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Abstract

We derive a new identity that relates expected exchange rate appreciation

to a risk-neutral covariance term, and use it to motivate a currency forecasting

variable based on the prices of quanto index contracts. We show via panel re-

gressions that the quanto forecast variable is an economically and statistically

significant predictor of currency appreciation and of excess returns on currency

trades. Out of sample, the quanto variable outperforms predictions based on

uncovered interest parity, on purchasing power parity, and on a random walk as

a forecaster of differential (dollar-neutral) currency appreciation.
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It is notoriously hard to forecast movements in exchange rates. A large part of the

literature is organized around the principle of uncovered interest parity (UIP), which

predicts that expected exchange rate movements offset interest rate differentials and

therefore equalise expected returns across currencies. Unfortunately many authors,

starting from Hansen and Hodrick (1980) and Fama (1984), have shown that this

prediction fails: returns have historically been larger on high interest rate currencies

than on low interest rate currencies.1

Given its empirical failings, it is worth reflecting on why UIP represents such an en-

during benchmark in the FX literature. The UIP forecast has (at least) three appealing

properties. First, UIP forecasts are determined by asset prices alone rather than by,

say, infrequently updated and imperfectly measured macroeconomic data. Second, the

UIP forecast has no free parameters; with no coefficients to be estimated in-sample or

“calibrated,” it is perfectly suited to out-of-sample forecasting. Third, the UIP fore-

cast has a straightforward interpretation: it is the expected exchange rate movement

that must be perceived by a risk-neutral investor. Put differently, UIP holds if and

only if the risk-neutral expected appreciation of a currency is equal to its real-world

expected appreciation, the latter being the quantity relevant for forecasting exchange

rate movements.

There is, however, no reason to expect that the real-world and risk-neutral expecta-

tions should be similar. On the contrary, the modern literature in financial economics

has documented that large and time-varying risk premia are pervasive across asset

classes, so that risk-neutral and real-world distributions are very different from one

another: in other words, the perspective of a risk-neutral investor is not useful from

the point of view of forecasting. Thus, while UIP has been a useful organizing principle

for the empirical literature on exchange rates, its predictive failure is no surprise.2

In this paper we propose a new predictor variable that also possesses the three

appealing properties mentioned above, but which does not require that one takes the

1Some studies (e.g. Sarno, Schneider and Wagner, 2012) find that currencies with high interest
rates appreciate on average, exacerbating the failure of UIP; this has become known as the forward
premium puzzle. Others, such as Hassan and Mano (2016), find that exchange rates move in the
direction predicted by UIP, though not by enough to offset interest rate differentials.

2Various authors have fleshed out this point in the context of equilibrium models: see for example
Verdelhan (2010), Hassan (2013), and Martin (2013b). On the empirical side, authors including
Menkhoff et al. (2012), Barroso and Santa-Clara (2015) and Della Corte, Ramadorai and Sarno (2016)
have argued that it is necessary to look beyond interest rate differentials to explain the variation in
currency returns.
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perspective of a risk-neutral investor. This alternative benchmark can be interpreted as

the expected exchange rate movement that must be perceived by a risk-averse investor

with log utility whose wealth is invested in the stock market. (To streamline the

discussion, this description is an oversimplification and strengthening of the condition

we actually need to hold for our approach to work, which is based on a general identity

presented in Result 1.) This approach has been shown by Martin (2017) and Martin

and Wagner (2017) to be successful in forecasting returns on the stock market and on

individual stocks, respectively.

It turns out that such an investor’s expectations about currency returns can be

inferred directly from the prices of so-called quanto contracts. Consider, for example,

a quanto contract whose payoff equals the level of the S&P 500 index at time T , de-

nominated in euros (that is, the exchange rate is fixed—in this example, at 1 euro

per dollar—at initiation of the trade). The value of this contract is sensitive to the

correlation between the S&P 500 index and the dollar/euro exchange rate. If the euro

appreciates against the dollar at times when the index is high, and depreciates when

the index is low, then this quanto contract is more valuable than a conventional, dollar-

denominated, claim on the index.3 We show that the relationship between currency-i

quanto forward prices and conventional forward prices on the S&P 500 index reveals

the risk-neutral covariance between currency i and the index. Quantos therefore signal

which currencies are risky—in that they tend to depreciate in bad times, i.e., when

the S&P 500 declines—and which are hedges; it is possible, of course, that a currency

is risky at one point in time and a hedge at another. Intuitively, one expects that a

currency that is (currently) risky should, as compensation, have higher expected appre-

ciation than predicted by UIP, and that hedge currencies should have lower expected

appreciation. Our framework formalizes this intuition. It also allows us to distinguish

between variation in risk premia across currencies and variation over time.

It is worth emphasizing various assumptions that we do not make. We do not

require that markets are complete (though our approach remains valid if they are).

We do not assume the existence of a representative agent, nor do we assume that

all economic actors are rational: the forecast in which we are interested reflects the

beliefs of a rational investor, but this investor may coexist with investors with other,

3A different type of quanto contract—specifically, quanto CDS contracts—is used by Mano (2013)
to estimate risk-neutral expectations of currency depreciation conditional on sovereign default.
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potentially irrational, beliefs. And we do not assume lognormality, nor do we make

any other distributional assumptions: our approach allows for skewness and jumps in

exchange rates. This is an important strength of our framework, given that currencies

often experience crashes or jumps (as emphasized by Brunnermeier, Nagel and Pedersen

(2008), Jurek (2014), Della Corte et al. (2016), Chernov, Graveline and Zviadadze

(2016) and Farhi and Gabaix (2016), among others), and are prone to structural breaks

more generally. The approach could even be used, in principle, to compute expected

returns for currencies that are currently pegged but that have some probability of

jumping off the peg. To the extent that skewness and jumps are empirically relevant,

this fact will be embedded in the asset prices we use as forecasting variables.

Our approach is therefore well adapted to the view of the world put forward by

Burnside et al. (2011), who argue that the attractive properties of carry trade strategies

in currency markets may reflect the possibility of peso events in which the SDF takes

extremely large values. Investor concerns about such events, if present, should be

reflected in the forward-looking asset prices that we exploit, and thus our quanto

predictor variable should forecast high appreciation for currencies vulnerable to peso

events even if no such events turn out to happen in sample.

We derive these and other theoretical results in Section 1, and test them in Sec-

tion 2 by running panel currency-forecasting regressions. The estimated coefficient on

the quanto predictor variable is economically large and statistically significant: in our

headline regression (23), we find t-statistics of 3.2 and 2.3 (respectively with and with-

out currency fixed effects; and with standard errors computed using a nonparametric

block bootstrap). The quanto predictor outperforms forecasting variables such as the

interest rate differential, average forward discount, and the real exchange rate as a uni-

variate forecaster of currency excess returns. On the other hand, we find that some of

these variables—notably the real exchange rate and average forward discount—interact

well with our quanto predictor variable, in the sense that they substantially raise R2

above what the quanto variable achieves on its own. We interpret this fact, through

the lens of the identity (6) of Result 1, as showing that these variables help to measure

deviations from the log investor benchmark. We also show that the quanto predic-

tor variable—that is, forward-looking risk-neutral covariance—predicts future realized

covariance and substantially outperforms lagged realized covariance as a forecaster of

exchange rates.
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In Section 2.5, we consider various joint hypotheses motivated by Result 2 on the co-

efficient estimates in the panel regressions of Section 2. To do so, we conduct Wald tests

with (as always) covariance matrices computed using a nonparametric block bootstrap,

and with p-values calculated in two ways: (i) using, as is conventional, the asymptotic

distribution of the Wald test statistic and (ii) using a bootstrapped small-sample dis-

tribution. The latter approach directly accounts for the fact that our dataset spans

a relatively short time period. Using the asymptotic p-values, we find, in our pooled

regressions, that the estimated coefficients on the quanto predictor variable and inter-

est rate differential are consistent with the predictions of Result 2, but we can reject

the hypothesis that, in addition, the intercept is zero; this rejection can be attributed

to US dollar appreciation, over our sample period, that was not anticipated by our

model. In the regressions with currency fixed effects, we can reject the prediction of

Result 2 because the coefficient on the quanto variable is even larger than expected.

When we use the more conservative small-sample p-values, however, we do not reject

even the most optimistic hypothesis in any of the specifications, though the individ-

ual significance of the quanto predictor becomes more marginal (with p-values ranging

from 5.1% to 9.7%).

In Section 3 we show that the quanto variable performs well out of sample. In a

recent survey of the literature, Rossi (2013) emphasizes that the exchange-rate fore-

casting literature has struggled to overturn the frustrating fact, originally documented

by Meese and Rogoff (1983), that it is hard even to outperform a random walk forecast

out of sample. Since our data span a relatively short period (from 2009 to 2017) over

which the dollar strengthened against almost all the other currencies in our dataset,

we focus on forecasting differential returns on currencies. This allows us to isolate the

cross-sectional forecasting power of the quanto variable in a dollar-neutral way, in the

spirit of Lustig, Roussanov and Verdelhan (2011), and independent of what Hassan

and Mano (2016) refer to as the dollar trade anomaly. (Our findings are therefore com-

plementary to Gourinchas and Rey (2007), who use a measure of external imbalances

to forecast the appreciation of the dollar itself against a trade- or FDI-weighted basket

of currencies.)

Our out-of-sample forecasts exploit the fact that the theory makes an a priori pre-

diction for the coefficient on the predictor variable. When the coefficient on the quanto

predictor is fixed at the level implied by the theory, we end up with a forecast of cur-
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rency appreciation that has no free parameters, and which is therefore—like the UIP

forecast—perfectly suited for out-of-sample forecasting. Following Meese and Rogoff

(1983) and Goyal and Welch (2008), we compute mean squared error for the differ-

ential currency forecasts made by the quanto theory and by three competitor models:

UIP, which predicts currency appreciation through the interest rate differential; PPP,

which uses past inflation differentials (as a proxy for expected inflation differentials)

to forecast currency appreciation; and the random walk forecast. The quanto theory

outperforms all three competitors. We also show that it outperforms on an alternative

performance benchmark, the correct classification frontier, that has been proposed by

Jordà and Taylor (2012).

1 Theory

We start with the fundamental equation of asset pricing,

Et
(
Mt+1R̃t+1

)
= 1, (1)

since this will allow us to introduce some notation. Today is time t; we are interested in

assets with payoffs at time t+1. We write Et for the (real-world) expectation operator,

conditional on all information available at time t, and Mt+1 for a stochastic discount

factor (SDF) that prices assets denominated in dollars. (We do not assume complete

markets, so there may well be other SDFs that also price assets denominated in dollars.

