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I. Introduction

Machine learning methods have proved useful in forecasting problems with huge numbers of

predictor variables. High-dimensional prediction problems of this kind are faced not only

by data scientists studying data as outside observers, but also by economic decision-makers

in the marketplace. Many forward-looking economic decisions require predictions for which

large numbers of variables could potentially be relevant, but the exact relationship between

predictors and forecast target is unknown and must be learned from observed data. In this

paper, we argue that to understand market outcomes in such settings, it is important to take

into account the high-dimensional nature of decision-makers’ prediction problem.

We demonstrate this in an asset-pricing setting. We show that properties of asset prices

are strongly affected by the dimensionality of investors’ prediction problem. Conventional

notions of how to test market efficiency and how to interpret pricing anomalies break down

in the high-dimensional case.

To price risky assets such as stocks, investors must forecast the future cash flows gener-

ated by these assets. In our model, cash-flow growth rates of a cross-section of N firms are

a linear function of J firm characteristics that are fixed over time. Investors are Bayesian,

homogeneous, and risk neutral; they price stocks based on the predictive distribution of cash

flows. Realized asset returns in this setting are simply equal to investors’ forecast errors.

If investors knew the coefficients of the predictive model, they could form expectations of

cash-flow growth, and hence price assets, in such a way that returns would not be predictable

in the cross-section. This is the conventional rational expectations (RE) equilibrium that

is the foundation for typical market efficiency tests. Similarly, if J is small relative to N ,

investors could estimate the parameters of their cash-flow forecasting model with great pre-

cision, leading to asset prices that are close to those in the RE equilibrium.

In reality, however, investors face a myriad of potential predictor variables that could

be relevant in constructing such forecasts. In other words, J is not small relative to N .
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As technology has improved, the set of available and potentially valuation-relevant predictor

variables has expanded enormously over time. Textual analysis, satellite imagery, social media

data, and many other new data sources yield a wealth of information. But in order to use

these sources of information in a forecasting model, investors must estimate the relationship

between these signals and future cash flows. This is a high-dimensional learning problem.

The number of potential predictor variables could easily surpass the number of assets whose

cash flow data is available to estimate this relationship.

Machine learning methods handle this issue by imposing some regularization on the esti-

mation, for example by shrinking parameter estimates towards a fixed target or by searching

for a sparse model representation that includes only a small subset of variables from a much

larger set of potential predictors. With the goal of optimizing out-of-sample forecasting per-

formance, regularization lets the learner trade off the costs of downweighting certain pieces of

information against the benefit of reduced parameter-estimation error. In a Bayesian interpre-

tation, shrinkage reflects informative prior beliefs: when forecasters know, based on economic

plausibility considerations, that forecasting model parameters cannot have arbitrarily large

magnitudes, their posterior beliefs are shrunk towards the prior mean.

Shrinkage ameliorates, but does not eliminate, the effects of parameter uncertainty on

asset prices in the high-dimensional case. Relative to the RE equilibrium, asset prices are

distorted by two components. First, noise in the past cash-flow growth observations that

investors learn from will have, by chance, some correlation with the J predictor variables.

This induces error in investors’ parameter estimates, and hence an asset price distortion,

that is correlated with the J predictor variables. Shrinkage downweights this estimation

error component, but it also gives rise to a second distortion component because shrinkage

implies underweighting the predictive information in the J predictors. Naturally, this second

component, too, is correlated with the J predictor variables.

To stack the deck against return predictability, we endow investors with prior beliefs that

are objectively correct in the sense that the coefficients of the cash flow–generating model
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are drawn from this prior distribution. Investors also know that this model is linear. With

this objective prior, the optimal amount of shrinkage exactly balances the two components

in such a way that investors’ forecast errors, and hence also asset returns, are unpredictable

out-of-sample.

The fact that returns are not predictable out-of-sample however does not imply that there

is no in-sample predictability. An econometrician conducting an in-sample predictability test

uses data that had not been available to investors in real time when they priced assets. In an

RE setting, this would not matter, because investors would already have perfect knowledge of

model parameters. Approximately, the same would be true in a low-dimensional setting with

small J and large N , where investors would be able to estimate forecasting model parameters

with high precision. But in a high-dimensional setting, the econometrician’s ability to see

data realized ex post, after investors’ pricing decisions are made, gives her a substantial

advantage.

To show this, we consider an econometrician who collects asset price data from our model

economy ex post and runs in-sample regressions to test whether the J firm characteristics

cross-sectionally predict returns. When J is vanishing in size relative to N , there is almost

no predictability: with N →∞ and J fixed, the predictability test would reject the null with

test size close to the chosen significance level (e.g., 0.05). In contrast, in high-dimensional

asymptotics, where N, J →∞ jointly, with their ratio J/N converging to a fixed number, the

econometrician would reject the no-predictability null hypothesis, in the limit, with probabil-

ity one. In simulations, we show that these high-dimensional asymptotic results are a good

approximation for the case of finite N with J comparable in size to N . We obtain rejection

probabilities close to one in these simulations, too. Importantly, the high rejection rates in in-

sample tests are not caused by distortions in the sampling properties of the econometrician’s

test statistics. Instead, the high rejection rates correctly reflect the fact that equilibrium

asset prices contain in-sample predictable components that are large in a high-dimensional

setting.
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The situation is different for out-of-sample tests. In our model economy, a portfolio

formed based on the econometrician’s predictive regression estimates up to period t, with

positive weights for stocks with positive predicted returns and negative weights for stocks

with negative expected returns, has an average return of zero in the subsequent period t+ 1.

In other words, returns are not predictable out-of-sample. This is true, too, in the high-

dimensional asymptotic case. Intuitively, since Bayesian investors optimally use information

available to them and price assets such that returns are not predictable under their predictive

distribution, an econometrician restricted to constructing return forecasts using only data

that had been available to investors in real time is not able to predict returns out-of-sample

either.

These results illustrate forcefully that the economic content of the (semi-strong) market

efficiency notion that prices “fully reflect” all public information (Fama 1970) is not clear

in this high-dimensional setting, even though we abstract from the joint hypothesis prob-

lem by assuming that investors are risk-neutral.1 Does “fully reflect” mean that investors

know the parameters of the cash flow–prediction model? Or does “fully reflect” mean that

investors employ Bayesian updating when they learn from data about these parameters? The

null hypothesis in a vast empirical literature in asset pricing—including return predictabil-

ity regressions, event studies, and asset pricing model estimation based on orthogonality

conditions—is the former version of the market efficiency hypothesis. Our results show that

testing and rejecting this version has little economic content in a high-dimensional setting. An

apparent rejection of market efficiency might simply represent the unsurprising consequence

of investors not having precise knowledge of the parameters of a data-generating process that

involves thousands of predictor variables.

Empirical discoveries of new cross-sectional return predictors that are statistically sig-

nificant according to conventional in-sample tests are therefore less interesting in a high-

dimensional world. From the perspective of our model, it is not surprising that the technology-

1. The joint hypothesis problem (Fama 1970) refers to the problem that the econometrician studying asset
prices does not know the model that determines risk premia required by risk-averse investors.
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driven explosion in the number of predictor variables available to investors has coincided with

an explosion in the number of return predictors that are found significant in asset pricing

studies (Cochrane 2011; Harvey, Liu, and Zhu 2016). Even without p-hacking, multiple test-

ing, or data mining (Lo and MacKinlay 1990; Harvey, Liu, and Zhu 2016; Chordia, Goyal,

and Saretto 2019), evidence of cross-sectional return predictability from in-sample regressions

does not tell us much about the expected returns that investors perceived ex ante at the time

they priced assets. Thus out-of-sample tests (such as those in McLean and Pontiff 2016) gain

additional importance in the age of Big Data.

Researchers are often skeptical of out-of-sample tests. In the case where a fixed underlying

process is generating returns, as would be the case in many RE models, in- and out-of-

sample methods test the same hypothesis—and in-sample tests are more powerful because

they use the available data to the fullest extent. As a consequence, it is not clear why one

would want to focus on out-of-sample tests (Inoue and Kilian 2005; Campbell and Thompson

2008; Cochrane 2008; Hansen and Timmermann 2015). In contrast, if investors face a high-

dimensional learning problem, substantial in-sample predictability can coexist with absence

of out-of-sample predictability. In-sample and out-of-sample tests examine fundamentally

different hypotheses in this case. This provides a clear motivation for out-of-sample testing.

We show that out-of-sample portfolio returns can isolate predictable components of re-

turns that reflect risk premia or behavioral biases. Unlike in-sample estimates, the out-of-

sample estimates are not distorted by investors’ learning-induced forecast errors. We also

show that if the econometrician applies shrinkage similar to ridge regression in the in-sample

return prediction regression, with the penalty hyperparameter estimated via cross-validation,

then the portfolio return based on these shrinkage estimates can be equivalent to an out-of-

sample portfolio return. Within our Bayesian learning setting, this result therefore provides

an economic interpretation of approaches that use cross-validation (Kozak, Nagel, and San-

tosh 2020) or closely related methods (Chinco, Neuhierl, and Weber 2021) to estimate prior

beliefs for cross-sectional return prediction.
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We illustrate the different perspectives provided by in- and out-of-sample tests with an

empirical example. In the cross-section of U.S. stocks, we consider each stock’s history

of monthly simple and squared returns over the previous 120 months as a set of return

predictors. Running a ridge regression over a full five decade sample, the in-sample coefficient

estimates pick up the most prominent past return-based anomalies in the literature, including

momentum (Jegadeesh and Titman 1993; Novy-Marx 2012), long-term reversals (DeBondt

and Thaler 1985), and momentum seasonality (Heston and Sadka 2008). In other words, there

is substantial in-sample predictability. In terms of out-of-sample predictability, the picture

looks very different. Using rolling regressions over 20-year windows to estimate prediction

model coefficients and then using those to predict returns in subsequent periods, we find

that predictability is generally much weaker out-of-sample than in-sample. Moreover, there

is substantial decay over time. While some out-of-sample predictability exists in the early

decades of the sample, it is basically nil in recent years. This suggests that there may be

little reason to seek risk-based or behavioral explanations of the cross-sectional predictability

that shows up in the in-sample analysis.

One potential explanation for the out-of-sample predictability in the earlier parts of the

sample may be that investors several decades ago were not able to process the information in

each stock’s price history as effectively as investors are able to do today. One can think of this

as bounded rationality that induces excessive shrinkage or sparsity of investors’ forecasting

models, along the lines of Sims (2003), Gabaix (2014) and Molavi, Tahbaz-Salehi, and Vedolin

(2020). We show in our simulations that sparsity or shrinkage beyond the level called for by

objectively correct Bayesian priors leads to positive out-of-sample return predictability.

Overall, our results suggest that in-sample cross-sectional return predictability tests are ill-

suited for uncovering return premia that require explanations based on priced risk exposures

or behavioral biases. This is not to say that all of the documented patterns in the literature

are explainable with learning and will not persist out-of-sample. But it is important to

obtain other supporting evidence beyond in-sample predictability tests. If predictability
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associated with a predictor variable persists out-of-sample, if there is a compelling theoretical

motivation, or if other types of data point to a risk or behavioral bias explanation (e.g.,

economic risk exposures, data on investor expectations), the case for a risk premium or a

persistent behavioral bias is much stronger.

The insight in our analysis that learning can induce in-sample return predictability

relates to an earlier literature that studies learning-induced return predictability in low-

dimensional time-series settings with few return predictors (e.g., Timmermann 1993; Lewellen

and Shanken 2002; Collin-Dufresne, Johannes, and Lochstoer 2016). How learning affects

asset prices, and the properties of in- and out-of-sample return predictability tests, in a high-

dimensional cross-sectional setting is not clear from these earlier time-series analyses. These

questions are the focus of our paper.

Our approach has antecedents elsewhere in the literature. Aragones, Gilboa, Postlewaite,

and Schmeidler (2005) and Al-Najjar (2009) treat decision-makers as statisticians who have

to learn from observed data in a non-Bayesian high-dimensional setting. Their focus is on

conditions under which disagreement between agents can persist in the long-run. Klein (2019)

and Calvano, Calzolari, Denicolò, and Pastorello (2018) focus on strategic interaction of

machine learning pricing algorithms in product markets. Investors in our setting face a simpler

learning problem within a Bayesian linear framework and without strategic interactions. Even

in this simple setting, important pricing implications emerge.

All proofs are in the appendix.

II. Bayesian pricing in a high-dimensional setting

Consider an economy in discrete time, t ∈ {1, 2, ...}, with N assets. Each asset is associated

with a vector of J firm characteristics observable to investors that we collect in the N × J

matrixX. The assets pay dividends, collected in the vector yt, whose growth ∆yt = yt−yt−1

is partly predictable based on X:
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Assumption 1.

∆yt = Xg + et, et ∼ N(0,Σe), rank(X) = J,
1

NJ
trX ′X = 1 . (1)

The set of characteristics is potentially very large, but for simplicity we assume J < N .

It would be relatively straightforward to extend the framework to allow for J ≥ N , but the

main points can be seen more clearly in the simpler J < N setting. The set of characteristics

in X exhausts the set of variables that investors can condition on. Due to technological

change, this set could change as previously unavailable predictors become available. And so

we will be concerned with the behavior of prices for various values of J .

