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Outline

A simple framework for thinking about the properties of the long

end of the yield curve

Connects the “Recovery Theorem” of Ross (2013) to earlier work

of Backus, Gregory and Zin (1989), Kazemi (1992), Bansal and

Lehmann (1997), Alvarez and Jermann (2005) and Hansen and

Scheinkman (2009)
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Outline

What do we learn by observing the (infinitely) long yield?

What do we learn by observing the realized returns on the

(infinitely) long bond?

What shape is the yield curve, on average?

What information can we learn from interest-rate options?

What is the expected return on the long bond?
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The framework

1 The fixed-income market is complete

I The fixed-income derivatives market is the most well-developed of

all derivatives markets

2 State variable relevant for interest rates follows a Markov chain

I For example, the state variable might be a vector:

(short rate, yield curve spread, yield curve curvature, . . . ,

VIX index, “animal spirits”, state of the business cycle, . . . )

I We will not take a stance on the details of the state variable

I But it is important that all elements of the vector can reasonably be

thought of as stationary
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The framework

The system moves randomly from state to state; we do not make

any assumptions about how the system moves around

Instead, we can infer it from the yield curve and other interest-rate

derivatives prices

There are objective probabilities

Π =


π(1,1) π(1,2) · · · π(1,m)

π(2,1) π(2,2)
...

...
. . .

...

π(m,1) · · · · · · π(m,m)


π(i, j) is the probability of moving from state i to state j
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The framework

We summarize fixed-income asset prices in a matrix, A, of

Arrow–Debreu prices

A =


A(1,1) A(1,2) · · · A(1,m)

A(2,1) A(2,2)
...

...
. . .

...

A(m,1) · · · · · · A(m,m)


A(i, j) is the price, in state i, of the Arrow–Debreu security that

pays off $1 if state j materializes next period

No arbitrage requires that the entries of A are nonnegative
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The framework

We think of the matrix A as our data

All the information about fixed-income markets that we can

conceivably extract from asset prices is contained in A

For example, if the matrix of Arrow–Debreu prices is

A =


0.44 0.20 0.30

0.50 0.30 0.16

0.10 0.10 0.78


then the price of a bond in state 2 is 0.96, so the interest rate in

state 2 is about 4%
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Recovery

Assume (for now) that A is directly observable

What can we learn from A?

In particular, can we learn the transition probabilities?

In the finance lingo, asset prices tell us Q; but can we learn P?
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Recovery

If there were a utility-maximizing investor with time discount

factor φ, marginal utility u′(i) in state i, and transition probabilities

π(i, j), then the Arrow–Debreu prices would satisfy

A(i, j) = φπ(i, j)
u′(j)
u′(i)

In terms of inverse marginal utility, v(i) ≡ 1/u′(i),

A(i, j) = φv(i)π(i, j)/v(j)
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Recovery

This can be written concisely as the matrix equation

A = φDΠD−1

D is a diagonal matrix with positive diagonal elements {v(i)}

Π = {π(i, j)} is a stochastic matrix, i.e. a matrix whose row sums

all equal 1 (because they sum over the probabilities of moving

from the current state to any other state)

We will not need the existence of such a utility-maximizing agent;

instead we will use. . .
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The pseudo-representative agent

Result (The pseudo-representative agent)
Given the asset price data A, there exists a unique decomposition

A = φDΠD−1

where D is a diagonal matrix and Π is a transition matrix.

This can be interpreted as establishing existence and uniqueness of a

“pseudo-representative agent” (φ and D) and probability measure (Π)

that rationalize the observable asset prices (A).
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The pseudo-representative agent

Proof.
The Perron–Frobenius theorem guarantees that A has a unique

eigenvector v and associated eigenvalue φ—so that Av = φv—with the

properties that (i) the entries of v are positive; and (ii) φ is real and

positive (and the largest, in absolute value, of all the eigenvalues of A).

Let D be the diagonal matrix with v along its diagonal, so that v = De,

where e is the vector of ones. Then, 1
φD−1ADe = 1

φD−1Av = D−1v = e.

