

The Quanto Theory of Exchange Rates

Lukas Kremens Ian Martin

April, 2018

It is notoriously hard to forecast exchange rates

- Much of the literature is organized around the **uncovered interest parity** (UIP) benchmark, which predicts that exchange rate movements should offset interest rate differentials on average, and thereby equalize expected returns across currencies
- Hansen–Hodrick (1980), Fama (1984), and others: UIP fails badly

Three appealing properties of UIP

- ① **Based on asset prices alone**: observable in real time; no reliance on infrequently updated, imperfectly measured macro statistics
- ② **No free parameters**: nothing to estimate, so no in-sample / out-of-sample issues
- ③ **Straightforward interpretation**: represents the expected currency appreciation perceived by a risk-neutral investor

- #1–#3 explain why UIP is such an important benchmark
- #3 also explains why it should never have been expected to work empirically: risk neutral expectation \mathbb{E}_t^* \neq true expectation \mathbb{E}_t

This paper

- We propose an alternative benchmark, the **quanto theory**, that has the three appealing properties, but also allows for risk aversion
- ... and performs well empirically

Theory (1)

- Start from a fundamental equation of asset pricing,

$$\mathbb{E}_t \left(M_{t+1} \tilde{R}_{t+1} \right) = 1$$

- ▶ \mathbb{E}_t : expectation conditional on time- t information
- ▶ M_{t+1} : SDF that prices dollar payoffs
- ▶ \tilde{R}_{t+1} : any gross dollar return

- Since $\mathbb{E}_t M_{t+1} = 1/R_{f,t}^{\$}$, we can write this as

$$\mathbb{E}_t \tilde{R}_{t+1} - R_{f,t}^{\$} = -R_{f,t}^{\$} \text{cov}_t \left(M_{t+1}, \tilde{R}_{t+1} \right)$$

Theory (2)

- Currency trade: take a dollar, convert to euros, invest at the (gross) euro riskless rate, $R_{f,t}^{\epsilon}$, and then convert back to dollars
- e_t : price of a euro in dollars, so $\epsilon 1 = \$e_t$ and $\$1 = \epsilon 1/e_t$
- Return on currency trade is $R_{f,t}^{\epsilon} e_{t+1}/e_t$
- Setting $\tilde{R}_{t+1} = R_{f,t}^{\epsilon} e_{t+1}/e_t$ and rearranging,

$$\mathbb{E}_t \frac{e_{t+1}}{e_t} = \underbrace{\frac{R_{f,t}^{\$}}{R_{f,t}^{\epsilon}}}_{\text{UIP forecast}} - \underbrace{R_{f,t}^{\$} \text{cov}_t \left(M_{t+1}, \frac{e_{t+1}}{e_t} \right)}_{\text{risk adjustment}} \quad (1)$$

Theory (3)

- Sometimes convenient to use risk-neutral notation,

$$\text{time } t \text{ price of a claim to } \$X_{t+1} = \frac{1}{R_{f,t}^{\$}} \mathbb{E}_t^* X_{t+1} = \mathbb{E}_t (M_{t+1} X_{t+1})$$

- The identity (1) can be rewritten

$$\mathbb{E}_t^* \frac{e_{t+1}}{e_t} = \frac{R_{f,t}^{\$}}{R_{f,t}^{\epsilon}}$$

- Reduces to UIP in a risk-neutral world in which $\mathbb{E}_t^* = \mathbb{E}_t$

Theory (4)

- The UIP forecast is the expected appreciation perceived by a risk-neutral investor—but this is a very unrealistic perspective
- What about an investor with log utility?
- Answer: depends on the investor's financial wealth, background risk, human capital, etc...
- But if the investor is unconstrained, with wealth fully invested in the market,

$$\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} = \frac{R_{f,t}^{\$}}{R_{f,t}^i} + \frac{1}{R_{f,t}^{\$}} \text{cov}_t^* \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)$$

where R_{t+1} is the return on the market

Theory (5)

Result (An identity)

More generally,

$$\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} = \underbrace{\frac{R_{f,t}^{\$}}{R_{f,t}^i}}_{UIP \text{ forecast}} + \underbrace{\frac{1}{R_{f,t}^{\$}} \text{cov}_t^* \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)}_{\text{quanto-implied risk premium}} - \underbrace{\text{cov}_t \left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right)}_{\text{residual}} \quad (2)$$

where R_{t+1} is an *arbitrary* dollar return, and the first covariance term is computed using the risk-neutral probability distribution

