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THE LUCAS ORCHARD

BY IAN MARTIN1

This paper investigates the behavior of asset prices in an endowment economy in
which a representative agent with power utility consumes the dividends of multiple as-
sets. The assets are Lucas trees; a collection of Lucas trees is a Lucas orchard. The
model generates return correlations that vary endogenously, spiking at times of disas-
ter. Since disasters spread across assets, the model generates large risk premia even
for assets with stable cashflows. Very small assets may comove endogenously and hence
earn positive risk premia even if their cashflows are independent of the rest of the econ-
omy. I provide conditions under which the variation in a small asset’s price-dividend
ratio can be attributed almost entirely to variation in its risk premium.

KEYWORDS: Comovement, multiple assets, small assets, disasters, Lucas tree,
Fourier transform, complex analysis, cumulant-generating function.

0. OVERVIEW

THIS PAPER INVESTIGATES the behavior of asset prices in an endowment econ-
omy in which a representative agent with power utility consumes the dividends
of N assets. The assets are Lucas (1978, 1987) trees, so I call the collection
of assets a Lucas orchard. Each of the N assets is assumed to have dividend
growth that is independent and identically distributed (i.i.d.) over time, though
potentially correlated across assets. This framework allows for the case in
which dividends follow geometric Brownian motions, but also allows for jumps
in dividends. Despite its simple structure, the model generates rich interactions
between the prices of assets.

I highlight the important features of the model in a pair of two-tree exam-
ples. In the first, dividends follow independent geometric Brownian motions,
so the intertemporal capital asset pricing model (ICAPM) of Merton (1973)
and consumption-based capital asset pricing model (consumption-CAPM) of
Breeden (1979) hold; here, though, price processes are not taken as given but
are determined endogenously. An asset’s valuation ratio depends on its divi-
dend share of consumption: all else equal, an asset is riskier if it contributes
a large proportion of consumption than if it contributes a small proportion.
A shock to one asset’s dividend affects the dividend shares, and hence valu-
ation ratios, of all other assets. A small asset experiences strong positive co-
movement in response to good news about a large asset’s dividends, and there-
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fore has a positive beta even though its cashflows are independent of the rest of
the market. With log utility the CAPM holds, so the small asset’s risk premium
lines up with its beta. As risk aversion increases, risk premia rise faster than
linearly, the CAPM fails, and the small asset, whose valuation ratio is sensitive
to market cashflow news, earns a positive alpha.

In the second example, dividends are subject to rare disasters. Now prices,
interest rates, and expected returns can jump, so the ICAPM and consumption-
CAPM also fail. There is an extreme form of comovement: disasters spread
across assets. If a large asset experiences a disastrous cashflow shock, its price
drops and the price of the other, small, asset also drops sharply. This consti-
tutes a new channel through which disasters can contribute to high risk premia,
even in assets whose own cashflows are perfectly stable.

Small assets exhibit particularly interesting behavior when the riskless rate
is low. I consider, in the N = 2 case, the limit in which one asset is negligibly
small by comparison with the other (which represents the market). Suppose,
for example, that the two assets have independent dividends. It seems plausible
that a small idiosyncratic asset should earn no risk premium and that it can be
valued using a Gordon growth formula, so its dividend yield should equal the
riskless rate minus expected dividend growth. This intuition is correct when-
ever the result of the calculation is meaningful, that is, positive. But what if the
riskless rate is less than the mean dividend growth of the small asset? In this
supercritical regime, I show that the small asset has a price-consumption ratio
that, as one would expect, tends to zero in the limit; it also has a dividend yield
of zero in the limit, so its expected return can be attributed entirely to expected
capital gains. An unexpected phenomenon emerges: despite its independent
fundamentals and negligible size, the small asset comoves endogenously, and
hence earns a positive, and potentially large, risk premium. Near the limit, vari-
ation in the small asset’s price-dividend ratio can be attributed almost entirely
to variation in its risk premium rather than to variation in the riskless rate. The
small asset’s log price-dividend ratio follows an approximate random walk, so
its dividend growth and return are both approximately i.i.d.; this cannot hap-
pen in models in which log price-dividend ratios are nonconstant but stationary
(Cochrane (2008)). The small asset underreacts to own-cashflow news, and co-
moves positively in response to the large asset’s cashflow news. These results
hold in any calibration in which the small asset is supercritical.

I next turn to an example with three i.i.d. assets, N = 3 being the largest
value for which behavior across the whole state space can easily be represented
graphically on paper. Large assets continue to be positively correlated with
other assets, and it becomes possible to ask how small assets interact with each
other. Two small assets have correlated returns not because they respond pos-
itively to each other’s cashflow shocks—quite the contrary—but because they
both respond strongly positively to the third, large, asset’s cashflow shocks.
Jumps isolate patterns in correlations that are blurred together in Brownian-
motion-driven models: realized correlations spike down when a small asset ex-
periences a jump in cashflows, and spike up when a large asset experiences a
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jump in cashflows. These dramatic shifts in realized correlation do not occur
in examples without jumps. With more than two assets, a small asset can be ei-
ther supercritical or subcritical in the same calibration, depending on the level
of interest rates in different regions of the state space.

Finally, I draw a distinction between size and value effects by considering
some examples with asymmetrically distributed cashflows. When value assets
are modelled as having lower mean dividend growth than growth assets, I show
that the model counterfactually generates a growth premium. When value as-
sets have higher cashflow volatility, they have counterfactually high betas, and
a large value asset earns a negative alpha. The qualitatively most successful
example models value assets as exposed to a background risk, perhaps labor
income, that is not included in the econometrician’s notion of the market.
Value assets then have positive CAPM alphas, and growth assets have nega-
tive CAPM alphas; and the small-value and large-growth assets have the most
positive and most negative alphas, respectively.

The tractability of the framework is due in part to the use of the cumulant-
generating function (CGF). Martin (2013a) expressed the riskless rate, risk
premium, and consumption-wealth ratio in terms of the CGF in the case
N = 1, and the expressions found there are echoed here. There are several
advantages to using CGFs. Most obviously, the model allows for jumps. But
CGFs also bring a perspective that clarifies some of the proofs. If we had re-
stricted to the lognormal special case, it would have seemed natural to prove
some of the main results by tedious and unenlightening algebra. Working in
more generality, it becomes clear that the same results can be proved more
cleanly by exploiting convexity of the CGF. (This is not to claim that no tedious
algebra remains.) Finally, the CGF wraps the technological side of the model
into a convenient package that simplifies what would otherwise be extremely
complicated formulas.

Related Literature

Dumas (1992) considered a two-country model with shipping costs. Menzly,
Santos, and Veronesi (2004) and Santos and Veronesi (2006) presented models
in which the dividend shares of assets are assumed to follow mean-reverting
processes. By picking convenient functional forms for these processes, closed-
form pricing formulas are available, at the cost of complicated interactions
between the cashflows of different assets. Pavlova and Rigobon (2007) solved
an international asset pricing model, but imposed log-linear preferences so
price-dividend ratios are constant. The most closely related paper is that of
Cochrane, Longstaff, and Santa-Clara (2008), who solved the model with log
utility, two assets, and dividends following geometric Brownian motions.

Most proofs are in the Appendix, which also contains sketch proofs that pro-
vide a high-level summary of the methodology. Supplemental Material (Mar-
tin (2013b)) and Mathematica notebooks used in the numerical examples are
available online.
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1. SETUP

Time is continuous, and runs from 0 to infinity. There is a representa-
tive agent with power utility over consumption Ct , with relative risk aversion
γ (a positive integer) and time preference rate ρ. There are N assets, in-
dexed j = 1� � � � �N , that throw off random dividend streams Djt . Dividends
are positive, which makes it natural to work with log dividends, yjt ≡ logDjt .
At time 0, the dividends (y10� � � � � yN0) of the assets are arbitrary. The vector
yt − y0 ≡ (y1t − y10� � � � � yNt − yN0) is assumed to follow a Lévy process. This
is the continuous-time analogue of the discrete-time assumption that dividend
growth is i.i.d. To reduce the number of cases to consider, I rule out the triv-
ial cases in which all assets have deterministic dividends, or all have perfectly
correlated log dividend growth.

DEFINITION 1: The cumulant-generating function (CGF) c(θ) is defined for
θ ∈ RN by

c(θ)≡ log E expθ′(yt+1 − yt)= log E

[(
D1�t+1

D1�t

)θ1

· · ·
(
DN�t+1

DN�t

)θN
]
�

The CGF c(θ) encodes the cumulants of log dividend growth; it captures all
relevant information about the technological side of the model. If we write
0 ≡ (0� � � � �0)′ for the vector of zeros, then mean log dividend growth of asset
j is ∂c

∂θj
(0), the variance of log dividend growth of asset j is ∂2c

∂θ2
j

(0), and the co-

variance between the log dividend growth of assets j and k is ∂2c
∂θj ∂θk

(0). Third-
order and higher partial derivatives at the origin capture higher cumulants and
co-cumulants: skewness, excess kurtosis, and so on. Since Lévy processes have
i.i.d. increments, we have

c(θ)= 1
h

log E expθ′(yt+h − yt)

for any h> 0 and t ≥ 0.
In the N = 2 case, θ = (θ1� θ2)

′, I will abuse notation slightly by writing
c(θ1� θ2) in place of c((θ1� θ2)

′); thus, for example, c(1�0) and c(0�1) are log
expected gross dividend growth of assets 1 and 2, respectively.

EXAMPLE 1: If dividend growth is lognormal, that is, yt = y0 + μt + AZt ,
where μ is an N-dimensional vector of drifts, A an N × N matrix of factor
loadings, and Zt an N-dimensional Brownian motion, then the CGF is c(θ) =
μ′θ+ θ′Σθ/2, where Σ ≡ AA′ is the covariance matrix of log dividend growth,
whose elements I write as σij . If the assets have independent dividend growth,
then Σ is a diagonal matrix, so the CGF decomposes as c(θ) =∑N

k=1 ck(θk),
where ck(θk)≡ μkθk + σkkθ

2
k/2.
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EXAMPLE 2: If log dividends follow a jump-diffusion, we can write yt = y0 +
μt + AZt +∑K(t)

k=1 Jk, where K(t) is a Poisson process with arrival rate ω̃ that
represents the number of jumps that have taken place by time t, and Jk are N-
dimensional random variables that are i.i.d. across k. There may be arbitrary
correlations between the N elements of J. (I will write J ≡ J1 when I discuss
the distribution of these random variables.) The CGF then acquires an extra
term, whose precise nature depends on the assumptions made about the jump
size distribution: c(θ)=μ′θ+ θ′Σθ/2 + ω̃(Eeθ

′J − 1).

EXAMPLE 2A: There is considerable flexibility in specifying the jump distri-
bution J to allow for multiple types of jump that affect different, potentially
overlapping, subsets of the assets differently. Suppose, for example, that there
are two assets, and let p1, p2, and p3 be probabilities summing to 1. Suppose
further that with probability p1, J shocks the log dividend of asset 1 by a Nor-
mal random variable with mean μ(1)

1 and variance σ(1)
11 ; with probability p2, J

shocks the log dividend of asset 2 by a Normal random variable with mean μ(2)
2

and variance σ(2)
22 ; and with probability p3, J shocks both log dividends simul-

taneously by a bivariate Normal random variable with mean (μ(3)
1 �μ(3)

2 )′ and

covariance matrix
(σ(3)

11

σ
(3)
12

σ
(3)
12

σ
(3)
22

)
. This is a special case of Example 2, so the CGF is

c(θ1� θ2) = μ1θ1 +μ2θ2 + 1
2
σ11θ

2
1 + σ12θ1θ2 + 1

2
σ22θ

2
2(1)

+ω1

(
eμ

(1)
1 θ1+(1/2)σ(1)

11 θ2
1 − 1

)
+ω2

(
eμ

(2)
2 θ2+(1/2)σ(2)

22 θ2
2 − 1

)
+ω3

(
eμ

(3)
1 θ1+μ

(3)
2 θ2+(1/2)σ(3)

11 θ2
1+σ

(3)
12 θ1θ2+(1/2)σ(3)

22 θ2
2 − 1

)
�

where ωk = ω̃pk for k = 1�2�3.

EXAMPLE 2B: Specializing still further, suppose that the two assets are i.i.d.
Independence requires that σ12 = ω3 = 0. Since the assets are identically dis-
tributed, we can simplify the notation by writing μk = μ, σkk = σ2, μ(k)

k = μJ ,
σ(k)

kk = σ2
J , and finally ω1 = ω2 = ω for the arrival rate of each asset’s jumps.

The CGF is therefore given by

c(θ1� θ2) = μθ1 +μθ2 + 1
2
σ2θ2

1 + 1
2
σ2θ2

2

+ω
(
eμJθ1+(1/2)σ2

J θ
2
1 − 1

)+ω
(
eμJθ2+(1/2)σ2

J θ
2
2 − 1

)
�
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The corresponding CGF for N i.i.d. assets is

c(θ)=
N∑

k=1

[
μθk + 1

2
σ2θ2

k +ω
(
eμJθk+(1/2)σ2

J θ
2
k − 1

)]
�(2)

The fact that the CGF decomposes as a sum
∑

k ck(θk) reflects the indepen-
dence of dividend growth across assets, as in Example 1; and the fact that the
functions ck(·) are identical reflects the fact that the assets are also identically
distributed. I use the CGF (2) in all the numerical examples other than those
in Section 3.1, so that any correlations or asymmetries that emerge do so en-
dogenously.

I close the model by assuming that the representative investor holds the mar-
ket, and that dividends are not storable, so that Ct =D1t + · · · +DNt .

2. TWO ASSETS

As a suggestive example, consider the problem of pricing the claim to asset
1’s output with log utility. The Euler equation implies that the output claim’s
price is

P10 = E

∫ ∞

0
e−ρt

(
Ct

C0

)−1

D1t dt

= (D10 +D20)

∫ ∞

0
e−ρt

E

(
D1t

D1t +D2t

)
dt�

and unfortunately the expectation is not easy to calculate in closed form if, say,
dividends follow geometric Brownian motions. Here, though, is an instructive
case in which the expectation simplifies considerably. Suppose that D1t < 1 and
D2t ≡ 1 at all times t, so that asset 2 is safe, but asset 1 is subject to downward
jumps (potentially of random size) at random times. Then we can expand the
expectation as a geometric sum:

E

(
D1t

1 +D1t

)
= E

[
D1t −D2

1t +D3
1t − · · ·]= ∞∑

n=1

(−1)n+1Dn
10e

c(n�0)t �

Substituting back, we find that

P10 = (1 +D10)

∫ ∞

t=0
e−ρt

∞∑
n=1

(−1)n+1Dn
10e

c(n�0)t

= (1 +D10)

∞∑
n=1

(−1)n+1Dn
10

ρ− c(n�0)
�
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Defining s ≡D10/(D10 +D20) to be the share of asset 1 in total output, we have

P10/D10 = 1√
s(1 − s)

∞∑
n=0

(−1)n
(

s

1 − s

)n+1/2

ρ− c(n+ 1�0)
�(3)

This expression is easy to evaluate numerically once asset 1’s dividend
process—and hence c(θ�0)—is specified. For example, if asset 1’s log divi-
dend is subject to downward jumps of constant size −b arriving at rate ω,
then c(θ�0)=ω(e−bθ − 1), so ρ− c(n+ 1�0)→ ρ+ω as n→ ∞. Meanwhile,
s/(1 − s) < 1 so the terms in the numerator of the summand decline at geo-
metric rate and numerical summation will converge fast.

