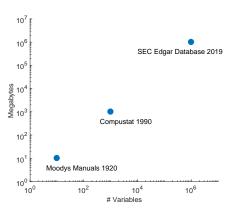
Market Efficiency in the Age of Big Data

Stefan Nagel Ian Martin

June, 2021

Investors' Big Data problem

- Investors face huge number of potential predictors
- \mathbb{E} [return] = f(predictors) unknown: high-dimensional learning problem



High-dimensional learning in asset pricing

- Standard approaches in asset pricing and market efficiency testing assume rational expectations (RE)
 - Assumes away learning problem: investors know $f(\cdot)$ in $\mathbb{E}[\text{return}] = f(\text{predictors})$
 - Motivates in-sample (IS) tests of "market efficiency":
 IS return predictability = risk premium/mispricing
- We show: when investors learn about $f(\cdot)$ in big data setting, equilibrium asset prices exhibit in-sample predictability
- Combination of learning and big data provides clear motivation for (pseudo-)OOS testing which is lacking in RE framework

Market efficiency

- Fama (1970): A market is efficient if "prices fully reflect all available information"
- Joint hypothesis problem: your "risk premium" is my "pricing inefficiency"
- We make things simple by considering a risk-neutral world
- Then the joint hypothesis problem goes away...but standard tests of market efficiency break down even so

Roadmap

Two steps:

- Investors learn about parameters of cash flow generating model and price assets accordingly
- Econometrician analyzes equilibrium prices ex post using standard return predictability tests
 - Properties of IS tests
 - Properties of OOS tests

Setup

• N assets, $N \times J$ scaled characteristics arranged into a matrix X, eg,

```
 \begin{pmatrix} \text{Size}_{\text{AAPL}} & \text{Leverage}_{\text{AAPL}} & \text{Liquidity}_{\text{AAPL}} & \cdots & \text{CharJ}_{\text{AAPL}} \\ \text{Size}_{\text{AMZN}} & \text{Leverage}_{\text{AMZN}} & \text{Liquidity}_{\text{AMZN}} & \cdots & \text{CharJ}_{\text{AMZN}} \\ \text{Size}_{\text{FB}} & \text{Leverage}_{\text{FB}} & \text{Liquidity}_{\text{FB}} & \cdots & \text{CharJ}_{\text{FB}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \text{Size}_{N} & \text{Leverage}_{N} & \text{Liquidity}_{N} & \cdots & \text{CharJ}_{N} \end{pmatrix}
```

- Normally we think of many assets and a limited number of characteristics

 fixed-J, large-N asymptotics
- This paper: many assets and many characteristics ⇒ large-N and large-J asymptotics

Setup

- Investors are homogeneous and risk-neutral; interest rate is zero
- Dividend growth Δy_{t+1} is predictable based on characteristics X:

$$\Delta \mathbf{y}_{t+1} = \mathbf{X}\mathbf{g} + \mathbf{e}_{t+1}$$

with normalization $\frac{1}{NJ}\operatorname{tr} X'X = 1$

- $e_{t+1} \sim N(\mathbf{0}, \mathbf{I})$ is totally unpredictable
- Dividend strips: p_t = prices at t of claims to y_{t+1}
 - ▶ Think: one period \approx one decade
- These assumptions are chosen to make life as simple as possible

Setup

Prices equal expected dividends

$$\boldsymbol{p}_{t} = \tilde{\mathbb{E}}_{t} \boldsymbol{y}_{t+1} = \boldsymbol{y}_{t} + \tilde{\mathbb{E}}_{t} \Delta \boldsymbol{y}_{t+1} = \boldsymbol{y}_{t} + \tilde{\mathbb{E}}_{t} \left(\boldsymbol{X} \boldsymbol{g} + \boldsymbol{e}_{t+1} \right)$$

- ullet Covers a range of possible assumptions about expectations $ilde{\mathbb{E}}_t$
- Benchmarks to keep in mind...
 - ▶ Rational expectations: investors know *g*
 - ▶ OLS: regress past cashflow growth on *X* to estimate *g*
 - ▶ Random walk: give up on forecasting
 - Bayesian learning

Rational expectations: investors know g

- So $\tilde{\mathbb{E}}_t(Xg + e_{t+1}) = Xg$ and $p_t = y_t + Xg$
- Realized returns $r_{t+1} = y_{t+1} p_t = e_{t+1}$
- This is the usual null hypothesis that underlies market efficiency tests, orthogonality conditions, Euler equations
- But it is implausible that investors know g, especially if J is large
- ullet We focus on the case where investors must learn $oldsymbol{g}$