Theory (6)

- Relies only on absence of arbitrage: in particular, must hold in any equilibrium model
- We do not assume complete markets
- We do not assume existence of a representative agent
- We do not assume everyone is rational
- We do not assume everyone is unconstrained
- We do not assume lognormality
- Must hold even for pegged or tightly managed exchange rates

Theory (7)

- Tension between two goals: want to choose R_{t+1}
 - (i) to make the second term measurable; and
 - (ii) to make the third term small (ideally, negligible)
- We will set R_{t+1} equal to the return on the S&P 500 index
- Then the second term is measurable given **quanto forward prices** on S&P 500 index
- The third term is zero from the log investor's point of view because $M_{t+1} = 1/R_{t+1}$

Measuring risk-neutral covariance

Conventional forward

- A commitment to pay $\$F_t$ in exchange for value of S&P 500 index in dollars, $\$P_{t+1}$. Payoff is $\$(P_{t+1} - F_t)$ at time $t + 1$
- To make value equal to zero at initiation, $F_t = \mathbb{E}_t^* P_{t+1}$

Quanto forward

- A commitment to pay ϵQ_t in exchange for value of S&P 500 index in euros, ϵP_{t+1} . Payoff is $\epsilon (P_{t+1} - Q_t)$, or equivalently $\$e_{t+1} (P_{t+1} - Q_t)$, at time $t + 1$
- To make value equal to zero at initiation, $Q_t = \frac{\mathbb{E}_t^* e_{t+1} P_{t+1}}{\mathbb{E}_t^* e_{t+1}}$

- It follows that

$$\frac{Q_t - F_t}{R_{f,t}^\epsilon P_t} = \frac{1}{R_{f,t}^\$} \text{cov}_t^* \left(\frac{e_{t+1}}{e_t}, R_{t+1} \right)$$

The log investor

Result

The exchange-rate appreciation anticipated by a log investor who holds the S&P 500 index can be computed from asset prices via the equation

$$\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} - 1 = \underbrace{\frac{R_{f,t}^{\$}}{R_{f,t}^i} - 1}_{IRD_{i,t}} + \underbrace{\frac{Q_{i,t} - F_t}{R_{f,t}^i P_t}}_{QRP_{i,t}} \\ \underbrace{\qquad\qquad\qquad}_{ECA_{i,t}}$$

Equivalently, the currency risk premium anticipated by such an investor is revealed by QRP:

$$\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} - \frac{R_{f,t}^{\$}}{R_{f,t}^i} = QRP_{i,t}$$

Beyond the log investor

- We view the log investor as a benchmark
- Well suited for out-of-sample forecasting: no free parameters
- But also allow for nonzero second covariance term in various ways
 - ▶ Intercept (captures potential dollar effect)
 - ▶ Fixed effects (captures currency-specific but time-invariant effects)
 - ▶ Other proxies (both currency-specific and time-varying)
 - ★ $IRD_{i,t}$
 - ★ $QRP_{i,t}$
 - ★ Average forward discount, \overline{IRD}_t (Lustig, Roussanov and Verdelhan, 2014)
 - ★ Log real exchange rate, $RER_{i,t}$ (Dahlquist and Penasse, 2017)

Theory: summary

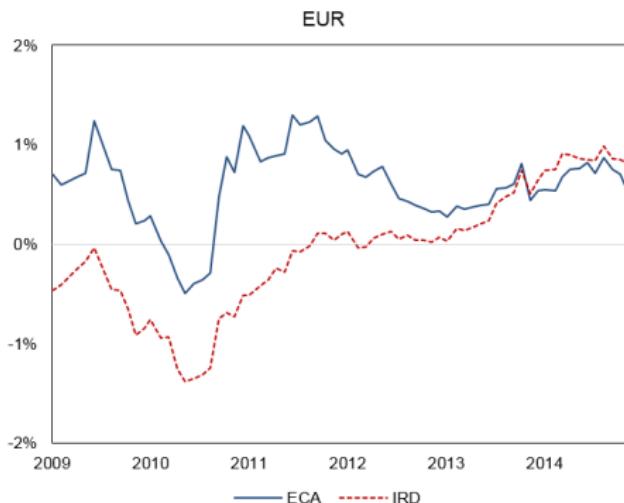
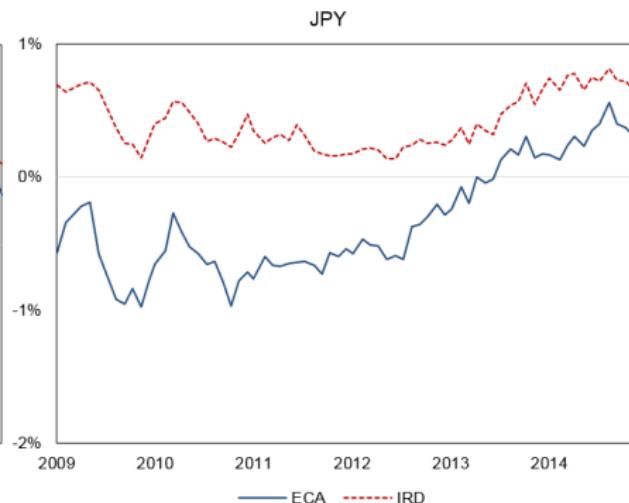
- Intuition: currencies that perform poorly when marginal value of a dollar is high ('bad times') are risky and must earn a risk premium
- Thinking from the perspective of the log investor, the notion of 'bad times' is revealed by the return on the market
- Currencies with positive (risk-neutral) covariance with the market are risky
- Quantos reveal this risk-neutral covariance