In this special case, we can write D1t/(1 + D1t) as a geometric sum. In the
general case, the analogous move is to write the equivalent of D1t/(1 + D1t)
as a Fourier integral before computing the expectation. The gain from doing
so is that, as above, it converts the otherwise intractable function inside the
expectation into an expression involving products of powers of terms in D1t

and D2t that can be conveniently expressed in terms of the CGF.

2.1. The General Solution

Asset prices continue to depend on the share of consumption contributed by
asset 1, st = D1t/(D1t +D2t), in the general case, though it is sometimes more
convenient to use a state variable that is a monotonic transformation of st :

ut = log
(

1 − st

st

)
= y2t − y1t �

While st ranges between 0 and 1, ut takes values between −∞ and +∞. As
asset 1 becomes small, ut tends to infinity; as asset 1 becomes large, ut tends
to minus infinity. Since y1t and y2t follow Lévy processes, ut does, too. If, say,
dividends follow geometric Brownian motions with equal mean log dividend
growth, then ut is a driftless Brownian motion.

The next result supplies an integral formula for the price-dividend ratio of an
asset with dividend D

α1
1t D

α2
2t . By choosing the constants α1 and α2 appropriately,

the formula can be used to price asset 1, asset 2, and a riskless perpetuity. Here
and throughout the paper, i represents

√−1. From now on I write u and s,
rather than u0 and s0, for the current value of either state variable.

PROPOSITION 1—The Pricing Formula: The price-dividend ratio on an asset
with dividend share s that pays dividend stream Dα�t ≡ D

α1
1t D

α2
2t is

Pα

Dα

(u) = [2 cosh(u/2)
]γ ∫ ∞

−∞

eiuzFγ(z)

ρ− c(α1 − γ/2 − iz�α2 − γ/2 + iz)
dz�(4)
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where

Fγ(z) ≡ 1
2π

· �(γ/2 + iz)�(γ/2 − iz)

�(γ)
�(5)

PROOF: The Euler equation implies that

Pα = E

∫ ∞

0
e−ρt

(
Ct

C0

)−γ

D
α1
1t D

α2
2t dt

= (C0)
γ

∫ ∞

0
e−ρt

E

(
eα1(y10+ỹ1t )+α2(y20+ỹ2t )

[ey10+ỹ1t + ey20+ỹ2t ]γ
)
dt�

where I have defined ỹjt ≡ yjt − yj0. It follows that

Pα

Dα

= (ey10 + ey20
)γ ∫ ∞

0
e−ρt

E

(
eα1 ỹ1t+α2 ỹ2t

[ey10+ỹ1t + ey20+ỹ2t ]γ
)
dt�

The expectation inside the integral is calculated, via a Fourier transform, in
equation (21) of Appendix A.1. Interchanging the order of integration—since
the integrand is absolutely integrable, Fubini’s theorem applies—and writing u
for y20 − y10, we obtain (4):

Pα

Dα

= [2 cosh(u/2)
]γ

×
∫ ∞

z=−∞

∫ ∞

t=0
e−ρtec(α1−γ/2−iz�α2−γ/2+iz)t · eiuvFγ(z)dt dz

(a)= [2 cosh(u/2)
]γ ∫ ∞

−∞

eiuzFγ(z)

ρ− c(α1 − γ/2 − iz�α2 − γ/2 + iz)
dz�

Equality (a) is valid if Re[ρ−c(α1 −γ/2−iz�α2 −γ/2+iz)]> 0 for all z ∈ R. In
Appendix A.4, I show that this inequality holds for all z ∈ R if it holds at z = 0,
that is, so long as ρ− c(α1 − γ/2�α2 − γ/2) > 0. I refer to this as the finiteness
condition, and assume that it holds when (α1�α2)= (1�0) or (0�1). Q.E.D.

The function Fγ(z) is strictly positive, symmetric about z = 0, where it at-
tains its maximum, and decays exponentially fast toward zero as |z| → ∞.
Equation (22) of the Appendix provides an alternative representation of Fγ(z)
in terms of elementary functions, though it is less compact than (5).

The proof of Proposition 1 shows that, for s ∈ (0�1), finiteness of the prices
of the two assets—and hence of expected utility—follows from the assumptions
that ρ− c(1−γ/2�−γ/2) > 0 and ρ− c(−γ/2�1−γ/2) > 0. I also assume that
ρ− c(1 − γ�0) > 0 and ρ− c(0�1 − γ) > 0, so that aggregate wealth is finite at
the limit points s = 0 and s = 1. These assumptions are recorded in Table I.
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TABLE I

THE RESTRICTIONS IMPOSED ON THE MODEL

Restriction Reason

ρ− c(1 − γ/2�−γ/2) > 0 Finite price of asset 1
ρ− c(−γ/2�1 − γ/2) > 0 Finite price of asset 2
ρ− c(1 − γ�0) > 0 Finite aggregate wealth in limit s → 1
ρ− c(0�1 − γ) > 0 Finite aggregate wealth in limit s → 0

For many practical purposes, this is the end of the story, since the integral
formula (4) is very well behaved and can be calculated numerically almost in-
stantly. But the pen-and-paper approach can be pushed further in some cases
using techniques from complex analysis. There are many good introductions
to complex analysis (such as Stein and Shakarchi (2003)), so here I will sim-
ply recall some definitions. A complex-valued function f is holomorphic in a
subset G of the complex plane if it is complex differentiable in G. If f is holo-
morphic in some punctured disc D′(a; r) ≡ {z ∈ C : 0 < |z − a| < r}, but not at
a, then a is an isolated singularity. In this case, f has a unique power series ex-
pansion f (z) =∑∞

n=−∞ cn(z − a)n for z ∈ D′(a; r). If there is some positive m
such that c−m 	= 0 but ck = 0 for all k < −m, then the singularity at a is called
a pole (of order m). The residue of f at a, written Res{f (z);a}, is defined to
be the coefficient on the term (z − a)−1 in the power series expansion of f (z).
(For example, the function 7/z has a pole at z = 0, and its residue there is 7.)
Functions that, like the integrand in (4), are holomorphic everywhere except
at certain poles away from the path of integration are called meromorphic. The
following key result provides a line of attack for the integral in (4) (and for the
integrals in equations (6) and (8) below).

FACT 1—The Residue Theorem: Let Ω denote a closed path of integration
which is to be integrated around in an anticlockwise direction. If f is holomor-
phic inside and on Ω, except at a finite number of poles at points a1� � � � � am

inside Ω, then∫
Ω

f (z)dz = 2πi
m∑

k=1

Res
{
f (z);ak

}
�

It is an amazing—and powerful—fact that such an integral can be computed
by analyzing the behavior of the integrand at its poles. I illustrate this proce-
dure in Appendix A.2 by deriving (3) from the more general (4) as a roadmap
for later results.

The expected return on an asset paying dividend stream Dα�t can be ex-
pressed in terms of integrals similar to those that appear in the price-dividend
formula, and that are also easy to evaluate numerically. The instantaneous ex-
pected return, Rα, is defined by Rα dt ≡ EdPα/Pα + (Dα/Pα)dt.
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PROPOSITION 2—Expected Returns: The expected return Rα is

Rα(u)=

γ∑
m=0

(
γ
m

)
e−mu

∫ ∞

−∞
h(z)eiuz · c(wm(z))dz

γ∑
m=0

(
γ
m

)
e−mu

∫ ∞

−∞
h(z)eiuz dz

+ Dα

Pα

(u)�(6)

where h(z) ≡ Fγ(z)/[ρ − c(α1 − γ/2 − iz�α2 − γ/2 + iz)] and wm(z) ≡ (α1 −
γ/2 +m− iz�α2 + γ/2 −m+ iz).

Write BT for the time-0 price of a zero-coupon bond that pays one unit of the
consumption good at time T , and define the yield to time T , Y (T), by BT =
e−Y (T)·T , the instantaneous riskless rate by Rf ≡ limT↓0 Y (T), and the long rate
by Y (∞) ≡ limT→∞ Y (T). The next result expresses interest rates in terms
of the state variable u; again, the formulas are easy to evaluate numerically.
The framework can generate upward- or downward-sloping yield curves and
humped curves with an inverse-U shape.

PROPOSITION 3—Real Interest Rates: The yield to time T is

Y (T) = − 1
T

log
{[

2 cosh(u/2)
]γ

(7)

×
∫ ∞

−∞
Fγ(z)e

iuz · e−[ρ−c(−γ/2−iz�−γ/2+iz)]T dz
}
�

The instantaneous riskless rate is

Rf = [2 cosh(u/2)
]γ ∫ ∞

−∞
Fγ(z)e

iuz ·[ρ−c(−γ/2− iz�−γ/2+ iz)
]
dz�(8)

The long rate is constant, independent of the current state u, and given by

Y (∞)= max
q∗∈[−γ/2�γ/2]

ρ− c
(−γ/2 + q∗�−γ/2 − q∗)�(9)

In a symmetric calibration, Y (∞)= ρ− c(−γ/2�−γ/2).

For comparison, in a one-tree economy with all consumption drawn from
tree 1, the yield curve would be flat, with an interest rate of ρ− c(−γ�0); and
if all consumption were drawn from tree 2, the interest rate would be ρ −
c(0�−γ). Equation (9) shows that the long rate is at least as high in the two-
tree economy as in either one-tree economy. The long rate is equal to the long
rate in one of these economies if the requirement in (9) that q∗ ∈ [−γ/2�γ/2]
is binding.

In the lognormal case in which the mean log dividend growth of asset
j is μj , the instantaneous variance of asset j’s dividend growth is σjj , and
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the covariance of the two assets’ dividend growth is σ12, we have c(θ1� θ2) =
μ1θ1 + μ2θ2 + 1

2σ11θ
2
1 + σ12θ1θ2 + 1

2σ22θ
2
2. So we will have q∗ = γ/2 in equa-

tion (9) if μ1 − γσ12 ≤ μ2 − γσ22. This is intuitive: if asset 1’s mean dividend
growth μ1 is sufficiently small, then it will be negligible in the distant future,
so the long rate ρ − c(0�−γ) is determined entirely by the characteristics of
asset 2. It is possible, though, for asset 1 to influence long interest rates even if
its share converges to zero over time with probability 1. Suppose that σ12 = 0
and μ2 − γσ22 <μ1 < μ2. Then, even though tree 2 dominates in the long run
(because μ2 > μ1), the long rate does not equal the rate that would prevail in
a tree-2 economy (because μ1 − γσ12 > μ2 − γσ22). This is an instance of a
general principle that the pricing of long-dated bonds is very sensitive to bad
states of the world (Martin (2012))—here, to states in which the slow-growing
tree makes a significant contribution to consumption.

2.1.1. The Geometric Brownian Motion Case

If dividend processes follow geometric Brownian motions, then asset prices
can be expressed in terms of the hypergeometric function F(a�b; c;z). This is
defined for |z|< 1 by the power series

F(a�b; c;z) = 1 + a · b
1! · c z + a(a+ 1) · b(b+ 1)

2! · c(c + 1)
z2(10)

+ a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)
3! · c(c + 1)(c + 2)

z3 + · · · �

and for |z| ≥ 1 by analytic continuation of this series with respect to z.

PROPOSITION 4: Suppose that log dividends satisfy dyj = μj dt + √
σjj dzj ,

and that the covariance of the two assets’ dividend growth is σ12. Then the price-
dividend ratio of the asset with dividend stream D

α1
1t D

α2
2t is

P/D(s)(11)

= 1
B(λ1 − λ2)

[
1

(γ/2 + λ1)sγ
F

(
γ�γ/2 + λ1;1 + γ/2 + λ1; s − 1

s

)
+ 1

(γ/2 − λ2)(1 − s)γ
F

(
γ�γ/2 − λ2;1 + γ/2 − λ2; s

s − 1

)]
�

where B ≡ 1
2X

2, λ1 ≡
√

Y 2+X2Z2−Y

X2 , and λ2 ≡ −
√

Y 2+X2Z2+Y

X2 , with

X2 ≡ σ11 − 2σ12 + σ22�

Y ≡ μ1 −μ2 + α1(σ11 − σ12)− α2(σ22 − σ12)− γ

2
(σ11 − σ22)�
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Z2 ≡ 2(ρ− α1μ1 − α2μ2)− (α2
1σ11 + 2α1α2σ12 + α2

2σ22

)
+ γ
[
μ1 +μ2 + α1σ11 + (α1 + α2)σ12 + α2σ22

]
− γ2

4
(σ11 + 2σ12 + σ22)�

As the notation suggests, X2 and Z2 are strictly positive.
The instantaneous riskless rate is given by

Rf = ρ+ γ

[
s

(
μ1 + σ11

2

)
+ (1 − s)

(
μ2 + σ22

2

)]
(12)

− γ(γ + 1)
2

[
s2σ11 + 2s(1 − s)σ12 + (1 − s)2σ22

]
�

In special cases in which parameters are chosen carefully, it is possible to
simplify (11) even further, expressing it in terms of elementary functions; see
the Supplemental Material (Martin (2013b)).

Proposition 4 can be extended to the case in which log dividends follow a
jump-diffusion, so long as the only type of jumps that occur are global jumps:

DEFINITION 2—Global Jumps: A jump is global if it shocks each asset’s log
dividend by the same amount.

If, for example, the shock to log dividends is Normally distributed, then the
CGF is given by (1) with ω1 = ω2 = 0, μ(3)

1 = μ(3)
2 , σ(3)

11 = σ(3)
22 = σ(3)

12 , and other
parameters unrestricted.

PROPOSITION 5: If all jumps are global, arriving at rate ω with size distributed
according to the random variable J, then (11) continues to hold with ρ replaced
by ρ′ ≡ ρ−ω(Ee(1−γ)J − 1), and (12) continues to hold with ρ replaced by ρ′′ ≡
ρ−ω(Ee−γJ − 1).

2.2. Two Examples

I now explore two numerical examples. The first is a conditionally lognormal
model driven by Brownian motions, so the consumption-CAPM and ICAPM
hold and familiar intuition can be brought to bear. The second illustrates the
effects of jumps. In each example, I consider the largest possible range of γ ≥ 1
that is consistent with the assumptions in Table I, and adjust the time prefer-
ence rate, ρ, so that the long rate always equals 7% as γ varies.

All figures were generated by evaluating the integral formulas of Proposi-
tions 1, 2, and 3 numerically in Mathematica (and using Itô’s lemma to calcu-
late second-moment quantities such as betas and return volatilities in the first
example).
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2.2.1. Dividends Follow Geometric Brownian Motions

Suppose that the two assets have dividends that follow independent geo-
metric Brownian motions with mean log dividend growth of 2% and divi-
dend volatility of 10%. The CGF is therefore given by (2) with N = 2 assets,
μ= 0�02, σ = 0�1, and ω = 0.

Mean consumption growth does not vary with s, because both assets have
the same mean dividend growth. But the standard deviation of consumption
growth does vary: it is lowest “in the middle,” for s = 0�5, where there is most
diversification. At the edges, where s is close to 0 or to 1, one of the two as-
sets dominates the economy, and consumption growth is more volatile: the
representative agent’s eggs are all in one technological basket. Time-varying
consumption growth volatility leads to a time-varying riskless rate. Figure 1(a)
plots the riskless rate against asset 1’s share of output s. Riskless rates are high
for intermediate values of s because consumption volatility is low, which di-
minishes the motive for precautionary saving. Riskless rates also respond to
changing expected consumption growth, with a sensitivity that depends on the
elasticity of intertemporal substitution 1/γ, but in the present example mean
consumption growth is constant.