The assumption that 1
NJ trX ′X = 1 is a normalization that defines a natural scale for the

characteristics. For example, it holds if characteristics are scaled to have unit norm (i.e., if

1
N

∑N
n=1 x

2
nj = 1 for every characteristic j), as then

1

NJ
trX ′X =

1

J

J∑
j=1

1

N

N∑
n=1

x2nj = 1 .

We assume that the characteristics associated with a firm are constant over time for

simplicity. In reality, firms’ characteristics change. But as long as investors know the firm’s

characteristics at every point in time one can accommodate this in our setting by thinking

of yt as a vector of payoffs for hypothetical characteristics-constant firms. We would have

to reshuffle firms each period so that each element of yt is always associated with the same

characteristics.

We further make the following assumption:

Assumption 2. Investors are risk-neutral and the interest rate is zero.

By abstracting from risk premia, we intentionally make it easy for an econometrician to

test market efficiency in our setting. With risk-neutral investors, there is no joint hypothesis

problem due to unknown risk–pricing models. Yet, as we will show, interpretation of standard
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market efficiency tests is still tricky.

We focus on the pricing of one-period dividend strips, so that pt represents the vector of

prices, at time t, of claims to dividends paid at time t + 1. We think of one period in this

model as a long time span, say a decade, so that the errors in et are actually the averages

of the errors one would find by sampling at higher frequencies over many shorter subperiods.

With this interpretation in mind, we can then think of the dividend strip payoff as a long-

lived stock’s cash flows compressed into a single cash flow at the typical duration of a stock

(e.g., perhaps a decade).

The price vector is then equal to the vector of next-period expected dividends,

pt = Ẽtyt+1 = yt + Ẽt∆yt+1 = yt + Ẽt (Xg + et+1) .

This formulation encompasses a range of possible assumptions about the process by which

investors’ expectations Ẽt [·] are formed.

In a rational expectations model, for example, investors know g, so that Ẽt (Xg + et+1) =

Xg. The dividend strip price is therefore pt = yt +Xg and realized price changes rt+1 =

yt+1−pt = ∆yt+1−Xg = et+1 are unpredictable with X. This is the usual null hypothesis

that underlies tests based on orthogonality conditions and Euler equations.

However, we focus on the realistic case where investors don’t know g. They therefore face

a learning problem in pricing assets. They can learn about g by observing the realizations

of {∆ys}t1 and the characteristics X. (We assume that investors know Σe.) We then have

Ẽt (Xg + et+1) = Xg̃t, where g̃t represents investors’ posterior mean of g at time t, after

learning from historical data.

If J is close to (or perhaps even larger than) N , running an ordinary least squares (OLS)

regression to estimate g would not give investors useful forecasts. For example, with J = N ,

a cross-sectional regression of ∆yt on X exactly fits ∆yt in sample. Then Ẽt (Xg + et+1) =

∆yt so that pt = yt+∆yt and rt+1 = ∆yt+1−∆yt. The forecast mean squared error (MSE)

is then var (et+1 − et), i.e., twice the variance of the truly unpredictable et+1.
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For comparison, the naive “random walk” forecast that sets Et ∆yt+1 = 0 would result

in pt = yt and hence rt+1 = ∆yt+1. In this case, the forecast MSE is var (Xg + et+1).

If a relatively small component of cash-flow growth is predictable—that is, if var (Xg) �

var et+1—then the random walk forecast MSE may be substantially lower than the OLS

forecast MSE.

II.A. Priors and posteriors

The problem with least-squares regression forecasts is that the prior implicit in the least-

squares estimator is economically unreasonable. The posterior mean equals the generalized

least squares (GLS) estimator if investors’ prior for g is diffuse. But a diffuse prior for g

is not a plausible assumption. Economic reasoning should lead investors to realize that the

amount of predictable variation in ∆yt+1 must be limited. It does not make economic sense

for investors to believe that arbitrarily large values for g are just as likely as values that give

rise to moderate predictable variation in ∆yt+1. While they might not have very precise

prior knowledge of g, it reasonable to assume that the distribution representing investors’

prior beliefs about g is concentrated around moderate values of g.

We therefore make the following specification of prior beliefs.

Assumption 3. Before seeing data, investors hold prior beliefs

g ∼ N(0,Σg) .

That prior beliefs are centered around zero means that investors a priori don’t know which

characteristics predict cash-flow growth and by how much. But they know that magnitudes of

g elements cannot be too big. Economic restrictions on Σg that restrict the likely magnitudes

of g elements will play an important role later on in our analysis.

Proposition 1. After investors have observed dividend growth in a single period, ∆y1, their
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posterior distribution of g is g|∆y1,X ∼ N(g̃1,D1), where

g̃1 = D1d1,

D−11 = Σ−1g +X ′Σ−1e X,

d1 = X ′Σ−1e ∆y1.

After observing data for t periods, the posterior mean is g̃t = Dtdt and

D−1t = Σ−1g + tX ′Σ−1e X,

dt = tX ′Σ−1e ∆yt ,

where ∆yt = 1
t

∑t
s=1 ∆ys. Therefore

g̃t =

[
1

t
Σ−1g +X ′Σ−1e X

]−1
X ′Σ−1e ∆yt. (2)

The posterior mean g̃1 takes the form of a Tikhonov-regularized (i.e., ridge) regression

estimator, where the inverse of D−11 is “stabilized” by adding Σ−1g to X ′Σ−1e X. Thus our

Bayesian framework connects to a large literature in machine learning in which Tikhonov

regularization is used to deal with high-dimensional prediction problems (see, for example,

Shalev-Shwartz and Ben-David 2014).2

We first simplify the setup by making

2. To interpret the posterior mean in terms of standard regression estimators, we can use the Woodbury
identity to write

g̃1 = Σg

{
Σg +

(
X ′Σ−1

e X
)−1
}−1

g̃GLS,1

g̃GLS,1 =
(
X ′Σ−1

e X
)−1

X ′Σ−1
e ∆y1.

This shows that the posterior mean is a weighted average of the prior mean (zero) and the GLS regression
estimator g̃GLS,1.
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Assumption 4.

Σe = I,

Σg =
θ

J
I, θ > 0.

Our results go through for a general (nonsingular) covariance matrix Σe, i.e., with a

factor structure in residuals, though at the cost of some extra notational complexity. By

assuming Σe = I, we are making the learning problem easy for investors. With uncorrelated

residuals, investors achieve a given posterior precision with a smaller J than if residuals were

uncorrelated.

By assuming that Σg is proportional to the identity, we put all the predictor variables

on an equal footing from the prior perspective; and it is essential that the variance of the

elements of g should decline with J in order to consider sensible asymptotic limits. To see

this, note that the covariance matrix of Xg is XΣgX
′, so the cross-sectional average prior

variance of the predictable component of cash-flow growth satisfies

1

N

N∑
i=1

(
XΣgX

′)
ii

(A4)
=

θ

JN

N∑
i=1

J∑
j=1

x2ij
(A1)
= θ, (3)

using Assumptions 1 and 4.

To understand (2), it will be convenient to think in terms of the principal components of

the data matrix X. Specifically, we form the eigendecomposition

1

N
X ′X = QΛQ′ . (4)

Here Λ is a diagonal matrix with the eigenvalues λj > 0 of 1
NX

′X along its diagonal and Q

is an orthogonal matrix whose columns are the corresponding eigenvectors of 1
NX

′X. These

columns are the principal components of X. (It is possible to eigendecompose X in this way

because 1
NX

′X is symmetric and positive definite.) Lastly, the normalization trX ′X = NJ
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(Assumption 1) implies that the average eigenvalue equals one:

1

J

J∑
i=1

λi =
1

J
tr

1

N
X ′X = 1 , (5)

using the fact that the sum of the eigenvalues of a matrix equals its trace.

Combining Assumption 4 with equation (2), we obtain

g̃t =

[
J

θt
I +X ′X

]−1
X ′∆yt = Γt(X

′X)−1X ′∆yt , (6)

where

Γt = Q

(
I +

J

Nθt
Λ−1

)−1
Q′ (7)

is a symmetric matrix. The posterior mean g̃t shrinks the naive OLS estimate (from a

regression of ∆yt onto the columns of X) along the principal components. Shrinkage is a

consequence of the informative prior for g. The prior’s influence on the posterior is stronger

if the observed data is less informative relative to the prior. To see explicitly what the degree

of shrinkage depends on, note that
(
I + J

NθtΛ
−1)−1 is diagonal with elements

λj

λj + J
Nθt

along its diagonal. Thus shrinkage is strong if t or θ are small, or J/N is large, or along

principal components with small eigenvalues.

We are now in a position to characterize the behavior of realized returns in equilibrium.

Proposition 2. With assets priced based on g̃t, realized returns are

rt+1 = yt+1 − pt = X(I − Γt)g −XΓt(X
′X)−1X ′ēt + et+1, (8)

where ēt = 1
t

∑t
s=1 es. Hence expected returns satisfy E rt+1 = 0, and the covariance matrix
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satisfies

E rt+1r
′
t+1 =

θ

J
X (I − Γt)X

′ + I .

Realized returns thus have three components. The first term on the right-hand side of (8)

reflects the effect of “underreaction,” due to shrinkage, to the fundamental information in X.

If investors had an uninformative prior (θ →∞ and hence Γt → I) as in many conventional

low-dimensional Bayesian learning models, this term would not be present. But as we have

argued, such an uninformative prior would imply that investors entertain an unreasonable

amount of predictable variation in dividend growth. Under investors’ informed prior beliefs,

this part is still zero in expectation because the prior mean of g is zero, but for a given draw

of g that generates the data an econometrician would study, it is not zero.

The second term represents the effect of noise on investors’ posterior mean. To the extent

that the unpredictable shocks in ēt in a given sample line up, by chance, with columns of

X, this induces estimation error that tilts investors’ cash flow–growth forecast away from

Xg. Shrinkage via Γt reduces this component, at the cost of generating the first term.

Under Bayesian learning, Γt optimally trades off the pricing error arising from these two

components.

The third term is the unpredictable shock et+1. In the rational expectations case where

g is known to investors, the realized return would simply be equal to et+1 and the first two

terms would not exist.

In the Bayesian learning case, however, the first two terms are not zero, and, as a con-

sequence, returns contain highly persistent components correlated with the columns of X.

Even though E rt+1 = 0 when we integrate over the distribution of g under investors’ prior

beliefs in Proposition 2, the expected returns are not zero conditional on a given draw of g

and ēt. Unconditionally, returns are therefore more volatile, in the sense that E rt+1r
′
t+1− I

is positive definite (so that every asset—and every portfolio of assets—has higher volatility

than it would in the rational expectations case in which, by Assumption 4, the covariance

matrix equals I). As we now show, the presence of these components may induce certain
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forms of return predictability.

III. Asymptotic analysis

We now analyze the properties of asset prices in high-dimensional asymptotic analysis when

N, J → ∞, where J/N → ψ > 0, where ψ is a fixed number.3 This differs from the usual

low-dimensional large N , fixed J (or large T , fixed N , and fixed J) asymptotics that underlie

most econometric methods in asset pricing. The high-dimensional asymptotics are intended

to provide a tractable approximation for the case where J and N are finite and J is not small

relative to N (just as conventional large N–fixed J asymptotics provide an approximation

for the small J/N case).

III.A. In-sample predictability

We consider an econometrician who studies these realized returns with the usual tools of

frequentist statistics. The econometrician looks for return predictability by regressing rt+1

on the variables in X using OLS.4 By allowing the econometrician to see all the predictor

variables used by investors, we make things as easy as possible for the econometrician; in

the Online Appendix, we modify our main results to allow the econometrician to see only a

subset of the investors’ predictors, and show that this modification does not affect our main

results in any substantive way.

As the number of predictor variables increases, J →∞, we are—potentially—in the realm

of Big Data. But the mere fact that empiricists have access to a lot of data is not enough, as

3. See, for example, Anatolyev (2012) and Dobriban and Wager (2018) for recent examples from the econo-
metrics and statistics literature on high-dimensional regression that use this type of asymptotic analysis. This
literature focuses on the asymptotic properties of estimators and statistical tests given an underlying data-
generating model that stays fixed as N and J change. In contrast, in our case the nature of investors’ learning
problem changes as N and J change, and hence the properties of the data that the econometrician analyzes
change as well.

4. Given our assumption that Σe = I, OLS and GLS coincide. The econometrician could also use shrinkage
methods like ridge regression, effectively imposing a prior that the coefficients in the return predictability
regression cannot be too big. To the extent that the implied prior distribution of the coefficients is roughly in
line with the true distribution of the coefficients, using such methods would strengthen the in-sample return
predictability. We don’t show formal results for this case, but we have explored the issue in simulations.
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some of the data could be (asymptotically) redundant. Our next assumption can therefore

be thought of as formalizing the notion of a Big Data environment.

Assumption 5 (Big Data). The eigenvalues λj of 1
NX

′X satisfy λj > ε for all j, where

ε > 0 is a uniform constant as N →∞.