Data

- Monthly data on quanto forwards ($Q_{i,t}$) and conventional forwards (F_t) on the S&P 500, obtained from Markit
 - ▶ Australian dollar (AUD)
 - ▶ Canadian dollar (CAD)
 - ▶ Swiss franc (CHF)
 - ▶ Danish krone (DKK)
 - ▶ Euro (EUR)
 - ▶ British pound (GBP)
 - ▶ Japanese yen (JPY)
 - ▶ Korean won (KRW)
 - ▶ Norwegian krone (NOK)
 - ▶ Polish zloty (PLN)
 - ▶ Swedish krona (SEK)
- Maturities of 6, 12, and 24 months, Dec 2009 to Oct 2015

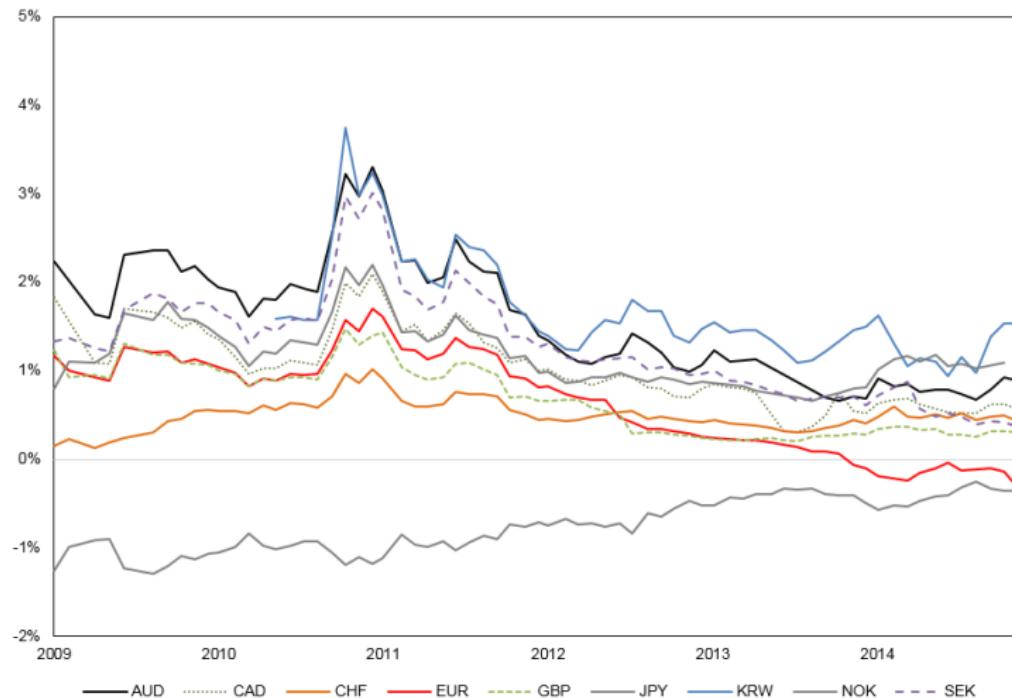
Currency forecasts, 2yr horizon

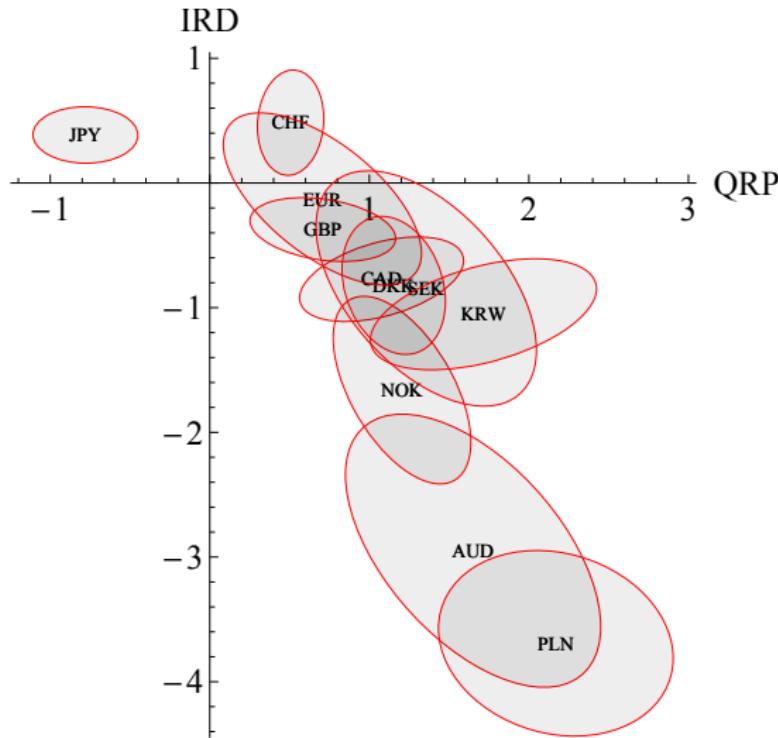
Expected currency appreciation (ECA)



Currency forecasts, 2yr horizon

Expected excess returns (QRP)





- IRD and QRP negatively correlated in time series and cross section
- High interest rates \longleftrightarrow high risk premia: carry trade is profitable

Testing the model

$$\text{Log investor: } \mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} - 1 = \underbrace{\frac{Q_{i,t} - F_t}{R_{f,t}^i P_t}}_{\text{QRP}_{i,t}} + \underbrace{\frac{R_{f,t}^\$}{R_{f,t}^i} - 1}_{\text{IRD}_{i,t}}$$