Figure 1(b) shows the price-dividend ratio of asset 1. When s is small, asset
1 contributes a small proportion of consumption. It therefore has little sys-
tematic risk, and hence a high valuation. As its dividend share increases, its

(a) Riskless rate (b) P1/D1

(c) Excess return on asset 1 (d) Expected return decomposition

FIGURE 1.—The geometric Brownian motion example.
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discount rate increases both because the riskless rate increases and because its
risk premium increases, as discussed further below. The model predicts that
assets may have very high price-dividend ratios but not very low price-dividend
ratios. Moreover, as an asset’s share approaches zero, its price-dividend ratio
becomes sensitively dependent on its share.

Figure 1(c) shows the risk premium on asset 1. The consumption-CAPM
holds in this calibration, so the risk premium depends on risk aversion, γ; on
the correlation between asset 1’s return and log consumption growth, κ1��c; on
the volatility of asset 1’s return, σ1; and on the volatility of log consumption
growth, σ�c . It is helpful to think of the risk premium = γσ�cκ1��cσ1 as the
product of the price of risk, γσ�c , and the quantity of risk, κ1��cσ1. The price of
risk increases linearly in γ. For s close to zero, the quantity of risk increases in
γ—due to an increasing correlation between asset 1’s return and consumption
growth, rather than to an increase in its return volatility, as we will see below—
so asset 1’s risk premium rises faster than linearly in γ. In the limit s → 1 the
quantity of risk is independent of γ, so the risk premia march up linearly in γ:
1%�2%� � � � �6%.

For fixed γ, asset 1’s risk premium is, broadly speaking, increasing in s be-
cause larger assets have more systematic risk. The nonmonotonicity in the
cases γ = 5 and 6 reflects movements in term premia; compare with the risk
premium on a perpetuity in Figure 6(a). There is a qualitative change in the
risk premium of a very small asset as risk aversion increases. When γ equals
4, asset 1’s risk premium approaches zero as s → 0. When γ equals 5, asset 1
earns a positive risk premium in the limit, even though its dividends are uncor-
related with consumption growth. (This is not a term premium effect because
the yield curve is flat, and perpetuities are riskless, in the limit.)

Figure 1(d) decomposes expected returns into dividend yield plus expected
capital gain. Most of the time-series and cross-sectional variation in expected
returns can be attributed to variation in dividend yield rather than in expected
capital gains.

It might seem surprising that asset 1’s risk premium achieves its maximum at
a value of s close to but strictly less than 1. It does so because asset 1 has excess
volatility at this point. Figure 2(a) plots the amount, in percentage points, by
which asset 1’s return volatility exceeds its dividend volatility. Asset 1’s volatil-
ity is smaller than its dividend volatility for small s and larger for large s. Since
the larger asset has a higher weight in the market, the model generates excess
volatility in the aggregate market when γ > 1 (Figure 2(b)). With log utility,
there is no excess volatility because the price-dividend ratio of the aggregate
market is constant. For the same reason, there is no excess volatility when
s = 1/2, or equivalently, u = 0: the market price-dividend ratio is flat, as a
function of u, at that point. Lastly, there is no excess volatility in the one-tree
limits.
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(a) Excess volatility of asset 1 (b) Excess volatility of the market

FIGURE 2.—(a) Asset 1’s excess return volatility relative to its (constant) dividend volatility.
(b) The market’s excess return volatility relative to its (nonconstant) dividend volatility.

The percentage price responses of assets 1 and 2 to a 1% increase in asset
1’s dividends are shown in Figures 3(a) and 3(b). When asset 1 is small, it
underreacts to a positive own-cashflow shock and asset 2 moves in the opposite
direction. When asset 1 is large, it overreacts to a positive own-cashflow shock,
and asset 2 comoves with it; as one would expect, cashflow shocks to a large
asset have more quantitative impact than cashflow shocks to a small asset. As
a result, the assets have highly correlated returns (Figure 3(c)). The amount of
correlation in returns increases sharply with γ when one asset is significantly
larger than the other. Thus the model generates, qualitatively speaking, the

(a) Response of asset 1’s price (b) Response of asset 2’s price

(c) Correlation between returns

FIGURE 3.—The response of assets 1 and 2 to a 1% increase in the dividend of asset 1; and the
correlation in their returns.
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(a) Asset 1’s CAPM beta (b) Asset 1’s CAPM alpha

FIGURE 4.—Asset 1’s CAPM alpha and beta.

“excess” comovement that is a feature of the data; Shiller (1989) showed that
stock prices in the United States and United Kingdom are more correlated
than cashflows, and Forbes and Rigobon (2002) found consistently high levels
of interdependence between markets.

For γ equal to 6, asset 1’s price may even react more to news about asset 2’s
dividend than to news about its own. To see this, observe that, for γ = 6, the
response of asset 1’s price at the left-hand side of Figure 3(a) is less than the
response of asset 2’s price at the right-hand side of Figure 3(b); and note that
the setup is symmetrical.

Figure 4(a) plots asset 1’s CAPM beta, covt(d logP1� d logPM)/ vart d logPM

(where PM is the price of the market portfolio). It is mechanically equal to 1
when s = 1 (because asset 1 is the whole market) and when s = 1/2 (because
assets 1 and 2 are identical, and hence have identical betas, which must equal
1 because the aggregate market’s beta equals 1). For the smaller values of γ,
asset 1’s beta declines toward zero as the asset’s share goes to zero. But for
the larger values of γ, asset 1 has a sizable beta even in the limit s → 0 in
which its cashflows are independent of consumption growth. Figure 4(b) shows
asset 1’s CAPM alpha measured in percentage points. In the log utility case,
γ = 1, the CAPM holds so its alpha is zero for all s. For larger values of γ,
asset 1’s alpha is mechanically zero at the two end points (because in a one-
tree world, the market return is perfectly correlated with consumption growth,
so the CAPM holds) and at s = 1/2 (because the two assets are identical, so
their alphas must both be zero). As asset 1’s share increases from zero, its
price-dividend ratio drops sharply and its alpha increases sharply. Since the
aggregate market’s alpha is zero, this means that the large asset must have a
negative alpha.

Figure 5 plots two different decompositions of asset 1’s CAPM beta. The
first decomposition, which is similar to an exercise carried out by Campbell
and Mei (1993), splits asset 1’s return into cashflow and valuation compo-
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(a) βCF1 (b) βDR1

(c) “Bad” cashflow beta, βCFM (d) “Good” discount-rate beta, βDRM

FIGURE 5.—Two decompositions of asset 1’s CAPM beta.

nents:

covt(d logP1� d logPM)

vart d logPM︸ ︷︷ ︸
CAPM beta

(13)

= covt(d logD1� d logPM)

vart d logPM︸ ︷︷ ︸
βCF1

+
covt

(
d log

P1

D1
� d logPM

)
vart d logPM︸ ︷︷ ︸

βDR1

�

Figures 5(a) and 5(b) show that a small asset’s beta can largely be at-
tributed to the fact that its valuation is correlated with the market re-
turn.

The second splits the market return into cashflow and valuation components:

covt(d logP1� d logPM)

vart d logPM︸ ︷︷ ︸
CAPM beta

(14)

= covt(d logP1� d logC)

vart d logPM︸ ︷︷ ︸
“bad” beta, βCFM

+
covt

(
d logP1� d log

PM

C

)
vart d logPM︸ ︷︷ ︸

“good” beta, βDRM

�
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This expression breaks the CAPM beta into a “bad” cashflow beta that mea-
sures the covariance of the asset’s return with shocks to the aggregate market’s
cashflows, and a “good” discount-rate beta that measures the covariance of the
asset’s return with shocks to the aggregate market’s valuation ratio. It is the
continuous-time version of the good-beta/bad-beta decomposition of Camp-
bell and Vuolteenaho (2004), who derived an ICAPM result whose continuous-
time analogue is that RP1 = γσ2

MβCFM +σ2
MβDRM , where RP1 denotes asset 1’s

instantaneous risk premium, σ2
M is the instantaneous variance of the market

return, and βCFM and βDRM were defined in (14). The Supplemental Material
(Martin (2013b)) shows that this equation holds, to a good approximation, in
the present calibration. Figures 5(c) and 5(d) plot cashflow beta and discount-
rate beta against s. A small asset’s CAPM beta consists almost entirely of cash-
flow beta. When γ = 1, the discount-rate beta is zero across the whole range of
s because the consumption-wealth ratio, that is, the market’s valuation ratio,
is constant. For larger values of γ, the discount-rate beta becomes a significant
contributor once asset 1 is large. Since discount-rate beta earns a lower risk
premium than cashflow beta, large assets earn negative alphas and small assets
earn positive alphas.

To understand why the cashflow and discount-rate betas look as they do, the
Supplemental Material (Martin (2013b)) carries out a further decomposition
that, essentially, combines (13) and (14), splitting both asset 1’s return and the
market’s return into cashflow and discount-rate components. (Campbell, Polk,
and Vuolteenaho (2010) carried out this completing-the-square exercise.) The
results are as suggested by Figure 5: a small asset’s beta is largely due to the
high covariance of its valuation ratio with the market’s cashflows.

Figure 6(a) plots the risk premium on a perpetuity. Bonds are risky because
bad times—bad news for the larger asset—are associated with the state vari-
able moving toward s = 1/2, and hence with a rise in the riskless rate and a fall
in bond prices. Figure 6(b) plots the spread between the 30-year zero-coupon
yield and the instantaneous riskless rate against s. A high yield spread forecasts
high excess returns on long-term bonds.

(a) Excess returns on a perpetuity (b) The yield spread

FIGURE 6.—A high yield spread signals high expected excess returns on a perpetuity.
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2.2.2. Dividends Are Subject to Occasional Disasters

The second example briefly highlights the effect of disasters; it will be ex-
plored further in a three-asset example below. In addition to the two Brow-
nian motions driving dividends, there are also jumps in dividends, represent-
ing the occurrence of disasters. Jumps arrive, independently across assets, at
rate ω = 0�017—about once every 60 years on average. When a disaster strikes
an asset, it shocks its log dividend by a Normal random variable with mean
μJ = −0�38 and standard deviation σJ = 0�25. These parameter values are cho-
sen to match the disaster frequency estimated by Barro (2006) exactly, and to
match the disaster size distribution documented in the same paper approxi-
mately. The CGF is as in (2) with the drifts, μ, and the Brownian volatilities,
σ , chosen so that the mean and variance of each asset’s log dividend growth
should be the same as in the previous example. This corresponds to setting μ
and σ so that ∂c

∂θj
(0�0), which equals mean log dividend growth of asset j, and

∂2c
∂θ2

j

(0�0), which equals the variance of log dividend growth of asset j, are as

before for j = 1�2.
Comparing Figure 7 to Figure 1, we see that, holding γ constant, the risk-

less rate is lower and the risk premium higher than in the jump-free example,
for most values of s. (The highest risk aversion plotted in the figure is γ = 4,
by comparison with γ = 6 in the previous example.) As in Rietz (1988) and
Barro (2006), incorporating rare disasters makes it easier to match observed

(a) Riskless rate (b) P1/D1

(c) Excess return on asset 1 (d) Excess return on a perpetuity

FIGURE 7.—The disaster example.
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riskless rates and risk premia without requiring implausibly large γ (though,
with power utility, disasters lead to far more variation in the riskless rate).

Disasters propagate to apparently safe assets: when the state variable jumps,
interest rates and bond prices jump, too. As a result, the risk premium on a
perpetuity is considerably higher than before when the current riskless rate
is low, even though disasters do not affect its cashflows. The perpetuity now
earns a negative risk premium at s = 1/2, even though the riskless rate is locally
constant there, because it is a hedge against disasters: when a disaster strikes
one of the assets, the riskless rate jumps down and the perpetuity’s price jumps
up.

2.3. Equilibrium Behavior of a Small Asset

A distinctive qualitative prediction of the model is that there should exist
extreme growth assets, but not extreme value assets, as shown in Figure 1(b).
The extreme growth case also represents the starkest departure from simple
models in which price-dividend ratios are constant (as in a one-tree model
with power utility and i.i.d. dividend growth). Finally, it is natural to wonder
whether the complicated dynamics exhibited above are relevant for assets that
are small relative to the aggregate economy. This section therefore explores
the properties of asset 1 in, and near, the limit s → 0.

Consider the problem of pricing a negligibly small asset whose cashflows are
independent of consumption growth in an environment in which the riskless
rate is 6%. If the small asset has mean dividend growth rate of 4%, the follow-
ing logic seems plausible. Since the asset is negligibly small and idiosyncratic,
it need not earn a risk premium, so the appropriate discount rate is the riskless
rate. Since dividends are i.i.d., it then seems sensible to conclude from the Gor-
don growth model that dividend yield = riskless rate − mean dividend growth
= 2%. This argument can be made formal, and I do so below. But what if the
riskless rate is 2%? If the asset does not earn a risk premium, this logic seems
to suggest that the dividend yield should be 2% − 4% = −2%, a nonsensical
result.

DEFINITION 3: If the inequality

ρ− c(1�−γ) > 0(15)

holds, we are in the subcritical case, while if the inequality

ρ− c(1�−γ) < 0(16)

holds, we are in the supercritical case.

The quantity that appears on the left-hand side of (15) and (16) is the divi-
dend yield on the small asset that the naive Gordon growth model logic would
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predict. Consider, for example, the case in which dividend growth is inde-
pendent across assets, so that the small asset’s risk is idiosyncratic. Indepen-
dence implies that the CGF decomposes as c(θ1� θ2) = c1(θ1) + c2(θ2), where
cj(θj)≡ log E exp{θj(yj�t+1 − yj�t)}, so

ρ− c(1�−γ)= ρ− [c1(1)+ c2(−γ)
]= ρ− c(0�−γ)︸ ︷︷ ︸

Rf

− c(1�0)︸ ︷︷ ︸
G1

�

where I write G1 ≡ c(1�0) and G2 ≡ c(0�1) for (log) mean dividend growth
on assets 1 and 2, respectively, and Rf for the limiting riskless rate, which will
be shown below to equal ρ − c(0�−γ). More generally, if the assets are not
independent, conditions (15) and (16) allow for the fact that asset 1 earns a
risk premium. In the lognormal case,

ρ− c(1�−γ)=Rf + γ cov(�y1�t+1��y2�t+1)︸ ︷︷ ︸
risk premium

−G1�

Thus the subcritical case applies whenever the Gordon growth model pro-
duces a positive dividend yield; and the supercritical case applies if the Gordon
growth model breaks down, predicting a negative dividend yield (as happens if
ρ is sufficiently small, γ sufficiently large, or if cashflows are sufficiently risky
so that the CGF has large curvature).

The two cases are indexed by a constant z∗ that is determined by tastes, ρ
and γ, and technologies, c(·� ·), as the unique positive root of φ(z) ≡ ρ− c(1 −
γ/2 + z�−γ/2 − z); thus

ρ− c
(
1 − γ/2 + z∗�−γ/2 − z∗)= 0�(17)

I show in Appendix A.6 that this equation has a unique positive solution. In the
subcritical case, we have z∗ > γ/2; in the supercritical case, we have γ/2 − 1 <
z∗ < γ/2.

PROPOSITION 6: In the limit as s → 0, the Gordon growth model holds for the
small asset in the subcritical case: D1/P1 = R1 − G1. Writing XSi for the excess
return on asset i, we have

D1/P1 = ρ− c(1�−γ)�

XS1 = c(1�0)+ c(0�−γ)− c(1�−γ)�

If the two assets have independent cashflows, then 0 = XS1 < XS2.
In the supercritical case, the Gordon growth model fails, and we have

D1/P1 = 0�

XS1 = c
(
1 − γ/2 + z∗�γ/2 − z∗)+ c(0�−γ)

− c
(
1 − γ/2 + z∗�−γ/2 − z∗)�



76 IAN MARTIN

If G1 ≥ G2, then D1/P1 ≥R1 −G1. If the assets have independent cashflows, then
0 < XS1 < XS2.