But all such SDFs must agree with Mt+1 on the prices of the payoffs in which we are

interested, since they are all tradable.) In equation (1), R̃t+1 is the gross return on

some arbitrary dollar-denominated asset or trading strategy. If we write R$
f,t for the

gross one-period dollar interest rate, then the equation implies that EtMt+1 = 1/R$
f,t,

as can be seen by setting R̃t+1 = R$
f,t; thus (1) can be rearranged as

Et R̃t+1 −R$
f,t = −R$

f,t covt

(
Mt+1, R̃t+1

)
. (2)

Consider a simple currency trade: take a dollar, convert it to foreign currency i,

invest at the (gross) currency-i riskless rate, Ri
f,t, for one period, and then convert back

to dollars. We write ei,t for the price in dollars at time t of a unit of currency i, so that

the gross return on the currency trade is Ri
f,tei,t+1/ei,t; setting R̃t+1 = Ri

f,tei,t+1/ei,t in
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(2) and rearranging,4 we find that

Et
ei,t+1

ei,t
=

R$
f,t

Ri
f,t︸︷︷︸

UIP forecast

−R$
f,t covt

(
Mt+1,

ei,t+1

ei,t

)
︸ ︷︷ ︸

residual

. (3)

This (well known) identity can also be expressed using the risk-neutral expectation

E∗t , in terms of which the time t price of any payoff, Xt+1, received at time t+ 1 is

time t price of a claim to Xt+1 =
1

R$
f,t

E∗t Xt+1 = Et (Mt+1Xt+1) . (4)

The first equality is the defining property of the risk-neutral probability distribution.

The second equality (which can be thought of as a dictionary for translating between

risk-neutral and SDF notation) can be used to rewrite (3) as

E∗t
(
ei,t+1

ei,t

)
=
R$
f,t

Ri
f,t

. (5)

From an empirical point of view, the challenging aspect of the identity (3) is the

presence of the unobservable SDF Mt+1. If Mt+1 were constant conditional on time t

information then the covariance term would drop out and we would recover the UIP

prediction that Et ei,t+1/ei,t = R$
f,t/R

i
f,t, according to which high-interest-rate curren-

cies are expected to depreciate. Thus, if the UIP forecast is used to predict exchange

rate appreciation, the implicit assumption being made is that the covariance term can

indeed be neglected.

Unfortunately, as is well known, the UIP forecast performs poorly in practice: the

assumption that the covariance term is negligible in (3) (or, equivalently, that the risk-

neutral expectation in (5) is close to the corresponding real-world expectation) is not

valid. This is hardly surprising, given the existence of a vast literature in financial

economics that emphasizes the importance of risk premia, and hence shows that the

SDF Mt+1 is highly volatile (Hansen and Jagannathan, 1991). The risk adjustment

term in (3) therefore cannot be neglected: expected currency appreciation depends

4Unlike most authors in this literature, we prefer to work with true returns, R̃t+1, rather than

with log returns, log R̃t+1, as the latter are only “an approximate measure of the rate of return to
speculation,” in the words of Hansen and Hodrick (1980). We elaborate on this point in Section 2.
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not only on the interest rate differential, but also on the covariance between currency

movements and the SDF. Moreover, it is plausible that this covariance varies both over

time and across currencies. We therefore take a different approach that exploits the

following observation:

Result 1. Let Rt+1 be an arbitrary gross return. We have the identity

Et
ei,t+1

ei,t
=

R$
f,t

Ri
f,t︸︷︷︸

UIP forecast

+
1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
︸ ︷︷ ︸
quanto-implied risk premium

− covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)
︸ ︷︷ ︸

residual

. (6)

The asterisk on the first covariance term in (6) indicates that it is computed using the

risk-neutral probability distribution.

Proof. Setting R̃t+1 = Ri
f,tei,t+1/ei,t in (1) and rearranging, we have

Et
(
Mt+1

ei,t+1

ei,t

)
=

1

Ri
f,t

. (7)

We can use (4) and (7) to expand the risk-neutral covariance term that appears in the

identity (6) and express it in terms of the SDF:

1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
(4)
= Et

(
Mt+1

ei,t+1

ei,t
Rt+1

)
−R$

f,t Et
(
Mt+1

ei,t+1

ei,t

)
(7)
= Et

(
Mt+1

ei,t+1

ei,t
Rt+1

)
−
R$
f,t

Ri
f,t

. (8)

Note also that

covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)
= Et

(
Mt+1Rt+1

ei,t+1

ei,t

)
− Et

(
ei,t+1

ei,t

)
. (9)

Subtracting (9) from (8) and rearranging, we have the result.

As (3) and (6) are identities, each must hold for all currencies i in any economy

that does not permit riskless arbitrage opportunities. The identity (6) generalizes (3),

however, by allowing Rt+1 to be an arbitrary return. To make the identity useful for

empirical work, we want to choose a return Rt+1 with two aims in mind. First, the

residual term should be small. Second, the middle term should be easy to compute.
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These two goals are in tension. If we set Rt+1 = R$
f,t, for example, then (6) reduces

to (3), which achieves the second of the goals but not the first. Conversely, one might

imagine setting Rt+1 equal to the return on an elaborate portfolio exposed to multiple

risk factors and constructed in such a way as to minimise the volatility of Mt+1Rt+1:

this would achieve the first but not necessarily the second, as will become clear in the

next section.

To achieve both goals simultaneously, we want to pick a return that offsets a sub-

stantial fraction of the variation in Mt+1; but we must do so in such a way that the

risk-neutral covariance term can be measured empirically. For much of this paper, we

will take Rt+1 to be the return on the S&P 500 index. (We find similar—and internally

consistent—results if Rt+1 is set equal to the return on other stock indexes, such as

the Nikkei, Euro Stoxx 50, or SMI: see Sections 1.2 and 2.1.) It is highly plausible

that this return is negatively correlated with Mt+1, as dictated by the first goal; in

fact we provide conditions below under which the residual is exactly zero. We will

now show that the second goal is also achieved with this choice of Rt+1 because we

can calculate the quanto-implied risk premium directly from asset prices without any

further assumptions—specifically, from quanto forward prices (hence the name).

1.1 Quantos

An investor who is bullish about the S&P 500 index might choose to go long a forward

contract at time t, for settlement at time t+1. If so, he commits to pay Ft at time t+1

in exchange for the level of the index, Pt+1. The dollar payoff on the investor’s long

forward contract is therefore Pt+1 − Ft at time t + 1. Market convention is to choose

Ft to make the market value of the contract equal to zero, so that no money needs to

change hands initially. This requirement implies that

Ft = E∗t Pt+1. (10)

A quanto forward contract is closely related. The key difference is that the quanto

forward commits the investor to pay Qi,t units of currency i at time t+1, in exchange for

Pt+1 units of currency i. (At each time t, there are N different quanto prices indexed

by i = 1, . . . , N , one for each of the N currencies in our data set. Other than in

Section 1.2, the underlying asset is always the S&P 500 index, whatever the currency.)
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The payoff on a long position in a quanto forward contract is therefore Pt+1 − Qi,t

units of currency i at time t + 1; this is equivalent to a time t + 1 dollar payoff of

ei,t+1(Pt+1 −Qi,t). As with a conventional forward contract, the market convention is

to choose the quanto forward price, Qi,t, in such a way that the contract has zero value

at initiation. It must therefore satisfy

Qi,t =
E∗t ei,t+1Pt+1

E∗t ei,t+1

. (11)

(We converted to dollars because E∗t is the risk-neutral expectations operator that

prices dollar payoffs.) Combining equations (5) and (11), the quanto forward price can

be written

Qi,t =
Ri
f,t

R$
f,t

E∗t
ei,t+1Pt+1

ei,t
,

which implies, using (5) and (10), that the gap between the quanto and conventional

forward prices captures the conditional risk-neutral covariance between the exchange

rate and stock index,

Qi,t − Ft =
Ri
f,t

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Pt+1

)
. (12)

We will make the simplifying assumption that dividends earned on the index be-

tween time t and time t+ 1 are known at time t and paid at time t+ 1. It then follows

from (12) that
Qi,t − Ft
Ri
f,tPt

=
1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
, (13)

so the quanto forward and conventional forward prices are equal if and only if currency i

is uncorrelated with the stock index under the risk-neutral measure. This allows us

to measure the risk-neutral covariance term that appears in (6) directly from the gap

between quanto and conventional index forward prices (which, as noted, we will refer

to as the quanto-implied risk premium).

We still have to deal with the final covariance term in the identity (6). The next

result exhibits a case in which this covariance term is exactly zero.

Result 2 (The log investor). If we take the perspective of an investor with log util-

ity whose wealth is fully invested in the stock index then Mt+1 = 1/Rt+1, so that
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covt(Mt+1Rt+1, ei,t+1/ei,t) is identically zero. The expected appreciation of currency i

is then given by

Et
ei,t+1

ei,t
− 1 =

R$
f,t

Ri
f,t

− 1︸ ︷︷ ︸
IRDi,t

+
Qi,t − Ft
Ri
f,tPt︸ ︷︷ ︸

QRPi,t

, (14)

and the expected excess return5 on currency i equals the quanto-implied risk premium:

Et
ei,t+1

ei,t
−
R$
f,t

Ri
f,t

=
Qi,t − Ft
Ri
f,tPt

.

Equation (14) splits expected currency appreciation into two terms. The first is the

UIP prediction which, as we have seen in equation (5), equals risk-neutral expected

currency appreciation. We will often refer to this term as the interest rate differential

(IRD); and as above we will generally convert to net rather than gross terms by sub-

tracting 1. (We choose to refer to a high-interest-rate currency as having a negative

interest rate differential because such a currency is forecast to depreciate by UIP.) The

second is a risk adjustment term: by taking the perspective of the log investor, we

have converted the general form of the residual that appears in (3) into a quantity that

can be directly observed using the gap between a quanto forward and a conventional

forward. Since it captures the risk premium perceived by the log investor, we refer to

this term as the quanto-implied risk premium (QRP). Lastly, we refer to the sum of

the two terms as expected currency appreciation (ECA = IRD + QRP).

Results 1 and 2 link expected currency returns to risk-neutral covariances, so deviate

from the standard CAPM intuition (that risk premia are related to true covariances) in

that they put more weight on comovement in bad states of the world. This distinction

matters, given the observation of Lettau, Maggiori and Weber (2014) that the carry

trade is more correlated with the market when the market experiences negative returns.

Even more important, risk-neutral covariance is directly measurable, as we have shown.

In contrast, forward-looking true covariances are not directly observed so must be

proxied somehow, typically by historical realized covariance. In Section 2.3, we show

that risk-neutral covariance drives out historical realized covariance as a predictor

variable.