- We test the model by forecasting
 - ▶ currency excess return: $\frac{e_{i,t+1}}{e_{i,t}} - \frac{R_{f,t}^\$}{R_{f,t}^i}$
 - ▶ currency appreciation: $\frac{e_{i,t+1}}{e_{i,t}} - 1$
- Stylized facts from the literature
 - ▶ High-interest-rate currencies have high excess returns (eg, Hansen–Hodrick, 1980; Fama, 1984)
 - ▶ Hard to forecast currency appreciation (eg, Meese–Rogoff, 1983)
- Bootstrapped covariance matrices

Forecasting excess returns (1)

Log investor: $\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} - \frac{R_{f,t}^{\$}}{R_{f,t}^i} = \text{QRP}_{i,t}$

$$\frac{e_{i,t+1}}{e_{i,t}} - \frac{R_{f,t}^{\$}}{R_{f,t}^i} = \alpha + \beta \text{QRP}_{i,t} + \gamma \text{IRD}_{i,t} + \varepsilon_{i,t+1} \quad (22)$$

$$\frac{e_{i,t+1}}{e_{i,t}} - \frac{R_{f,t}^{\$}}{R_{f,t}^i} = \alpha + \beta \text{QRP}_{i,t} + \varepsilon_{i,t+1} \quad (23)$$

$$\frac{e_{i,t+1}}{e_{i,t}} - \frac{R_{f,t}^{\$}}{R_{f,t}^i} = \alpha + \gamma \text{IRD}_{i,t} + \varepsilon_{i,t+1} \quad (24)$$