To understand this assumption, note that if X ′X has eigenvalues that are very close to

zero, then the columns of X are roughly collinear. To find a linear combination v ∈ RJ

of columns of X with the property that Xv is small (where v is a unit vector, v′v = 1),

we can choose v to be a unit eigenvector of X ′X with minimal eigenvalue λmin so that

(Xv)′ (Xv) = λmin ≈ 0. Thus if there are eigenvalues close to zero, then some characteristics

are approximately spanned by other characteristics.

We emphasize, however, that even if a small number of principal components capture

much of the variation in the data, it does not necessarily follow that the Big Data assumption

is violated. In Section III.B, we will exhibit a natural benchmark case—namely the case in

which the characteristics in X are drawn in an IID random way—in which the assumption

holds even though there are indeed a few principal components that capture much of the

variation (and many more that contribute relatively little variation). It is ultimately an

empirical question whether we live in a Big Data world in the sense of Assumption 5. As we

will now show, the qualitative properties of standard econometric tests are starkly different

depending on whether or not the assumption holds.

The econometrician regresses rt+1 on X, obtaining a vector of cross-sectional regression

coefficients

ht+1 =
(
X ′X

)−1
X ′rt+1 . (9)

In our baseline asymptotic analysis, we focus on the case in which the econometrician uses all

characteristics jointly as return predictors. The online appendix shows that we obtain similar

results in the case where the econometrician only observes a subset of the firm characteristics

known to investors. Our simulations in Section IV below also consider the case where many
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econometricians analyze single-predictor regressions.

Following the logic of rational expectations econometrics, which assumes that investors

price assets under knowledge of g, the econometrician entertains rt+1 = et+1 as the no-

predictability null hypothesis. Given that the elements of et+1 are distributed N(0, 1), it

would follow, under this null, that5

√
Nht+1 ∼ N

(
0, N(X ′X)−1

)
. (10)

Hence, under the econometrician’s rational expectations null hypothesis, we would have

h′t+1(X
′X)ht+1 ∼ χ2

J . (11)

As we want to characterize the properties of the econometrician’s test under asymptotics

where N, J →∞ and J/N → ψ > 0, it is more convenient to let the econometrician consider

a scaled version of this test statistic:

Tre ≡
h′t+1X

′Xht+1 − J√
2J

. (12)

Under the econometrician’s rational expectations null, we would have, asymptotically,

Tre
d−→ N (0, 1) as N, J →∞, J/N → ψ > 0. (13)

But the actual asymptotic distribution of Tre is influenced by the components of returns

involving ēt and g in (8). These components alter the asymptotic distribution and may lead

the rejection probabilities of a test using N(0, 1) critical values based on (13), or χ2 critical

5. Recall that we assume Σe = I (Assumption 4). More generally, if the econometrician has to estimate
Σe, this can be done based on the regression residual ξt+1 = rt+1 − Xht+1 =

[
I −X(X ′X)−1X ′

]
et+1,

used to estimate the variance as (X ′X)−1 1
N−J ξ

′
t+1ξt+1 which would estimate the variance consistently under

conventional large-N , fixed-J . However, if the econometrician does not impose the null hypothesis ht+1 = 0 in
this variance estimation, the estimated variance is an additional source of test size distortions; see Anatolyev
(2012) for more details.
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values based on (11), to differ from the nominal size of the test.

Our first result characterizes the properties of this test statistic under the true model,

according to which returns follow equation (8). In this analysis, we assume that g is drawn

from the prior distribution. This assumption is conservative in the sense that investors’ prior

beliefs about the distribution of g are objectively correct. If investors’ priors were to deviate

from this distribution, this would be another source of return predictability.

To assess the performance of the rational expectations econometrician’s test statistic in

our setting, it is helpful to write

Σre =
(
X ′X

)−1
and Σb = E

(
ht+1h

′
t+1

)
for the covariance matrices of the predictive coefficient estimates under the (incorrect) rational

expectations null hypothesis and the true model, respectively. When returns are generated

under the true model (8), the rational expectations econometrician will use inappropriately

small standard errors, in the sense that ΣbΣ
−1
re − I is positive definite.6

The first two moments of the eigenvalues of ΣbΣ
−1
re control the asymptotic behavior of Tre.

These eigenvalues (ζi,t) can be written explicitly in terms of the eigenvalues (λj) of 1
NX

′X

as

ζi,t = 1 +
1

t+ J
Nθλi

. (14)

We write the limiting mean and variance of the eigenvalues as

µ = lim
J→∞

1

J

J∑
i=1

ζi,t and σ2 = lim
J→∞

1

J

J∑
i=1

ζ2i,t − µ2 .

By the “Big Data” Assumption 5, we have 1 < µ < 2 and 1 <
√
µ2 + σ2 < 2 for all t ≥ 1.

(Without the assumption, we would have µ = 1 and σ = 0 if λi → 0 and hence ζi,t → 1.)

6. As the proof of Proposition 3 shows, ΣbΣ
−1
re − I = Nθ

J
Q
(
I + Nθt

J
Λ
)−1

ΛQ′, where Q is orthogonal and
Λ is diagonal with positive entries. It is therefore a symmetric matrix with positive eigenvalues, and so is
positive definite.
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Proposition 3. If returns are generated according to (8), then in the large N, J limit

h′t+1X
′Xht+1 −

∑J
i=1 ζi,t√

2
∑J

i=1 ζ
2
i,t

d−→ N(0, 1) .

It follows that the test statistic Tre satisfies

Tre√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
J

d−→ N(0, 1)

where 1 < µ < 2 and 1 <
√
µ2 + σ2 < 2.

We can therefore think of Tre as a multiple of a standard Normal random variable plus a

term of order
√
J :

Tre ≈
√
µ2 + σ2N(0, 1) +

µ− 1√
2

√
J . (15)

(For comparison, the rational expectations econometrician thinks Tre is asymptotically stan-

dard Normal, as in equation (13).) Thus the rejection probability tends rapidly to one as N

and J tend to infinity.

These results apply as J tends to infinity with t held finite. If we also allow t to tend

to infinity, then agents learn the model and µ shrinks toward 1; in this case, equation (15)

shows that the key question is whether µ tends to 1 faster than J tends to infinity. Under

the Big Data Assumption 5, we have µ − 1 > 1
t+ J

Nθε

, so the final term in (15) will create

problems for the econometrician if
√
J grows faster than t. Since one period in our analysis

should correspond to the time length of the return sample that an econometrician might use

in an asset pricing test, the length of one period should be at least a decade. Therefore, t will

typically be much smaller than
√
J in cross-sectional asset pricing settings. An asymptotic

analysis in which
√
J grows faster than t then likely provides a better approximation for

typical finite-sample properties than one in which t grows faster. For this reason, we continue

to focus on the fixed-t case.

Proposition 4. In a test of return predictability based on the rational expectations null (13),
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we would have, for any critical value cα and at any time t,

P (Tre > cα)→ 1 as N, J →∞, J/N → ψ .

More precisely, for any fixed t > 0, the probability that the test fails to reject declines

exponentially fast as N and J increase, at a rate that is determined by µ, σ, and ψ:

lim
N→∞

− 1

N
logP (Tre < cα) =

(µ− 1)2ψ

4 (µ2 + σ2)
, (16)

for any critical value cα.

Thus, when J is not small relative to N , in-sample predictability tests lose their economic

meaning, in the sense that the usual interpretation of in-sample return predictability evidence

is not warranted. The typical conclusion from rejections of the no-predictability null in

studies of the cross-section of stock returns is that models of risk premia or mispricing due

to imperfectly rational investors are needed to explain the evidence. Our model points to a

third possibility: investors are Bayesian, but in-sample return predictability arises even for

large t because investors’ forecasting problem is high-dimensional.

Instead of testing for predictability by studying the size of coefficients in predictive regres-

sions via h′t+1X
′Xht+1, as above, we might imagine trying to construct a trading strategy

with weights proportional to in-sample predicted returns,

wIS,t =
1

N
Xht+1.

As the predictive coefficients satisfy ht+1 = (X ′X)
−1
X ′rt+1, the return on the strategy is

r′t+1wIS,t =
1

N
r′t+1Xht+1

=
1

N
h′t+1X

′Xht+1 .
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Thus the two approaches are equivalent.

III.B. A benchmark example: X a random matrix

With some additional assumptions on the matrix of firm characteristics X, we can explicitly

calculate the limit moments that appear in our propositions. We can then see, for example,

how these limit moments depend on ψ, the limiting ratio of the number of predictors, J , to

the number of observations, N .

Suppose that characteristics are determined at random, so that X has IID entries xij

with mean zero, unit variance, and finite fourth moment.7 Nature generates this matrix once

before investors start learning and it stays fixed thereafter. As before, investors know X, and

it stays fixed when we imagine an econometrician repeatedly sampling data by rerunning the

economy.

We can use results from random matrix theory to characterize the distribution of the

eigenvalues λi. In particular, the eigenvalue distribution converges to the Marchenko-Pastur

distribution as N, J → ∞ with J/N = ψ. For ψ close to one, this distribution features

substantial probability mass on eigenvalues close to zero, indicating that many of the columns

of X are close to being collinear. Nonetheless, the results of Yin, Bai, and Krishnaiah (1988)

and Bai and Yin (1993) ensure that all the eigenvalues lie in a bounded interval that does not

contain the origin: λj ∈
[(

1−
√
ψ
)2
,
(
1 +
√
ψ
)2]

for all j. Thus Assumption 5 is satisfied.

Figure I shows histograms of the eigenvalue distributions in examples with X drawn

randomly with N(0, 1) entries, setting N = 1000 and J = 10, 100, 500, and 900. Solid red

lines in the figures illustrate the limiting Marchenko-Pastur distribution for the eigenvalues

λj in each case; we also calculate the corresponding asymptotic distribution of the eigenvalues

ζj,t by change of variable, using equation (A.17) in the appendix. When ψ = J/N is close

to one, there is considerable mass near zero, implying that there are many approximately

collinear relationships between the columns of X. This is a realistic property that one would

7. Then Assumption 1 holds asymptotically, as 1
NJ

trX ′X = 1
NJ

∑
n,j x

2
n,j → 1 as N, J → ∞ by the

strong law of large numbers.
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Figure I
Histograms of eigenvalue distributions in examples with θ = 1, t = 1, N = 1000 and
J = 50, 500, 900. The asymptotic distribution is shown as a solid line in each panel.
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Figure II
The rate function given in equation (16).

also find in actual empirical data if one assembled a huge matrix of firm characteristics.

Our next result characterizes the limiting cross-sectional mean, µ, and variance, σ2, of

the distribution of the eigenvalues ζj,t.

Proposition 5. The cross-sectional moments of ζj,t satisfy

µ = 1 +
ψ + θt(ψ + 1)−

√
[ψ + θt(ψ + 1)]2 − 4θ2t2ψ

2θt2ψ
(17)

and

σ2 =
θ2t2ψ − (θt+ ψ)2

2θ2t4ψ2
+
θtψ

(
θ2t2 (ψ − 2)− θtψ + ψ2

)
+ (θt+ ψ)3

2θ2t4ψ2

√
[ψ + θt (ψ + 1)]2 − 4θ2t2ψ

. (18)

This result allows explicit calculation of the limit moments that appear in Propositions

3 and 4. For example, Proposition 4 shows that the probability of rejecting the null of no

predictability declines exponentially fast as N increases, and derives the rate of the exponen-

tial decay. Proposition 5 can be used to derive an exact analytical expression for the rate in

terms of the model primitives θ, ψ, and t.

Figure II shows how the rate function (16) depends on ψ for θ = 1 and t = 1. For ψ > 0.4,

the rate is higher than 0.015, indicating that the probability of not rejecting the null is on

the order of exp(−0.015N), which is a tiny number even for relatively small cross-sections of,

say, N ≥ 300.
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III.C. (Absence of) out-of-sample return predictability

The situation looks very different with regards to out-of-sample predictability. We now

consider a trading strategy that holds stocks in period t + 1 with weights proportional to

predicted returns based on regression coefficients hs+1,

rOOS,t+1 = w′OOS,s+1rt+1, wOOS,s+1 =
1

N
Xhs+1 (19)

where s 6= t such that the trading strategy is out-of-sample in the sense that the returns

used to obtain the coefficient estimates hs+1 do not overlap with the returns rt+1 used in the

evaluation of this strategy.

In the forward out-of-sample case s < t, rOOS,t+1 is the return on a trading strategy that

would be implementable at the end of period s+ 1 based on the econometrician’s regression

coefficient at that time. We also analyze the backward out-of-sample case where s > t. In this

case, rOOS,t+1 does not represent the return on a tradable strategy, but it is still interesting for

econometric evaluation of cross-sectional return predictability where researchers sometimes

do go back in time and evaluate trading strategies on new, previously unavailable historical

data from earlier time periods.

We obtain the following result for the asymptotic distribution of rOOS,t+1:

Proposition 6. If returns are generated according to (8) and rOOS,t+1 is calculated as in

(19) with s 6= t, then

E rOOS,t+1 = 0,

and, in the large N, J limit,

rOOS,t+1√∑J
i=1 ζi,sζi,t

d−→ N(0, 1) .

In the forward prediction case t > s—using last period’s estimated coefficients to form the
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portfolio—this is a natural result. Investors are Bayesian so the econometrician cannot “beat”

investors in predicting returns as long as the econometrician is put on the same footing as

investors in terms of the data that are available at the time of making the prediction. Hence,

the expected return of OOS,t+1 is zero.