5Formally, ei,t+1/ei,t − R$
f,t/R

i
f,t is an excess return because it is a tradable payoff whose price is

zero, by (5).
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The assumption that underpins Result 2, Mt+1 = 1/Rt+1, implies that

Et
R$
i,t+1

Rt+1

= 1, (15)

where R$
i,t+1 is the US dollar return on the currency-i stock market. This is reminiscent

of the uncovered equity parity condition proposed by Hau and Rey (2006); while they do

not provide a formal definition, a natural characterization of the condition (analogous

to the UIP condition, along the lines of Cappiello and De Santis (2007)) is that expected

stock market returns are equated in dollars:

EtR$
i,t+1 = EtRt+1. (16)

The conditions (15) and (16) are similar but distinct. For the sake of argument, if

stock market returns and exchange rates are jointly lognormal then (15) implies that

the expected returns are not in general equated: instead,

EtR$
i,t+1 = EtRt+1 × exp

{
covt

(
r$i,t+1, rt+1

)
− vart rt+1

}
,

where lower-case letters indicate log returns. Thus a sufficiently volatile (and corre-

lated) foreign stock market may earn a higher expected dollar return than the US stock

market according to (15) but not according to (16).

Lastly, we emphasize that while Result 2 represents a useful benchmark and is the

jumping-off point for our empirical work, in our analysis below we will also allow for

the presence of the final covariance term in the identity (6). Throughout the paper,

we do so in a simple way by reporting regression results with (and without) currency

fixed effects, to account for any currency-dependent but time-independent component

of the covariance term. In Section 2.4, we consider further proxies that depend both

on currency and time.

1.2 Alternative benchmarks

Our choice to think from the perspective of an investor who holds the US stock market

is a pragmatic one. From a purist point of view, it might seem more natural to adopt

the perspective of an investor whose wealth is invested in a globally diversified portfolio;
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unfortunately global-wealth quantos are not traded, whereas S&P 500 quantos are. Our

approach implicitly relies on an assumption that the US stock market is a tolerable

proxy for global wealth. We think this assumption makes sense; it is broadly consistent

with the ‘global financial cycle’ view of Miranda-Agrippino and Rey (2015).

Nonetheless, one might wonder whether the results are similar if one uses other

countries’ stock markets as proxies for global wealth.6 For, just as the forward price

of the US stock index quantoed into currency i reveals the expected appreciation of

currency i versus the dollar, as perceived by a log investor whose portfolio is fully

invested in the US stock market, so the forward price of the currency-i stock index

quantoed into dollars reveals the expected appreciation of the dollar versus currency i,

as perceived by a log investor whose portfolio is fully invested in the currency-i market.

Recall Result 2 for the expected appreciation of currency i versus the dollar,

Et
ei,t+1

ei,t
− 1 = IRDi,t + QRPi,t︸ ︷︷ ︸

ECAi,t

. (17)

(To reiterate, a positive value indicates that currency i is expected to strengthen against

the dollar.) The corresponding expression for the expected appreciation of the dollar

versus currency i, from the perspective of a log investor whose wealth is fully invested

in the currency-i stock market, is

Eit
1/ei,t+1

1/ei,t
− 1 = IRD1/i,t + QRP1/i,t︸ ︷︷ ︸

ECA1/i,t

, (18)

where (with a slight abuse of notation) we write IRD1/i,t = Ri
f,t/R

$
f,t − 1, and where

QRP1/i,t is obtained from conventional and dollar -denominated quanto forwards on

the currency-i stock market. When the left-hand side of the above equation is positive,

the dollar is expected to appreciate against currency i.

In Section 2.1 below, we show that the two perspectives captured by (17) and (18)

are broadly consistent with one another (for those currencies for which we observe the

appropriate quanto forward prices). If, say, the forward price of the S&P 500 quantoed

into euros implies that the euro is expected to appreciate against the dollar by 2%

6In practice, many investors do choose to hold home-biased portfolios (French and Poterba (1991),
Tesar and Werner (1995), and Warnock (2002); and see Lewis (1999) and Coeurdacier and Rey (2013)
for surveys).
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(using equation (17)), then the forward price of the Euro Stoxx 50 index quantoed into

dollars typically implies that the dollar is expected to depreciate against the euro by

about 2% (using equation (18)). To be more precise, we need to take into account

Siegel’s “paradox” (Siegel, 1972) that, by Jensen’s inequality,

Et
ei,t+1

ei,t
≥
(
Et

1/ei,t+1

1/ei,t

)−1
. (19)

(The corresponding inequality with Et replaced by any other expectation operator also

holds.) If the US and currency-i investors have the same expectations about currency

appreciation then (17)–(19) imply that

log (1 + ECAi,t) ≥ − log
(
1 + ECA1/i,t

)
. (20)

In practice log(1 + ECA) ≈ ECA, so the above inequality is essentially equivalent to

ECAi,t ≥ −ECA1/i,t: thus (continuing the example) if the euro is expected to appreciate

by 2% against the dollar, then the dollar should be expected to depreciate against the

euro by at most 2%.

The difference between the two sides of (20) reflects a convexity correction whose

size is determined by the amount of conditional variation in ei,t+1. If the exchange rate

is lognormal, log(ei,t+1/ei,t) ∼ N(µt, σ
2
t ), then by a straightforward calculation7

log (1 + ECAi,t)−
(
− log

(
1 + ECA1/i,t

))
= logEt

ei,t+1

ei,t
− log

[(
Et

1/ei,t+1

1/ei,t

)−1]
= σ2

t . (21)

Thus if exchange rate volatility is on the order of 10%, the two perspectives should

disagree by about 1% (so in the example above, expected euro appreciation of 2%

would be consistent with expected dollar depreciation of 1%). In Section 2.1, we show

that the convexity gap observed in our data is indeed consistent with (21).

7More generally the correction involves all even cumulants: logEt
ei,t+1

ei,t
− log

[(
Et

1/ei,t+1

1/ei,t

)−1
]

=

c(1) + c(−1) = 2
∑

n even κn/n!, where c(·) and κn denote, respectively, the cumulant-generating
function and the nth cumulant of log exchange rate appreciation; see Martin (2013a). In particular,
κ2 = σ2

t and κ4/σ
4
t is the excess kurtosis of log ei,t+1. If the log exchange rate is normally distributed,

as in (21), all cumulants above the second are zero. For an early treatment of cumulants in the context
of exchange rates see Backus, Foresi and Telmer (2001).
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2 Empirics

We obtained forward prices and quanto forward prices on the S&P 500, together with

domestic and foreign interest rates, from Markit; the maturity in each case is 24 months.

The data is monthly and runs from December 2009 to October 2015 for the Australian

dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), Danish krone (DKK), Euro

(EUR), British pound (GBP), Japanese yen (JPY), Korean won (KRW), Norwegian

krone (NOK), Polish zloty (PLN), and Swedish krona (SEK). Since these quantos

are used to forecast exchange rates over a 24-month horizon, our forecasting sample

runs from December 2009 to October 2017. Markit reports consensus prices based

on quotes received from a wide range of financial intermediaries. These prices are

used by major OTC derivatives market makers as a means of independently verifying

their book valuations and to fulfil regulatory requirements; they do not necessarily

reflect transaction prices. Accounting for missing entries in our panel, we have 656

currency-month observations.8

Since the financial crisis of 2007-2009, a growing literature (including Du, Tepper

and Verdelhan (2016)) has discussed the failure of covered interest parity (CIP)—

the no-arbitrage relation between forward exchange rates, spot exchange rates and

interest rate differentials—and established that since the financial crisis, CIP frequently

does not hold if interest rates are obtained from money markets. For each maturity,

we observe currency-specific discount factors directly from our Markit data set. The

implied interest rates are consistent with the observed forward prices and the absence

of arbitrage. Our measure of the interest rate differentials therefore does not violate

the no-arbitrage condition we require for identity (6) to hold.

The two building blocks of our empirical analysis are the currencies’ quanto-implied

risk premia (QRP, which measure the risk-neutral covariances between each currency

and the S&P 500 index, as shown in equation (13)), and their interest rate differentials

vis-à-vis the US dollar (IRD, which would equal expected exchange rate appreciation

if UIP held). Our measure of expected currency appreciation (the quanto forecast, or

ECA) is equal to the sum of IRD and QRP, as in equation (14).

Figure 1 plots each currency’s QRP over time; for clarity, the figure drops two

currencies for which we have highly incomplete time series (PLN and DKK). The QRP

8Where we do not observe a price, we treat the observation as missing. Larger periods of consecutive
missing observations occur only for DKK, KRW, and PLN and are shown as gaps in Figure 2.
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is negative for JPY and positive for all other currencies (with the partial exception of

EUR, for which we observe a sign change in QRP near the end of our time period).

Figure 2 shows the evolution over time of ECA (solid) and of the UIP forecast

(dashed) for each of the currencies in our panel. The gap between the two lines for

a given currency is that currency’s QRP. Table 1 reports summary statistics of ECA.

The penultimate line of the table averages the summary statistics across currencies;

the last line reports summary statistics for the pooled data. Table 2 reports the same

statistics for IRD and QRP.

The volatility of QRP is similar to that of interest rate differentials, both currency-

by-currency and in the panel. There is considerably more variability in IRD and QRP

when we pool the data than there is in the time series of a typical currency: this reflects

substantial dispersion in IRD and QRP across currencies that is captured in the pooled

measure but not in the average time series.

Table 3 reports volatilities and correlations for the time series of individual curren-

cies’ ECA, IRD, and QRP. The table also shows three aggregated measures of volatil-

ities and correlations. The row labelled “Time series” reports time-series volatilities

and correlations for a typical currency, calculated by averaging time-series volatilities

and correlations across currencies. Conversely, the row labelled “Cross section” re-

ports cross-currency volatilities and correlations of time-averaged ECA, IRD, and QRP.

Lastly, the row labelled “Pooled” averages on both dimensions: it reports volatilities

and correlations for the pooled data.

All three variables (ECA, IRD, and QRP) are more volatile in the cross section

than in the time series. This is particularly true of interest rate differentials, which

exhibit far more dispersion across currencies than over time.

The correlation between IRD and QRP is negative when we pool our data (ρ =

−0.696). Given the sign convention on IRD, this indicates that currencies with high in-

terest rates (relative to the dollar) tend to have high risk premia; thus the predictions

of the quanto theory are consistent with the carry trade literature and the findings

of Lustig, Roussanov and Verdelhan (2011). The average time-series (i.e., within-

currency) correlation between IRD and QRP is more modestly negative (ρ = −0.331):

a typical currency’s risk premium tends to be higher, or less negative, at times when

its interest rate is high relative to the dollar, but this tendency is fairly weak. The dis-

parity between these two facts is accounted for by the strongly negative cross-sectional
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correlation between IRD and QRP (ρ = −0.798). If we interpret the data through the

lens of Result 2, these findings suggest that the returns to the carry trade are more the

result of persistent cross-sectional differences between currencies than of a time-series

relationship between interest rates and risk premia. This prediction is consistent with

the empirical results documented by Hassan and Mano (2016).

We see a corresponding pattern in the time-series, cross-sectional, and pooled cor-

relations of ECA and QRP. The time-series (within-currency) correlation of the two

is substantially positive (ρ = 0.393), while the cross-sectional correlation is negative

(ρ = −0.305). In the time series, therefore, a rise in a given currency’s QRP is asso-

ciated with a rise in its expected appreciation; whereas in the cross-section, currencies

with relatively high QRP on average have relatively low expected currency apprecia-

tion on average (reflecting relatively high interest rates on average). Putting the two

together, the pooled correlation is close to zero (ρ = −0.026). That is, Result 2 predicts

that there should be no clear relationship between currency risk premia and expected

currency appreciation; again, this is consistent with the findings of Hassan and Mano

(2016).