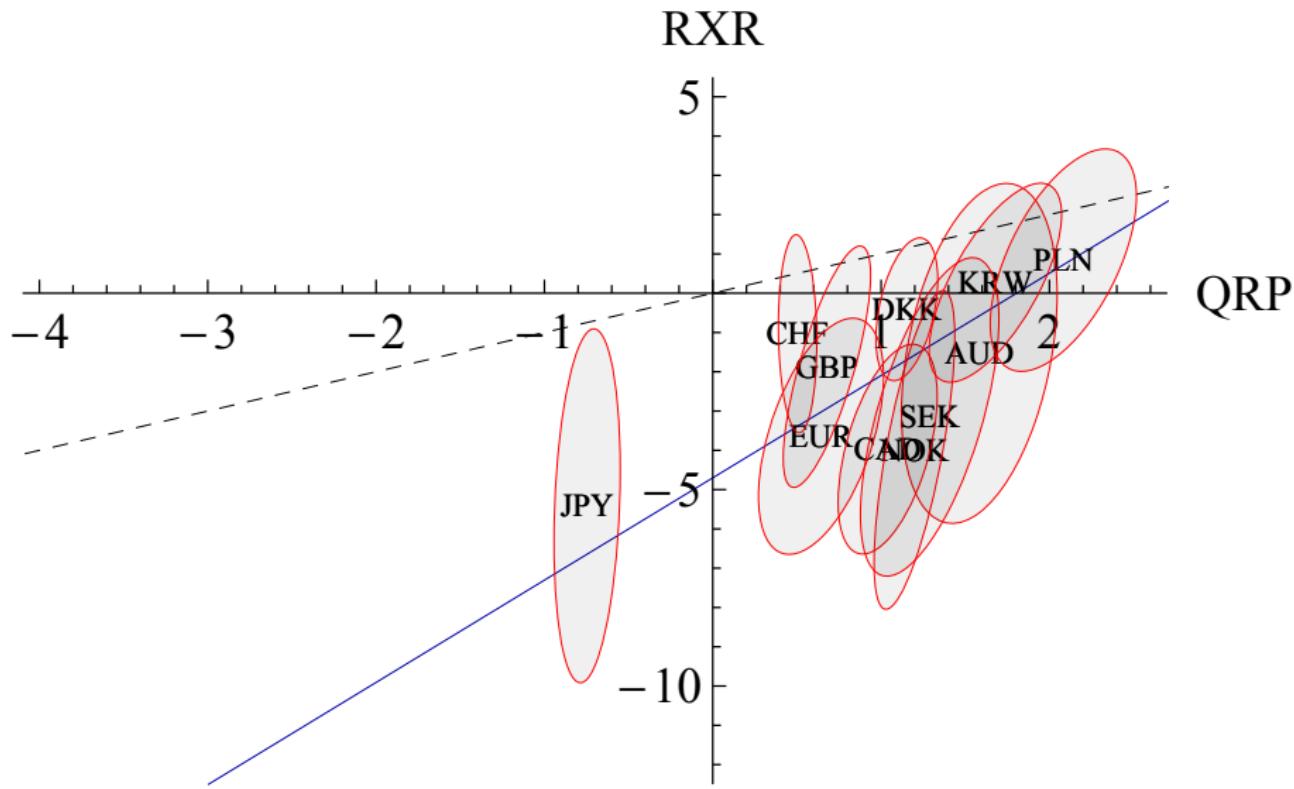
- UIP: $\alpha = \beta = \gamma = 0$
- We hope to find positive and significant β
- Log investor: $\alpha = 0$, $\beta = 1$, $\gamma = 0$ in (22) and (23)

Forecasting excess returns (2)