The Gordon growth model D2/P2 = R2 − G2 holds for the large asset in both
cases, and

Rf = ρ− c(0�−γ)�

D2/P2 = ρ− c(0�1 − γ)�

XS2 = c(0�1)+ c(0�−γ)− c(0�1 − γ)�

The riskless rate and the large asset’s valuation ratio and excess return are
determined only by the characteristics of the large asset’s dividend process,
and by formulas that are exactly analogous to those derived in Martin (2013a).
It is economically natural to assume, as in Table I, that the large asset’s price-
dividend ratio is finite in the limit, since this ensures that expected utility is
finite in the limit.

But this unremarkable behavior at the macro level masks richer behavior on
the part of the small asset. For there is no particular economic reason to impose
the constraint that the small asset’s price-dividend ratio should be finite in the
limit. In the subcritical case, it will in fact be finite; then the plausible logic
sketched above applies, and the small asset obeys the Gordon growth model
and earns no risk premium if its cashflows are independent of the large asset’s
cashflows (and hence, in the limit, of consumption).

The supercritical regime is more interesting. The small asset has an enor-
mous valuation ratio—reminiscent of Pástor and Veronesi (2003, 2006)—and
one that is sensitively dependent on its dividend share.2 When the large asset
has bad news, the small asset’s share increases and its valuation, and hence
price, declines. This endogenous correlation means that the small asset earns
a positive risk premium even if its cashflows are independent of consumption.
Moreover, its expected return can be attributed entirely to expected capital
gains because its dividend yield is zero in the limit.

Table II illustrates using the example of Section 2.2.1 with γ = 4 (subcritical)
and γ = 5 (supercritical), and ρ adjusted so that the long rate is 7% in each
case. The table holds consumption, D1 +D2, constant at 1, so asset 1’s dividend
share equals its dividend.

Near the limit, the small asset exhibits qualitatively different behavior in
three different regimes. When z∗, as defined in (17), is greater than γ/2 + 1,
the riskless rate, price-dividend ratio, and excess return of the small asset are
approximately affine functions of s. The next result addresses the supercritical
and nearly supercritical (z∗ between γ/2 and γ/2 + 1) cases. The notation a

�= b
indicates that a equals b plus higher order terms in s.

2But since P1/C = s · P1/D1, its price-consumption ratio will tend to zero if P1/D1 tends to
infinity more slowly than s tends to zero. Appendix A.6 shows that this is indeed the case.
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TABLE II

THE SUBCRITICAL AND SUPERCRITICAL CASESa

γ = 4 (Subcritical, z∗ = 2�10) γ = 5 (Supercritical, z∗ = 2�19)

D1 P1 P1/D1 XS1 Rf P1 P1/D1 XS1 Rf

0.1 2�45 24�5 1�55 4.80 2�71 27�1 2�53 3.45
0.01 0�516 51�6 1�00 3.20 0�893 89�3 2�28 1.05
0.001 0�080 79�9 0�58 3.02 0�232 232 1�89 0.78
0.0001 0�010 103�9 0�36 3.00 0�053 528 1�70 0.75
0.00001 0�001 123�3 0�24 3.00 0�011 1129 1�61 0.75
0.000001 0�000 138�8 0�17 3.00 0�002 2351 1�58 0.75
���

���
���

���
���

���
���

���
���

0 0 200 0 3.00 0 ∞ 1�54 0.75

aD1 +D2 is held constant at 1.

PROPOSITION 7: The riskless rate is given, to leading order in s, by

Rf
�=A1 +B1 · s�

In the nearly supercritical case, the dividend yield and excess return satisfy

D1/P1
�=A2 +B2 · s|z∗−γ/2|�

XS1
�= A3 +B3 · s|z∗−γ/2|�

In the supercritical case, the dividend yield and excess return are given by

D1/P1
�= B4 · s|z∗−γ/2|�

XS1
�= A5 +B5 · s|z∗−γ/2|�

The constants Ak are provided by Proposition 6 and the constants Bk are given
in Appendix A.6. Dividend yields are increasing in share, B2 > 0 and B4 > 0. If
the assets have independent cashflows, then excess returns also increase in share:
A3 = 0 and B3 > 0 in the nearly supercritical case, and A5 > 0 and B5 > 0 in the
supercritical case.

Since |z∗ − γ/2| is between zero and 1, s|z∗−γ/2| is much larger than s when
s ≈ 0, so the small asset’s price-dividend ratio and risk premium are far more
sensitive to changes in s than the riskless rate is; thus changes in its price-
dividend ratio can be attributed to changes in its risk premium as opposed to
changes in the interest rate.

In the supercritical case, since st
�= e−ut , we have logP1t/D1t

�= − logB4 +
(γ/2−z∗)ut . This implies that the small asset’s log price-dividend ratio follows
an approximate random walk. (If, say, log dividends follow Brownian motions,
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then so, to first order, does logP1t/D1t .) So near the limit, asset 1’s one-period
log return r1�t+1 satisfies

r1�t+1
�= �y1�t+1 +� log(P1�t+1/D1�t+1)(18)
�= �y1�t+1 + (γ/2 − z∗)�ut+1

= (1 − γ/2 + z∗)�y1�t+1 + (γ/2 − z∗)�y2�t+1�

Thus the small asset’s log return and log dividend growth are both asymp-
totically i.i.d. This depends on the fact that its log price-dividend ratio fol-
lows a random walk: Cochrane (2008) showed that an asset cannot simultane-
ously have a time-varying price-dividend ratio, i.i.d. returns, and i.i.d. dividend
growth if its log price-dividend ratio is stationary. Although stationarity may
be a plausible assumption in Cochrane’s application to the aggregate market,
the present example shows that there is no obvious reason to assume a priori
that a small asset’s log price-dividend ratio is stationary.

We can rewrite (18) as a decomposition of the small asset’s unexpected re-
turn into cashflow news and discount-rate news (Campbell (1991)),

r1�t+1 − Et r1�t+1

�= y1�t+1 − Ety1�t+1︸ ︷︷ ︸
cashflow news

− (γ/2 − z∗)[(y1�t+1 − Ety1�t+1)− (y2�t+1 − Ety2�t+1)
]︸ ︷︷ ︸

discount-rate news

�

The small asset’s discount rate increases when it gets good cashflow news and
declines when the large asset gets good cashflow news, no matter what we as-
sume about the dividend processes of the two assets. The small asset therefore
underreacts to own-cashflow news and comoves positively in response to the
large asset’s cashflow news.

Equation (18) has two other interesting implications. First, if z∗ is sufficiently
low, then the small asset’s return is more sensitive to the large asset’s cashflow
news than it is to its own cashflow news, as in the γ = 6 case in Figure 3. Second,
since 1 − γ/2 + z∗ and γ/2 − z∗ are positive and sum to 1, the small asset’s log
return is a weighted average of the two assets’ log dividend growth; it follows
that the small asset’s return volatility cannot exceed the higher of the two cash-
flow volatilities. Intriguingly, Vuolteenaho (2002, Table IV) found that return
volatility is indeed lower than cashflow news volatility for small stocks.

3. N ASSETS

The basic approach is the same with N > 2 assets; the main technical dif-
ficulty lies in generalizing Fγ(z) to the N-asset case. Before stating the main
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result, it will be useful to recall some old, and to define some new, notation. Let
ej be the N-vector with a 1 at the jth entry and zeros elsewhere, and define the
N-vectors y0 ≡ (y10� � � � � yN0)

′ and γ ≡ (γ� � � � � γ)′, and the (N − 1)×N matrix
U and the (N − 1)-vector u = Uy0 by

U ≡

⎛⎜⎜⎜⎝
−1 1 0 · · · 0

−1 0 1
� � �

���
���

���
� � �

� � � 0
−1 0 · · · 0 1

⎞⎟⎟⎟⎠ and u ≡

⎛⎜⎜⎝
u2

u3
���
uN

⎞⎟⎟⎠≡

⎛⎜⎜⎝
y20 − y10

y30 − y10
���

yN0 − y10

⎞⎟⎟⎠ �(19)

We can move between the state vector u and the set of dividend shares
{sj}j=2�����N , where sj = Dj0/(D10 +· · ·+DN0), via the substitution uj = log(sj/s1).
The first entry of u is u2 = y20 −y10, which corresponds to the state variable u of
the two-asset case. More generally, uj = yj0 − y10 is a measure of the size of as-
set j relative to asset 1. Consistent with this notation, I write u1 ≡ y10 − y10 = 0
and define the N-vector u+ ≡ (u1�u2� � � � � uN)

′ = (0�u2� � � � � uN)
′ to make some

formulas easier to typeset.
The next result generalizes earlier integral formulas to the N-asset case. The

condition that ensures finiteness of the price of asset j is that ρ−c(ej −γ/N) >
0; I assume that this holds for all j. All integrals are over R

N−1.

PROPOSITION 8: The price-dividend ratio on asset j is

Pj/Dj = e−γ ′u+/N
(
eu1 + · · · + euN

)γ ∫ FN
γ (z)eiu′z

ρ− c(ej − γ/N + iU′z)
dz�

where

FN
γ (z)= �(γ/N + iz1 + iz2 + · · · + izN−1)

(2π)N−1�(γ)
·
N−1∏
k=1

�(γ/N − izk)�

Defining the expected return by ERj dt ≡ E(dPj +Dj dt)/Pj , we have

ERj = (1 +Φj)Dj/Pj�

where

Φj =
∑

m

(
γ
m

)
e(m−γ/N)′u+

∫
FN

γ (z)eiu′zc(ej + m − γ/N + iU′z)

ρ− c(ej − γ/N + iU′z)
dz�

The sum is over all vectors m = (m1� � � � �mN)
′ whose entries are nonnegative inte-

gers that add up to γ. I write
(
γ

m

)
for the multinomial coefficient γ!/(m1! · · ·mN !).
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The zero-coupon yield to time T is

Y (T) = ρ− 1
T

log
[
e−γ ′u+/N

(
eu1 + · · · + euN

)γ
×
∫

FN
γ (z)eiu

′zec(−γ/N+iU′z)T dz
]
�

The riskless rate is

Rf = e−γ ′u+/N
(
eu1 + · · · + euN

)γ
×
∫

FN
γ (z)eiu

′z[ρ− c
(−γ/N + iU′z

)]
dz�

I now evaluate these integral formulas numerically in an example with three
i.i.d. trees. This is the largest N that can easily be represented graphically on
the unit simplex. I set γ = 4 and choose ρ so that the long rate is 7%; I use the
same technological parameter values as in Section 2.2.2, so, relative to that sec-
tion, the only change to the CGF (2) is that N = 3. The top corner represents
the state (s1� s2� s3) = (1�0�0); the bottom left corner represents (s1� s2� s3) =
(0�1�0); and the bottom right corner represents (s1� s2� s3) = (0�0�1). Light
regions represent larger values and dark regions represent smaller values.

Figure 8(a) shows the riskless rate. The contours indicate riskless rates of
8%�6%� � � � �−2%, radiating outward from the center. The figure is symmetric

(a) Riskless rate (b) Asset 1’s risk premium

(c) Asset 1’s P/D

FIGURE 8.—The riskless rate, and asset 1’s risk premium and price-dividend ratio.
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because the calibration is symmetric. As in the two-asset case, the riskless rate
is highest in the middle, where the economy is well balanced, and lowest in
the corners, where one asset is dominant. Along the edges, we have copies of
Figure 7(a).

Asset 1’s risk premium is shown in Figure 8(b), with contours at 1%�2%� � � � �
8%, and its price-dividend ratio is shown in Figure 8(c), with contours at
14�17�20� � � � �35. Since the calibration is symmetric, we can also read off the
excess returns and price-dividend ratios of assets 2 and 3 from the figures by
relabelling appropriately. If asset 1 is dominant, it has a high risk premium and
a low valuation ratio. As its share declines, its risk premium declines; this is fa-
miliar. But once asset 1 is sufficiently small, two distinct regimes emerge. In the
subcritical regime in which assets 2 and 3 are of similar size, the riskless rate is
relatively high, so as asset 1’s share tends to zero, its valuation ratio approaches
a finite limit (Figure 8(c)). In the supercritical regime, toward either of the bot-
tom corners, where the economy is unbalanced, the riskless rate is lower than
asset 1’s mean dividend growth rate; as a result, asset 1’s price-dividend ratio
grows unboundedly and is sensitively dependent on cashflow news for the large
asset, so asset 1 requires a sizable risk premium. Along the bottom edge of the
simplex, asset 1’s dividend yield and risk premium move in opposite directions
as it shifts from one regime to the other. This phenomenon—that a small asset
can be either subcritical or supercritical in the same calibration, depending on
the level of interest rates—can only occur with N > 2 assets.

Figure 9(a) shows how asset 1’s price responds to a 1% shock to its own
dividend. The contours indicate price increases of 0�5%�0�6%� � � � �1�2%. The
thick dashed contour indicates points at which the price increases by exactly
1%, that is, at which valuation ratios remain constant. When asset 1 is large—
above this contour—it overreacts to own-cashflow news. When it is small, it
underreacts to cashflow news, particularly in the supercritical regime in which
its price-dividend ratio declines rapidly as its dividend share increases.

Figure 9(b) shows how asset 2’s price responds to the 1% cashflow shock
to asset 1. The contours indicate price increases of −0�3%�−0�2%� � � � �0�7%.
The thick dashed contour indicates points at which asset 2’s price does not
respond to a cashflow shock for asset 1. If asset 1 is sufficiently large—at points
above the contour—asset 2’s price increases when asset 1 gets good cashflow
news. If asset 1 is small, asset 2’s price moves in the opposite direction following
a shock to asset 1’s dividend. This negative comovement is strongest toward the
bottom right corner of the simplex, where asset 2 is itself small and hence in its
own supercritical regime.

Figure 9(c) shows the instantaneous correlation between the returns of as-
sets 1 and 2 due to the Brownian component of the assets’ returns (i.e., condi-
tional on no disaster arriving). The contours indicate correlations of 0% (thick
dashed contour), 10%�20%� � � � �70%. The correlation is highest of all, rising
above 70%, if either asset 1 or asset 2 is dominant. It is also positive in the mid-
dle of the figure, where all three assets have the same size. This is intuitive: the
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(a) Asset 1’s response (b) Asset 2’s response

(c) Correlation in returns

FIGURE 9.—The price response of assets 1 and 2 to a shock to asset 1’s dividend, and the
correlation between the returns of assets 1 and 2.

riskless rate attains its maximum at the center of the figure, so is constant near
it, to first order. But cashflow shocks do have first order effects on risk premia
in the familiar way, which induces positive comovement. The same logic ap-
plies, mutatis mutandis, in the middle of the left-hand edge. If both assets 1
and 2 are very small, at the bottom right of the simplex, they are positively cor-
related with one another. This is not because they comove in response to each
other’s cashflow shocks—on the contrary, they comove negatively in response
to each other’s shocks—but because they both comove strongly with the dom-
inant asset 3. As asset 3 becomes less dominant, this second effect weakens,
and we move into a region in which assets 1 and 2 have negatively correlated
returns.

Figure 10 shows a 20-year sample path realization starting from a state of
the world in which the assets have dividends of 9, 3, and 1. There are three
disasters of equal severity over the sample period, one for each asset. These
disasters provide a particularly clean illustration of the mechanism, since they
isolate the effect of a cashflow shock to a single asset. When the small asset
experiences its dividend disaster, its own price drops sharply, but the medium
and large assets experience modest upward price jumps. When the medium
asset has a disaster, the same features occur, but with more quantitative impact.
When the large asset has a disaster, all the assets experience large downward
price jumps.