These properties are illustrated graphically in Figure 3. We plot confidence ellipses

centred on the means of QRP and IRD in panel (a), and of QRP and ECA in panel (b),

for each currency. The sizes of the ellipses reflect the volatilities of IRD and QRP (or

ECA): under joint normality, each ellipse would contain 50% of its currency’s obser-

vations in population.9 The orientation of each ellipse illustrates the within-currency

time series correlation, while the positions of the different ellipses reveal correlations

across currencies. The figures refine the discussion above. QRP and IRD are nega-

tively correlated within currency (with the exceptions of CAD, CHF, and KRW) and

in the cross-section. QRP and ECA are positively correlated in the time series for

every currency, but exhibit negative correlation across currencies; overall, the pooled

correlation between the two is close to zero.

Our empirical analysis focuses on contracts with a maturity of 24 months, since

these have the best data availability. But in the case of the S&P 500 index quantoed

into euros, we observe a range of maturities so can explore the term structure of QRP.

Figure 4 plots the time series of annualized euro-dollar QRP for horizons of 6, 12,

24, and 60 months. On average, the term structure of QRP is flat over the sample

9Our interest is in the relative sizes of the ellipses, so the choice of 50% is arbitrary.
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period. However, shorter horizons are slightly more volatile, so that the term structure

is downward-sloping when QRP spikes and upward-sloping when QRP is low.

2.1 A consistency check

Our data also includes quanto forward prices of certain other stock indexes, notably

the Nikkei, Euro Stoxx 50, and SMI. We can use this data to explore the predictions

of Section 1.2, which provides a consistency check on our empirical strategy.

Figure 5 implements (17) and (18) for the EUR-USD, JPY-USD, EUR-JPY, and

EUR-CHF currency pairs. In each of the top-left, bottom-left and bottom-right panels,

the solid line depicts the expected appreciation of the euro against the US dollar, yen,

and Swiss franc, respectively, while the dashed line shows the expected depreciation of

the three currencies against the euro (that is, we flip the sign on the “inverted” series

for readability). In the top-right panel, the solid and dashed lines show the expected

appreciation of the yen against the US dollar and expected depreciation of the US dollar

against the yen, respectively. In every case, the two measures are strongly correlated

over time and the solid line is above the dashed line, as they should be according to (20).

The gaps between the measures are therefore consistent with the Jensen’s inequality

correction one would expect to see if our currency forecasts measured expected currency

appreciation perfectly. Moreover, given that annual exchange rate volatilities are on the

order of 10%, the sizes of the gaps between the measures are quantitatively consistent

with the Jensen’s inequality correction derived in equation (21).

The EUR-CHF pair in the bottom-right panel represents a particularly interesting

case study. The Swiss national bank instituted a floor on the EUR-CHF exchange

rate at CHF1.20/e in September 2011 and consequently also reduced the conditional

volatility of the exchange rate. Following this, the two lines converge and the gap stays

very narrow at around 0.2% up until January 2015, when the sudden removal of the

floor prompted a spike in the volatility of the currency pair, visible in the figure as the

point at which the two lines diverge.

2.2 Return forecasting

We run two sets of panel regressions in which we attempt to forecast, respectively,

currency excess returns and currency appreciation. The literature on exchange rate
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forecasting has found it substantially more difficult to forecast pure currency apprecia-

tion than currency excess returns, so the second set of regressions should be considered

more empirically challenging. In each case, we test the prediction of Result 2 via

pooled panel regressions. We also report the results of panel regressions with cur-

rency fixed effects; by doing so, we allow for the more general possibility that there

is a currency-dependent—but time-independent—component in the second covariance

term that appears in the identity (6).

To provide a sense of the data before turning to our regression results, Figures 6

and 7 represent our baseline univariate regressions graphically in the same manner as

in Figure 3. Figure 6 plots realized currency excess returns (RXR) against QRP and

against IRD.10 Excess returns are strongly positively correlated with QRP both within

currency and in the cross-section, suggesting strong predictability with a positive sign.

The correlation of RXR with IRD is negative in the cross-section but close to zero, on

average, within currency.

Figure 7 shows the corresponding results for realized currency appreciation (RCA).

Panel (a) suggests that the within-currency correlation with the quanto predictor ECA

is predominantly positive (with the exceptions of AUD and CHF), as is the cross-

sectional correlation. In contrast, panel (b) suggests that the correlation between

realized currency appreciation and interest rate differentials is close to zero both within

and across currencies, consistent with the view that interest rate differentials do not

help to forecast currency appreciation.

We first run a horse race between the quanto-implied risk premium and interest

rate differential as predictors of currency excess returns:

ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= α + βQRPi,t + γ IRDi,t + εi,t+1. (22)

We also run two univariate regressions. The first of these,

ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= α + βQRPi,t + εi,t+1, (23)

10As noted in Section 1, we work with true returns as opposed to log returns. Engel (2016) points
out that it may not be appropriate to view log returns as approximating true returns, since the gap
between the two is a similar order of magnitude as the risk premium itself.
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is suggested by Result 2. The second uses interest rate differentials to forecast currency

excess returns, as a benchmark:

ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= α + γ IRDi,t + εi,t+1. (24)

We also run all three regressions with currency fixed effects αi in place of the shared

intercept α.

Table 4 reports the results. We report coefficient estimates and R2 for each regres-

sion, with and without currency fixed effects; standard errors are shown in parentheses.

These standard errors are computed via a nonparametric bootstrap to account for the

cross-sectional and serial correlation structure in our data. (For comparison, these non-

parametric standard errors exceed those obtained from a parametric residual bootstrap

by up to a factor of 2.) We provide a detailed description of our bootstrap procedure

and address potential small-sample concerns in Section 2.5.

The estimated coefficient on the quanto-implied risk premium is positive and eco-

nomically large in every specification in which it occurs. Moreover, the R2 values are

substantially higher in the two regressions (22) and (23) that feature the quanto-implied

risk premium than in the regression (24) in which it does not occur. The estimate for β

in our headline regression (23) is 2.604 (standard error 1.127) in the pooled regression

and 4.995 (standard error 1.565) in the regression with fixed effects. The fact that these

estimates are above 1 raises the possibility that beyond its direct importance in (6),

the quanto-implied risk premium may also proxy for the second covariance term. We

explore this issue in Section 2.4. Another noteworthy qualitative feature of our results

is the consistently negative intercept, which reflects an unexpectedly strong dollar over

our sample period; we discuss the statistical interpretation of this fact in Section 2.5.

Following Fama (1984), we can also test how the theory fares at predicting currency

appreciation (ei,t+1/ei,t − 1). To do so, we run the regression

ei,t+1

ei,t
− 1 = α + βQRPi,t + γ IRDi,t + εi,t+1. (25)

We do so not because we are interested in the coefficient estimates, which are mechan-

ically related to those of regression (22), but because we are interested in the R2.

To explore the relative importance of the quanto-implied risk premium and interest
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rate differentials for forecasting currency appreciation, we run univariate regressions of

currency appreciation onto the quanto-implied risk premium,

ei,t+1

ei,t
− 1 = α + βQRPi,t + εi,t+1, (26)

and onto interest rate differentials,

ei,t+1

ei,t
− 1 = α + γ IRDi,t + εi,t+1. (27)

As previously, we also run the three regressions (25)–(27) with fixed effects.

The regression results are shown in Table 5, which is structured similarly to Table 4.

There is little evidence that the interest rate differential helps to forecast currency

appreciation on its own; this is consistent with the previous set of results and with the

large literature that documents the failure of UIP. In the pooled panel, the estimated

γ in regression (27) is close to 0, and the R2 is essentially zero. With fixed effects, the

estimate of γ is marginally negative, providing weak evidence that currencies tend to

appreciate against the dollar when their interest rate relative to the dollar is higher

than its time-series mean.

More strikingly, the quanto-implied risk premium makes a very large difference in

terms of R2, which increases by two orders of magnitude when moving from specifica-

tion (27) to (25) in both the pooled regressions (0.16% to 16.01%) and the fixed-effects

regressions (0.20% to 20.56%). It is also interesting to note that when QRP is included

in the regressions (with or without fixed effects) the coefficient estimate on IRD, γ,

increases toward the value of 1 predicted by Result 2.

For completeness, Table 6 reports the results of running regressions (23), (24), (25),

and (27) separately for each currency at the 24-month horizon, and at 6- and 12-month

horizons for the euro. Consistent with the previous literature (for example Fama (1984)

and Hassan and Mano (2016)), the coefficient estimates are extremely noisy. A further

appealing feature of Result 2 is that it provides a justification for constraining all the

coefficient on the quanto-implied risk premium to be equal across currencies, as we

have done above.
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2.3 Risk-neutral covariance vs. true covariance

We have emphasized the importance of risk-neutral covariances of currencies with stock

returns, as captured by quanto-implied risk premia, and below we will show that risk-

neutral covariance performs well empirically. But it is natural to wonder whether this

empirical success merely reflects the fact that currency returns line up with true co-

variances, as studied by Lustig and Verdelhan (2007), Campbell, Medeiros and Viceira

(2010), Burnside (2011) and Cenedese et al. (2016), among others. More formally, from

the perspective of the log investor we can conclude, from (3), that

Et
ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= R$
f,t covt

(
ei,t+1

ei,t
,− 1

Rt+1

)
. (28)

Note that it is the true, not the risk-neutral, covariance that appears in this equation.

The fundamental challenge for a test of this prediction is that forward-looking true

covariance is not directly observed. This is the major advantage of our approach: risk-

neutral covariance is directly observed via the quanto-implied risk premium. That said,

we attempt to test (28) by using lagged realized covariance, RPCL, as a proxy for true

forward-looking covariance. The results are shown in Table 8 of the Appendix. RPCL

is positively related to subsequently realized currency excess returns, as suggested by

(28), but it is driven out as a predictor by risk-neutral covariance (QRP), consistent

with Result 2. We also find that risk-neutral covariance is a statistically significant

forecaster of future realized covariance.

2.4 Beyond the log investor

The identity (6) expresses expected currency appreciation as the sum of IRD, QRP, and

a covariance term, − covt(Mt+1Rt+1, ei,t+1/ei,t). Thus far, we have either assumed that

this term is constant across currencies and over time (so is captured by the constant

in our pooled regressions) or that it has a currency-dependent but time-independent

component (so is captured by fixed effects).

To get a sense of what these assumptions may leave out, we conduct a principal

components analysis on unexpected currency excess returns: that is, on the difference

between realized currency excess returns and the corresponding ex ante expected re-

turns. We calculate these unexpected excess returns in two ways. Regression residuals
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are defined as the estimated residuals εi,t+1 in the specification of regression (23) that

includes currency fixed effects. Theory residuals are defined similarly, except that we

impose α = 0, β = 1 in (23).