That the result also applies backwards in time, with t < s, is more surprising. The result

suggests that the econometrician could conduct backwards out-of-sample tests. The fact that

many cross-sectional asset-pricing anomalies do not hold up in backwards out-of-sample tests

(Linnainmaa and Roberts 2018) could therefore be a consequence of investor learning, even

without data-snooping on the part of researchers who published the original anomaly studies.

While the forward result is likely a general property of Bayesian learning (with objectively

correct prior), the backwards result might be somewhat specific to the environment we have

set up here (e.g., the assumption that cash-flow growth is IID over time). It is an interesting

question for future research to what extent one can generalize the backwards result.

The absence of backwards out-of-sample predictability is also interesting because it sug-

gests that the common practice of using cross-validation for evaluating prediction models is

justified in an environment like ours where investors face a learning problem. Many recent pa-

pers in the emerging machine learning literature in empirical asset pricing use cross-validation

(e.g., Feng, Giglio, and Xiu 2020; Kozak, Nagel, and Santosh 2020; Bryzgalova, Pelger, and

Zhu 2019). In cross-validation, the data is partitioned repeatedly into estimation and vali-

dation samples. For example, several blocks of calendar years are used for model estimation,

and other blocks are held for out-of-sample model validation. Then the blocks are switched

and the procedure is repeated multiple times. The time ordering of blocks does not matter in

this procedure. Some validation blocks can therefore temporally precede some of the estima-

tion blocks. This brings up the concern that cross-validation could pick up learning-induced

in-sample predictability. Our backwards result in Proposition 6 suggests that this is not the

case. Backwards prediction, forward prediction, and combinations of the two as in cross-

validation, are equivalent. Further below, we explore whether cross-validation approaches
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could also be useful to assess the magnitude of out-of-sample predictable cross-sectional vari-

ation in returns.

While the result in Proposition 6 that out-of-sample trading strategies with weights based

on return forecasts have zero expected returns is straightforward, empirical testing of this

prediction is not. The econometrician could try to empirically approximate the asymptotic

standard deviation in the denominator of the ratio in Proposition 6 from the time-series

standard deviation of the rOOS observations. As we suggested earlier, one could think of one

period in this model as roughly a decade and one could imagine the econometrician observing

intra-period rOOS realizations that are sampled at higher frequency. Would a simple t-test,

that compares the estimated mean of intraperiod returns to the standard error calculated

from intraperiod returns, provide a valid test of the E rOOS,t+1 = 0 hypothesis?

Unfortunately, the answer is no. The reason is that the expectation in E rOOS,t+1 = 0

is unconditional in the sense that it integrates over the distribution of g. However, the

econometrician only observes one sample for a given draw of g. Nature draws g before any

data are generated and the econometrician cannot rerun history for a different value of g.

Moreover, if the econometrician starts sampling the out-of-sample strategy returns at the

beginning of period t+ 1, the sample is also conditioned on the path of e1, ..., et.

In this one sample available to the econometrician, the distribution of rOOS,t+1 has mean

E [rOOS,t+1|g, e1, ..., et], which is generally not zero. In the same way, a sample variance of

rOOS,t+1 in this one sample would estimate var(rOOS,t+1|g, e1, ..., et), not the unconditional

variance under the square root in the denominator of the expression in Proposition 6. As a

consequence, a t-statistic based on this sample mean and variance would not yield a correctly

sized test of the Bayesian learning null hypothesis.

Heuristically, at least, there is a relatively simple solution. Since E rOOS,t+1 = 0, we

have var(rOOS,t+1) = E r2OOS,t+1. Moreover, E r2OOS,t+1 = EE[r2OOS,t+1|g, e1, ..., et] and so

var(rOOS,t+1) = EE[r2OOS,t+1|g, e1, ..., et]. Therefore, if the econometrician uses the mean

of squared intraperiod returns rather than the sample variance of returns as an estimate
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of var(rOOS,t+1), this estimate is on average, across samples with different g and e1, ..., et,

equal to the unconditional variance. The reason is that the mean of squared returns captures

the deviations of rOOS,t+1 from zero due to E [rOOS,t+1|g, e1, ..., et] 6= 0, while in a sample

variance calculation these components are removed through demeaning.

III.D. Out-of-sample moment conditions for risk premia estimation

In our model so far, we have abstracted from risk premia or the possibility that investors’

subjective beliefs may deviate from the prescriptions of Bayesian updating with objectively

correct priors. Risk premia or belief distortions would induce additional predictable com-

ponents in asset returns beyond those that we have (8). And an empiricist may want to

estimate to what extent characteristics X are associated with risk premia or belief distor-

tions, while allowing, at the same time, for the possibility that investors may be learning

about the predictive role of X for asset cash flows.

Suppose the characteristics are associated with a predictable component Xγ for some

vector γ that represents risk premia (for brevity, we use the label “risk premia” from now on,

but with the understanding that nonzero elements in γ could arise from belief distortions or

frictions, too). In this case, adding this component to the returns in (8), we get

rt+1 = Xγ +X(I − Γt)g −XΓt(X
′X)−1X ′ēt + et+1. (20)

How can the econometrician estimate the risk premium component Xγ? Under RE, with

the third and fourth term in (20) absent, the econometrician could just regress rt+1 on X

in an in-sample regression and estimate Xγ with the fitted value from this regression. But

when investors are learning about g, this does not work because the third and fourth term are

not zero and they are correlated with X. An OLS regression of rt+1 on X would be distorted

by the presence of these terms. Along the same lines as in tests of the no-predictability null

that we analyzed earlier, in-sample tests of hypotheses about γ would be distorted by the

presence of the learning-induced components in returns.
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We can solve this problem by focusing on the out-of-sample return rOOS,t+1. Given the

returns (20), and using the results from Proposition 6, it is straightforward to show that

1

N
γ ′X ′Xγ = E rOOS,t+1. (21)

Therefore, the econometrician could estimate 1
N γ
′X ′Xγ by the sample analog of the expecta-

tion on the right-hand side. This does not identify the risk premia associated with individual

characteristics, but it allows the econometrician to estimate the overall contribution of risk

premia to return predictability.

Of course, statistical inference in this case runs into the same problem that we dis-

cussed for the out-of-sample test in the previous subsection. Analogous to our earlier discus-

sion, the econometrician could use squared intraperiod realizations of rOOS,t+1 to estimate

var(rOOS,t+1). In this case, with risk premia components in returns, the squared returns would

also incorporate the squared risk premia. As a consequence, E r2OOS,t+1 > var(rOOS,t+1).

Standard errors based on these estimates of var(rOOS,t+1) may therefore be somewhat con-

servative in the sense that they overstate the sampling variation on average.

III.E. Comparison with cross-validated penalized regression

Since the above estimation procedure amounts to looking for return components that are

predictable out-of-sample, one may wonder whether penalized regression with penalty choice

based on cross-validation could be an alternative route towards a suitable estimator of quan-

tities like 1
N γ
′X ′Xγ that provide an assessment of the magnitude of risk premia. As we show

now, there is, indeed, a close connection between the estimator based on a sample analog of

(21) and penalized regression with penalty choice based on cross-validation.

Consider the penalized criterion for an in-sample regression in period t,

bt = arg min
bt

[
(rt −Xbt)′(rt −Xbt) + ξb′tX

′Xbt
]

(22)

28



for a given penalty parameter ξ. This second term in this criterion penalizes parameter

estimates bt that imply a large in-sample predictable component of returns, b′tX
′Xbt, or,

equivalently, a high return of the in-sample portfolio that invests with weights proportional

to Xbt. This penalty specification is closely related to the approach in Kozak, Nagel, and

Santosh (2020) that estimates stochastic discount factors with a maximum squared Sharpe

ratio penalty. It is also similar to ridge regression, but with the difference that standard ridge

regression would penalize simply the sum of squared coefficients b′tbt.

The solution to the problem (22) is

bt =
1

1 + ξ
ht, (23)

or, in other words, simply the OLS regression coefficients shrunk towards zero by a scalar

factor that depends on the penalty parameter ξ. Cross-validation then seeks the ξ that

minimizes the out-of-sample residual sum of squares, namely,

ξ∗ = arg min
ξ

E
[{
rt+1 −

1

1 + ξ
Xhs+1

}′{
rt+1 −

1

1 + ξ
Xhs+1

}]
. (24)

Given the optimal ξ, we can then calculate a cross-validated portfolio return with weights

based on the shrunk coefficients 1
1+ξ∗hs+1:

rCV,s+1 = w′CV,s+1rs+1, wCV,s+1 =
1

1 + ξ∗
Xhs+1. (25)

This is an in-sample portfolio return where period s+1 returns are weighted based on regres-

sion coefficients estimated from the same returns, but with shrinkage toward zero induced by

1
1+ξ∗ .

Taking the first-order condition of problem (24), and comparing with the definition of
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rCV in (25) and rOOS in (19), one can see that it implies

E rCV,s+1 = E rOOS,s+1. (26)

Hence, even though rCV,s+1 is an in-sample portfolio return, the cross-validated ξ exerts the

right amount of shrinkage to remove the learning-induced in-sample predictable variation

in returns and isolate γ ′X ′Xγ, just like the out-of-sample portfolio return rOOS,t+1 does

according to (21).

Since penalization can be interpreted as shrinkage induced by informative prior beliefs,

we can interpret this result as showing that the econometrician can use cross-validation

to empirically back out prior beliefs that remove the tendency of in-sample regressions to

overstate how much return predictability there really is out of sample. Within our Bayesian

learning setting, this result therefore provides an economic interpretation of approaches that

use cross-validation (Kozak, Nagel, and Santosh 2020) or related methods (Chinco, Neuhierl,

and Weber 2021) to estimate prior beliefs for cross-sectional return prediction.

In our empirical application below, we compare rOOS with a slightly simplified version

of rCV that is based on a standard ridge regression, i.e., with penalty proportional to b′tbt

instead of b′tX
′Xbt.

IV. Finite-sample analysis: Simulations

In this section, we report the results of finite-sample simulations. These simulations provide

some insight on the extent to which the asymptotic results provide a good approximation in

a setting with realistic J and N . We set N = 1000 and let J vary from 1 to close to 1000.

We draw the elements of X from a standard Normal distribution.

For this purpose of this numerical analysis, we also need to set the parameter θ that pins

down the share of predictable variation in cash-flow growth through Σg = θ
J I. What matters

here is not the total level of cash-flow variance but rather the share that is predictable. For
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this reason, we normalize, as before, Σe = I. We then look for a value of θ that yields

a plausible amount of predictable variation in cash-flow growth relative to this normalized

residual variance.

Based on our data-generating process for cash-flow growth in (1), annualized growth rates

over a horizon of T periods are

1

T

T∑
t=1

∆yt = Xg +
1

T

T∑
t=1

et.

We now evaluate the share that is predictable given knowledge of g. This is an upper bound

on the share that investors learning about g may be able to predict. The annualized variance

of the predictable component (first term on the right-hand side) is constant with respect to

T , while the variance of the residual component (second term on the right-hand side) shrinks

at the rate 1/T . As we indicated earlier, we think of one period in the model as representing

roughly one decade. In this case, at a horizon of one decade, i.e., T = 1, the variance of the

forecastable component is

1

N
E
[
g′X ′Xg

]
=

1

N
tr
(
X ′X

) θ
J
≈ θ

and so the ratio of forecastable to residual variance also equals θ.

We can do a back-of-the-envelope calculation to compare this to the growth rate evidence

for various revenue and profit measures in Chan, Karceski, and Lakonishok (2003). When

stocks are sorted based on IBES analysts forecasts (their Table IX), Chan et al. find an

interdecile spread of slightly around 10 percentage points (pp) for annualized growth rates

over the next one, three, and five years. Extrapolating to 10 years, we would have 10 pp

also at a 10-year horizon.8 When they sort stocks instead based on their ex-post realized

annualized growth rates over a one-year horizon, they find an interdecile range of around 50

8. For this analysis, they do not report percentiles at sufficient detail to calculate the inter-decile spread,
but they report means for quintile bins, and the spread between top and bottom quintile bin mean should
correspond, approximately to the inter-decile range.
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pp. Assuming normal distributions, these estimates imply a ratio of about 0.04 of forecastable

to residual variance at a one-year horizon. An IID data-generating process for cash flows, as

in our model, would imply that the residual variance shrinks at rate 1/T and hence the ratio

of forecastable to residual variance at a ten-year horizon is 0.4. This share of forecastable

variance represents a lower bound as analysts can predict only a less than full share of the

total potentially predictable variance. For this reason, it seems reasonable to set the ratio

of maximally predictable to residual variance somewhat higher than 0.4 in our simulations.

Accordingly, we set θ = 1.

IV.A. Return prediction with many predictors

We now simulate cash flows and, based on investors’ Bayesian updating and pricing, the

returns on the N = 1000 assets. We then consider an econometrician who samples these

returns ex post and runs regressions of rT+1 on X after investors have learned about g

for T periods. Figure IIIa presents the (in-sample) adjusted R2 from these regressions. As

J increases towards N , the adjusted R2 also increases, and hence returns become more

predictable in-sample. If investors have learned for more periods, return predicability gets

weaker.