This shows that 1
φD−1AD is a stochastic matrix, which we will call Π, so

that A = φDΠD−1. (Uniqueness follows easily.)
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A hypothesis

A = φDΠD−1

In general, no guarantee that Π is the true probability distribution

Maintained hypothesis: Π is the true probability distribution

A more general hypothesis than the assumption that fixed-income

assets are priced (as if) by a utility-maximizing investor

Ultimately an empirical question: to settle it, must construct A. We

skip this (hard) problem and simply develop some implications of

the hypothesis, if true

Results that are conditional on the hypothesis are in pink
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Recovery

In our earlier example, the matrix of Arrow–Debreu prices

A =


0.44 0.20 0.30

0.50 0.30 0.16

0.10 0.10 0.78


can be uniquely decomposed as

A = 0.97︸︷︷︸
φ


0.56

0.57

0.61


︸ ︷︷ ︸

v along the diagonal


0.45 0.21 0.34

0.51 0.31 0.18

0.10 0.10 0.80


︸ ︷︷ ︸

transition probabilities, Π


0.56

0.57

0.61


−1
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Recovery

The eigenvector v represents the vector of (inverse) marginal

utilities across states

The eigenvalue φ represents the pure time discount factor

We can use these, together with A, to calculate the transition

probability matrix Π

But it may be hard, in practice, to calculate the original matrix A

We need to observe the yield curve and prices of a rich range of

interest-rate derivatives—swaptions, caps, floors, . . .
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Back to the yield curve

The price, in state 1, of a two-year zero-coupon bond can be

calculated by squaring A. . .
0.44 0.20 0.30

0.50 0.30 0.16

0.10 0.10 0.78


2

=


0.32 0.18 0.40

0.39 0.21 0.32

0.17 0.13 0.65


. . . and adding up the entries of the first row, giving 0.90, so the

annualized two-year yield is about 5% in state 1

The n-year yield can be calculated by raising the matrix A to the

power of n
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The yield curve
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Figure: The yield curve in the three states of the world

Martin, Ross (Stanford, MIT) The Long Bond August, 2013 17 / 38



The yield curve

Result (The long bond yield reveals φ)
The yield and unconditional expected log return of the long bond are

determined by φ, the largest eigenvalue of A: y∞ = r∞ = − logφ.

The long bond: the infinitely long zero-coupon bond

So, in our setting, the long end of the yield curve directly reveals

the time discount factor of the pseudo-representative agent

No need to compute A

The long yield is constant (cf Dybvig, Ingersoll and Ross 1996)
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The yield curve

We now have a direct link between the eigenvalue and something

we can observe in the market

Want to do the same for the eigenvector, v, which summarizes

marginal utilities across states

Idea: interpret v as the payoffs on an asset that pays v(1) in state

1, v(2) in state 2, . . .

This asset has a nice interpretation
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The yield curve

Result (The long bond return reveals v)
Returns on the v-asset replicate the returns on the long bond:

R∞(i, j) =
v(j)
φv(i)

=
payoff of v-asset in state j
price of v-asset in state i

Cross-sectional approach: observe many derivatives prices, back

out A and hence v

Time-series approach: observe the long bond over time and hence

back out v
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Links with earlier literature

These results link the recovery theorem to an earlier literature

Long yield equals maximum eigenvalue (Backus, Gregory, Zin

1989—first use of the Perron–Frobenius theorem in asset pricing?)

The inverse of the return on the long bond is a stochastic discount

factor (Kazemi 1992—in a diffusion model)

More recently, Alvarez and Jermann 2005; Hansen and

Scheinkman 2009
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The matrix A in Ross (2013)

Implies interest rates of 2.5%, 2.1%, 2.5%, 3.3%, 4.6%, 0.0%,

5.4%, 7.0%, 10.4%, 11.8%, −8.4% in states −5, −4, . . . , 5
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Implied yield curves in Ross (2013)
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Figure: Implied yield curves
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Comparison with Ross (2013)

If the riskless rate is constant, pricing is risk-neutral

Confronted with high risk premia in equity markets, the

framework is forced to conclude that the riskless rate varies wildly
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Long and not-so-long bonds

The long bond is a theoretically appealing construct. But how

closely it can be approximated by bonds of finite maturity?