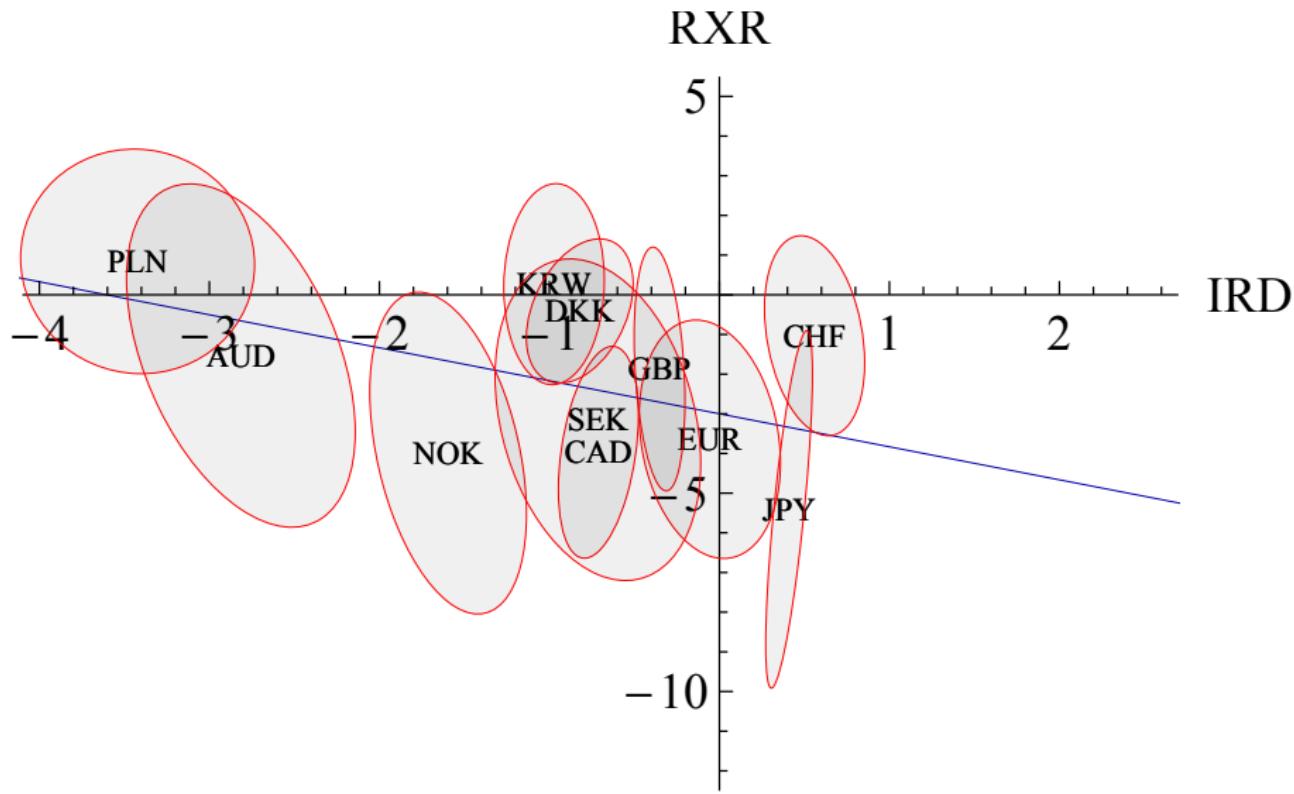
	pooled			currency fixed effects		
Regression	(22)	(23)	(24)	(22)	(23)	(24)
α	-0.048 (0.020)	-0.047 (0.019)	-0.030 (0.014)			
QRP, β	3.394 (1.734)	2.604 (1.127)		5.456 (2.046)	4.995 (1.565)	
IRD, γ	0.769 (1.040)		-0.832 (0.651)	0.717 (1.411)		-1.363 (1.001)
R^2	19.13	17.43	3.88	22.60	22.03	2.77

- QRP positive and economically large in every specification and substantially increases R^2
- Coefficient on QRP is even larger than the log investor predicts
- Fixed effects are a departure from the log investor benchmark: they capture currency-specific, time-invariant component of residual covariance term (and they matter)

Forecasting excess returns (3)



Forecasting excess returns (3)



Forecasting currency appreciation (1)

Log investor: $\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} - 1 = \text{QRP}_{i,t} + \text{IRD}_{i,t}$

$$\frac{e_{i,t+1}}{e_{i,t}} - 1 = \alpha + \beta \text{QRP}_{i,t} + \gamma \text{IRD}_{i,t} + \varepsilon_{i,t+1} \quad (25)$$

$$\frac{e_{i,t+1}}{e_{i,t}} - 1 = \alpha + \beta \text{QRP}_{i,t} + \varepsilon_{i,t+1} \quad (26)$$

$$\frac{e_{i,t+1}}{e_{i,t}} - 1 = \alpha + \gamma \text{IRD}_{i,t} + \varepsilon_{i,t+1} \quad (27)$$