Bayesian pricing framework: Prior beliefs

Before seeing data, investors have prior beliefs

$$\mathbf{g} \sim N\left(\mathbf{0}, \frac{\theta}{J}\mathbf{I}\right), \qquad \theta > 0$$

- ▶ Proportionality of prior covariance matrix to *I*: can always rotate and rescale *X* to make it hold
- ▶ Variance of the elements of g decline with J: ensures that variance of predictable cash flow growth does not explode when $N, J \to \infty$
- Investors then learn about g by observing X and history $\{\Delta y_s\}_{s=1}^t$, summarized by sample average $\overline{\Delta y}_t$
- As investors are risk-neutral, only the posterior mean matters

Posterior mean is a ridge regression estimator

$$\tilde{\boldsymbol{g}}_t = \boldsymbol{\Gamma}_t (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \overline{\Delta \boldsymbol{y}}_t$$

i.e., OLS estimator shrunk towards prior mean by the matrix

$$oldsymbol{\Gamma}_t = oldsymbol{Q} \left(oldsymbol{I} + rac{J}{N heta t} oldsymbol{\Lambda}^{-1}
ight)^{-1} oldsymbol{Q}'$$

where Q, Λ come from PC decomposition $\frac{1}{N}X'X = Q\Lambda Q'$

Posterior mean is a ridge regression estimator

$$\tilde{\boldsymbol{g}}_t = \boldsymbol{\Gamma}_t (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \overline{\Delta \boldsymbol{y}}_t$$

i.e., OLS estimator shrunk towards prior mean by the matrix

$$\mathbf{\Gamma}_t = \mathbf{Q} \left(\mathbf{I} + rac{J}{N heta t} \mathbf{\Lambda}^{-1}
ight)^{-1} \mathbf{Q}'$$

where ${m Q},\,{m \Lambda}$ come from PC decomposition ${1\over N} {m X}' {m X} = {m Q} {m \Lambda} {m Q}'$

- Shrinkage strong
 - ▶ if *t* small (short time dimension)

Posterior mean is a ridge regression estimator

$$\tilde{\boldsymbol{g}}_t = \boldsymbol{\Gamma}_t (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \overline{\Delta \boldsymbol{y}}_t$$

i.e., OLS estimator shrunk towards prior mean by the matrix

$$oldsymbol{\Gamma}_t = oldsymbol{Q} \left(oldsymbol{I} + rac{J}{N heta t} oldsymbol{\Lambda}^{-1}
ight)^{-1} oldsymbol{Q}'$$

where Q, Λ come from PC decomposition $\frac{1}{N}X'X = Q\Lambda Q'$

- Shrinkage strong
 - ▶ if *t* small (short time dimension)
 - if θ small (prior tightly concentrated around zero)

Posterior mean is a ridge regression estimator

$$\tilde{\boldsymbol{g}}_t = \boldsymbol{\Gamma}_t (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \overline{\Delta \boldsymbol{y}}_t$$

i.e., OLS estimator shrunk towards prior mean by the matrix

$$oldsymbol{\Gamma}_t = oldsymbol{Q} \left(oldsymbol{I} + rac{oldsymbol{J}}{oldsymbol{N} heta t} oldsymbol{\Lambda}^{-1}
ight)^{-1} oldsymbol{Q}'$$

where ${m Q},\,{m \Lambda}$ come from PC decomposition ${1\over N} {m X}' {m X} = {m Q} {m \Lambda} {m Q}'$

- Shrinkage strong
 - ▶ if *t* small (short time dimension)
 - if θ small (prior tightly concentrated around zero)
 - if J/N is large (many predictors)

Posterior mean is a ridge regression estimator

$$\tilde{\boldsymbol{g}}_t = \boldsymbol{\Gamma}_t (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \overline{\Delta \boldsymbol{y}}_t$$

i.e., OLS estimator shrunk towards prior mean by the matrix

$$oldsymbol{\Gamma}_t = oldsymbol{Q} \left(oldsymbol{I} + rac{J}{N heta t} oldsymbol{\Lambda}^{-1}
ight)^{-1} oldsymbol{Q}'$$

where Q, Λ come from PC decomposition $\frac{1}{N}X'X = Q\Lambda Q'$

- Shrinkage strong
 - ▶ if *t* small (short time dimension)
 - if θ small (prior tightly concentrated around zero)
 - if J/N is large (many predictors)
 - ▶ along unimportant principal components of *X* (small eigenvalues)

