacing p —
¢(1 — +y) with the observable ¢/w, we find

114 ) 1/(y—1)
12) ¢, = {1 +?°[1 —e—/m%—l)]} -1.

0

With y = 4, and setting ¢/w = 0.06 as usual,
it follows from (12) that a reduction in variance
of 0.0003 —a decline in the standard deviation
of log consumption growth from 2 percent to
1 percent, for example—is equivalent in welfare
terms to an increase in current consumption (or
equivalently wealth) of 1.0 percent. Most of the
cost of uncertainty can be attributed to higher-
order cumulants.

MAY 2008

IV. Conclusion

Cumulant-generating functions render the
general power utility—i.i.d. model tractable. The
mere fact that they simplify notation makes them
useful modelling tools. In more complicated
settings (Martin 2007), it may even be easier
to work with a CGF than to consider a special
case such as lognormality, simply because the
CGF’s progress can be easily tracked through
the algebra.

The other theme of this paper is that it is
desirable, when thinking about disasters, to
try to make statements that are not sensitively
dependent on the assumed pattern of higher
cumulants. Section III showed that it is possible
to use the observed consumption-wealth ratio to
estimate the welfare cost of uncertainty without
specifying a consumption process, and argued
also that the cost is high.
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