Figure IIIb looks at the properties of a standard Wald test of the no-predictability null

hypothesis, testing whether the coefficients on the J predictor variables are jointly equal to

zero. The plot shows the rejection probabilities (actual size) from a χ2–test based on the null

distribution in (10). The dotted line shows the nominal size of 5% that the test would have,

asymptotically, if investors priced assets under rational expectations with perfect knowledge

of g. The figure shows that the actual rejection probabilities can be far higher than 5%. The

rejection probabilities go to one as J grows towards N . The increase is slower if investors have

learned for more periods, but even with T = 4, the rejection probability exceeds 90% when

J > N/2. Thus, the simulations confirm that the asymptotic result of rejection probabilities

going to one is, indeed, a good approximation for the large J/N case with finite N and J .
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(b) Rejection probability of no-return-predictability null
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Figure III
In-sample return predictability tests

Based on cross-sectional regression with N = 1000 assets and J predictor variables, predicting the
last return in a sample of size T + 1, and where investors have learned about g from sample of size
T . The test in panel (b) is a joint χ2–test using all J predictors. It has an asymptotic 5% rejection
probability under the rational expectations null hypothesis (where investors know g). The solid lines
show the actual rejection probabilities when this test is applied in setting where Bayesian investors
with an objectively correct informative prior estimate g.
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IV.B. Return prediction with single predictors and multiple testing

In our analysis so far, we assumed that the econometrician runs a kitchen-sink regression using

all variables in X as predictors. This may seem unrealistic, as individual empirical studies

often use individual predictors, or small subsets of the universe of predictors observable to

the econometrician. Researchers collectively examined a large number of predictors, but

not necessarily a large number jointly in individual studies. However, as we show now, the

finding of excessive rejection of the no-predictability null is not exclusive to the kitchen-sink

set up. Similar conclusions emerge if we consider the possibility that a collection of individual

researchers each examine single predictors.

We now imagine that J econometricians, indexed by j = 1, 2, ..., J , run regressions of rt+1

on a single characteristic xj (i.e., column j of X) and each of them tests the hypothesis Hj

that xj does not predict returns. How many of them will reject the no-predictability null?

Does high-dimensionality of investors’ learning problem lead to more rejections?

To obtain an interpretable benchmark, we apply a multiple testing adjustment in which

we adjust critical values using the approach of Guo and Romano (2007) such that we control

the k-familywise error rate (k-FWER). Specifically, we adjust critical values such that the

probability of rejection of at least k of these J hypotheses would be equal to 5%, i.e.,

k-FWER = P (reject at least k hypotheses Hj) = 0.05

if asset prices were generated under rational expectations. We then look at actual probability

of rejection of at least k hypotheses when asset prices are generated under investor learning.

Figure IV presents the results for several different value of k and T = 4. As in the

kitchen-sink regression case, we see a general increase in rejection probabilities relative to

the RE benchmark value of 5% when J gets bigger relative to N . For example, with k =

20 and J/N = 0.05, the actual rejection probability is 25% compared with an k-FWER–

controlled rejection probability of 5% under RE. With J/N close to unity, the actual rejection
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Figure IV
In-sample return predictability tests with single predictors and multiple testing correction

Based on J cross-sectional regression with N = 1000 assets one out of J predictor variables in each
regression, predicting the last return in a sample of size T +1, and where investors have learned about
g from sample of size T = 4. Critical values are adjusted so that the probability that k of the J
hypotheses are rejected would be 5% in the rational expectations case (where investors know g). The
solid lines show the actual rejection probabilities when this test is applied in setting where Bayesian
investors with an objectively correct informative prior estimate g.
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probability rises to 80%, while it is still 5% under RE. Therefore, similar to the kitchen-sink

regression case, high-dimensionality leads to likely rejections of the no-predictability null,

even if econometricians correctly use a multiple-testing adjustment to evaluate their joint

evidence from the J individual tests.

V. Sparsity

So far we have assumed a setting in which shrinkage of coefficients towards zero is the optimal

way for investors to deal with the large number of cash-flow predictors. But investors do

not impose sparsity—i.e., some coefficients of exactly zero—on the forecasting model. The

absence of sparsity was a consequence of the normal prior distribution of g. If, instead, (i)

investors’ prior is that the elements of g are drawn from a Laplace distribution; and (ii)

investors price assets based on the mode rather than the mean of the posterior distribution

(i.e., a maximum-a-posteriori estimator), then asset prices reflect sparse cash flow forecasts

in which some columns of X are multiplied with coefficients of zero. Their forecasts can then

be represented as the fitted values from a Lasso regression (Tibshirani 1996).

That investors use the posterior mode in pricing is a deviation from the fully Bayesian

framework. Our simulations will shed light on how much of a deviation this is in terms of

how much additional return predictability results from it.

With a Laplace prior, elements gj are IID with the distribution

f(gj) =
1

2b
exp

(
−|gj |

b

)
.

The variance is 2b2. To keep the variance the same as in the normal prior case, we set

2b2 = θ
J . This Laplace distribution not only represents investors’ prior, but we now also draw

the elements of g in our simulations from this distribution so the prior is again objectively

correct, as in the normal prior case we considered earlier.

Figure V shows that the results in the Laplace prior case are extremely similar to those
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(b) Rejection probability of no-return-predictability null
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Figure V
Lasso: In-sample return predictability tests

Based on cross-sectional regression with N = 1000 assets and J predictor variables, predicting the
last return in a sample of size T + 1, and where investors have learned about g from sample of size
T . The test in panel (b) is a joint χ2–test using all J predictors. It has an asymptotic 5% rejection
probability under the rational expectations null hypothesis (where investors know g). The solid lines
show the actual rejection probabilities when this test is applied in setting where investors estimate g
(which is drawn from a Laplace distribution) with Lasso.
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in Figure III for the normal prior case. In terms of how in-sample predictability strengthens

with increasing J/N , it does not make much difference whether investors shrink prediction

model coefficients with or without sparsity. For the sake of brevity, most of our results in the

paper therefore focus on the normal prior case.

VI. Excess shrinkage or sparsity

In our analysis up to this point, shrinkage or sparsity was purely due to prior knowledge

reflected in investors’ prior beliefs. Aside from such statistical optimality considerations,

there could be other reasons for investors to shrink coefficients and impose sparsity on their

forecasting models. For example, if variables are costly to observe, investors might prefer to

discard a variable if it only offers a weak signal about cash flows. Relative to the frictionless

Bayesian benchmark with objectively correct prior, such a model would be excessively sparse,

but the reduction in forecast performance may be justified by the cost savings from model

sparsity. Relatedly, Sims (2003) and Gabaix (2014) show that shrinkage or sparsity can be

used to represent boundedly rational decision-making if attention to a variable generates an

actual or psychological cost (that shrinkage or sparsity helps avoid).

Such variants of the model with excessive shrinkage can still be mapped into a Bayesian

updating scheme, but the prior beliefs are concentrated more tightly around zero than in the

case with objectively correct prior (where the prior distribution agrees with distribution that

we draw g from in generating the data). For this reason, we label the benchmark case with

objectively correct prior as DGP-consistent shrinkage or sparsity.

Figure VI shows the consequences of excessive shrinkage or sparsity for out-of-sample

return predictability. In all cases shown in the figure, the cash-flow data are generated, as

before, with θ = 1. However, investors’ prior beliefs are now based on a different value of θ.

In the excessive shrinkage and sparsity cases, we let investors form beliefs based on θ = 0.5,

which means that they have a prior distribution for the elements of g that is more tightly

concentrated around zero than the actual distribution of g that generates the data. For
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Figure VI
Out-of-sample portfolio returns when investors apply excess shrinkage or sparsity

Based on cross-sectional regression with N = 1000 assets and J predictor variables, predicting the
last return in a sample of size T + 1, and where investors have learned about g from sample of size
T = 4. Cash-flow data are always generated with θ = 1. In the DGP-consistent prior case, investors’
prior is based on θ = 1. In the excess shrinkage (or sparsity) case, investors’ prior is based on θ = 0.5.
In the insufficient shrinkage (or sparsity) case, investors’ prior is based on θ = 2. The DGP in all
cases always features θ = 1.
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comparison, we also consider a case where shrinkage is insufficient. In this case, investors

assume θ = 2. This can be interpreted as investors having a lack of confidence, and hence

excessively wide dispersion, in their prior beliefs about g. In all cases, we show results for

T = 4, which means that investors have learned for four periods up to the beginning of the

period in which we measure the return on the out-of-sample portfolio.

The figure shows the out-of-sample return of a portfolio that weights assets by their pre-

dicted expected return as in (19). Panel (a) shows the results in the normal prior/ridge

regression case. As expected from Proposition 6, the average out-of-sample return in the

DGP-consistent case is zero. In contrast, when shrinkage is excessive, investors end up down-

weighting too the information in X that predicts cash flows. As a result, an econometrician

sampling returns from this economy is able to forecast returns out of sample. And the effect

gets stronger with higher J . Forming a portfolio that weights assets based on their estimated

expected returns from predictive regressions on data up to time T earns a predictably positive

return in period T + 1.

Insufficient shrinkage also results in an out-of-sample average return that differs from

zero, but the sign is negative. This means that assets that would be predicted to have

positive expected returns, based on the econometrician’s predictive regression estimates from

data up to time T , actually end up having negative returns in T + 1 and vice versa. With

insufficient shrinkage, the component −XΓt (X ′X)
−1
X ′ēt in the expression for rt+1 in (8)

plays a bigger role than under DGP-consistent shrinkage. As a consequence, its negative

covariance with the estimation error component X (X ′X)
−1
X ′et of the fitted value Xht

from the predictive regression in (9) dominates, which means the forecasts based on Xht

tend to have the wrong sign out-of-sample.

As panel (b) shows, the results in the Laplace prior/lasso regression case are similar. One

difference is that the average out-of-sample return in the DGP-consistent case is somewhat

negative instead of zero. This is a consequence of the assumption that investors in this case

use the mode of the posterior distribution of g (which induces sparsity) to price assets rather
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than the posterior mean (which would imply a forecasting model that is not sparse).

The takeaway from all this is that out-of-sample return predictability evidence can help

shed light on whether investors apply excessive shrinkage or sparsity in their cash flow–

forecasting models. For example, if actual or psychological costs of complex models induce

additional sparsity, this should show up in the data as out-of-sample predictable returns.

Similarly, if investors’ prior distribution of g assumed a distribution of coefficients that was

too tightly concentrated around zero compared with the true distribution that generated the

data, this would show up as out-of-sample predictability.9

This analysis also provides a perspective on the likely effects of technological progress in

data construction and data analysis on return predictability observed in empirical analyses.

Many studies of the cross-section of stock returns use data that go back to time periods in

which data availability and analysis were much more constrained than they are today. A

researcher today can construct many variables (say, through automated textual analysis of

corporate filings) that were inaccessible to investors until not very long ago. In this sense, the

forecasting models that investors used at the time when they priced stocks several decades

ago may have been excessively sparse relative to the model that an empirical researcher

could work with today. It is to be expected, therefore, that a researcher today can construct

variables, or use combinations of large numbers of variables, that predict returns in the earlier

years of stock return data sets, even in (pseudo-) out-of-sample tests in which the researcher

reconstructs investors’ learning process, but without taking into account the additional model

complexity constraints that investors faced in real time.

9. Note that this would not mean that investors were irrational. Rational Bayesian reasoning does not
require that prior beliefs are consistent with the true distribution of g, which would be unknown to investors.
Existence of out-of-sample return predictability evidence would be consistent not only with the bounded
rationality explanation of excess shrinkage or sparsity, but also a tight-prior explanation. Changes over time
in out-of-sample predictability might allow to disentangle the two.
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VII. Empirical application: Predicting stock returns

with past returns

To illustrate how our model provides an interpretation of discrepancies between in-sample

and out-of-sample stock return predictability, we look at an empirical application. The key

prediction is that investor learning in a high-dimensional setting should lead to a substantial

wedge between in-sample and out-of-sample predictability. The contribution of risk premia,

or mispricing induced by behavioral biases or frictions, to cross-sectional variation in expected

returns is revealed by out-of-sample portfolio returns, not in-sample estimates.

For this exercise, we seek a large set of predictor variables that were, at least in principle,

consistently available to investors over a long period of time. Many predictors based on

accounting variables do not satisfy this criterion because they became available in Compustat

data only in later decades. Furthermore, to stay close to our setting in the model where the

econometrician studies a given set of predictor variables only once, without specification

searching and multiple testing, we do not want a set of predictors that may already be the

product of past data mining efforts by earlier researchers. For example, the set of published

predictors in the academic literature likely includes some that have been data mined ex post.

To address both concerns, we use each stock’s full price history to generate our predictor

variables. More precisely we use the monthly returns and monthly squared returns in the

past 120 months as predictors for next month’s stock return. Including squared returns allows

the relationship between past returns and future returns to be nonlinear.