Proposition

With assets priced based on $\tilde{\mathbf{g}}_t$, realized returns are

$$\mathbf{r}_{t+1} = \mathbf{y}_{t+1} - \mathbf{p}_t = \mathbf{X}(\mathbf{I} - \mathbf{\Gamma}_t)\mathbf{g} - \mathbf{X}\mathbf{\Gamma}_t(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\bar{\mathbf{e}}_t + \mathbf{e}_{t+1}$$

where $\bar{\boldsymbol{e}}_t = \frac{1}{t} \sum_{s=1}^t \boldsymbol{e}_s$

Proposition

With assets priced based on $\tilde{\mathbf{g}}_t$, realized returns are

$$\mathbf{r}_{t+1} = \mathbf{y}_{t+1} - \mathbf{p}_t = \mathbf{X}(\mathbf{I} - \mathbf{\Gamma}_t)\mathbf{g} - \mathbf{X}\mathbf{\Gamma}_t(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\bar{\mathbf{e}}_t + \mathbf{e}_{t+1}$$

where
$$\bar{\boldsymbol{e}}_t = \frac{1}{t} \sum_{s=1}^t \boldsymbol{e}_s$$

• "underreaction" to *X* due to shrinkage

Proposition

With assets priced based on $\tilde{\mathbf{g}}_t$, realized returns are

$$r_{t+1} = y_{t+1} - p_t = X(I - \Gamma_t)g - X\Gamma_t(X'X)^{-1}X'\bar{e}_t + e_{t+1}$$

where
$$\bar{\boldsymbol{e}}_t = \frac{1}{t} \sum_{s=1}^t \boldsymbol{e}_s$$

- "underreaction" to *X* due to shrinkage
- "overreaction" to estimation error in $\tilde{\mathbf{g}}_t$, dampened by shrinkage

Proposition

With assets priced based on $\tilde{\mathbf{g}}_t$, realized returns are

$$\mathbf{r}_{t+1} = \mathbf{y}_{t+1} - \mathbf{p}_t = \mathbf{X}(\mathbf{I} - \mathbf{\Gamma}_t)\mathbf{g} - \mathbf{X}\mathbf{\Gamma}_t(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\bar{\mathbf{e}}_t + \mathbf{e}_{t+1}$$

where
$$\bar{\boldsymbol{e}}_t = \frac{1}{t} \sum_{s=1}^t \boldsymbol{e}_s$$

- "underreaction" to *X* due to shrinkage
- "overreaction" to estimation error in $\tilde{\mathbf{g}}_t$, dampened by shrinkage
- unpredictable shock (the only term in RE case)

Predictive coefficient estimates, h_{t+1}

• Econometrician cross-sectionally regresses (OLS)

$$r_{t+1} = \underbrace{X(I - \Gamma_t)g}_{\text{"underreaction"}} - \underbrace{X\Gamma_t(X'X)^{-1}X'\bar{e}_t}_{\text{"overreaction"}} + \underbrace{e_{t+1}}_{\text{RE}}$$

on characteristics matrix X and obtains predictive coefficients

$$\boldsymbol{h}_{t+1} = (\boldsymbol{I} - \boldsymbol{\Gamma}_t)\boldsymbol{g} - \boldsymbol{\Gamma}_t \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{X}' \bar{\boldsymbol{e}}_t + \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{X}' \boldsymbol{e}_{t+1}$$

• "Kitchen sink" regression approximates what many individual studies have done collectively ("factor zoo")

In-sample predictability test: RE null

• Consider the return predictability test statistic

$$T_{re} \equiv \frac{\boldsymbol{h}_{t+1}' \boldsymbol{X}' \boldsymbol{X} \boldsymbol{h}_{t+1} - \boldsymbol{J}}{\sqrt{2 \boldsymbol{J}}}$$

• Standard approach takes RE as null hypothesis, which implies

$$\boldsymbol{h}_{t+1} = \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{e}_{t+1}$$

If so,

$$T_{re} \stackrel{d}{\longrightarrow} N\left(0,1
ight) \quad \text{as } N,J o \infty, \ J/N o \psi > 0$$

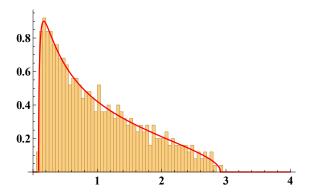
Big data

What happens as $J, N \to \infty$ with $J/N \to \psi > 0$?