These residuals reflect both the ex ante residual from the identity (6) and the

ex post realizations of unexpected currency returns. The identity implies that the

predictable component of the realized residuals—if there is one—reveals the covariance

term, − covt(Mt+1Rt+1, ei,t+1/ei,t).

We decompose the theory and regression residuals into their respective principal

components (dropping DKK, KRW, and PLN from the panel to minimize the impact

of missing observations). Table 7 shows the principal component loadings. The first

principal component, which explains just under two thirds of the variation in residuals,

can be interpreted as a level, or ‘dollar,’ factor since it loads positively on all currencies

(with the exception of GBP when in the case of the regression residuals).

Motivated by this fact, we now include an additional predictor variable, IRDt =

(1/Nt)
∑

i IRDi,t, where Nt is the number of currencies in our dataset at time t; Lustig,

Roussanov and Verdelhan (2014) interpret this average interest rate differential (which

they refer to as the ‘average forward discount’) as a dollar factor and show that it

helps to forecast currency returns. We also include the logarithm of the real exchange

rate, which Dahlquist and Penasse (2017) have shown to be a successful forecaster of

currency returns.

Table 9 reports the results of regressions of currency excess returns onto currency

fixed effects and subsets of four forecasting variables: the quanto-implied risk premium

(QRP), the interest rate differential (IRD), the real exchange rate (RER), and the

average interest rate differential (IRD). The table reports the univariate, bivariate, 3-

variate, and 4-variate specifications with the highest R2. (Table 10 reports the R2 for all

24−1 = 15 subsets of the four explanatory variables, though not—for lack of space—the

estimated coefficients.) The quanto-implied risk premium features in all R2-maximizing

regressions. The estimates of β are larger than 1 in every specification, suggesting that,

over and above its relevance as a direct measure of risk-neutral covariance, the quanto-

implied risk premium helps to capture the physical covariance term in (6). As we

increase from one to two to three explanatory variables, R2 increases from 22.03%

(using QRP alone) to 35.25% (adding the real exchange rate) to 43.28% (adding the

dollar factor IRD). The interest rate differential itself, IRD, contributes almost no
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further explanatory power when it is then added as a fourth variable. Since the real

exchange rate performs well, Table 11 reports further results that incorporate it as a

regressor.

2.5 Joint hypothesis tests and finite-sample issues

We now consider the joint hypothesis tests that are suggested by Result 2. In our three

main specifications (22), (23), and (25), equation (14) predicts an intercept α = 0, and

a slope coefficient on QRP β = 1. For the excess return forecast in regression (22), it

predicts that the interest rate differential should have no predictive power, i.e. γ = 0;

whereas it predicts that γ = 1 in the currency-appreciation regression (25).

Here, as elsewhere, we use a nonparametric bootstrap procedure to compute the co-

variance matrix of coefficient estimates. A detailed exposition of the bootstrap method-

ology is provided in Politis and White (2004) and Patton, Politis and White (2009). In

the bootstrap procedure, we resample the data by drawing with replacement blocks of

24 time-series observations from the panel while ensuring that this time-series resam-

pling is synchronized in the cross-section. The length of the time-series blocks is chosen

to equal the forecasting horizon of 24 months. The resulting panel is then resampled

with replacement in the cross-sectional dimension by drawing blocks of uniformly dis-

tributed width (between 2 and 11, the latter being the width of the full cross-section).

Since currencies which are adjacent in the panel are more likely to be included to-

gether in any given one of these cross-sectional blocks, we permute the cross-section of

our panel randomly before each resampling. We then compute the point estimates of

the coefficients from the two-dimensionally resampled panel and repeat this procedure

100,000 times. The standard errors are then computed as the standard deviations of

the respective coefficients across the 100,000 bootstrap repetitions.

Table 12 reports p-values for tests of various hypotheses about our baseline re-

gressions. In addition to conventional p-values calculated using the asymptotic (chi-

squared) distribution of the Wald test statistic, the table also reports more conser-

vative small-sample p-values obtained from a bootstrapped test statistic distribution.

We compute these small-sample p-values by constructing a small-sample distribution

of the Wald test-statistic for each regression: We simulate 5,000 sets of monthly data

for the LHS variable under the null hypothesis of no predictability, such that the simu-

lated data matches the monthly autocorrelation and covariance matrix of the realized,
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observed LHS data. We then aggregate the simulated monthly data into 24-month

horizon data, like the LHS data used in our regressions (e.g. excess returns over 24

months). As we aim to measure the small-sample performance of our bootstrap rou-

tine, the simulated data sets each have the same number of data points as the observed

LHS data. For each specification, we then regress the 5,000 simulated LHS data on

the respective observed RHS variable(s). Where we run the regression with currency

fixed effects, we use the demeaned RHS variable(s). We obtain the point estimates

of the coefficients and their covariance matrix from the bootstrap routine outlined

above and use the test statistics from these 5,000 regressions to construct the empiri-

cal small-sample distribution of the respective Wald statistic under the respective null

hypothesis.

Figure 8 illustrates by plotting the histograms of the bootstrapped distribution of

test statistics for various hypotheses on regression (25). Panels a and b show the finite-

sample bootstrapped distributions of the test statistic for the hypothesis that Result

2 holds, respectively in the pooled and fixed-effects regressions. The value of the test

statistic in the data is indicated with an asterisk in each panel. The finite-sample

and asymptotic (shown with a solid line) distributions are strikingly different: the

asymptotic distribution suggests that we can reject the hypothesis that Result 2 holds,

but this conclusion is overturned by the finite-sample distribution. (In the pooled case,

the discrepancy is largely due to the intercept, as becomes clear on comparing the

asymptotic p-values for tests of hypotheses H1
0 and H2

0 in Table 12: the asymptotic

distribution penalizes the fact that the US dollar was strong over our sample period,

whereas the finite-sample distribution does not.)

In contrast, the asymptotic and finite-sample distributions tell more or less the

same story in panels c and d, which show the corresponding results for tests (without

and with fixed effects) of the hypothesis H3
0 that β = 0, i.e. that QRP is not use-

ful in forecasting currency appreciation. While the small-sample distributions of the

test statistics exhibit fatter tails than the asymptotic χ2 distribution, the discrepancy

between the two is small by comparison with panels a and b, and even using the finite-

sample distribution we can reject the hypothesis with some confidence (with p-values

of 0.082 and 0.051 in the pooled and fixed-effects cases, respectively).

We reach similar conclusions for regressions (22) and (23): we do not reject the

predictions of Result 2 in the joint Wald tests for any of the three baseline regressions
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using the small-sample distribution of the test statistic; and QRP remains individually

significant as a predictor at the 10% level in all three specifications, with and without

currency fixed effects, even if we take the most conservative approach to computing

p-values that relies on the empirical small-sample test statistic distribution.

3 Out-of-sample prediction

We now test the quanto theory out of sample. Since the dollar strengthened strongly

over the relatively short time period spanned by our data (as reflected in the negative

intercept in our pooled panel regression (25)), we focus on forecasting differential cur-

rency appreciation: that is, we seek to predict, for example, the relative performance

of dollar-yen versus dollar-euro.

In the previous section, we estimated the loadings on the quanto-implied risk pre-

mium, QRP, and interest rate differential, IRD, via panel regressions. These deliver the

best in-sample coefficient estimates in a least-squares sense. But for an out-of-sample

test we must pick the loadings a priori. Here we can exploit the distinctive feature of

Result 2 that it makes specific quantitative predictions for the loadings: each should

equal 1, as in the formula (14). We therefore compute out-of-sample forecasts by fixing

the coefficients that appear in (25) at their theoretical values: α = 0, β = 1, γ = 1.

We compare these predictions to those of three competitor models: UIP (which

predicts that currency appreciation should offset the interest rate differential, on aver-

age), a random walk without drift (which makes the constant forecast of zero currency

appreciation, and which is described in the survey of Rossi (2013) as “the toughest

benchmark to beat”), and relative purchasing power parity (which predicts that cur-

rency appreciation should offset the inflation differential, on average). These models are

natural competitors because, like our approach, they make a priori predictions without

requiring estimation of parameters, and so avoid in-sample/out-of-sample issues.
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3.1 Mean squared errors

To compare the forecast accuracy of the model to those of the benchmarks, we define

a dollar-neutral R2-measure similar to that of Goyal and Welch (2008):

R2
OS = 1−

∑
i

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)

2∑
i

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)

2
,

where εQi,t+1 and εBi,t+1 denote forecast errors (for currency i against the dollar) of the

quanto theory and the benchmark, respectively, so our measure compares the accuracy

of differential forecasts of currencies i and j against the dollar. We hope to find that

the quanto theory has lower mean squared error than each of the competitor models,

that is, we hope to find positive R2
OS versus each of the benchmarks.

The results of this exercise are reported in Table 13. The quanto theory outperforms

each of the three competitors: when the competitor model is UIP, we find that R2
OS =

10.91%; and when it is relative PPP, we find R2
OS = 26.05%. In our sample, the

toughest benchmark is the random walk forecast, consistent with the findings of Rossi

(2013). Nonetheless, the quanto theory easily outperforms it, with R2
OS = 9.57%.

To get a sense for whether our positive results are driven by a small subset of the

currencies, Table 13 also reports the results of splitting the R2 measure currency-by-

currency: for each currency i, we define

R2
OS,i = 1−

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)

2∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)

2
.

This quantity is positive for all i and all competitor benchmarks B, indicating that

the quanto theory outperforms all three benchmarks for all 11 currencies. We run

Diebold–Mariano tests (Diebold and Mariano, 1995) of the null hypothesis that the

quanto theory and competitor models perform equally well for all currencies, using a

small-sample adjustment proposed by Harvey, Leybourne and Newbold (1997), and

find that the outperformance is strongly significant.

3.2 Binary forecast accuracy

Jordà and Taylor (2012) have argued that assessments of forecast performance based

solely on mean squared errors may not fully reflect the economic benefits of a forecasting
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model. In this section, we follow the approach of Jordà and Taylor by computing

a correct classification frontier (CCF) to assess the performance of our forecasts in

correctly predicting the direction of currency movements.

Denote by fQi,j,t = QRPi,t − QRPj,t and fBi,j,t the forecasts obtained, respectively,

from the quanto variable and a competitor benchmark for currency pair (i, j) at time t.

Similarly, ri,t = ei,t+1/ei,t −R$
t /R

i
t denotes the realized excess return of the currency i

against the dollar, and ri,j,t = ri,t− rj,t represents the dollar-neutral return in currency

pair (i, j). We calculate the true positive (TP) and true negative (TN) rates for each

forecasting model as a function of a threshold, c:

TP (c) = P (fQi,j,t > c | ri,j,t > 0), (29)

TN(c) = P (fQi,j,t < c | ri,j,t < 0) (30)

The two rates describe, respectively, the fractions of ex post positive long and short

returns that were correctly identified ex ante as profitable long and short positions by

the forecasting model.