Figure 11 plots realized return correlations over the sample path, using 1-
year rolling windows. The return correlation between large and medium, and



THE LUCAS ORCHARD 83

(a) Dividends (b) Price-dividend ratios

(c) Prices

FIGURE 10.—A 20-year sample path.

between large and small, is on the order of 0.5 in normal times, as the positive
comovement associated with shocks to the larger asset’s dividend outweighs
the negative comovement associated with shocks to the smaller asset’s divi-
dend. When the smaller asset experiences a disaster, however, the negative
comovement comes to the fore, and we see the correlation jump down below
zero. When the larger asset experiences a disaster, both the other assets move
with it, and correlations spike close to 1. Finally, the correlation between the
medium and small assets is close to zero in normal times due to two offsetting
effects: the two assets experience negative comovement in response to each
other’s cashflow shocks, but comove in response to the large asset’s shocks. The

(a) Between large and medium (b) Between large and small

(c) Between medium and small

FIGURE 11.—Realized daily return correlations calculated from rolling 1-year horizons.
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former effect dominates when either the small or medium asset experiences a
disaster, so correlations jump below zero; and the latter effect dominates when
the large asset experiences a disaster, so correlations jump up. Such spikes in
return correlations are a familiar feature of the data, and here they arise in
an example in which the correlation in cashflows is constant—at zero—at all
times.

3.1. Size versus Value

No distinction can be drawn between size and value effects in the N = 2
case, or in examples in which assets have identically distributed cashflows. To
generate variation on the value dimension that does not line up perfectly with
size, I now consider some examples that break the symmetry at the level of
cashflows. I set γ = 4 and choose ρ so that the long rate is 7% in each case.
I arrange things so that, in each example, assets 1 through 4 are small-growth,
small-value, large-growth, and large-value, respectively. There are various ways
to model what makes a value asset a value asset; the following list is far from
exhaustive, but it will serve to demonstrate that the different alternatives gen-
erate very different patterns of alphas and betas across the size and value di-
mensions:

(i) Value assets have lower mean dividend growth.
(ii) Value assets have more unstable cashflows.

(iii) Value assets are more correlated with background risk.
(iv) Value assets are exposed to background jump risk.

As always, the goal is to explore qualitative predictions of the model, so I make
no attempt to optimize over parameter choices or to combine elements of this
list.

To illustrate the first possibility, I consider an example in which all four assets
have independent dividend growth with volatility of 10%. Assets 1 and 2 have
dividend shares s1 = s2 = 0�2, while assets 3 and 4 have shares s3 = s4 = 0�3. The
value assets 2 and 4 have mean log dividend growth of 1%, while the growth as-
sets 1 and 3 have mean log dividend growth of 3%. (CGFs for all four examples
are provided in the Supplemental Material.) Figure 12(a) plots CAPM alpha
against CAPM beta. There is a growth premium: value stocks have high betas
and negative alphas (Santos and Veronesi (2010)). This pattern is the opposite
of what is observed in recent data.

In the second example, shown in Figure 12(b), all four assets have indepen-
dent dividend growth with mean log dividend growth of 2%, but the two value
assets have 15% volatility while the two growth assets have 5% volatility. The
calibration counterfactually generates high betas for value assets and a nega-
tive alpha for the large-value asset.

In the third example, shown in Figure 12(c), I add a fifth asset with dividend
share s5 = 0�67, in line with labor’s share of income. I assume that this asset,
which contributes background risk, is not a part of “the market” with respect to
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(a) Value = low mean dividend growth (b) Value = high dividend volatility

(c) Value = Brownian background risk (d) Value = jump background risk

FIGURE 12.—Alphas and betas of small-growth (SG), small-value (SV), large-growth (LG),
and large-value (LV) assets.

which betas are calculated. The dividend shares of the other four assets are in
the same proportions as before. All five assets have mean dividend growth of
2% and dividend volatility of 10%, and the first four assets have uncorrelated
cashflows; but the dividends of the two value assets have correlation of 0.5 with
the fifth asset’s dividend. Value assets have higher betas than growth assets.
Small-growth and large-value assets have alphas close to zero, while the small-
value and large-growth assets earn positive and negative alphas, respectively.

The fourth example, shown in Figure 12(d), modifies the third. Value assets
now have independent Brownian motion components but experience disasters
at the same time as the fifth asset. Disasters arrive at rate 0.017 and affect
the value assets and the fifth asset identically. As usual, the mean log jump
size is −0�38 and the standard deviation is 0.25. Betas are conditional on no
disaster occurring; that is, they are the betas that would be computed by an
econometrician who did not observe a disaster in sample. This example comes
closest to matching qualitative features of the data: betas are close to 1; value
assets have positive alpha while growth assets have negative alpha; and small
assets have higher alphas than large assets.

4. CONCLUSION

This paper presents a frictionless multi-asset equilibrium model that gen-
erates “excess” comovement of returns relative to cashflows. Assets comove
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even if their cashflows are independent, because their prices are linked via the
common stochastic discount factor.

The model generalizes the work of Cochrane, Longstaff, and Santa-Clara
(2008) in three directions, by allowing for power utility (rather than log), for
dividends to follow exponential Lévy processes (rather than geometric Brow-
nian motions), and for multiple assets (rather than just two). Each of these
directions introduces interesting new types of behavior. Once risk aversion is
higher than 1, the CAPM fails even if dividend growth is lognormal, and many
of the quantities of interest increase faster than linearly in γ. When we al-
low for jumps, the ICAPM and consumption-CAPM fail, too. Disasters spread
across assets, and thereby provide a new channel for high risk premia even
in assets that are not themselves subject to jumps in cashflows. Jumps gener-
ate spikes in correlations in both directions, as comovement effects that blur
together in Brownian-motion-driven models are isolated at the instant of a
jump. With more than two assets, we can ask how small assets interact with
each other, and it becomes possible to differentiate between assets on both the
size and value dimension.

Many of these effects are strongest for very small assets. The limit in which
one asset is negligibly small relative to another crystallizes some distinctive
features of the model and is analytically tractable. I provide general conditions
under which a negligibly small, idiosyncratic asset underreacts to own-cashflow
news but responds sensitively to market cashflow news, and therefore requires
a positive risk premium.

At the most fundamental level, it is the interaction between multiplicative
features (power utility and i.i.d. log dividend growth) and additive features
(consumption is the sum of dividends) that makes the model both interesting
and hard to solve. These features capture a tension that is familiar to financial
economists more generally: returns compound multiplicatively, while portfo-
lio formation is additive. Using Fourier transform methods, I provide integral
formulas for prices, returns, and interest rates that can be evaluated using stan-
dard numerical integration techniques. When there are two assets whose div-
idends follow geometric Brownian motions, or when one of the two assets is
negligibly small, the integrals can be solved in closed form using techniques
from complex analysis, notably the residue theorem.

The solution method is amenable to generalization in various directions. For
example, Martin (2011) allowed for imperfect substitution between the goods
produced by the two trees, so that intratemporal prices enter the picture, and
Chen and Joslin (2012) showed how to handle the case with non-i.i.d. dividend
growth. The approach can also be adapted to compute asset price behavior in
an economy with two agents with differing risk aversion and one or two trees
that are potentially subject to jumps, generalizing Wang (1996) and Longstaff
and Wang (2012).

There are two obvious areas to work on. The riskless rate fluctuates sig-
nificantly in the model. If the model could be generalized from power utility
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to Epstein–Zin (1989) preferences, then this riskless rate variation could be
dampened by letting the elasticity of intertemporal substitution exceed 1/γ.
An alternative view—which calls for a more ambitious extension of the model,
allowing at the very least for goods to be stored over time—is that the riskless
rate is stable not for reasons related to preferences, but for reasons related to
technologies. In either case, it is likely that the effect of reducing riskless rate
variation would be to enlarge the region in which underreaction and positive
comovement take place. A second question is whether the N-asset integral
formulas can be solved explicitly in special cases. It is desirable to try to do so
because these formulas are subject to the curse of dimensionality, so become
computationally intractable as N increases.

APPENDIX A: THE TWO-ASSET CASE

A.1. The Expectation

This section contains a calculation used in the proof of Proposition 1. The
goal is to evaluate

E ≡ E

(
eα1 ỹ1t+α2 ỹ2t

[ey10+ỹ1t + ey20+ỹ2t ]γ
)

= e−γ/2(y10+y20) · E

(
e(α1−γ/2)̃y1t+(α2−γ/2)̃y2t

[2 cosh((y20 − y10 + ỹ2t − ỹ1t)/2)]γ
)

for general α1�α2�γ > 0; recall that ỹjt ≡ yjt − yj0. A word or two is in order to
explain why it is natural to rearrange E like this. First, with power utility, valua-
tion ratios should be unaffected if all assets are scaled up in size proportionally,
so it is natural to look for a state variable like y20 − y10. Second, a function must
decline fast toward zero as it tends to plus or minus infinity to possess a Fourier
transform. Thus it is natural to reshape the term inside the expectation into an
exponential term in ỹ1t and ỹ2t , which is easy to handle with the CGF, and a
term 1/[2 cosh(u/2)]γ that has a Fourier transform, Fγ(z), which satisfies

1
[2 cosh(u/2)]γ =

∫ ∞

−∞
eiuzFγ(z)dz�(20)

We have, then,

E = e−γ(y10+y20)/2(21)

× E

[
e(α1−γ/2)̃y1t+(α2−γ/2)̃y2t

∫ ∞

−∞
Fγ(z)e

iz(y20−y10)eiz(̃y2t−ỹ1t ) dz

]
= e−γ(y10+y20)/2

∫ ∞

−∞
Fγ(z)e

iz(y20−y10)ec(α1−γ/2−iz�α2−γ/2+iz)t dz�



88 IAN MARTIN

By the Fourier inversion theorem, equation (20) implies that

Fγ(z) = 1
2π

∫ ∞

−∞

e−iuz

(2 cosh(u/2))γ
du

= 1
2π

∫ 1

0
tγ/2−iz(1 − t)γ/2+iz dt

t(1 − t)
�

The second equality follows via the substitution u= log[t/(1− t)]. This integral
can be evaluated in terms of �-functions, giving (5); see Andrews, Askey, and
Roy (1999, p. 34).

An alternative representation of Fγ(z) will also be useful. By contour inte-
gration, one can show that F1(z) = 1

2 sechπz and F2(z) = 1
2z cosechπz. From

these two facts, expression (5), and the fact that �(x) = (x − 1)�(x − 1), we
have, for positive integer γ,

Fγ(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z cosech(πz)

2(γ − 1)! ·
γ/2−1∏
n=1

(
z2 + n2

)
� for even γ,

sech(πz)
2(γ − 1)! ·

(γ−1)/2∏
n=1

(
z2 + (n− 1/2)2

)
� for odd γ.

(22)

A.2. Deriving (3) From (4)

This section shows how to get to (3) from the more general (4). Both equa-
tions are easy to calculate numerically in a software package such as Mathemat-
ica, so the purpose of the exercise is to illustrate the application of the residue
theorem and to provide a roadmap for the Brownian motion case.

To streamline the discussion, I proceed heuristically, taking as given various
facts that are proved for the Brownian motion case in Appendix A.5. The ex-
pression (3) is valid for s < 1/2, that is, u > 0. Setting γ = 1 in (4), substituting
α1 = 1�α2 = 0 to calculate the price-dividend ratio of asset 1, and imposing the
fact that D2t ≡ 1, so that c(θ1� θ2) is independent of θ2 and equals, say, c(θ1�0),
we get

P10/D10 = [2 cosh(u/2)
] · ∫ ∞

−∞

eiuzF1(z)

ρ− c(1/2 − iz�0)
dz�(23)

We now proceed in a series of steps. The basic idea is to attack (23) via the
residue theorem. To do so, we must integrate around a closed contour, rather
than over the real axis. Loosely speaking, we want to integrate from −∞ to
+∞ and then loop back along the arc of an infinitely large semicircle. More
formally, we consider the limit of a sequence of integrals around increasingly
large semicircles with bases lying along the real axis. Each of these integrals
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can be evaluated using the residue theorem, by summing over residues inside
these increasingly large semicircles. In the limit, the contribution of the integral
along the semicircular arc—as opposed to the base—tends to zero. (This often
happens with integrals that are amenable to this line of attack.) The upshot
is that the original integral (23) equals 2πi times the sum of all the residues
of the integrand eiuzF1(z)/[ρ− c(1/2 − iz�0)] in the upper half-plane. These
residues occur at the poles of this function, that is, at the poles of F1(z) and at
the zeros of ρ− c(1/2 − iz�0).

In this example, things are particularly simple because there are no zeros of
ρ − c(1/2 − iz�0) for z in the upper half-plane. (By the finiteness condition,
ρ−c(1/2�−1/2)= ρ−c(1/2�0) > 0. Moreover, c(x�0) is decreasing in x since
D1t < 1, so ρ− c(1/2 + k�0) > 0 for all k> 0. It follows from Lemma 1 of Ap-
pendix A.4 that Re[ρ− c(1/2 − iz�0)] ≥ ρ− c(Re(1/2 − iz)�0)= ρ− c(1/2 +
Imz�0) > 0 for all z in the upper half-plane.) It remains to consider the poles
of F1(z) = (1/2π)�(1/2 + iz)�(1/2 − iz). We will need two standard prop-
erties of the �-function. First, �(n) = (n − 1)! for positive integer n. Second,
�(z) has poles only at zero and at the negative real integers, and the residue at
−n is (−1)n/n!. As a result, the poles of eiuzF1(z)/[ρ− c(1/2 − iz�0)] occur at
z = (n+ 1/2)i for n= 0�1�2� � � � , and the residue at (n+ 1/2)i is

e−(n+1/2)u(−1)n�(n+ 1)/n!
2πi · [ρ− c(n+ 1�0)] =

(−1)n
(

s

1 − s

)n+1/2

2πi · [ρ− c(n+ 1�0)] �

Summing over all the residues, n = 0�1� � � � , multiplying by 2πi, and rearrang-
ing,

P/D(s)= 1√
s(1 − s)

∞∑
n=0

(−1)n
(

s

1 − s

)n+1/2

ρ− c(n+ 1�0)
�

as in equation (3). This example illustrates the more general point that residues
at two types of poles contribute to the integral: (i) poles of Fγ(z), which are
located at regularly spaced points (n+ γ/2)i, for n = 0�1�2� � � � , on the imag-
inary axis; and (ii) poles of 1/[ρ− c(1 − γ/2 − iz�−γ/2 + iz)]. The Brownian
motion case is tractable because c(θ1� θ2) is quadratic in θ1 and θ2, so the latter
poles occur at zeros of the quadratic ρ− c(1 − γ/2 − iz�−γ/2 + iz), of which
there is exactly one in the upper half-plane.