This price history was, at least in principle, available to investors even in the early parts

of the sample. This eliminates the possibility that return predictability could show up ex post

simply because a variable that we can construct today was not available at all to investors

in real time when they priced stocks. Of course, the fact that the price history was available

in principle does not necessarily mean that investors throughout the sample always had the

ability to integrate all of these variables into their forecasting models. If they could not,
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we might find out-of-sample return predictability in parts of the sample where technological

constraints may have prevented investors from doing so—consistent with our excess shrinkage

results in the previous section.

Focusing on price history–based predictors, without preselecting particular subsets of

those based on earlier evidence of predictability, allows us to sidestep, for the most part,

the influence of earlier researchers’ data mining. The only potential remaining problem is

that our choice of considering price-history-based predictors as a class could be influenced by

existing evidence that subsets of these seem to have predictive power (e.g., momentum, long-

run reversal). On the other hand, the class of price-history-based predictors would surely be

a natural candidate, even in absence of any existing evidence, given that weak-form efficiency

is the most basic market efficiency notion (Fama 1970).

A drawback of price history–based predictors is that they don’t perfectly map into our

model. In our theoretical analysis, we worked with an exogenous cash-flow predictor matrix

X. In contrast, past returns are an equilibrium outcome. One could, however, imagine an

extension of the model in which cash flow–growth shocks could have persistent components

at various lags. In this case, investors’ set of potential cash-flow predictors would include the

history of past cash flow–growth shocks and lagged returns would be correlated with these.

In this sense, the distance from our model is not that big. In any case, the purpose of the

empirical analysis is not to provide a formal test of the model but rather to illustrate in a

simple setting with a large number of predictors the wedge between in-sample and out-of-

sample predictability.

We use all U.S. stocks in the CRSP database except small stocks that have market cap-

italization below the 20th NYSE percentile and price lower than one dollar at the end of

month t − 1. To avoid picking up microstructure related issues, we skip the most recent

month in our construction of the set of predictor variables. Thus, we use simple and squared

returns in months t− 2 to t− 120 (i.e., a total of 238 predictor variables) to predict returns

in month t in a panel regression. We demean the dependent variable and all explanatory
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Figure VII
Ridge Regression Coefficient Estimates
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variables month by month to focus purely on cross-sectional variation. In addition, we cross-

sectionally standardize all predictor variables to unit standard deviation each month. We

weight the observations each month such that the panel regression gives equal weight to each

month in the sample.

As a first step, to demonstrate that a regression with shrinkage delivers meaningful esti-

mates with such a large number of predictor variables, we examine an in-sample panel ridge

regression to predict monthly returns from the beginning of 1971 until end of June 2019. We

show that the ridge regression automatically recovers many prominent predictability patterns

that have been documented in the existing literature for roughly this sample period or parts

of it. We pick the penalty hyperparameter that determines the strength of shrinkage through

leave-one-year-out cross-validation.10

Panel (a) in Figure VII presents the regression coefficients for each of the 119 simple

return explanatory variables. It shows that a single ridge regression recovers several major

anomalies related to past returns: the positive coefficients up to lags of 12 months capture

momentum as in Jegadeesh and Titman (1993); the plot also shows that continuation of re-

cent returns is concentrated in lags 7 to 12, as pointed out in Novy-Marx (2012); the mostly

negative coefficients for lags beyond 12 months reflect long-term reversals as in DeBondt and

Thaler (1985); the positive coefficients at lags equal to multiples of 12 reflect the momentum

seasonality reported by Heston and Sadka (2008). Panel (b) reports the regression coeffi-

cients for the 119 lagged squared returns. At shorter lags, there is no clear pattern. But at

longer lags beyond lag 50, the coefficients are predominantly positive, indicating a positive

association of long-run lagged individual stock return volatility and future returns.

Figure VIII presents three series of monthly portfolio returns based on different versions of

these regressions within 20-year rolling windows. The in-sample portfolio return, rIS , is based

10. We compute the estimates using all but one year of the sample, we calculate the implied predicted
returns in the year left out of the estimation, and we record the resulting R2 in the left-out year. We then
repeat with a different left-out year and again record the R2 in the left-out years and repeat until each year
of the sample has been left out once. At the end, we average the R2 across all left-out years and we search
for a penalty value that maximizes this cross-validated R2.
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Figure VIII
Rolling estimates of the risk premium/mispricing component of returns

The risk premium component γ′X ′Xγ is estimated by the out-of-sample portfolio return rOOS,t+1 =
r′t+1Xht. We obtain the OLS estimates ht from regressions of individual stock returns on lagged
returns and lagged squared returns in backwards 20-year moving windows up to month t and use
them to construct weights applied to month t + 1 returns. Stocks with market capitalization below
the 20th NYSE percentile and lagged price lower than one dollar are excluded. The blue line in the
figure shows rOOS,t+1 averaged in 10-year moving windows. The shared area indicates two–standard
error bands. For comparison, the figure also shows the in-sample return based on cross-validated ridge
regression estimates, rCV , and OLS estimates, rIS .
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on a single OLS regression within a given window. The portfolio weights are proportional

to the predicted returns based on the OLS estimates as in (III.A). Note that the portfolio

weights are not normalized to be certain dollar amount long or short. To interpret the

magnitude without this normalization, recall that rIS is equal to the in-sample explained

return variation of the OLS regression. So rIS of around 0.006%, as shown in the figure,

compared with a monthly cross-sectional return variance of around 0.6% means that the

OLS R2 is around 1%.

To illustrate the empirical gap between rIS and an out-of-sample portfolio return, the

figure also plots rOOS . To construct out-of-sample portfolio returns, we run rolling OLS

regressions in 20-year estimation windows. We use the OLS estimates ht of the window

ending in month t to forecast returns in month t+ 1. Given the 20-year estimation window

and the up to 10-year lag of the predictors, the first month in which we have a prediction

is January 1956, 30 years after the start of the CRSP database. We use the estimates ht

to calculate the out-of-sample portfolio return in month t + 1 with weights proportional to

predicted returns as in (19). The figure shows this out-of-sample portfolio return averaged

over 10-year moving windows.

As the figure shows, rIS is very stable across time and reliably above zero. In contrast, the

moving average of the out-of-sample return rOOS is much lower and frequently close to zero

or below. The shaded area of the figure shows two–standard error bands obtained from the

mean of squared monthly portfolio returns within the 10-year moving windows, in line with

our discussion following Proposition 6 on estimation of var(rOOS,t+1). Towards the end of the

sample, in the 10-year windows ending between 2014 and 2019, the out-of-sample portfolio

return has been less than two standard errors above zero. As we noted in Section III.D, the

average rOOS can be interpreted as an estimate of γ ′X ′Xγ, the contribution of risk premia

(or return premia induced by behavioral biases or frictions) to cross-sectional variation in

expected returns. The big wedge between rIS and rOOS shown in this figure underscores the

message from our model that in-sample cross-sectional return predictability evidence is not
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a good motivation for seeking risk-based or behavioral economic explanations. Much of the

in-sample predictability here does not carry over into out-of-sample predictability and hence

does not reflect risk premia demanded by investors ex ante or persistent belief distortions.

The figure also plots rCV , the in-sample return on a portfolio with weights proportional

to predicted returns from rolling cross-validated ridge regression estimates. Recall that our

result in (26) suggested E rOOS = E rCV . This result was based on cross-validated shrinkage

with a penalty b′tX
′Xbt in (22), while here we use standard ridge regression shrinkage with

a penalty on b′tbt. Nevertheless, as the figure shows, this equality approximately holds in

the empirical data even with a somewhat different penalty specification. Therefore, applying

cross-validated ridge regression shrinkage to the portfolio weights is a useful alternative route

to obtaining an estimate of γ ′X ′Xγ.

There are a number of concerns one might have about this analysis. First, wouldn’t it be

possible to pick, ex post, a much smaller number of lags of simple and/or squared returns

that happen to do better, in-sample and in the (pseudo-) out-of-sample tests from the rolling

regressions? This may well be true. But what would be the ex ante justification to pick

those specific lags? Why not others? Pursuing this avenue would inevitably introduce data

snooping and multiple testing concerns that cloud the interpretation of the evidence. As an

example, consider that the literature on momentum has shifted from emphasizing momentum

based on returns in months t − 2 to t − 12, as in Jegadeesh and Titman (1993), towards

highlighting returns in months t − 7 to t − 12 as those that really matter for predicting

returns (Novy-Marx 2012). It’s not clear that one should seek deep economic reasons for

in-sample predictability results that reflect such ex post data-driven specification changes.

Simply including all lags up to a certain point and and letting the shrinkage take care of

preventing overfitting minimizes this data-snooping problem.

Second, out-of-sample tests may have low power to detect return predictability. This point

has been made by Inoue and Kilian (2005), Campbell and Thompson (2008), and Hansen and

Timmermann (2015) in a time-series setting. However, their arguments are based on a ratio-
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nal expectations framework in which investors know the parameters of the data-generating

process and only the econometrician faces the problem of recovering its parameters from

observed data. In their case, in-sample and out-of-sample methods test the same economic

hypothesis. But if investors are learning about parameters, especially in settings where the

number of potentially relevant predictor variables is huge, the situation is fundamentally

different. There is no fixed-parameter model that generates each period’s returns. Instead,

the properties of the data evolve over time as investors learn. As a consequence, in-sample

and out-of-sample methods test different economic hypotheses. In-sample predictability tests

basically lose the economic meaning they have in a rational expectations setting because they

cannot discriminate between predictability induced by learning and predictability induced by

risk premia or behavioral biases. Only out-of-sample tests can do so. For this reason, even

if out-of-sample tests have low power, in-sample tests are simply not a viable alternative

method because they test a different hypothesis without clear economic interpretation.

VIII. Conclusion

Our analysis provides a new perspective on markets in which decision-makers face high-

dimensional prediction problems. Learning how to translate observed predictor variables

into forecasts is hard when the number of predictors is comparable in size to the number of

observations. To an econometrician studying these forecasts ex post, or the equilibrium prices

that reflect these forecasts, the forecast errors look predictable, but they are not predictable

to the decision-maker in real time. We developed this analysis in a cross-sectional asset

pricing application, but the issue may be relevant more broadly in settings in which large

numbers of variables are potentially relevant for forecasting.

In the cross-sectional asset pricing setting, in-sample tests of return predictability lose

their economic meaning when investors are faced with many possible predictors of asset

cash flows. The usual economic interpretation that in-sample predictable returns represent

priced risks or the effects of investors’ behavioral biases does not apply in this case. This is
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not a statistical problem with the sampling properties of the econometrician’s predictability

tests. Instead, it is a problem with the null hypothesis in these tests. As investors’ learning

problem becomes harder with increasing dimensionality of the set of potential predictors,

the true properties of equilibrium prices change. Even in the absence of risk premia and

behavioral biases, the usual null hypothesis that returns are unpredictable need not apply.

Investors’ learning of the cash flow–forecasting model parameters leaves in-sample predictable

components in returns that reflect investors’ real-time estimation error and the shrinkage they

optimally apply to reduce this estimation error in a high-dimensional setting. This is true

even though we kept investors’ learning problem very simple: the potentially predictable

component of future cash-flow growth is linear in predictors and investors know this linear

functional form. If investors also had to entertain that the functional form could be nonlinear,

this would further magnify the dimensionality of the prediction problem they face.

In contrast to in-sample tests, out-of-sample tests retain their economic meaning in the

high-dimensional case. Our argument in favor of out-of-sample tests is different from those

usually discussed in the econometrics literature. The usual case for out-of-sample tests mo-

tivates them as remedies against distortions of the sampling properties of in-sample tests or

against data mining. As Inoue and Kilian (2005), Campbell and Thompson (2008), Cochrane

(2008), and Hansen and Timmermann (2015) have pointed out, these arguments in favor

of out-of-sample testing are questionable in settings where the null hypothesis is a pop-

ulation model with truly unpredictable returns. Our point is that when investors face a

high-dimensional forecasting problem, this is not an economically interesting null hypothesis.

Absence of risk premia and behavioral biases implies absence of out-of-sample predictability,

but not absence of in-sample predictability. As investors arguably face a high-dimensional

prediction problem in the real world, researchers should give more emphasis to out-of-sample

testing.

Our results offer a novel interpretation of the fact that in-sample return predictability

tests in the literature have produced hundreds of variables that appear to predict returns
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in the cross-section. As the number of predictor variables that are available to researchers

and investors has grown enormously, it is to be expected, even with fully rational Bayesian

investors, that returns should be predictable in hindsight from the perspective of an econome-

trician running in-sample regressions. Our results show that many such variables do indeed

show up as in-sample statistically significant cross-sectional return predictors. But it is not

clear—in the absence of a clear theoretical motivation for a predictor variable, or collection

of variables—that one should look for risk-based explanations or behavioral explanations for

their in-sample predictive power.

A number of extensions of our work could be interesting. Our setting is a purely cross-

sectional one with firm characteristics that are constant over time. But a similar learning

problem also exists in the time dimension, e.g., at the aggregate stock market level. A

huge number of macro variables could, jointly, be relevant for predicting aggregate stock

market fundamentals. Furthermore, to keep the model simple and transparent, we have

focused on learning about exogenous fundamentals with homogeneous investors. It would

be interesting to extend this to a setting with heterogeneous investors. Balasubramanian

and Yang (2020) make some progress in this direction by considering privately informed

investors who are uncertain about each others’ priors in a high-dimensional environment.