For the same 55 dollar-neutral currency pairs used above, we find that TP (0) =

0.50, TN(0) = 0.64, with a weighted average correct classification of 0.57 for the

quanto forecast. Since binary accuracy does not reflect the magnitudes of returns

from the signal, we follow Jordà and Taylor (2012) and denote the ex post maximum

gain from long positions by L =
∑

ri,j,t>0 ri,j,t, and similarly for the ex post maximum

returns from short positions S = −
∑

ri,j,t<0 ri,j,t. We compute the return-weighted

true positive (TP*) and true negative (TN*) rates as

TP ∗(c) =

∑
fQi,j,t>c|ri,j,t>0 ri,j,t

L
, (31)

TN∗(c) =
−
∑

fQi,j,t<c|ri,j,t<0 ri,j,t

S
(32)

When we weight the forecasts by the realization of the excess return they would

have earned, the true rates increase to TP ∗(0) = 0.58, TN∗(0) = 0.67, with a weighted

average of 0.63. Both rates increase relative to the equally-weighted classifications,

which implies that the direction of excess return realizations is more likely to have

been predicted by the quanto variable when these realizations are large.

The CCF (and analogously CCF*) is defined as the set of pairs {TP (c), TN(c)}
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for all possible values of c between −∞ and ∞. Varying the threshold level, c, trades

off true positives against true negatives by shifting the direction of the forecast. For

instance, for c = ∞, the true negative rate is maximized at TN = 1, at the cost of

TP = 0. Since TN(c) and TP (c) must lie between 0 and 1, we can plot the resulting

CCF in the unit square, and compute the area under the CCF (AUC). Intuitively, the

AUC can be interpreted as the probability that the forecast for a randomly chosen

positive return realization will be higher than that for a randomly chosen negative

return realization. Under the UIP forecast the excess return on any currency is 0, so

the CCF is the diagonal with slope −1 in the unit square and, accordingly, AUC = 0.5.

We benchmark the quanto forecast against the driftless random walk model consid-

ered above (which forecasts the currency excess return as being equal to the interest

rate differential). Figure 9 shows the resulting CCFs. The quanto forecast outperforms

the random walk model for equally-weighted and return-weighted classifications. For

the quanto forecast, AUCQ = 0.60 and AUCQ∗ = 0.70, while the random walk model

achieves AUCRW = 0.55 and AUCRW ∗ = 0.60. Both forecasts correctly identify

large returns more often than small returns, as the CCF* (red) lies above the CCF

(blue) in both cases.

We also reverse the conditioning in the true positive and true negative rates, to

calculate how likely a forecast is to signal the correct direction of trade, and denote

these by PT (c) and NT (c), respectively:

PT (c) = P (ri,j,t > c | fQi,j,t > 0), (33)

NT (c) = P (ri,j,t < c | fQi,j,t < 0) (34)

We find PT (0) = 0.60, NT (0) = 0.54, PT ∗(0) = 0.65, and NT ∗(0) = 0.63. Plotting

the resulting CCFs, Figure 10 shows that, again, the quanto variable outperforms the

random walk forecast with AUC-measures of AUCQ = 0.60, AUCQ∗ = 0.71, against

the random walk model with AUCRW = 0.55 and AUCRW ∗ = 0.60.

4 Conclusion

UIP forecasts that high interest rate currencies should depreciate on average; it re-

flects the expected currency appreciation that a genuinely risk-neutral investor would
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perceive in equilibrium. Unsurprisingly—given that the financial economics literature

has repeatedly documented the importance of risk premia—the UIP forecast performs

extremely poorly in practice.

We have proposed an alternative forecast, the quanto-implied risk premium, that

can be interpreted as the expected excess return on a currency perceived by an investor

with log utility whose wealth is fully invested in the stock market. Like the UIP forecast,

the quanto forecast has no free parameters and can be computed directly from asset

prices. Unlike the UIP forecast, the quanto forecast performs well empirically both in

and out of sample.

Empirically, we find that currencies tend to have high quanto-implied risk premia if

they have high interest rates on average, relative to other currencies (a cross-sectional

statement), or if they currently have unusually high interest rates (a time-series state-

ment); and there is more cross-sectional than time-series variation in quanto-implied

risk premia. These facts explain both the existence of the carry trade and the empirical

importance of persistent cross-currency asymmetries, as documented by Hassan and

Mano (2016).

The interpretation of the quanto-implied risk premium as revealing the log investor’s

expectation of currency excess returns is a special case of the identity (6), which de-

composes expected currency appreciation into the interest rate differential (the UIP

term), risk-neutral covariance (the quanto-implied risk premium), and a real-world co-

variance term that, we argue, is likely to be small—and in particular, smaller than the

corresponding covariance term in the well-known identity (3). In the log investor case,

this real-world covariance term is exactly zero, a fact we use to provide intuition and

to motivate our out-of-sample analysis. But we also allow for deviations from the log

investor benchmark—that is, for a nontrivial real-world covariance term—by running

regressions including currency fixed effects, realized covariance, interest rate differen-

tials, the average forward discount of Lustig, Roussanov and Verdelhan (2014), and

the real exchange rate, as in Dahlquist and Penasse (2017), in addition to the quanto-

implied risk premium itself. The quanto-implied risk premium is the best performing

univariate predictor, and features in every R2-maximizing multivariate specification.

Let us note, finally, that although we have argued that quanto-implied risk premia

should (in theory) and do (in practice) predict currency excess returns, we have said

nothing about why a particular currency should have a high or low quanto-implied risk
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premium at a given time. Analogously, the CAPM predicts that assets’ betas should

forecast their returns but has nothing to say about why a given asset has a high or

low beta. Connecting quanto-implied risk premia to macroeconomic fundamentals is

an interesting topic for future research.
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A Appendix

Figure 1: The time series of QRP. The figure drops two currencies (PLN and DKK) for which we
have highly incomplete time series.
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Figure 2: Time series of annualized expected currency appreciation implied by the quanto theory
(ECA) and by UIP (IRD).
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Table 1: Summary statistics of ECA

This table reports annualized summary statistics (in %) of quanto-based expected currency
appreciation (ECA).

Mean Std Dev. Skew Kurtosis Min Max Autocorr.

Expected currency appreciation, ECA

AUD −1.231 0.723 −0.114 −0.577 −2.550 0.450 0.864

CAD 0.327 0.526 0.909 0.494 −0.526 1.835 0.845

CHF 1.064 0.472 1.147 0.210 0.422 2.176 0.934

DKK 0.331 0.487 −0.097 −0.606 −0.587 1.172 0.762

EUR 0.587 0.398 −0.725 0.799 −0.493 1.300 0.877

GBP 0.326 0.350 −0.103 −0.517 −0.444 1.077 0.894

JPY −0.337 0.412 0.484 −0.989 −0.978 0.555 0.953

KRW 0.706 0.724 1.455 2.922 −0.182 3.387 0.770

NOK −0.398 0.622 0.624 0.040 −1.474 0.991 0.877

PLN −1.340 0.892 0.759 −0.479 −2.554 0.436 0.881

SEK 0.574 0.656 −0.143 −0.340 −0.907 1.885 0.885

Average 0.056 0.569 0.382 0.087 −0.934 1.388 0.867

Pooled 0.056 0.908 −0.500 0.630 −2.554 3.387
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Table 2: Summary statistics of IRD and QRP

This table reports annualized summary statistics (in %) of UIP forecasts (IRD, top panel),
and quanto-implied risk premia (QRP, bottom).

Mean Std Dev. Skew Kurtosis Min Max Autocorr.

Interest rate differential, IRD

AUD −2.815 1.007 −0.104 −1.081 −4.533 −1.168 0.979

CAD −0.712 0.353 1.121 0.204 −1.133 0.195 0.890

CHF 0.560 0.441 1.501 1.137 0.013 1.690 0.953

DKK −0.821 0.470 0.298 −0.794 −1.596 0.005 0.915

EUR −0.056 0.622 −0.282 −0.509 −1.377 0.983 0.977

GBP −0.352 0.223 −0.098 −0.745 −0.865 0.082 0.925

JPY 0.410 0.206 0.476 −1.229 0.133 0.809 0.909

KRW −0.973 0.443 0.587 −1.017 −1.614 −0.116 0.877

NOK −1.596 0.690 0.587 −0.286 −2.798 −0.107 0.955

PLN −3.422 1.030 2.010 2.733 −4.215 −0.806 0.967

SEK −0.715 0.905 0.430 −0.421 −2.354 1.105 0.981

Average −0.954 0.581 0.593 −0.183 −1.849 0.243 0.939

Pooled −0.954 1.265 −0.952 0.657 −4.533 1.690

Quanto-implied risk premium, QRP

AUD 1.584 0.692 0.546 −0.454 0.666 3.306 0.941

CAD 1.039 0.441 0.509 −0.572 0.309 2.090 0.926

CHF 0.504 0.171 0.663 1.405 0.131 1.023 0.900

DKK 1.153 0.275 0.400 0.336 0.643 1.768 0.788

EUR 0.643 0.556 −0.104 −1.274 −0.315 1.708 0.978

GBP 0.678 0.389 0.270 −1.318 0.207 1.472 0.959

JPY −0.746 0.295 −0.033 −1.287 −1.287 −0.255 0.945

KRW 1.679 0.589 1.605 2.582 0.944 3.752 0.859

NOK 1.198 0.359 0.876 0.462 0.665 2.194 0.890

PLN 2.083 0.650 0.814 0.026 1.194 3.509 0.868

SEK 1.289 0.616 0.801 0.620 0.371 3.004 0.938

Average 1.009 0.457 0.577 0.048 0.321 2.143 0.908

Pooled 1.009 0.857 −0.107 0.658 −1.287 3.752
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Table 3: Volatilities and correlations of ECA, IRD, and QRP

This Table presents the standard deviations (in %) of, and correlations between, the interest rate dif-
ferential (IRD), the quanto-implied risk premium (QRP), and expected currency appreciation (ECA),
calculated from (14) for each currency i:

IRDi,t =
R$
f,t

Rif,t
− 1

QRPi,t =
Qi,t − Ft
Rif,tPt

ECAi,t = QRPi,t + IRDi,t.

The row labelled “Time series” reports means of the currencies’ time-series standard deviations and
correlations. The row labelled “Cross section” reports cross-sectional standard deviations and correlations
of time-averaged ECA, IRD, and QRP. The row labelled “Pooled” reports standard deviations and
correlations of the pooled data. All quantities are expressed in annualized terms.