- Case 1: A few principal components summarize the data
 - ► Formally: the eigenvalues of $\frac{1}{N}X'X$ tend to zero
 - ▶ Then market efficiency test works as usual, $T_{re} \stackrel{d}{\longrightarrow} N\left(0,1\right)$
- Case 2: "Big data"
 - ▶ Formally: the eigenvalues of $\frac{1}{N}X'X$ are $> \varepsilon$
 - ightharpoonup Happens if, eg, the entries of X are iid random variables
- We are interested in Case 2

Eigenvalues in an example with iid random X

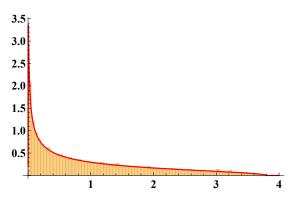
Histogram for N=1000, J=500 & asymptotic limit as $N,J\to\infty$ with $\frac{J}{N}=0.5$



- When *J* is large, random data matrix *X* has many columns that are roughly orthogonal, hence many eigenvalues close to zero
- But our big data assumption is satisfied (Bai and Yin, 1993)

Eigenvalues in an example with iid random X

Histogram for N=1000, J=900 & asymptotic limit as $N,J\to\infty$ with $\frac{J}{N}=0.9$



- When *J* is large, random data matrix *X* has many columns that are roughly orthogonal, hence many eigenvalues close to zero
- But our big data assumption is satisfied (Bai and Yin, 1993)

In-sample predictability test with big data

Proposition

In equilibrium, the test statistic T_{re} satisfies

$$\frac{T_{re}}{\sqrt{\mu^2+\sigma^2}} - \frac{\mu-1}{\sqrt{2\left(\mu^2+\sigma^2\right)}} \sqrt{J} \stackrel{d}{\longrightarrow} N(0,1)$$

where $1 < \mu < 2$ and $1 < \sqrt{\mu^2 + \sigma^2} < 2$ are determined by eigenvalues

• Therefore,

$$T_{re}pprox\sqrt{\mu^2+\sigma^2}N(0,1)+rac{\mu-1}{\sqrt{2}}\sqrt{J}$$

• In a big data world, we are almost certain to reject the RE null

Interpretation as a trading strategy

Consider a characteristics-based trading strategy with weights

$$w_{IS,t} = Xh_{t+1}, \qquad r_{IS,t+1} = w'_{IS,t}r_{t+1}$$

("in-sample" because h_{t+1} estimated using returns r_{t+1})

• We can rewrite $r_{IS,t+1} = h'_{t+1}X'r_{t+1}$ as

$$r_{IS,t+1} = \boldsymbol{h}_{t+1}' \boldsymbol{X}' \boldsymbol{X} \boldsymbol{h}_{t+1}$$

• Econometrician's test is equivalent to checking whether the trading strategy does well

Conclusions so far

- Asset returns under high-dimensional learning are very different from asset returns under RE, or in a "small data" world
- IS return predictability need not be consequence of risk premia or behavioral biases
- Not an econometric issue: the RE null is simply false, because learning + big data makes returns predictable in sample even without risk premia or behavioral biases
- Existence of a "factor zoo" based on IS predictability evidence not surprising in high-dimensional setting

(Absence of) out-of-sample return predictability

Proposition

Consider an out-of-sample strategy with predicted returns as portfolio weights, $r_{OOS,t+1} = r'_{t+1} X h_{s+1}$ where $t \neq s$. Then $\mathbb{E} r_{OOS,t+1} = 0$

- Forward case t > s is natural: Investors are Bayesian so the econometrician cannot "beat" investors
- Backward case t < s is more surprising. Not a tradable strategy, but interesting for research
 - Suggests backwards OOS tests (e.g., Linnainmaa and Roberts 2018) and cross-validation (e.g., Kozak, Nagel and Santosh 2020; Bryzgalova, Pelger, and Zhu 2020) could be appropriate for Bayesian learning setting

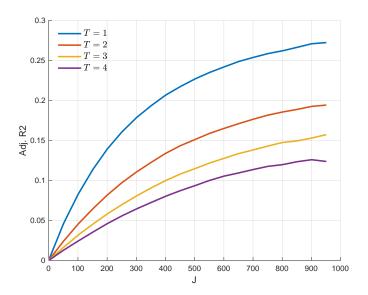
Finite-sample analysis: Simulations

- Simulate cash-flows, prices, returns for N = 1000 assets
- To generate data, we set $\theta = 1$ in

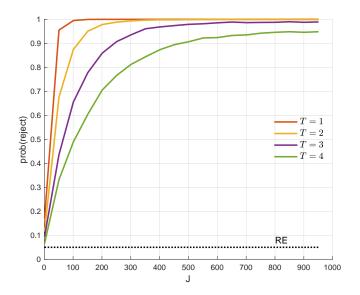
$$\Sigma_g = \frac{\theta}{J}I$$

- θ = ratio of forecastable/residual cash-flow growth variance
 - Based on analyst expectations, Chen, Karceski, and Lakonishok (2003) find forecastable/residual cash-flow growth variance of 0.4 at 10yr horizon
- Econometrician regresses r_{T+1} on X after investors have learned about g for T periods