More generally, investor heterogeneity can generate a role for endogenous price-based signals

from which investors can extract information not only about asset fundamentals, but also

about the trading behavior of other investors.
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A. Proofs

We first recall some notation and some basic facts that we will exploit throughout this
appendix. We will use the eigendecomposition

1

N
X ′X = QΛQ′ , (27)

and the definition

Γt = Q

(
I +

J

Nθt
Λ−1

)−1
Q′ . (28)

It will be convenient for future use to note that (A.12) and (A.13) imply that

I − Γt = Q

(
I +

Nθt

J
Λ

)−1
Q′ (29)

and
θt

J
(I − Γt)X

′X = Γt . (30)

We will repeatedly exploit the fact that Q is orthogonal (that is, QQ′ = Q′Q = I) and Λ
is diagonal. It follows that Γt is also diagonal. Note further that diagonal matrices commute.
Lastly, Assumption 4 implies that (i) Σg = (θ/J)I, (ii) E ēte′t = E etē′t = E ētē′t = 1

t I, (iii)
E ete′t = I; and, for s < t, (iv) E ēte′s+1 = (1/t)I, (v) E et+1ē

′
s = 0, and (vi), E ētē′s = (1/t)I.

Proof of Proposition 1. The result follows on making Assumptions 1 and 3 in the Bayesian
linear model of Lindley and Smith (1972).

Proof of Proposition 2. The realized return is

rt+1 = yt+1 − pt = yt+1 −
[
yt + Ẽt (Xg + et+1)

]
= ∆yt+1 −Xg̃t.
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From Assumption 1 and equation (6), this becomes

rt+1 = Xg + et+1 −XΓt(X
′X)−1X ′∆yt

= Xg + et+1 −XΓt(X
′X)−1X ′ [Xg + et]

= X (I − Γt) g −XΓt(X
′X)−1X ′et + et+1 .

It follows that E rt+1 = 0 and

E rt+1r
′
t+1 =

θ

J
X (I − Γt)

2X ′ +
1

t
XΓt

(
X ′X

)−1
ΓtX

′ + I

(30)
=

θ

J
X (I − Γt)

2X ′ +
θ

J
X (I − Γt) ΓtX

′ + I

=
θ

J
X (I − Γt)X

′ + I ,

using (30) in the second line.

Proof of Proposition 3. We form ht+1 = (X ′X)
−1
X ′rt+1 and then look at the in-sample

return r′t+1X (X ′X)
−1
X ′rt+1 = h′t+1X

′Xht+1. To think about the distribution of this
quantity, we first need to understand ht+1 itself. It is a zero mean Normal random vector,
and as E rt+1r

′
t+1 = θ

JX (I − Γt)X
′ + I by Proposition 2, we have

Eht+1h
′
t+1 =

(
X ′X

)−1
X ′ E rt+1r

′
t+1X

(
X ′X

)−1
=

θ

J

(
X ′X

)−1
X ′X (I − Γt)X

′X
(
X ′X

)−1
+
(
X ′X

)−1
=

θ

J
(I − Γt) +

(
X ′X

)−1
.

Using equations (A.12) and (A.14), this can be rewritten as

N Eht+1h
′
t+1 = Q

[(
J

Nθ
I + tΛ

)−1
+ Λ−1

]
︸ ︷︷ ︸

Ωt

Q′ .

If we define ut+1 =
√
NΩ

−1/2
t Q′ht+1, then

√
Nht+1 = QΩ

1/2
t ut+1 and ut+1 is standard

Normal: Eut+1u
′
t+1 = NΩ

−1/2
t Q′ 1NQΩtQ

′QΩ
−1/2
t = I (using orthogonality of Q). We can

then write

h′t+1X
′Xht+1 = u′t+1Ω

1/2
t Q′︸ ︷︷ ︸

√
Nh′t+1

QΛQ′︸ ︷︷ ︸
1
N
X′X

QΩ
1/2
t ut+1︸ ︷︷ ︸
√
Nht+1

= u′t+1Ω
1/2
t ΛΩ

1/2
t ut+1

= u′t+1ΩtΛut+1.

The last line exploits the fact that Ω1/2 and Λ commute, as they are diagonal.
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It follows that

h′t+1X
′Xht+1 =

J∑
i=1

ζi,tu
2
i , (31)

where ζi,t are the diagonal entries of the diagonal matrix ΩtΛ and ui are independent N(0, 1)
random variables (the entries of ut+1). Explicitly,

ζi,t = ωi,tλi =
λi

tλi + J
θN

+ 1. (32)

As λi > 0 by positive definiteness of X ′X, it follows that for t ≥ 1, ζi,t ∈ (1, 2). Moreover,
as limJ,N→∞

J
N = ψ > 0 and (by Assumption 5) λi > ε, ζi,t is uniformly bounded away from

1 and 2. It follows that µ ∈ (1, 2) and
√
µ2 + σ2 ∈ (1, 2).

We will apply Lyapunov’s version of the central limit theorem to
∑J

i=1 ζi,tu
2
i , which here

requires that for some δ > 0,

lim
N,J→∞

1

s2+δJ

J∑
i=1

ζ2+δi,t E
[∣∣u2i − 1

∣∣2+δ] = 0 where s2J = 2

J∑
i=1

ζ2i,t.

It is enough to show that this holds for δ = 2. But as E
[
(u2i − 1)4

]
= 60 and ζi,t ∈ (1, 2),

1

s4J

J∑
i=1

ζ4i,t E
[∣∣u2i − 1

∣∣4] =
60
∑J

i=1 ζ
4
i,t(

2
∑J

i=1 ζ
2
i,t

)2 ≤ 960J

4J2
→ 0 as J →∞ ,

as required. Therefore the central limit theorem applies for h′t+1X
′Xht+1 =

∑J
i=1 ζi,tu

2
i

after appropriate standardization by mean and variance, which (as the ui are IID standard
Normal) are

∑J
i=1 ζi,t and 2

∑J
i=1 ζ

2
i,t, respectively. Thus we have

Tb ≡
h′t+1X

′Xht+1 −
∑J

i=1 ζi,t√
2
∑J

i=1 ζ
2
i,t

d−→ N(0, 1) .

The remaining results follow immediately.

Proof of Proposition 4. The first statement follows from the second. To prove the second,
note that Proposition 3 implies that

P (Tre < cα) = P

(
Tre√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
J <

cα√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
J

)

→ Φ

(
cα√

µ2 + σ2
− µ− 1√

2 (µ2 + σ2)

√
J

)
,

where Φ(·) denotes the standard Normal cumulative distribution function. The result follows
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from the well-known inequalities e−x
2/2

|x+ 1
x |
√
2π
< Φ(x) < e−x

2/2

|x|
√
2π

, which hold for x < 0.

Proof of Proposition 5. When t > 0, the cross-sectional moments of ζj,t can be computed
using equation (14) and the fact that the eigenvalues λj follow (in the asymptotic limit) the
Marchenko-Pastur distribution, whose probability density function fλ(x) takes the form

fλ(x) =
1

2π

√[(
1 +
√
ψ
)2 − x] [x− (1−√ψ)2]

ψx

if
(
1−
√
ψ
)2 ≤ x ≤

(
1 +
√
ψ
)2

, and fλ(x) = 0 elsewhere. The relevant integrals can be
calculated explicitly, giving equations (17) and (18); and we can calculate the probability
density function of ζj,t in the asymptotic limit by change of variable using the relationship
between ζj,t and λj given in equation (A.17).

Proof of Proposition 6. We first show that E rOOS,t+1 = 0. As hs+1 = (X ′X)
−1
X ′rs+1, we

have
E
[
rt+1 (Xhs+1)

′] = E
[
rt+1r

′
s+1

]
X
(
X ′X

)−1
X ′ .

We will show that E
[
rt+1r

′
s+1

]
= 0 when s 6= t; in other words, all non-contemporaneous

autocorrelations and cross-correlations are zero. Henceforth we assume that s < t without
loss of generality. From equation (8),

E
[
rt+1r

′
s+1

]
=
θ

J
X(I − Γt)(I − Γs)X

′ +
1

t
XΓt(X

′X)−1ΓsX
′ − 1

t
XΓt(X

′X)−1X ′ .

This expression can be rearranged as

E
[
rt+1r

′
s+1

]
=

1

t
X

[
θt

J
(I − Γt)X

′X − Γt

]
(X ′X)−1(I − Γs)X

′ .

As θt
J (I−Γt)X

′X = Γt by equation (30), the term in square brackets on the right-hand side
vanishes, and the result follows.

We now turn to the asymptotic distribution. As r′t+1Xhs+1 = h′t+1X
′Xhs+1, we want to

understand the behavior of ht+1X
′Xhs+1 where s < t. Defining ut+1 =

√
NΩ

−1/2
t Q′ht+1,

as in the proof of Proposition 3, we have
√
Nht+1 = QΩ

1/2
t ut+1 and Eut+1u

′
t+1 = I. We also

have Eus+1u
′
t+1 = 0 whenever s 6= t (because, as shown above, E rs+1r

′
t+1 = 0 and hence

Ehs+1h
′
t+1 = 0). Thus ut+1 and us+1 are independent standard Normal random vectors.

We have

h′t+1X
′Xhs+1 = u′t+1Ω

1/2
t Q′QΛQ′QΩ1/2

s us+1 = u′t+1Ω
1/2
t ΛΩ1/2

s us+1 .
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As Ω
1/2
t ΛΩ

1/2
s is a J × J diagonal matrix with ith diagonal entry

√
ζi,tζi,s, we can write

h′t+1X
′Xhs+1 =

J∑
i=1

√
ζi,tζi,swi ,

where wi denotes the product of the ith entries of ut+1 and us+1. The wi are independent of
each other, and each is the product of two independent standard Normal random variables.
Therefore each wi has zero mean and unit variance.

We wish to apply Lyapunov’s version of the central limit theorem to
∑J

i=1

√
ζi,tζi,swi,

which here requires that for some δ > 0,

lim
N,J→∞

1

s2+δJ

J∑
i=1

E
[∣∣∣√ζi,tζi,swi∣∣∣2+δ] = 0 where s2J =

J∑
i=1

ζi,tζi,s.

It is enough to show that this holds when δ = 2. In this case, as the fourth moment of a
standard Normal random variable equals 3, we have E

[
w4
i

]
= 9, and so indeed

1

s4J

J∑
i=1

E
[∣∣∣√ζi,tζi,swi∣∣∣4] =

9
∑J

i=1 ζ
2
i,tζ

2
i,s(∑J

i=1 ζi,sζi,t

)2 ≤ 144J

J2
→ 0 as J →∞.

(The inequality follows because ζi,t ∈ (1, 2) for all i and t ≥ 1.) Hence the central limit

theorem applies for
∑J

i=1

√
ζi,tζi,swi after appropriate standardization by mean and variance,

which are 0 and
∑J

i=1 ζi,tζi,s, respectively. Thus

h′t+1X
′Xhs+1√∑J

i=1 ζi,tζi,s

d−→ N(0, 1) .
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Online Appendix

In this online appendix, we consider the case where an econometrician observes only a
subset of the firm characteristics that are observable to investors. Specifically, we now assume
that the econometrician’s predictors are collected in the N × P matrix C, where P ≤ J and
rank(C) = P .

Assumption A.1. X =
(
C M

)
where M is an N × (J − P ) matrix and C ′M = 0.

Furthermore, the variables in C have been scaled such that tr(C ′C) = NP . (As trX ′X =
trC ′C + trM ′M , it follows that tr(M ′M) = N(J − P ).)

We view the econometrician’s predictive variables C as fixed prior to observing the data.
The assumption that C ′M = 0 is without loss of generality, as we can think of the in-
vestors using the predictor variables observed by the econometrician, C, together with extra
unobserved variables M that are residualized with respect to C.

The econometrician regresses rt+1 on C, obtaining a vector of cross-sectional regression
coefficients

bt+1 =
(
C ′C

)−1
C ′rt+1 . (A.1)

Under the rational expectations null,

√
Nbt+1 ∼ N

(
0, N(C ′C)−1

)
, (A.2)

and
b′t+1(C

′C)bt+1 ∼ χ2
P . (A.3)

As we want to characterize the properties of the econometrician’s test under asymptotics
where N,P → ∞ and P/N → φ > 0, it is more convenient if we let the econometrician
consider a scaled version of this test statistic:

Tre ≡
b′t+1C

′Cbt+1 − P√
2P

. (A.4)

Under the econometrician’s rational expectations null, we would have, asymptotically,

Tre
d−→ N (0, 1) as N,P →∞, P/N → φ > 0. (A.5)

But the actual asymptotic distribution of Tre is influenced by the components of returns
involving ēt and g in (8).

These alter the asymptotic distribution and may lead the rejection probabilities of a test
using N(0, 1) critical values based on (A.5), or χ2 critical values based on (A.3), to differ
from the nominal size of the test. As in our main analysis, we assume that g is drawn from
the prior distribution. Here, we define

Σre =
(
C ′C

)−1
and Σb = E

(
bt+1b

′
t+1

)
,
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and

ζi,t = 1 +
1

t+ J
Nθλi

(A.6)

are the eigenvalues of ΣbΣ
−1
re that control the asymptotic behavior of Tre with limiting mean

and variance of

µ = lim
P→∞

1

P

P∑
i=1

ζi,t and σ2 = lim
P→∞

1

P

P∑
i=1

ζ2i,t − µ2 .