σ(ECA) σ(IRD) σ(QRP ) ρ(ECA, IRD) ρ(ECA,QRP ) ρ(IRD,QRP )

AUD 0.723 1.007 0.692 0.727 −0.013 −0.696

CAD 0.526 0.353 0.441 0.558 0.748 −0.134

CHF 0.472 0.441 0.171 0.932 0.355 −0.007

DKK 0.487 0.470 0.275 0.835 0.342 −0.231

EUR 0.398 0.622 0.556 0.476 0.183 −0.777

GBP 0.350 0.223 0.389 0.137 0.822 −0.451

JPY 0.412 0.206 0.295 0.738 0.882 0.333

KRW 0.724 0.443 0.589 0.582 0.792 −0.036

NOK 0.622 0.690 0.359 0.855 0.090 −0.439

PLN 0.892 1.030 0.650 0.780 0.135 −0.514

SEK 0.656 0.905 0.616 0.733 −0.013 −0.690

Time-series 0.569 0.581 0.457 0.669 0.393 −0.331

Cross-section 0.786 1.242 0.751 0.817 −0.305 −0.798

Pooled 0.908 1.265 0.857 0.736 −0.026 −0.696

40



AUDAUD

CADCAD

CHFCHF

EUREUR

GBPGBP

JPYJPY

NOKNOK

SEKSEK
DKKDKK

KRWKRW

PLNPLN

-1 1 2 3
QRP

-5

-4

-3

-2

-1

1
IRD

(a) The relationship between QRP and IRD
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Figure 3: For each currency, the figures plot mean QRP and IRD (or ECA) surrounded
by a confidence ellipse whose orientation reflects the time-series correlation between
QRP and IRD (or ECA), and whose size reflects their volatilities. The location and
orientation of the ellipses in panel (a) indicate that high interest rates are associated
with high quanto-implied risk premia in the cross section and in the time series.
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Figure 4: Term structure of the euro-dollar risk premium, as measured by QRP, in the time series
for horizons of 6, 12, 24, and 60 months.
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Figure 5: Expected currency appreciation over a 24-month horizon (annualized), as measured by
ECA from equation (14), for the EUR-USD, JPY-USD, EUR-JPY, and EUR-CHF currency pairs.
Each panel plots ECA for the respective currency pair from the two national perspectives, using
quanto contracts on the respective domestic index denominated in the respective foreign currency.
The solid blue line plots ECA as perceived by a log investor fully invested in the S&P (top two
panels), Nikkei (bottom left panel), and SMI (bottom right panel), respectively. The dashed red
line plots the negative of ECA for the same currency pair (inverting the exchange rate) from the
perspective of a log investor fully invested in the respective foreign equity index.

43



AUDAUD

CADCAD

CHFCHF

EUREUR

GBPGBP

JPYJPY

NOKNOK
SEKSEK

DKKDKK
KRWKRW

PLNPLN

-4 -3 -2 -1 1 2
QRP

-10

-5

5
RXR

(a) Realized currency excess return against QRP, computed from (14)
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(b) Realized currency excess return against IRD

Figure 6: Realized and expected currency excess return according to (a) the quanto theory and
(b) UIP. The centre of each confidence ellipse represents a currency’s mean expected and realized
currency excess return. In population, each ellipse would contain 20% of its currency’s data points
under normality. The orientation of each ellipse reflects the time-series correlation between realized
and forecast appreciation for the given currency, while the ellipse’s size reflects their volatilities.
Panel (a) shows a dotted 45◦ line for comparison.
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(a) Realized currency appreciation against ECA, computed from (14)
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(b) Realized currency appreciation against IRD

Figure 7: Realized and expected currency appreciation according to (a) the quanto theory and
(b) UIP. The centre of each confidence ellipse represents a currency’s mean expected and realized
currency appreciation. In population, each ellipse would contain 20% of its currency’s data points
under normality. The orientation of each ellipse reflects the time-series correlation between realized
and forecast appreciation for the given currency, while the ellipse’s size reflects their volatilities.
Panel (a) shows a dotted 45◦ line for comparison.
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Table 4: Currency excess return forecasting regressions

This Table presents results from three currency excess return forecasting regressions:

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + γ IRDi,t + εi,t+1 (22)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + εi,t+1 (23)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ γ IRDi,t + εi,t+1 (24)

The two panels report coefficient estimates for each pooled and fixed effects regression, respectively, with standard
errors (computed using a nonparametric block bootstrap) in parentheses, as well as R2 (in %).

Panel A: Pooled panel regressions

Regression (22) (23) (24)

α (p.a.) −0.048 −0.047 −0.030

(0.020) (0.019) (0.014)

β 3.394 2.604

(1.734) (1.127)

γ 0.769 −0.832

(1.040) (0.651)

R2 19.13 17.43 3.88

Panel B: Panel regressions with currency fixed effects

β 5.456 4.995

(2.046) (1.565)

γ 0.717 −1.363

(1.411) (1.001)

R2 22.60 22.03 2.77
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Table 5: Currency forecasting regressions

This Table presents results from three currency forecasting regressions:

ei,t+1

ei,t
− 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1 (25)

ei,t+1

ei,t
− 1 = α+ βQRPi,t + εi,t+1 (26)

ei,t+1

ei,t
− 1 = α+ γ IRDi,t + εi,t+1 (27)

The two panels report coefficient estimates for each pooled and fixed effects regression, respectively, with standard
errors (computed using a nonparametric block bootstrap) in parentheses, as well as R2 (in %).

Panel A: Pooled panel regressions

Regression (25) (26) (27)

α (p.a.) −0.048 −0.045 −0.030

(0.020) (0.019) (0.014)

β 3.394 1.576

(1.726) (1.172)

γ 1.769 0.168

(1.045) (0.651)

R2 16.01 6.63 0.16

Panel B: Panel regressions with currency fixed effects

β 5.456 4.352

(2.047) (1.682)

γ 1.717 −0.363

(1.414) (1.007)

R2 20.56 17.16 0.20
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Table 6: Separate return forecasting regressions using QRP and IRD predictors

This table reports the results of running regressions (23), (24), (25), and (27) separately for each
currency at the 24-month horizon, and at 6- and 12-month horizons for the euro. We report the OLS
estimates along with Hansen–Hodrick standard errors. R2 are reported in %.

Currency AUD CAD CHF DKK EUR EUR EUR GBP JPY KRW NOK PLN SEK

Horizon 24m 24m 24m 24m 6m 12m 24m 24m 24m 24m 24m 24m 24m

Panel A: Regression (23): ei,t+1/ei,t −R$
f,t/R

i
f,t = α+ βQRPi,t + εi,t+1

α (p.a.) −0.062 −0.085 −0.003 −0.052 −0.040 −0.071 −0.060 −0.086 −0.012 −0.068 −0.180 −0.065 −0.106

(0.071) (0.042) (0.038) (0.022) (0.056) (0.052) (0.030) (0.031) (0.090) (0.034) (0.061) (0.026) (0.048)

β 3.258 4.754 −1.657 4.125 3.702 6.361 4.148 9.217 4.750 4.227 11.860 3.580 5.930

(3.991) (3.546) (6.903) (1.723) (6.263) (5.527) (3.367) (3.791) (10.959) (1.757) (4.698) (0.956) (3.316)

R2 12.15 25.39 0.60 17.42 3.17 17.98 25.93 57.48 4.06 46.59 49.96 33.01 38.00

Panel B: Regression (24): ei,t+1/ei,t −R$
f,t/R

i
f,t = α+ γ IRDi,t + εi,t+1

α (p.a.) −0.091 −0.006 0.001 0.014 −0.015 −0.019 −0.034 −0.043 −0.152 0.007 −0.091 0.005 −0.042

(0.084) (0.030) (0.027) (0.023) (0.083) (0.040) (0.025) (0.034) (0.046) (0.034) (0.065) (0.045) (0.035)

γ −2.859 4.135 −2.246 2.147 2.626 1.869 −1.439 −5.564 25.539 0.312 −3.310 −0.118 −1.765

(2.743) (3.543) (3.067) (2.036) (7.375) (6.349) (3.255) (6.779) (8.318) (3.011) (3.698) (1.211) (2.730)

R2 19.82 12.30 7.33 13.77 1.23 1.31 3.90 6.93 57.26 0.14 14.39 0.09 7.28

Panel C: Regression (25): ei,t+1/ei,t − 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1

α (p.a.) −0.093 −0.055 0.010 −0.041 −0.055 −0.092 −0.078 −0.082 −0.165 −0.063 −0.185 −0.041 −0.117

(0.087) (0.044) (0.035) (0.021) (0.053) (0.043) (0.027) (0.033) (0.079) (0.046) (0.070) (0.032) (0.043)

β 0.698 5.291 −1.698 5.252 10.008 12.916 7.321 9.760 −1.348 4.241 11.230 4.736 7.895

(3.130) (2.984) (6.621) (1.260) (7.198) (4.771) (2.895) (3.519) (7.485) (1.719) (3.491) (0.848) (2.552)

γ −1.525 6.019 −1.250 3.857 11.447 11.992 4.651 3.094 27.182 1.514 0.253 2.419 2.938

(2.429) (2.637) (3.050) (1.671) (8.450) (4.880) (2.175) (3.124) (8.344) (2.149) (2.402) (1.003) (1.683)

R2 9.79 46.74 3.04 48.62 14.42 45.19 33.51 57.29 59.41 48.22 46.61 45.28 39.00

Panel D: Regression (27): ei,t+1/ei,t − 1 = α+ γ IRDi,t + εi,t+1

α (p.a.) −0.091 −0.006 0.001 0.014 −0.007 −0.019 −0.034 −0.043 −0.152 0.007 −0.091 0.005 −0.042

(0.084) (0.030) (0.027) (0.023) (0.041) (0.040) (0.025) (0.034) (0.046) (0.034) (0.065) (0.045) (0.035)

γ −1.859 5.135 −1.246 3.147 3.626 2.869 −0.439 −4.564 26.539 1.312 −2.310 0.882 −0.765

(2.743) (3.543) (3.067) (2.036) (7.375) (6.349) (3.255) (6.779) (8.318) (3.011) (3.698) (1.211) (2.730)

R2 9.47 17.78 2.38 25.54 2.32 3.03 0.38 4.77 59.13 2.48 7.57 4.79 1.45
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Table 7: Principal components analysis of residuals

This table reports the loadings on the principal components of realized residuals obtained from the
quanto theory (top panel) and the fixed-effects specification of regression (23) (bottom panel). In
order to limit the impact of missing observations, the residuals are only obtained for the balanced
panel of currencies (excluding DKK, KRW, and PLN).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Theory residuals