A.3. Expected Returns and Interest Rates

For convenience, I write, throughout this section,

h(z)≡ Fγ(z)

ρ− c(α1 − γ/2 − iz�α2 − γ/2 + iz)
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and (
n
m

)
≡ n!

m!(n−m)! �

Introducing this notation,

Pα =
∫ ∞

−∞
h(z) · (ey10 + ey20

)γ
e(α1−γ/2−iz)y10+(α2−γ/2+iz)y20 dz(24)

=
γ∑

m=0

(
γ
m

)∫ ∞

−∞
h(z) · ewm(z)′y dz�

where wm(z) ≡ (α1 −γ/2 +m− iz�α2 +γ/2 −m+ iz)′. By Proposition 8.20 of
Cont and Tankov (2004), we have Ed(ewm(z)′y) = ewm(z)′yc(wm(z))dt. Using this
fact,

E(dPα)=
{

γ∑
m=0

(
γ
m

)∫ ∞

−∞
h(z)ewm(z)′yc

[
wm(z)

]
dz

}
dt�

Dividing by (24) and rearranging, the expected capital gain is given by the for-
mula

EdPα

Pα

=

γ∑
m=0

(
γ
m

)
e−mu

∫ ∞

−∞
h(z)eiuzc(wm(z))dz

γ∑
m=0

(
γ
m

)
e−mu

∫ ∞

−∞
h(z)eiuz dz

dt�

Turning to interest rates, the Euler equation implies that

BT = E

[
e−ρT

(
CT

C0

)−γ]
= e−ρTCγ

0 E

[
1

(D1T +D2T )γ

]
�

Using the result of Appendix A.1, we find that

BT = e−ρT
[
2 cosh(u/2)

]γ ∫ ∞

−∞
Fγ(z)e

iuz · ec(−γ/2−iz�−γ/2+iz)T dz�

from which (7) follows, and hence also (8) by l’Hôpital’s rule.
The long rate can be calculated by the method of steepest descent. The

function ρ − c(−γ/2 − iz�−γ/2 + iz), considered as a function of z ∈ C,
has a stationary point on the imaginary axis. Call it z∗ = iq∗, where q∗ ∈ R;
then q∗ maximizes ρ − c(−γ/2 + q�−γ/2 − q). Poles of the integrand in (7)
occur at the poles of Fγ(z), that is, at ±(γ/2)i�±(γ/2 + 1)i, and so on. If
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|q∗| < γ/2, then the contour of integration in (7) (i.e., the real axis) can be
deformed to pass through iq∗ without crossing a pole, and therefore with-
out altering the value of the integral, by Cauchy’s theorem. It follows that
Y (∞) = ρ− c(−γ/2 + q∗�−γ/2 − q∗).

If |q∗| ≥ γ/2, then deforming the contour of integration to pass through iq∗

requires a pole to be crossed, and hence a residue to be taken into account.
This residue, rather than the precise location of iq∗, dictates the behavior of
the long end of the yield curve. If q∗ > γ/2, for example, the integral to be eval-
uated picks up an extra term proportional to e−[ρ−c(0�−γ)]T . Since ρ− c(−γ/2 +
q∗�−γ/2 − q∗) is larger than ρ − c(0�−γ) by the definition of q∗, the term in
e−[ρ−c(−γ/2+q∗�−γ/2−q∗)]T vanishes in the limit, and Y (∞) = ρ − c(0�−γ). More-
over, the concavity of ρ−c(−γ/2+q�−γ/2−q) as a function of q implies that
ρ− c(0�−γ) > ρ− c(−γ/2 +q�−γ/2 −q) for all q < γ/2. An almost identical
argument shows that if q∗ < −γ/2, we have Y (∞) = ρ − c(−γ�0), and that
in this situation ρ − c(−γ�0) > ρ − c(−γ/2 + q�−γ/2 − q) for all q > −γ/2.
Equation (9) follows.

A.4. Consequences of the Finiteness Condition

This section derives some implications of the finiteness condition ρ− c(α1 −
γ/2�α2 − γ/2) > 0, which is assumed to hold for the values of α1 and α2 pro-
vided in Table I.

LEMMA 1: For z1� z2 ∈ C, we have Re c(z1� z2)≤ c(Rez1�Rez2). The inequal-
ity is strict if z1 and z2 have nonzero imaginary parts.

PROOF: For any z ∈ C, Re logz = log |z|. It follows that Re c(z1� z2) =
log |Eez1 ỹ11+z2 ỹ21 | ≤ log E|ez1 ỹ11+z2 ỹ21 | = log EeRez1 ·̃y11+Rez2 ·̃y21 = c(Rez1�Rez2). The
inequality holds with equality if the argument of ez1 ỹ11+z2 ỹ21 is almost surely con-
stant, that is, if Im(z1)̃y11 + Im(z2)̃y21 is almost surely constant. This cannot
happen if Im(z1) and Im(z2) are nonzero. Q.E.D.

LEMMA 2: For all z ∈ R, we have ρ−Re[c(α1 −γ/2− iz�α2 −γ/2+ iz)] > 0.

PROOF: From Lemma 1, Re c(α1 − γ/2 − iz�α2 − γ/2 + iz) ≤ c(α1 −
γ/2�α2 −γ/2), so ρ−Re c(α1 −γ/2− iz�α2 −γ/2+ iz)≥ ρ− c(α1 −γ/2�α2 −
γ/2) > 0. Q.E.D.

DEFINITION 4: Let f be a meromorphic function. A zero (or pole) of f is
minimal if it lies in the upper half-plane and no other such zero (or pole) has
smaller imaginary part.

Lemma 2 shows that ρ − c(α1 − γ/2 − iz�α2 − γ/2 + iz) has no zeros on
the real axis. The following property of its minimal zero will be useful in Ap-
pendix A.6.
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LEMMA 3: If there exists a minimal zero of ρ−c(α1 −γ/2− iz�α2 −γ/2+ iz),
then it is unique and lies on the imaginary axis.

PROOF: Let p+ qi be a minimal zero, and suppose (aiming for a contradic-
tion) that p 	= 0. Lemma 1 applies with strict inequality, so ρ − c(α1 − γ/2 +
q�α2 − γ/2 − q) < 0. But then the finiteness condition and the intermediate
value theorem imply that there exists q2 ∈ (0� q) such that ρ − c(α1 − γ/2 +
q2�α2 − γ/2 − q2)= 0. If so, q2i is a zero with q2 < q, so p+ qi is not minimal,
giving the desired contradiction. Q.E.D.

A.5. The Brownian Motion Case

The broad strategy for deriving the price-dividend ratio formula was laid out
in Appendix A.2: the integral formula (4) is equal to the limit of a sequence of
contour integrals around increasingly large semicircles in the upper half of the
complex plane. By the residue theorem, this limit can be evaluated by summing
all residues of the integrand in (4) in the upper half-plane. Doing so involves
some tedious calculation, but we end up at (11).

Figure 13 shows one of the integrals in this sequence, for a particular cali-
bration and u > 0. The surface shown is the real part of the integrand in (4);
several poles are visible where it explodes to infinity. The dark line indicates
the semicircular contour along which we integrate, whose base lies on the real
axis. By the residue theorem, the integral over the contour can be evaluated
by computing the residues at those poles that happen to lie inside the semicir-
cle. As the semicircle’s radius becomes larger and larger, the integral along the
base approaches (4), while the integral around the semicircular arc tends to
zero. Notice how the arc of the semicircle threads between the poles that form
a spine running up the imaginary axis; this is always possible because the poles
are evenly spaced once we get sufficiently far up the imaginary axis.

PROOF OF PROPOSITION 4: The riskless rate Rf satisfies Rf dt = −E(dM/
M), where Mt ≡ e−ρtC−γ

t ; equation (12) follows by Itô’s lemma.

FIGURE 13.—A member of the sequence of contour integrals whose limit is (11).
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In the Brownian motion case, c(θ1� θ2) = μ1θ1 + μ2θ2 + 1
2σ11θ

2
1 + σ12θ1θ2 +

1
2σ22θ

2
2. There are two solutions to the equation ρ− c(α1 −γ/2− iz�α2 −γ/2+

iz) = 0, each of which lies on the imaginary axis. One—call it λ1i—lies in the
upper half-plane; the other—call it λ2i—lies in the lower half-plane. We can
rewrite ρ−c(α1 −γ/2− iz�α2 −γ/2+ iz)= B(z−λ1i)(z−λ2i) for B > 0�λ1 >
0�λ2 < 0 given in the main text. The aim, then, is to evaluate

I ≡
∫ ∞

−∞

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz�(25)

in terms of which the price-dividend ratio is P/D= [2 cosh(u/2)]γ ·I. The proof
now divides into several steps. Step 1 starts from the assumption that the state
variable u is positive and shows that the integral (25) can be calculated using
the residue theorem. Steps 2 and 3 carry out these calculations and simplify.
Step 4 extends the result to negative u.

Step 1. Let u > 0. Consider the case in which γ is even. Let Rn ≡ n + 1/2,
where n is an integer. Define the large semicircle Ωn to be the semicircle whose
base lies along the real axis from −Rn to Rn and which has a semicircular arc
(ωn) passing through the upper half-plane from Rn through Rni and back to
−Rn. I first show that

I = lim
n→∞

∫
Ωn

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz�(26)

Then, from the residue theorem, it follows that

I = 2πi ·
∑

Res
{

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
;zp
}
�(27)

where the sum is taken over all poles zp in the upper half-plane.
The first step is to establish that (26) holds. The right-hand side is equal to

lim
n→∞

∫ Rn

−Rn

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz︸ ︷︷ ︸

In

+
∫
ωn

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz︸ ︷︷ ︸

Jn

�

The integral In tends to I as n → ∞, so the aim is to establish that the sec-
ond term Jn tends to zero as n → ∞. Along the arc ωn, we have z = Rne

iθ,
where θ varies between 0 and π. At this point, it is convenient to work with the
representation of Fγ(z) of equation (22). Substituting from (22), we have

Jn =
∫ π

0

eiuRn cosθ−uRn sinθP(Rne
iθ)

Q(Rneiθ)(eπRn(cosθ+i sinθ) − e−πRn(cosθ+i sinθ))
·Rnie

iθ dθ�

where P(·) and Q(·) are polynomials.
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To show that Jn tends to zero as n tends to infinity, I separate the range of
integration [0�π] into two parts: [π/2 − δ�π/2 + δ] and its complement in
[0�π]. Here δ will be chosen to be extremely small. First, consider

J(1)
n ≡

∣∣∣∣∫ π/2+δ

π/2−δ

P(Rne
iθ)eiuRn cosθ−uRn sinθRnie

iθ

Q(Rneiθ)(eπRn(cosθ+i sinθ) − e−πRn(cosθ+i sinθ))
dθ

∣∣∣∣
≤
∫ π/2+δ

π/2−δ

∣∣∣∣P(Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sinθRn

|eπRn(cosθ+i sinθ) − e−πRn(cosθ+i sinθ)| dθ�

Pick δ sufficiently small that∣∣eπRn(cosθ+i sinθ) − e−πRn(cosθ+i sinθ)
∣∣≥ 2 − ε

for all θ ∈ [π/2 − δ�π/2 + δ]; ε is some very small number close to but greater
than zero. This is possible because the left-hand side is continuous, and equals
2 when θ = π/2. Then,

J(1)
n ≤

∫ π/2+δ

π/2−δ

∣∣∣∣P(Rne
iθ)

Q(Rneiθ)

∣∣∣∣e−uRn sinθRn

2 − ε
dθ�(28)

Since (i) we can also ensure that δ is small enough that sinθ ≥ ε for θ in the
range of integration; (ii) |P(Rne

iθ)| ≤ P2(Rn), where P2 is the polynomial ob-
tained by taking absolute values of the coefficients in P ; (iii) Q(Rne

iθ) tends to
infinity as Rn becomes large; and (iv) decaying exponentials decay faster than
polynomials grow, in the sense that, for any positive k and λ, xke−λx → 0 as
x → ∞, x ∈ R, we see, finally, that the right-hand side of (28), and hence J(1)

n ,
tends to zero as n → ∞.

It remains to be shown that

J(2)
n ≡

∣∣∣∣∫[0�π/2−δ]∪[π/2+δ�π]

P(Rne
iθ)eiuRn cosθ−uRn sinθRnie

iθ

Q(Rneiθ)(eπRn(cosθ+i sinθ) − e−πRn(cosθ+i sinθ))
dθ

∣∣∣∣
is zero in the limit. Since δ > 0, for all θ in the range of integration we have
that | cosθ| ≥ ζ > 0, for some small ζ. We have

J(2)
n ≤

∫
[0�π/2−δ]∪[π/2+δ�π]

∣∣∣∣P(Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sinθRn

|eπRn(cosθ+i sinθ) − e−πRn(cosθ+i sinθ)| dθ�

Now, ∣∣eπRn(cosθ+i sinθ) − e−πRn(cosθ+i sinθ)
∣∣ ≥ ∣∣∣∣eπRn(cosθ+i sinθ)

∣∣− ∣∣e−πRn(cosθ+i sinθ)
∣∣∣∣

= eπRn| cosθ| − e−πRn| cosθ|

≥ eπRnζ − e−πRnζ
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for all θ in the range of integration. So,

J(2)
n ≤

∫
[0�π/2−δ]∪[π/2+δ�π]

∣∣∣∣P(Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sinθRn

eπRnζ − e−πRnζ
dθ

≤
∫

[0�π/2−δ]∪[π/2+δ�π]

∣∣∣∣P(Rne
iθ)

Q(Rneiθ)

∣∣∣∣ Rn

eπRnζ − e−πRnζ
dθ�

which tends to zero as n tends to infinity.
The case of γ odd is almost identical. The only important difference is that

we take Rn = n (as opposed to n+ 1/2) before allowing n to go to infinity. The
reason for doing so is that we must take care to avoid the poles of Fγ(z) on
the imaginary axis.

Step 2. From now on, I revert to the definition of Fγ(z) given in (5). The
integrand is

eiuz�(γ/2 − iz)�(γ/2 + iz)

2π ·B · �(γ) · (z − λ1i)(z − λ2i)
�(29)

which has poles in the upper half-plane at λ1i and at points z such that
γ/2 + iz = −n for integers n ≥ 0, since the �-function has poles at the negative
integers and zero. Combining the two, (29) has poles at λ1i and at (n + γ/2)i
for n≥ 0.

We can calculate the residue of (29) at z = λ1i directly, using the fact that
if a function f (z) = g(z)/h(z) has a pole at a, and g(a) 	= 0, h(a) = 0, and
h′(a) 	= 0, then Res{f (z);a} = g(a)/h′(a). The residue at λ1i is therefore

e−λ1u�(γ/2 + λ1)�(γ/2 − λ1)

2πi ·B · �(γ) · (λ1 − λ2)
�(30)

For integer n ≥ 0, �(z) has residue (−1)n/n! at z = −n, so the residue of
(29) at (n+ γ/2)i is

−e−u(n+γ/2) · �(γ + n) · (−1)n

n!
2πi ·B · �(γ) · (n+ γ/2 − λ1)(n+ γ/2 − λ2)

�(31)

Substituting (30) and (31) into (27), we find

I = e−λ1u�(γ/2 + λ1)�(γ/2 − λ1)

B · �(γ) · (λ1 − λ2)

− e−γu/2
∞∑
n=0

(−e−u)n · �(γ + n) · 1
n!

B · �(γ) · (n+ γ/2 − λ1)(n+ γ/2 − λ2)
�
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Since |−e−u| < 1 under the assumption that u > 0, which for the time being
is still maintained, we can use the series definition of Gauss’s hypergeometric
function (10), together with the fact that �(γ + n)/�(γ) = γ(γ + 1) · · · (γ +
n− 1), to obtain

I = e−λ1u

B(λ1 − λ2)

�(γ/2 − λ1)�(γ/2 + λ1)

�(γ)
(32)

+ e−γu/2

B(λ1 − λ2)

[
1

γ/2 − λ2
F
(
γ�γ/2 − λ2;1 + γ/2 − λ2;−e−u

)
− 1

γ/2 − λ1
F
(
γ�γ/2 − λ1;1 + γ/2 − λ1;−e−u

)]
�

Step 3. A further simplification follows from the fact that

e−λ1u
�(γ/2 − λ1)�(γ/2 + λ1)

�(γ)

= eγu/2

γ/2 + λ1
F
(
γ�γ/2 + λ1;1 + γ/2 + λ1;−eu

)
+ e−γu/2

γ/2 − λ1
F
(
γ�γ/2 − λ1;1 + γ/2 − λ1;−e−u

)
�

which follows from equation (1.8.1.11) of Slater (1966, pp. 35–36). Using this
in (32),

I = 1
B(λ1 − λ2)

[
eγu/2

γ/2 + λ1
F
(
γ�γ/2 + λ1;1 + γ/2 + λ1;−eu

)
+ e−γu/2

γ/2 − λ2
F
(
γ�γ/2 − λ2;1 + γ/2 − λ2;−e−u

)]
�

It follows that

P1/D1(u)(33)

= [2 cosh(u/2)]γ
B(λ1 − λ2)

[
eγu/2

γ/2 + λ1
F
(
γ�γ/2 + λ1;1 + γ/2 + λ1;−eu

)
+ e−γu/2

γ/2 − λ2
F
(
γ�γ/2 − λ2;1 + γ/2 − λ2;−e−u

)];
thus far, however, the derivation is valid only under the assumption that u > 0.