By the “Big Data” Assumption 5, we have 1 < µ < 2 and 1 <
√
µ2 + σ2 < 2 for all t ≥ 1.

Proposition A.1. If returns are generated according to (8) then in the large N,P limit

b′t+1C
′Cbt+1 −

∑P
i=1 ζi,t√

2
∑P

i=1 ζ
2
i,t

d−→ N(0, 1) .

It follows that the test statistic Tre satisfies

Tre√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
P

d−→ N(0, 1)

where 1 < µ < 2 and 1 <
√
µ2 + σ2 < 2.

We can therefore think of Tre as a multiple of a standard Normal random variable plus a
term of order

√
P :

Tre ≈
√
µ2 + σ2N(0, 1) +

µ− 1√
2

√
P . (A.7)

This result is similar to the corresponding result in our main analysis, but with
√
P taking

the place of
√
J .

Proposition A.2. In a test of return predictability based on the rational expectations null
(A.5), we would have, for any critical value cα and at any time t,

P (Tre > cα)→ 1 as N,P →∞, P/N → φ .

More precisely, for any fixed t > 0, the probability that the test fails to reject declines
exponentially fast as N and P increase, at a rate that is determined by µ, σ, and φ:

lim
N→∞

− 1

N
logP (Tre < cα) =

(µ− 1)2φ

4 (µ2 + σ2)
, (A.8)

for any critical value cα.

Thus, as in our main analysis, in-sample predictability tests lose their economic meaning
when P is not small relative to N , in the sense that rejection of the no-predictability can be
likely even without risk premia or mispricing.
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For out-of-sample tests, we obtain the following result.

Proposition A.3. If returns are generated according to (8) and rOOS,t+1 = 1
N r
′
t+1Cbs+1

with s 6= t, then
E rOOS,t+1 = 0

and, in the large N, J, P limit,

rOOS,t+1√∑P
j=1 ζj,sζi,t

d−→ N(0, 1) .

Now suppose the characteristics are associated with a predictable component Xγx for
some vector γx that represents risk premia. In this case, adding this component to the returns
in (8), we get

rt+1 = Xγx +X(I − Γt)g −XΓt(X
′X)−1X ′ēt + et+1, (A.9)

The econometrician wants to estimate to what extent the characteristics she observes (i.e.,
C) are associated with risk premia. Projecting X on C we can decompose X = CB +E,
where E′C = 0 and rewrite returns as

rt+1 = Cγ +Eγx +X(I − Γt)g −XΓt(X
′X)−1X ′ēt + et+1 (A.10)

where we have defined γ = Bγx.
Given the returns (A.10). and using results from Proposition A.3, it is straightforward to

show that
1

N
γ ′C ′Cγ = E rOOS,t+1. (A.11)

A. Proofs

We first recall some notation and some basic facts that we will exploit throughout this
appendix. We will use the eigendecomposition

1

N
X ′X = QΛQ′ (A.12)

and the definition

Γt = Q

(
I +

J

Nθt
Λ−1

)−1
Q′ . (A.13)

It will be convenient for future use to note that (A.12) and (A.13) imply that

I − Γt = Q

(
I +

Nθt

J
Λ

)−1
Q′ (A.14)
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and
θt

J
(I − Γt)X

′X = Γt . (A.15)

We will repeatedly exploit the fact that Q is orthogonal (that is, QQ′ = Q′Q = I) and Λ
is diagonal. It follows that Γt is also diagonal. Note further that diagonal matrices commute.

Assumption A.1 implies that

1

N
X ′X =

(
1
NC

′C 0
0 1

NM
′M

)
is block-diagonal (where zeros indicate conformable matrices of zeros). Eigendecomposing
1
NC

′C = QCΛCQ
′
C and 1

NM
′M = QMΛMQ

′
M where Q′iQi = I for i = C,M , we have

1

N
X ′X =

(
QC 0
0 QM

)
︸ ︷︷ ︸

Q

(
ΛC 0
0 ΛM

)
︸ ︷︷ ︸

Λ

(
Q′C 0
0 Q′M

)
︸ ︷︷ ︸

Q′

.

It follows that Γt =

(
ΓC,t 0

0 ΓM,t

)
is block-diagonal, with Γi,t = Qi

(
I + J

NθtΛ
−1
i

)−1
Q′i and

I − Γi,t = Qi

(
I + Nθt

J Λi

)−1
Q′i, where Qi is orthogonal and Λi is diagonal for i = C,M .

Lastly, Assumption 4 implies that (i) Σg = (θ/J)I, (ii) E ēte′t = E etē′t = E ētē′t = 1
t I,

(iii) E ete′t = I; and, for s < t, (iv) E ēte′s+1 = (1/t)I, (v) E et+1ē
′
s = 0, and (vi), E ētē′s =

(1/t)I.

Proof of Proposition A.1. We form bt+1 = (C ′C)
−1
C ′rt+1 and then look at the in-sample

return r′t+1C (C ′C)
−1
C ′rt+1 = b′t+1C

′Cbt+1. To think about the distribution of this quan-
tity, we first need to understand bt+1 itself. It is a zero mean Normal random vector, and as
E rt+1r

′
t+1 = θ

JX (I − Γt)X
′ + I by Proposition 2 we have

E bt+1b
′
t+1 =

(
C ′C

)−1
C ′ E rt+1r

′
t+1C

(
C ′C

)−1
=

θ

J

(
C ′C

)−1
C ′X (I − Γt)X

′C
(
C ′C

)−1
+
(
C ′C

)−1
=

θ

J
(I − ΓC,t) +

(
C ′C

)−1
,

where we use the fact that C ′X =
(
C ′C 0

)
in the last line. In terms of the eigendecompo-

sition,

N E bt+1b
′
t+1 = QC

[(
J

Nθ
I + tΛC

)−1
+ Λ−1C

]
︸ ︷︷ ︸

ΩC,t

Q′C .

If we define ut+1 =
√
NΩ

−1/2
C Q′Cbt+1, then

√
Nbt+1 = QCΩ

1/2
C ut+1 and ut+1 is standard
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Normal: Eut+1u
′
t+1 = NΩ

−1/2
C Q′C

1
NQCΩCQ

′
CQCΩ

−1/2
C = I. We can then write

b′t+1C
′Cbt+1 = u′t+1Ω

1/2
C Q′C︸ ︷︷ ︸

√
Nb′t+1

QCΛCQ
′
C︸ ︷︷ ︸

1
N
C′C

QCΩ
1/2
C ut+1︸ ︷︷ ︸

√
Nbt+1

= u′t+1Ω
1/2
C ΛCΩ

1/2
C ut+1

= u′t+1ΩCΛCut+1.

The last line exploits the fact that Ω
1/2
C and ΛC commute, as they are diagonal.

It follows that

b′t+1C
′Cbt+1 =

P∑
i=1

ζi,tu
2
i , (A.16)

where ζi,t are the diagonal entries of the diagonal matrix ΩCΛC and ui are independent
N(0, 1) random variables (the entries of ut+1). Explicitly,

ζi,t = ωi,tλi =
λi

tλi + J
θN

+ 1. (A.17)

As λi > 0 by positive definiteness of X ′X, it follows that for t ≥ 1, ζi,t ∈ (1, 2). Moreover,
as limJ,N→∞

J
N = ψ > 0 and (by Assumption 5) λi > ε, ζi,t is uniformly bounded away from

1 and 2. It follows that µ ∈ (1, 2) and
√
µ2 + σ2 ∈ (1, 2).

We will apply Lyapunov’s version of the central limit theorem to
∑P

i=1 ζi,tu
2
i , which here

requires that for some δ > 0

lim
N,J→∞

1

s2+δP

P∑
i=1

ζ2+δi,t E
[∣∣u2i − 1

∣∣2+δ] = 0 where s2P = 2
P∑
i=1

ζ2i,t.

It is enough to show that this holds for δ = 2. But as E
[
(u2i − 1)4

]
= 60 and ζi,t ∈ (1, 2),

1

s4P

P∑
i=1

ζ4i,t E
[∣∣u2i − 1

∣∣4] =
60
∑P

i=1 ζ
4
i,t(

2
∑P

i=1 ζ
2
i,t

)2 ≤ 960P

4P 2
→ 0 as P →∞ ,

as required. Therefore the central limit theorem applies for b′t+1C
′Cbt+1 =

∑P
i=1 ζi,tu

2
i after

appropriate standardization by mean and variance, which (as the ui are IID standard Normal)
are

∑P
i=1 ζi,t and 2

∑P
i=1 ζ

2
i,t, respectively. Thus we have

Tb ≡
b′t+1C

′Cbt+1 −
∑P

i=1 ζi,t√
2
∑P

i=1 ζ
2
i,t

d−→ N(0, 1) .

The remaining results follow immediately.

Proof of Proposition A.2. The first statement follows from the second. To prove the second,

63



note that Proposition A.1 implies that

P (Tre < cα) = P

(
Tre√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
P <

cα√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
P

)

→ Φ

(
cα√

µ2 + σ2
− µ− 1√

2 (µ2 + σ2)

√
P

)
,

where Φ(·) denotes the standard Normal cumulative distribution function. The result follows

from the well-known inequalities e−x
2/2

|x+ 1
x |
√
2π
< Φ(x) < e−x

2/2

|x|
√
2π

, which hold for x < 0.

Proof of Proposition A.3. We first show that E rOOS,t+1 = 0. As bs+1 = (C ′C)
−1
C ′rs+1,

we have
E
[
rt+1 (Cbs+1)

′] = E
[
rt+1r

′
s+1

]
C
(
C ′C

)−1
C ′ .

We will show that E
[
rt+1r

′
s+1

]
= 0 when s 6= t; in other words, all non-contemporaneous

autocorrelations and cross-correlations are zero. Henceforth we assume that s < t without
loss of generality. From equation (8),

E
[
rt+1r

′
s+1

]
=
θ

J
X(I − Γt)(I − Γs)X

′ +
1

t
XΓt(X

′X)−1ΓsX
′ − 1

t
XΓt(X

′X)−1X ′ .

This expression can be rearranged as

E
[
rt+1r

′
s+1

]
=

1

t
X

[
θt

J
(I − Γt)X

′X − Γt

]
(X ′X)−1(I − Γs)X

′ .

As θt
J (I−Γt)X

′X = Γt by equation (30), the term in square brackets on the right-hand side
vanishes, and the result follows.

We now turn to the asymptotic distribution. As r′t+1Cbs+1 = b′t+1C
′Cbs+1, we want to

understand the behavior of bt+1C
′Cbs+1 where s < t. Defining vt+1 =

√
NΩ

−1/2
C,t Q

′
Cbt+1,

as in the proof of Proposition A.1, we have
√
Nbt+1 = QCΩ

1/2
C,tvt+1 and Evt+1v

′
t+1 = I.

We also have Evs+1v
′
t+1 = 0 whenever s 6= t (because, as shown above, E rs+1r

′
t+1 = 0

and hence E bs+1b
′
t+1 = 0). Thus vt+1 and vs+1 are independent standard Normal random

vectors. We have

b′t+1C
′Cbs+1 = v′t+1Ω

1/2
C,tQ

′
CQCΛCQ

′
CQCΩ

1/2
C,svs+1 = v′t+1Ω

1/2
C,tΛCΩ

1/2
C,svs+1 .

As Ω
1/2
C,tΛCΩ

1/2
C,s is a P × P diagonal matrix with ith diagonal entry

√
ζi,tζi,s, we can write

b′t+1C
′Cbs+1 =

P∑
i=1

√
ζi,tζi,swi ,

where wi denotes the product of the ith entries of vt+1 and vs+1. The wi are independent of
each other, and each is the product of two independent standard Normal random variables.
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Therefore each wi has zero mean and unit variance.
We wish to apply Lyapunov’s version of the central limit theorem to

∑P
i=1

√
ζi,tζi,swi,

which here requires that for some δ > 0

lim
N,J,P→∞

1

s2+δP

P∑
p=1

E
[∣∣∣√ζi,tζi,swi∣∣∣2+δ] = 0 where s2P =

P∑
p=1

ζi,tζi,s.

It is enough to show that this holds when δ = 2. In this case, as the fourth moment of a
standard Normal random variable equals 3, we have E

[
w4
i

]
= 9, and so indeed

1

s4P

P∑
p=1

E
[∣∣∣√ζi,tζi,swi∣∣∣4] =

9
∑P

p=1 ζ
2
i,tζ

2
i,s(∑P

p=1 ζi,sζi,t

)2 ≤ 144P

P 2
→ 0 as P →∞.

(The inequality follows because ζi,t ∈ (1, 2) for all i and t ≥ 1.) Hence the central limit

theorem applies for
∑P

i=1

√
ζi,tζi,swi after appropriate standardization by mean and variance,

which are 0 and
∑P

i=1 ζi,tζi,s, respectively. Thus

b′t+1C
′Cbs+1√∑P

i=1 ζi,tζi,s

d−→ N(0, 1) .
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