AUD 0.520 0.160 0.108 −0.443 −0.273 0.235 0.578 −0.183

CAD 0.311 −0.015 −0.107 −0.257 −0.090 0.458 −0.490 0.606

CHF 0.194 −0.124 0.644 0.344 −0.534 −0.270 −0.067 0.228

EUR 0.243 −0.265 −0.308 0.688 −0.119 0.490 0.127 −0.179

GBP 0.083 −0.471 0.579 −0.104 0.552 0.296 −0.046 −0.176

JPY 0.353 0.741 0.200 0.325 0.397 0.009 −0.145 −0.055

NOK 0.472 −0.194 −0.190 −0.147 −0.099 −0.334 −0.527 −0.532

SEK 0.427 −0.283 −0.238 0.093 0.382 −0.472 0.324 0.446

Explained 61.26% 26.49% 7.26% 2.80% 0.93% 0.53% 0.39% 0.34%

Regression residuals

AUD 0.532 0.138 0.019 −0.261 0.665 −0.025 −0.368 −0.227

CAD 0.276 −0.057 −0.175 −0.271 0.248 0.057 0.657 0.566

CHF 0.177 −0.243 0.662 0.273 0.070 −0.594 0.052 0.193

EUR 0.178 −0.291 −0.430 0.732 0.248 −0.004 0.205 −0.244

GBP −0.086 −0.440 0.489 0.024 0.195 0.714 0.073 −0.082

JPY 0.558 0.539 0.243 0.289 −0.372 0.303 0.154 −0.050

NOK 0.369 −0.451 −0.060 −0.399 −0.409 −0.148 0.229 −0.506

SEK 0.351 −0.384 −0.209 0.068 −0.295 0.144 −0.555 0.516

Explained 65.70% 16.33% 10.65% 3.10% 2.12% 1.20% 0.54% 0.34%
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Table 8: Realized covariance regressions

This Table presents results of regressions using the lagged realized covariance of exchange rate movements with
the negative reciprocal of the S&P 500 return (RPCL) as a proxy for the currency beta:

RPCLi,t = R$
f,t

(
t∑

t−h

[
ei,s
ei,s−1

(
− 1

Rs

)]
− 1

h

t∑
t−h

(
− 1

Rs

) t∑
t−h

ei,s
ei,s−1

)
,

where the summation is over daily returns on trading days s preceding t over a time-frame corresponding to our
forecasting horizon, h, so that RPCLi,t is observable at time t.

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ γ RPCLi,t + εi,t+1 (35)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + γ RPCLi,t + εi,t+1 (36)

We also define a realized covariance measure RPCi,t that is analogous to the above definition except that the
summation is over trading days following t over the appropriate time-frame (so that it is not observable until time
t+ h). We test whether risk-neutral covariance forecasts realized covariance by running the following regression.

RPCi,t = α+ βQRPi,t + εi,t+1 (37)

We report coefficient estimates for each regression, with standard errors (computed using a nonparametric block
bootstrap) in brackets. See Section 2.5 for more detail.

Panel A: Pooled panel regression

Regression (35) (36) (37)

α (p.a.) −0.034 −0.047 −0.000

(0.017) (0.018) (0.001)

β 2.798 0.447

(1.366) (0.158)

γ 1.307 −0.213

(1.111) (1.193)

R2 7.37 17.52 36.56

Panel B: Panel regression with currency fixed effects

β 4.643 0.330

(2.006) (0.168)

γ 1.967 0.387

(1.474) (1.384)

R2 9.14 22.27 9.43
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Table 9: Beyond the log investor

This table reports the R2-maximizing univariate, bivariate, 3-variate, and 4-variate specifications in regressions of
realized currency excess returns onto combinations of QRP, IRD, the average forward discount IRD, and the real
exchange rate, q. The table reports standard errors (computed using a nonparametric block bootstrap) in brackets.
See Section 2.5 for more detail. The last line reports R2 (in %).

Panel regressions with currency fixed effects

Regressor univariate bivariate 3-variate 4-variate

QRP, β 4.995 5.646 3.865 3.570

(1.565) (1.376) (1.617) (1.809)

IRD, γ −1.096

(1.460)

IRD, δ −9.763 −8.251

(3.325) (3.045)

RER, ζ −0.408 −0.767 −0.795

(0.134) (0.162) (0.190)

R2 22.03 35.25 43.28 43.88
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Table 10: R2 of different variable combinations

This table reports the R2 (in %) from currency excess return forecasting regressions (with currency
fixed effects) using all possible univariate, bivariate, 3-variate and 4-variate combinations of the
quanto-implied risk premium (QRP), the interest rate differential (IRD), the average interest rate
differential (IRD), and the real exchange rate (RER).

univariate bivariate 3-variate 4-variate

QRP 22.03

RER 7.88

IRD 2.77

IRD 1.99

QRP, RER 35.25

IRD, RER 33.70

IRD, RER 27.73

QRP, IRD 22.73

QRP, IRD 22.60

IRD, IRD 2.79

QRP, IRD, RER 43.28

QRP, IRD, RER 39.54

IRD, IRD, RER 36.40

QRP, IRD, IRD 22.79

QRP, IRD, IRD, RER 43.88
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Table 11: Quantos and the real exchange rate

This Table presents results from currency excess return forecasting regressions that extend the baseline results in
Table 4 by adding the log real exchange rate to the regressors on the right-hand side. Following Dahlquist and

Penasse (2017), we compute the log real exchange rate as RERi,t = log
(
ei,t

Pi,t

P$,t

)
, where Pi,t and P$,t are consumer

price indices for country i and the US, respectively, obtained from the OECD.

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + βQRPi,t + γ IRDi,t + ζ RERi,t + εi,t+1 (38)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + βQRPi,t + ζ RERi,t + εi,t+1 (39)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + γ IRDi,t + ζ RERi,t + εi,t+1 (40)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + ζ RERi,t + εi,t+1 (41)

The two panels report coefficient estimates for each pooled and fixed effects regression, respectively, with standard
errors (computed using a nonparametric block bootstrap) in parentheses, see Section 2.5 for more detail.

Panel regressions with currency fixed effects

Regression (38) (39) (40) (41)

QRP, β 4.316 5.646

(1.821) (1.376)

IRD, γ -2.557 -4.726

(1.533) (1.233)

RER, ζ -0.604 -0.408 -0.715 -0.311

(0.192) (0.134) (0.190) (0.161)

R2 39.54 35.25 27.73 7.88
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Table 12: Joint tests of statistical significance

This Table presents results from three currency forecasting regressions:

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + γ IRDi,t + εi,t+1 (22)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + εi,t+1 (23)

ei,t+1

ei,t
− 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1 (25)

The Table reports p-values of Wald tests of various hypotheses on the regression coefficients. H1
0 is the hypothesis

suggested by Result 2: α = γ = 0 and β = 1 in regression (22), α = 0 and β = 1 in regression (23), and α = 0 and
β = γ = 1 in regression (25). Hypothesis H2

0 drops the constraint that α = 0, and therefore tests our model’s
ability to predict differences in currency returns but not its ability to predict the absolute level of (dollar) returns.
Hypothesis H3

0 is that QRP is not useful for forecasting. For each Wald test, we report both the asymptotic
p-values obtained from the χ2 distribution and p-values from a bootstrapped small-sample distribution (in the
format asymptotic p-value / small-sample p-value).

Panel A: Pooled panel regression

Regression (22) (23) (25)

H1
0 : α = γ = 0, β = 1 0.029 / 0.357

H1
0 : α = 0, β = 1 0.039 / 0.342

H1
0 : α = 0, β = γ = 1 0.030 / 0.340

H2
0 : β = 1, γ = 0 0.342 / 0.546

H2
0 : β = 1 0.155 / 0.299

H2
0 : β = 1, γ = 1 0.339 / 0.493

H3
0 : β = 0 0.050 / 0.088 0.021 / 0.097 0.049 / 0.082

Panel B: Panel regression with currency fixed effects

H2
0 : β = 1, γ = 0 0.029 / 0.256

H2
0 : β = 1 0.011 / 0.163

H2
0 : β = 1, γ = 1 0.029 / 0.238

H3
0 : β = 0 0.008 / 0.051 0.001 / 0.089 0.008 / 0.051
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(a) Pooled, H1
0 (b) Fixed effects, H2

0

(c) Pooled, H3
0 (d) Fixed effects, H3

0

Figure 8: Histogram of the small-sample distributions of the test statistics for various hy-
potheses on regression (25). The asymptotic distribution is shown as a solid line. Asterisks
indicate the test statistics for the original sample.
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Table 13: Out-of-sample forecast performance

We define a dollar-neutral out-of-sample R2 similar to Goyal and Welch (2008):

R2
OS = 1−

∑
i

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)2∑

i

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)2

,

where εQi,t+1 and εBi,t+1 denote forecast errors (for currency i against the dollar) of the quanto theory and the bench-
mark, respectively. We use the quanto theory and three competitor benchmarks to forecast currency appreciation
as follows:

Theory: EQ
t

ei,t+1

ei,t
− 1 = QRPi,t + IRDi,t

UIP: EU
t

ei,t+1

ei,t
− 1 = IRDi,t

Constant: EC
t

ei,t+1

ei,t
− 1 = 0

PPP: EP
t

ei,t+1

ei,t
− 1 =

(
π$
t

πi
t

)2

− 1

We also report results for the following decomposition of R2
OS , which focusses on dollar-neutral forecast performance

for currency i:

R2
OS,i = 1−

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)2∑

j

∑
t(ε

B
i,t+1 − εBj,t+1)2

.

The second panel reports R2
OS measures by currency. (All R2

OS measures are reported in %.) The last line of the
table reports p-values for a small-sample Diebold–Mariano test of the null hypothesis that the quanto theory and
competitor model perform equally well for all currencies.

Benchmark IRD Constant PPP

R2
OS 10.91 9.57 26.05

R2
OS,AUD 9.71 0.93 11.42

R2
OS,CAD 6.24 6.55 21.31

R2
OS,CHF 1.40 16.37 11.43

R2
OS,DKK 10.22 7.71 23.36

R2
OS,EUR 7.65 5.36 24.56

R2
OS,GBP 2.98 9.74 32.35

R2
OS,JPY 19.21 9.59 33.74

R2
OS,KRW 21.98 17.09 34.71

R2
OS,NOK 3.43 12.86 18.97

R2
OS,PLN 13.25 8.32 19.62

R2
OS,SEK 7.68 5.88 28.22

DM p-value 0.039 0.000 0.000
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Figure 9: Correct classification frontier (CCF) and AUC statistics for the quanto forecast, and a com-
petitor excess return forecast under which exchange rates follow a random walk.

Figure 10: Reverse-conditioned correct classification frontier (CCF) and AUC statistics for the quanto
forecast, and a competitor excess return forecast under which exchange rates follow a random walk.
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Disclaimer

Markit® is a trade name and the property of Markit Group Limited or its affiliate (“Markit”)

and is used by the London School of Economics and Political Science under license. Data

provided by Markit®. Nothing in this publication is sponsored, endorsed, sold or promoted

by Markit or its affiliates. Neither Markit nor its affiliates make any representations or

warranties, express or implied, to you or any other person regarding the advisability of

investing in the financial products described in this report or as to the results obtained from

the use of the Markit Data. Neither Markit nor any of its affiliates have any obligation or

liability in connection with the operation, marketing, trading or sale of any financial product

described in this report or use of the Markit Data. Markit and its affiliates shall not be liable

(whether in negligence or otherwise) to any person for any error in the Markit Data and shall

not be under any obligation to advise any person of any error therein.
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