Introduce the quantity

Q ≡ log
maxk v(k)
mink v(k)

Q indexes the importance of risk for bond pricing

Maximum and minimum possible log returns on the long bond are

min
i,j

r∞(i, j) = y∞ − Q and max
i,j

r∞(i, j) = y∞ + Q
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Long and not-so-long bonds

Result
The T-period yield cannot diverge too far from the long yield:

|yT(i)− y∞| ≤
Q
T

For any two states i and j, the T1-period and T2-period yields satisfy

|yT1(i)− yT2(j)| ≤ Q
(

1
T1

+
1
T2

)

Either yield volatility (across states) or yield curve slope (across

maturities) signals high Q, and hence important bond risk premia
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A property of the long bond

Result
Within the class of fixed-income assets, the long bond is growth-optimal;

that is, in every state the long bond has the highest expected log return of

all fixed-income assets.

Related: Kazemi (1992), Alvarez and Jermann (2005)
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The average shape of the yield curve

Result
The yield curve cannot always slope down. Nor can it always slope up. But

it must slope up on average.

This is an empirical regularity

Implies that φ < e−y1: average short rates provide an upper bound

on the subjective time discount factor
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How much does the long yield vary?

It doesn’t! This is the wrong question

Long-dated bonds have tiny yield changes, but enormous duration

(i.e., sensitivity to yield changes)

rt(i, j) = yt(i)︸︷︷︸
yield

− (t− 1)︸ ︷︷ ︸
duration

× (yt−1(j)− yt(i))︸ ︷︷ ︸
yield change

So, to detect small changes in the long end of the yield curve,

better to look at expected returns, which can vary across states
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What is the expected return on the long bond?

Result
Options on the long bond reveal its conditional expected excess return:

R∞(i)− Rf (i) = 2

{∫ Rf (i)

0
put(K; i) dK +

∫ ∞
Rf (i)

call(K; i) dK

}

where call(K; i) is the price, in state i, of a call option with strike K,

maturing next period, on the long bond return, and put(K; i) is the

corresponding put price.
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What is the expected return on the long bond?

A simple formula that expresses a forward-looking expected return

in terms of option prices

The long bond earns a nonnegative risk premium in our framework

For the risk premium to be constant, we would need the volatility

index to be constant over time

Moral: derivatives prices help to reveal the compensation that

market participants require for interest-rate risk
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What’s going on?

In one respect our assumptions are very weak: we do not even

assume that the concept of utility is well-defined

There may be very rare and unpleasant states of the world

Nonetheless, interest rates are stationary and bounded

These properties are not satisfied in other models, which can have

yield curves that are downward-sloping on average (eg, Vasicek,

Cox–Ingersoll–Ross, Bansal–Yaron, Gollier, . . . )

Martin, Ross (Stanford, MIT) The Long Bond August, 2013 32 / 38



What’s going on?

A fundamental result of asset-pricing is the relationship

E [M1R1 · · ·MTRT] = 1

Along sample paths, M1R1 · · ·MTRT has an interesting property: in

the case of a long-dated asset (large T) almost all of the “value” of

the asset comes from rare states of the world in which

M1R1 · · ·MTRT explodes
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Figure: 400 sample paths of M1R1 · · ·MTRT over a 250-year horizon
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Figure: 400 sample paths of M1R1 · · ·MTRT over a 250-year horizon
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What’s going on?

Whether or not the economy features disasters in the Rietz–Barro

sense, extreme outcomes matter for pricing long-dated assets

This is true for all assets except the growth-optimal asset

But, in our setting, the long bond is growth-optimal, so it is the

unique fixed-income asset that can escape this conclusion
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Multidimensional Breeden–Litzenberger
Extremely preliminary

To test the hypothesis, we need to construct A

It’s not enough to observe the yield curve; have to exploit

derivatives prices

If the state variable is one-dimensional (eg, short rate), use

Breeden–Litzenberger

If state variable is (y1,t, y10,t)
′, Breeden–Litzenberger doesn’t work

Finding a multidimensional version of Breeden–Litzenberger is

interesting more generally—but hard
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Multidimensional Breeden–Litzenberger

Figure: Butterfly spread using options on 1yr rate
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Multidimensional Breeden–Litzenberger

Figure: Butterfly spread using options on 10yr rate
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Multidimensional Breeden–Litzenberger

Figure: Butterfly spread using spread options
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Multidimensional Breeden–Litzenberger

Figure: Butterfly spread using average rate options
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Multidimensional Breeden–Litzenberger

Figure: All together
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Multidimensional Breeden–Litzenberger

Figure: All together
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