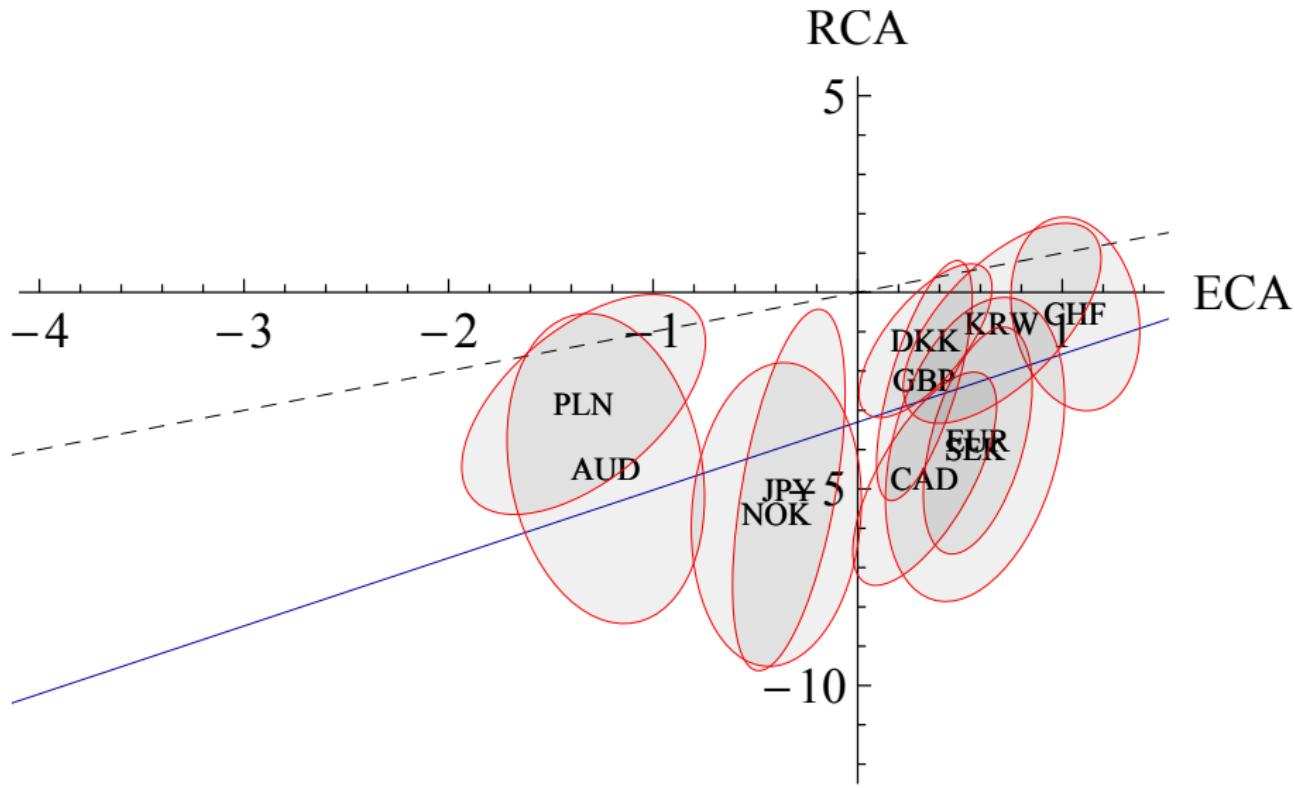
- UIP: $\alpha = \beta = 0, \gamma = 1$
- Log investor: $\alpha = 0, \beta = \gamma = 1$ in (25)

Forecasting currency appreciation (2)