Step 4. Suppose, now, that u < 0. Take the complex conjugate of equation
(25). Doing so is equivalent to reframing the problem with (u�λ1�λ2) re-
placed by (−u�−λ2�−λ1). Since −u > 0�−λ2 > 0, and −λ1 < 0, the method
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of steps 1–4 applies unchanged. Since the formula (33) is invariant under
(−u�−λ2�−λ1) �→ (u�λ1�λ2), we can conclude that it is valid for all u. Sub-
stituting u �→ log(1 − s)/s delivers (11).

Step 5. Straightforward algebra gives the values of B, λ1, and λ2 in terms of
the fundamental parameters. Since c(θ1� θ2)= μ1θ1 +μ2θ2 + 1

2σ11θ
2
1 +σ12θ1θ2 +

1
2σ22θ

2
2,

ρ− c(α1 − γ/2 − iz�α2 − γ/2 + iz)= 1
2
X2z2 + iYz + 1

2
Z2�(34)

where X2, Y , and Z2 are defined in the main text. X2 and Z2 are positive:
the first because it is the variance of y21 − y11, the second by setting v = 0 in
(34). Q.E.D.

PROOF OF PROPOSITION 5: The global jumps condition implies that the
CGF takes the form c(θ) = θ′μ + θ′Σθ/2 + ω(EeJ(θ1+θ2) − 1), where μ is a
vector of drifts and Σ is the covariance matrix of the Brownian components
of log dividend growth. In the case of the price-dividend ratio (4), we sub-
stitute θ1 = 1 − γ/2 − iz and θ2 = −γ/2 + iz into c(θ); in the case of the
riskless rate (8), we substitute θ1 = −γ/2 − iz and θ2 = −γ/2 + iz. In each
case, the sum θ1 + θ2 is independent of z, so the jump component of the CGF,
ω(EeJ(θ1+θ2) − 1), is a constant independent of z. The result follows on folding
this constant into ρ. Q.E.D.

A.6. Small Asset Asymptotics

The basic idea is that the behavior of the integrals (4), (6), and (8) in the
small-asset limit u → ∞ is determined only by the residue at the minimal pole
whose imaginary part is closest to zero, because poles with larger imaginary
parts are asymptotically irrelevant due to the eiuz term. I show this by integrat-
ing around a contour that avoids all poles except for this minimal pole.

The key issue is the precise location of the minimal pole. In the case of the
riskless rate, the minimal pole of the integrand in (8) is at the minimal pole of
Fγ(z), which lies at (γ/2)i by standard properties of the �-function. In the case
of the price-dividend ratio (4) or expected return (6), the minimal pole of the
integrand could occur at (γ/2)i, but there is also the possibility that it occurs at
the minimal zero of ρ− c(1 −γ/2 − iz�−γ/2 + iz). Lemma 3 in Appendix A.4
shows that such a minimal zero must lie on the imaginary axis, at z∗i, say, for
some z∗ > 0 that satisfies φ(z∗) = 0 as in (17). But the finiteness conditions
imply that φ(0) > 0 and φ(γ/2 − 1) > 0, so because φ(·) is concave (since
c(·� ·) is convex) we must, in fact, have z∗ > γ/2 − 1. The question is whether
z∗, if it exists, is larger or smaller than γ/2. In the subcritical case, z∗ must
(invoking concavity of φ again) be greater than γ/2 because the subcriticality
condition is equivalent to φ(γ/2) > 0. So the minimal pole of the integrand
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(a) Subcritical case (b) Supercritical case

FIGURE 14.—The contour of integration in the subcritical and supercritical cases.

occurs at (γ/2)i, and the desired result follows on computing the residue there;
this is the less interesting case. In the supercritical case, φ(z) is now negative at
z = γ/2 by the supercriticality condition (16). Therefore, there is a unique z∗ ∈
(γ/2 − 1�γ/2) solving (17), by the intermediate value theorem and concavity
of φ, and the minimal pole is at z∗i.

The two alternatives are illustrated in Figure 14, which indicates poles of
Fγ(z) with circles and marks the pole due to the zero of ρ − c(1 − γ/2 −
iz�−γ/2 + iz) with a cross. (Not all poles are shown; for example, Fγ(z) has
poles at (γ/2 + m)i for all nonnegative integer m. There may also be other
poles due to zeros of ρ − c(1 − γ/2 − iz�−γ/2 + iz); if so, they must lie off
the imaginary axis and have imaginary parts greater than z∗.) For the sake of
argument, consider the effect of increasing patience on the part of the rep-
resentative agent, that is, decreasing ρ. Starting from a high value of ρ, z∗ is
large (left panel). As ρ declines, the cross indicating the pole at z∗i moves
smoothly down the axis. After it crosses (γ/2)i, it becomes the minimal pole
(right panel), and there is a qualitative change in the behavior of asset 1, which
becomes supercritical.

Figures 14(a) and 14(b) also show the rectangular contours around which
we integrate. As K → ∞, the integral along the base of the rectangle tends to
the integral we want, and the contribution of the other three sides becomes
negligible.

PROOF OF PROPOSITION 6: From (4), the small asset’s price-dividend ratio
in the limit can be rewritten

P1/D1 = lim
u→∞

∫ ∞

−∞

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz∫ ∞

−∞
eiuzFγ(z)dz

�(35)

By the Riemann–Lebesgue lemma, both the numerator and denominator on
the right-hand side of (35) tend to zero in the limit as u tends to infinity. What
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happens to their ratio? This section shows how to calculate limiting price-
dividend ratio, riskless rate, and excess returns in the small-asset case. For
clarity, I work through the price-dividend ratio in detail; the same approach
applies to the riskless rate and to expected returns. At the end of the section,
I discuss the corresponding calculations for the large asset.

Step 1. Consider the integral that makes up the numerator of (35),

I ≡
∫ ∞

−∞

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz�

If log dividends are drifting Brownian motions, Appendix A.5 showed that
this integral could be approached by summing all residues in the upper half-
plane. The aim here is to show that the asymptotic behavior of this integral in
the general case is determined only by the minimal residue as discussed in the
main text. To show this, I integrate around a contour that avoids all poles except
for the minimal pole. Either the minimal pole occurs at the minimal zero of
ρ − c(1 − γ/2 − iz�−γ/2 + iz), so lies on the imaginary axis by Lemma 3,
or the minimal pole occurs at the minimal pole of Fγ(z), that is, at iγ/2. In
either case, the minimal pole occurs at some point mi, where m> 0 is real. See
Figure 14.

Let �K denote the rectangle in the complex plane with corners at −K, K,
K+ (m+ε)i, and −K+ (m+ε)i. Pick some tiny ε > 0 such that the rectangle
�K only contains the pole at mi. By the residue theorem, we have

J ≡
∫

�K

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz

= 2πiRes
{

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
;mi

}
�

To analyze this integral, we decompose it into four pieces

J =
∫ K

−K

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz

+
∫ m+ε

0

eiu(K+iz)Fγ(K + iz)

ρ− c(· · ·) i dz

+
∫ −K

K

eiu(z+(m+ε)i)Fγ(z + (m+ ε)i)

ρ− c(· · ·) dz

+
∫ 0

m+ε

eiu(−K+iz)Fγ(−K + iz)

ρ− c(· · ·) i dz

≡ J1 + J2 + J3 + J4�
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and the goal is to show that J2, J3, and J4 tend to zero as K and u tend to infin-
ity. Consider J2. Since the range of integration is a closed and bounded interval,
the function |ρ− c(· · ·)| attains its maximum and minimum on the range. Since
the function has no zeros on the interval, we can write |ρ− c(· · ·)| ≥ δ1 > 0 for
all z in the range of integration. We have

|J2| ≤
∫ m+ε

0

∣∣∣∣eiu(K+iz)Fγ(K + iz)

ρ− c(· · ·) i

∣∣∣∣dz
=
∫ m+ε

0

e−uz|Fγ(K + iz)|
|ρ− c(· · ·)| dz

≤ 1
δ1

∫ m+ε

0

∣∣Fγ(K + iz)
∣∣dz → 0

as K tends to infinity because |Fγ(K + iz)| converges to zero uniformly over z
in the range of integration. An almost identical argument shows that |J4| → 0
as K → ∞.

Now consider J3. Set δ2 = |ρ− c(1−γ/2+m+ε�−γ/2−m−ε)| > 0. Using
the results of Appendix A.4, |ρ − c(· · ·)| ≥ δ2 for all z in the range of integra-
tion, so

|J3| ≤
∫ K

−K

e−(m+ε)u|Fγ(z + (m+ ε)i)|
|ρ− c(· · ·)| dz

≤ e−u(m+ε) · 1
δ2

∫ K

−K

∣∣Fγ

(
z + (m+ ε)i

)∣∣dz
→ e−u(m+ε) ·X/δ2�

where X = limK→∞
∫ K

−K
|Fγ(z+(m+ε)i)|dz is finite because Fγ(z+(m+ε)i)

decays to zero exponentially fast as z → ±∞.
By the residue theorem, J1 + J2 + J3 + J4 = 2πi × residue at mi = O(e−mu).

Now let K go to infinity. J2 and J4 tend to zero, J1 tends to I, and J3 tends to
e−u(m+ε)X; so I + e−u(m+ε)X = 2πi× residue at mi =O(e−mu).

Finally, we take the limit as u → ∞: e−u(m+ε)X is exponentially smaller than
e−mu, so

I ∼ 2πi× residue at

mi = 2πiRes
{

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
;mi

}
�

So the asymptotic behavior of I is dictated by the residue closest to the real
line.
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Essentially identical arguments can be made to show that the other relevant
integrals are asymptotically equivalent to 2πi times the minimal residue of the
relevant integrand.

Step 2. (i) In the price-dividend ratio case, we have to evaluate

lim
u→∞

P1/D1(u) = lim
u→∞

∫ ∞

−∞

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz∫ ∞

−∞
eiuzFγ(z)dz

(36)

≡ lim
u→∞

In

Id
�

We have seen that In and Id are asymptotically equivalent to 2πi times the
residue at the pole (of the relevant integrand) with smallest imaginary part.
I will refer to the pole (or zero) with least positive imaginary part as the mini-
mal pole (or zero).

Consider, then, the more complicated integral In. The integrand has a pole
at iγ/2 due to a singularity in Fγ(z). The question is whether or not there is a
zero of ρ− c(1 − γ/2 − iz�−γ/2 + iz) for some z with imaginary part smaller
than γ/2. If there is, then this is the minimal pole. If not, then iγ/2 is the
minimal pole. By Lemma 3, the zero in question is of the form z∗i for some
positive real z∗ satisfying ρ − c(1 − γ/2 + z∗�−γ/2 − z∗) = 0. If z∗ > γ/2—in
the subcritical case—the minimal pole for both integrals is at iγ/2, so

P1/D1 →
Res

{
eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iγ/2

}
Res{eiuzFγ(z); iγ/2}

= 1
ρ− c(1�−γ)

�

If z∗ < γ/2—the supercritical case—the minimal pole is at iz∗ for In and at
iγ/2 for Id , so

P1/D1 →
Res

{
eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iz∗

}
Res{eiuzFγ(z); iγ/2}

= eu(γ/2−z∗) ·
Res

{
Fγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iz∗

}
Res{Fγ(z); iγ/2}

→ ∞�
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To see that the price-consumption ratio, P1/C = s · P1/D1, remains finite in
this limit, we must evaluate lims→0 s · P1/D1. Since s = 1/(1 + eu) ∼ e−u, we
have, asymptotically,

P1/C → eu(γ/2−z∗−1) ·
Res

{
Fγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iz∗

}
Res{Fγ(z); iγ/2} �

which tends to zero as u → ∞ because γ/2 − z∗ − 1 < 0.
(ii) For the riskless rate, we seek the limit of

Rf =

∫ ∞

−∞
Fγ(z)e

iuz · [ρ− c(−γ/2 − iz�−γ/2 + iz)]dz∫ ∞

−∞
Fγ(z)e

iuz dz

�

This is much simpler, because the minimal pole is iγ/2 for both numerator and
denominator. It follows that Rf → ρ − c(−γ/2 − i(iγ/2)�−γ/2 + i(iγ/2)) =
ρ− c(0�−γ).

(iii) To calculate expected returns, we need the limiting expected capital gain
(the first term on the right-hand side of (6)). This is asymptotically equivalent
to ∫ ∞

−∞

eiuzFγ(z)c(1 − γ/2 − iz�γ/2 + iz)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz∫ ∞

−∞

eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz

≡ Jn

Jd
�

since the higher-order exponential terms e−mu for m ≥ 1, which appear in (6),
become irrelevant exponentially fast as u tends to infinity. Again, there are two
subcases. In the subcritical case, the minimal pole of each of Jn and Jd occurs
at iγ/2, so

lim
u→∞

EdP1/P1 =
Res

{
eiuzFγ(z)c(1 − γ/2 − iz�γ/2 + iz)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iγ/2

}
Res

{
eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iγ/2

}
= c(1�0)�
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In the supercritical case, the minimal pole of each of Jn and Jd occurs at iz∗, so

lim
u→∞

EdP1/P1 =
Res

{
eiuzFγ(z)c(1 − γ/2 − iz�γ/2 + iz)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iz∗

}
Res

{
eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
; iz∗

}
= c
(
1 − γ/2 + z∗�γ/2 − z∗)�

Since instantaneous expected returns are the sum of expected capital gains
and the dividend-price ratio, expected returns in the asymptotic limit are
c(1�0) + ρ − c(1�−γ) in the subcritical case, and c(1 − γ/2 + z∗�γ/2 − z∗)
in the supercritical case.

Subtracting the riskless rate, excess returns are c(1�0)+ c(0�−γ)− c(1�−γ)
in the subcritical case, and c(1 − γ/2 + z∗�γ/2 − z∗) − ρ + c(0�−γ) in the
supercritical case. Since ρ = c(1 − γ/2 + z∗�−γ/2 − z∗) by the definition of
z∗, the excess return in the supercritical case can be rewritten as c(1 − γ/2 +
z∗�γ/2 − z∗)+ c(0�−γ)− c(1 − γ/2 + z∗�−γ/2 − z∗).