Adjusted R^2



Rejection probability of no-return-predictability null



Variations in the paper

- So far, shrinkage was purely due to objectively correct informative prior beliefs of investors
- If (time-varying?) cost to observe predictor variables, this may induce excess shrinkage ⇒ positive OOS returns
- Similar results when investors deal with big data by using Lasso rather than ridge regressions

Empirical illustration: IS vs OOS predictability

ullet Suppose returns from earlier are augmented with a risk premium/mispricing component $X\gamma$

$$r_{t+1} = \frac{\mathbf{X}\boldsymbol{\gamma}}{\mathbf{Y}} + \mathbf{X}(\mathbf{I} - \Gamma_t)\mathbf{g} - \mathbf{X}\Gamma_t(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\bar{\mathbf{e}}_t + \mathbf{e}_{t+1}$$

- The presence of the over/underreaction terms on the RHS will bias OLS estimates of $X\gamma$
- But OOS returns measure importance of risk premium/mispricing:

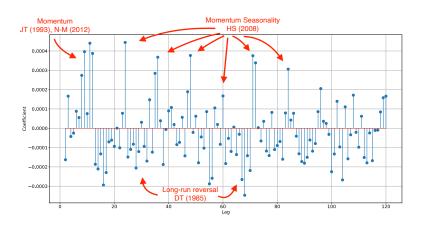
$$\frac{1}{N}\gamma'X'X\gamma=\mathbb{E}\left[r_{OOS,t+1}\right]$$

Empirical illustration: IS vs OOS predictability

- To illustrate, we seek a large set of predictors that have been available to investors over a long period
- Use past returns of each stock (available, in principle, for decades) to predict returns in month *t* with
 - Returns in months t 2, ..., t 120
 - ▶ Squared returns in months t 2, ..., t 120
- All U.S. stocks on CRSP, except market cap < 20th NYSE percentile or price < \$1 at the end of month t-1
- All predictors cross-sectionally demeaned and standardized to unit S.D. each month
- Ridge regression with leave-one-year-out cross-validation to choose penalty parameter value

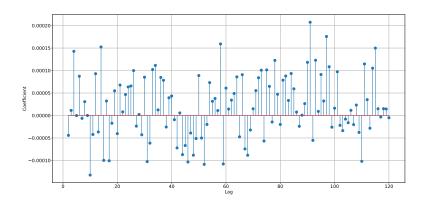
In-sample: Past return coefficients

Sample period: 1971-2018



In-sample: Past squared return coefficients

Sample period: 1971-2018



Estimating risk premia/mispricing in presence of learning

• Recall: Estimate $\gamma' X' X \gamma$ from sample version of

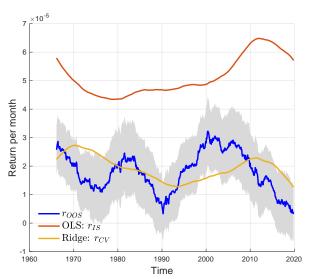
$$\gamma' X' X \gamma = \mathbb{E}\left[r_{OOS,t+1}\right]$$

• h_t estimated with OLS in backwards 20-year moving window up to month t and used to form

$$r_{OOS,t+1} = r'_{t+1} X h_t$$

- $r_{OOS,t+1}$ averaged in 10-year moving windows
- Compare with two other returns in backwards 20-year window
 - ▶ In-sample return based on OLS estimates r_{IS}
 - ightharpoonup Return on validation folds for cross-validated ridge regression r_{CV}

Estimating risk premia/mispricing in presence of learning



IS vs OOS returns

- In an RE model, expected IS and OOS portfolio returns would both equal $\gamma' X' X \gamma$
- If investors learn, this is still true for the OOS portfolio return
- But the IS return is distorted by learning-induced components that are not predictable OOS
- Seems that the learning case is relevant
- IS predictability does not carry over to OOS predictability and hence does not reflect risk premia demanded by investors ex ante, or persistent belief distortions

Implications: Market Efficiency in the Age of Big Data

- In Big Data setting, RE (investors know g) is implausible
- Learning (about g) has strong effects on asset prices
- Risk premia & bias theories should focus on explaining OOS, not IS, return predictability
- Investor learning provides clear motivation for (pseudo-)OOS testing which is lacking in RE framework
- Broader question: Can puzzling phenomena be explained by agents learning in Big Data settings?