Step 3. If dividends are also independent across assets, then we can decom-
pose c(θ1� θ2) = c1(θ1) + c2(θ2) as described in the text. It follows that, in the
subcritical case, XS → c(1�0)+ c(0�−γ)− c(1�−γ)= 0, and in the supercriti-
cal case,

XS1 → c
(
1 − γ/2 + z∗�γ/2 − z∗)+ c(0�−γ)

− c
(
1 − γ/2 + z∗�−γ/2 − z∗)

= c2

(
γ/2 − z∗)+ c2(−γ)− c2

(−γ/2 − z∗)�
Step 4. This last expression is positive because c2(x)—as a CGF—is con-

vex. To spell things out, (c2(e) − c2(d))/(e − d) < (c2(g) − c2(f ))/(g − f )
whenever d < e < f < g. In the supercritical case, we have −γ < −γ/2 −
z∗ < 0 < γ/2 − z∗, so [c2(−γ/2 − z∗) − c2(−γ)]/[(−γ/2 − z∗) − (−γ)] <
[c2(γ/2 − z∗) − c2(0)]/[(γ/2 − z∗) − 0], or equivalently, because c2(0) = 0,
c2(−γ/2 − z∗)− c2(−γ) < c2(γ/2 − z∗), as required.

Step 5(i). Proof that R1 < R2, assuming independence of dividends: In the
subcritical case, R1 = ρ+ c(1�0)− c(1�−γ) and R2 = ρ+ c(0�1)− c(0�1 −γ).
Since we are assuming independence, we must show that −c2(−γ) < c2(1) −
c2(1 − γ), or equivalently, that c2(1 − γ) < c2(1) + c2(−γ), which follows by
convexity of c2(·).

In the supercritical case, R1 = c(1−γ/2+z∗�γ/2−z∗) and R2 = c(1−γ/2+
z∗�−γ/2 − z∗)+ c(0�1)− c(0�1 − γ) (substituting in for ρ from the definition
of z∗). By independence, it remains to show that c2(γ/2 − z∗) < c2(−γ/2 −
z∗)+ c2(1)− c2(1 −γ), or equivalently, that c2(1 −γ)+ c2(γ/2 − z∗) < c2(1)+
c2(−γ/2 − z∗), which follows by convexity of c2(·).
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Step 5(ii). Next, I show that in the supercritical case, R1 ≤G1 if G1 ≥G2. We
do not need the independence assumption here. Write θ = γ/2 − z∗ ∈ (0�1),
so that the limiting R1 = c(1 − θ�θ). The claim is that c(1 − θ�θ) ≤ c(1�0).
This follows from the convexity of c(·� ·), which implies that c(1 − θ�θ) ≤
(1 − θ)c(1�0) + θc(0�1). By assumption, c(0�1) ≤ c(1�0), so c(1 − θ�θ) ≤
(1 − θ)c(1�0)+ θc(1�0)= c(1�0), as required.

Limiting quantities for the large asset. In the case of the large asset, the as-
sumed finiteness of its price-dividend ratio excludes the possibility that the
minimal pole lies below (γ/2)i. If we run through the above logic, the ana-
logue of φ(z) is φ2(z) ≡ ρ− c(−γ/2 + z�1 − γ/2 − z). But now we must have
φ2(γ/2) > 0 by the finiteness condition. So the minimal pole must lie at (γ/2)i,
and the result follows by calculating residues there, as above. Q.E.D.

PROOF OF PROPOSITION 7: We now need to consider the two closest
residues to the real axis. By assumption, z∗ ∈ (γ/2 − 1�γ/2 + 1), so for price-
dividend ratio and excess-return calculations, the closest residue is at (γ/2)i
and the next closest is at z∗i. For the riskless rate calculation, the two closest
residues are at (γ/2)i and (γ/2 + 1)i. The residues at (γ/2)i were calculated
in the previous section, so it only remains to compute the residues at z∗i and
at (γ/2 + 1)i for the integrands in question. In the case of the dividend yield,
we must analyze

D1

P1
=

∫ ∞

−∞
eiuzFγ(z)dz∫ ∞

−∞
eiuzFγ(z)

ρ− c(1 − γ/2 − iz�−γ/2 + iz)
dz

�= e−γu/2
/( e−γu/2

ρ− c(1�−γ)

+ B(γ/2 − z∗�γ/2 + z∗)e−z∗u

c1(1 − γ/2 + z∗�−γ/2 − z∗)− c2(1 − γ/2 + z∗�−γ/2 − z∗)

)
�

where the second (approximate) equality follows by the residue theorem logic,
as in the previous section, B(x� y) ≡ �(x)�(y)/�(x+ y), and cj(·� ·) indicates
the partial derivative of c(·� ·) with respect to its jth argument.

In the subcritical case, z∗ > γ/2, straightforward algebra gives

D1

P1

�= ρ− c(1�−γ)

+ −B(γ/2 − z∗�γ/2 + z∗)[ρ− c(1�−γ)]2

c1(1 − γ/2 + z∗�−γ/2 − z∗)− c2(1 − γ/2 + z∗�−γ/2 − z∗)︸ ︷︷ ︸
B2

× e−u(z∗−γ/2)�
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while in the supercritical case, z∗ < γ/2, we have

D1

P1

�= c1(1 − γ/2 + z∗�−γ/2 − z∗)− c2(1 − γ/2 + z∗�−γ/2 − z∗)
B(γ/2 − z∗�γ/2 + z∗)︸ ︷︷ ︸

B4

× e−u(γ/2−z∗)�

To see that B2 > 0, note first that B(γ/2 − z∗�γ/2 + z∗) is negative: it equals
�(γ/2−z∗)�(γ/2+z∗)/�(γ), and �(x) is negative for x ∈ (−1�0) and positive
for x > 0. Second, the denominator of B2 is positive, because it has the opposite
sign to the derivative of φ(z) ≡ ρ − c(1 − γ/2 + z�−γ/2 − z) with respect to
z, evaluated at z∗. This derivative is negative because φ(z) is (i) concave in z;
(ii) positive at z = 0 by the first finiteness condition in Table I; and (iii) zero at
z = z∗ by the definition of z∗. To see that B4 > 0, the same logic shows that the
numerator is positive. The denominator is also positive, because γ/2 − z∗ > 0,
so now B(γ/2 − z∗�γ/2 + z∗) > 0. Similarly, B1 = γ[c(1�−1 − γ)− c(0�−γ)],
B3 = B2[ρ− c(1�−γ)] ·Y , and B5 = B4

ρ−c(1�−γ)
·Y , where

Y ≡ [c(1�0)− c(1�−γ)

+ c
(
1 − γ/2 + z∗�−γ/2 − z∗)− c

(
1 − γ/2 + z∗�γ/2 − z∗)]�

It only remains to show that if the two assets have independent cashflows, then
Y < 0 in the supercritical case and Y > 0 in the nearly supercritical case. The
former follows as in steps 3 and 4 of the proof of Proposition 6. The latter does
too: the inequality is reversed because now γ/2 < z∗. Q.E.D.

APPENDIX B: THE N-TREE CASE

B.1. The Expectation

To make a start, we seek the integral

IN ≡
∫

RN−1

e−ix1z1−ix2z2−···−ixN−1zN−1

(ex1/N + · · · + exN−1/N + e−(x1+x2+···+xN−1)/N)γ
dx1 · · · dxN−1�

Write xN ≡ −x1 − · · · − xN−1 and, for j = 1� � � � �N , define

tj = exj/N

ex1/N + · · · + exN/N
�(37)

The variables tj range between 0 and 1, sum to 1, and satisfy exj = tNj /
∏N

k=1 tk.
Since tN = 1 − t1 − · · · − tN−1, we can rewrite

xj =N log tj −
N−1∑
k=1

log tk − log

(
1 −

N−1∑
k=1

tk

)
� j = 1� � � � �N − 1�(38)
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To make the change of variables (37), we must calculate the Jacobian J ≡
| ∂(x1�����xN−1)

∂(t1�����tN−1)
|. From (38), ∂xj

∂tk
= 1

tN
− 1

tk
+ Nδjk

tj
, where δjk equals 1 if j = k and

zero otherwise, so

∂(x1� � � � � xN−1)

∂(t1� � � � � tN−1)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

N

t1
N

t2
� � �

N

tN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

A

+
⎛⎜⎝

1
1
���
1

⎞⎟⎠
︸ ︷︷ ︸

α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
tN

− 1
t1

1
tN

− 1
t2

���
1
tN

− 1
tN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

′

︸ ︷︷ ︸
β′

�

To calculate J = det(A +αβ′) we can use the following result.

FACT 2—Matrix Determinant Lemma: If A is an invertible matrix, and α
and β are column vectors of length equal to the dimension of A, then det(A +
αβ′)= (1 +β′A−1α)det A.

In the present case, det A = NN−1/(t1 · · · tN−1), and A−1 is diagonal with tj/N
as the jth entry along the diagonal. It follows that J =NN−2/(t1 · · · tN). Writing
� for the product

∏N

k=1 tk and making the substitution suggested in (37),

IN =
∫ (

tN1
�

)−iz1
(
tN2
�

)−iz2

· · ·
(
tNN−1

�

)−izN−1

(
t1 + t2 + · · · + tN

�1/N

)γ · J dt1 · · · dtN−1

= NN−2

∫ (
t
γ/N+iz1+···+izN−1−Niz1
1 t

γ/N+iz1+···+izN−1−Niz2
2 · · ·

× t
γ/N+iz1+···+izN−1−NizN−1
N−1 · tγ/N+iz1+···+izN−1

N

)dt1 · · ·dtN−1

t1 · · · tN−1tN
�

This is a Dirichlet surface integral with range of integration [0�1]N−1. As shown
in Andrews, Askey, and Roy (1999, p. 34), it can be evaluated in terms of �-
functions: we have

IN = NN−2

�(γ)
· �(γ/N + iz1 + iz2 + · · · + izN−1)

·
N−1∏
k=1

�(γ/N + iz1 + · · · + izN−1 −Nizk)�
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Defining G N
γ (z) = IN/(2π)N−1, where z = (z1� � � � � zN−1), we have

G N
γ (z) = NN−2

(2π)N−1
· �(γ/N + iz1 + iz2 + · · · + izN−1)

�(γ)
(39)

·
N−1∏
k=1

�(γ/N + iz1 + · · · + izN−1 −Nizk)�

Writing x = (x1� � � � � xN−1), it follows from the Fourier inversion theorem that

1
(ex1/N + ex2/N + · · · + e−(x1+x2+···+xN−1)/N)γ

=
∫

RN−1
G N
γ (z)eiz

′x dz�(40)

With α ≡ (α1� � � � �αN)
′ and ỹt ≡ (̃y1t � � � � � ỹNt)

′ ≡ (y1t − y10� � � � � yNt − yN0)
′,

we are now in a position to calculate the expectation

E = E

[
eα

′̃yt

(ey10+ỹ1t + · · · + eyN0+ỹNt )γ

]
�

Define the (N − 1)×N matrix Q and vectors qj by

Q ≡

⎛⎜⎜⎜⎝
q′

2

q′
3
���

q′
N

⎞⎟⎟⎟⎠≡

⎛⎜⎜⎜⎝
−1 N − 1 −1 · · · −1

−1 −1 N − 1
� � �

���
���

���
� � �

� � � −1
−1 −1 · · · −1 N − 1

⎞⎟⎟⎟⎠ �

and let q1 ≡ (N − 1� � � � �−1�−1)′. Then, with Q(y0 + ỹt) playing the role of x
in (40),

E = E

[
eα

′̃yt−γ ′(y0+̃yt )/N

(eq′
1(y0+̃yt )/N + · · · + eq′

N(y0+̃yt )/N)γ

]
(41)

= e−γ ′y0/N

∫
G N
γ (z)eiz

′Qy0ec(α−γ/N+iQ′z)t dz�

B.2. Prices, Expected Returns, and Interest Rates

Using (41), and writing Pα/Dα for the price-dividend ratio of an asset paying
dividend D

α1
1t · · ·DαN

Nt , we have

Pα/Dα = Cγ
0

∫ ∞

0
e−ρt

E

[
eα1 ỹ1t+···+αN ỹNt

(ey10+ỹ1t + · · · + eyN0+ỹNt )γ

]
dt(42)

= Cγ
0

∫ ∞

t=0
e−ρt

(
e−γ ′y0/N

∫
G N
γ (z)eiz

′Qy0ec(α−γ/N+iQ′z)t dz
)
dt
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= Cγ
0 e

−γ ′y0/N

∫
G N
γ (z)eiz′Qy0

ρ− c(α− γ/N + iQ′z)
dz

= (eq′
1y0/N + · · · + eq′

N y0/N
)γ ∫ G N

γ (z)eiz′Qy0

ρ− c(α− γ/N + iQ′z)
dz�

I assume that Re[ρ − c(α − γ/N + iQ′z)] > 0 for all z, which (as in the two-
asset case) follows from the apparently weaker assumption that ρ − c(α −
γ/N) > 0.

To calculate expected capital gains, use the multinomial theorem in (42) to
write the price as

Pα =
∑

m

(
γ
m

)∫
G N
γ (z)e(α−γ/N+m+iQ′z)′y0

ρ− c(α− γ/N + iQ′z)
dz�

The sum is taken over all m with nonnegative integer entries adding up to γ.
Thus

EdPα =
∑

m

(
γ
m

)

×
∫

G N
γ (z)e(α−γ/N+m+iQ′z)′y0c(α− γ/N + m + iQ′z)

ρ− c(α− γ/N + iQ′z)
dzdt�

and so, writing Φα = (EdPα)/(Dα dt), we have

Φα =
∑

m

(
γ
m

)∫
G N
γ (z)e(−γ/N+m+iQ′z)′y0 c(α− γ/N + m + iQ′z)

ρ− c(α− γ/N + iQ′z)
dz

=
∑

m

(
γ
m

)
em1q′

1y0/N+···+mNq′
N y0/N

×
∫

G N
γ (z)eiz′Qy0 c(α− γ/N + m + iQ′z)

ρ− c(α− γ/N + iQ′z)
dz�

The price of a time-T zero-coupon bond is BT = Ee−ρT (CT

C0
)−γ . Using (41),

BT = e−ρTCγ
0 E

1
(ey10+ỹ1T + · · · + eyN0+ỹNT )γ

= e−ρT
(
eq′

1y0/N + · · · + eq′
N y0/N

)γ ∫
G N
γ (z)eiz

′Qy0ec(−γ/N+iQ′z)T dz�
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so the yield (from which the riskless rate follows by l’Hôpital’s rule) is

Y (T) = ρ− 1
T

log
{(

eq′
1y0/N + · · · + eq′

N y0/N
)γ

×
∫

G N
γ (z)eiz

′Qy0ec(−γ/N+iQ′z)T dz
}
�

B.3. A Final Change of Variables

These expressions can be simplified by a final change of variables. Define
ẑ ≡ Bz, where

B ≡

⎛⎜⎜⎜⎝
N − 1 −1 · · · −1

−1 N − 1
� � �

���
���

� � �
� � � −1

−1 · · · −1 N − 1

⎞⎟⎟⎟⎠ �

so

B−1 = 1
N

⎛⎜⎜⎜⎝
2 1 · · · 1

1 2
� � �

���
���

� � �
� � � 1

1 · · · 1 2

⎞⎟⎟⎟⎠ �

It follows that ẑk =Nzk − z1 − · · · − zN−1, and that ẑ1 + · · · + ẑN−1 = z1 + · · · +
zN−1. The Jacobian can be calculated using the matrix determinant lemma
(Fact 2 above): det B−1 = 1/NN−2, so—since z = B−1̂z—dz is replaced by
d̂z/NN−2. Next, ẑ was defined in such a way that G N

γ (z), defined in equation
(39), is equal to NN−2FN

γ (̂z), defined in the main text. Finally, noting that
B−1Q = U and u ≡ Uy0, as defined in (19), we have Q′z = Q′B−1̂z = U′̂z and
z′Qy0 = ẑ′Uy0 = ẑ′u = u′̂z. Proposition 8 follows after making these substitu-
tions, dropping the hat on ẑ, and setting α= ej for asset j.
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