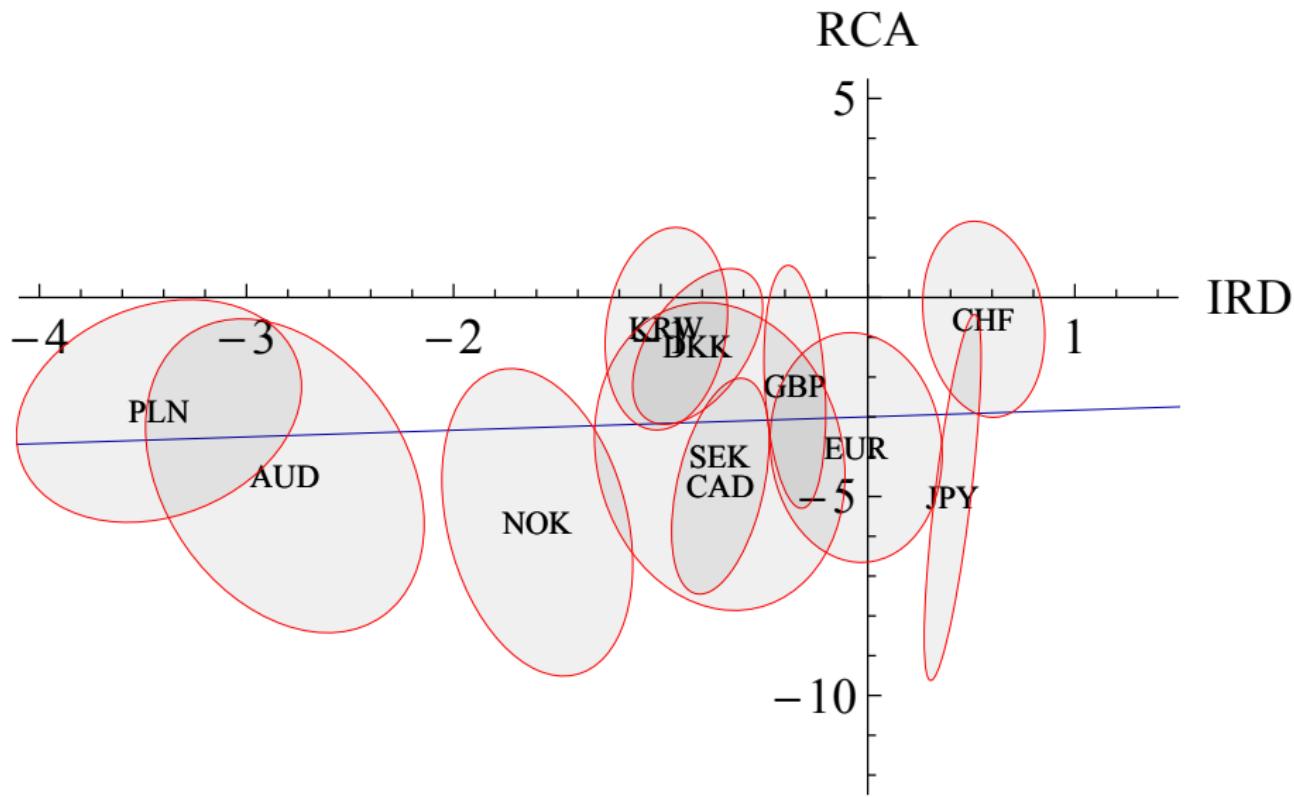
	pooled			currency fixed effects		
Regression	(25)	(26)	(27)	(25)	(26)	(27)
α	-0.048 (0.020)	-0.045 (0.019)	-0.030 (0.014)			
QRP, β	3.394 (1.726)	1.576 (1.172)		5.456 (2.046)	4.352 (1.682)	
IRD, γ	1.769 (1.045)		0.168 (0.651)	1.717 (1.414)		-0.363 (1.007)
R^2	16.01	6.63	0.16	20.56	17.16	0.20

- Mechanical link to previous coefficients, so our interest is in R^2
- Using interest-rate differentials alone, no evidence of forecastability
- Adding QRP dramatically increases R^2 , with and without FEs
- Again, coefficient on QRP is even larger than the theory predicts

Forecasting currency appreciation (3)



Forecasting currency appreciation (3)



Forecasting excess returns: beyond the log investor

$$\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} - \frac{R_{f,t}^{\$}}{R_{f,t}^i} = \text{QRP}_{i,t} - \text{cov}_t \left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right)$$

Regressor	currency fixed effects						
	univariate		bivariate		3-variate		4-variate
QRP, β	4.995	(1.565)	5.654	(1.402)	3.799	(1.657)	3.541 (1.836)
IRD, γ							-1.059 (1.573)
$\overline{\text{IRD}}$, δ					-5.060 (1.605)	-4.266 (1.538)	
RER, ζ			-0.413 (0.136)		-0.780 (0.159)	-0.804 (0.188)	
R^2	22.03		35.40		43.56		44.09

- Consider other specifications in search of the ‘residual’ covariance term: QRP; IRD; average forward discount, $\overline{\text{IRD}}$ (Lustig, Roussanov and Verdelhan 2014); real exchange rate, RER (Dahlquist and Penasse 2017)
- Table reports R^2 -maximizing univariate, ..., 4-variate specifications

Joint tests of statistical significance

Asymptotic p -value / bootstrapped small-sample p -value

	pooled			currency fixed effects		
Regression	(22)	(23)	(25)	(22)	(23)	(25)
$\alpha = \gamma = 0, \beta = 1$	0.029 / 0.357					
$\alpha = 0, \beta = 1$		0.039 / 0.342				
$\alpha = 0, \beta = \gamma = 1$			0.030 / 0.340			
$\beta = 1, \gamma = 0$	0.342 / 0.546			0.029 / 0.256		
$\beta = 1$		0.155 / 0.299			0.011 / 0.163	
$\beta = 1, \gamma = 1$			0.339 / 0.493			0.029 / 0.238

- Asymptotic tests **reject** the quanto theory, largely due to negative intercept (strong dollar over the sample period)
- Small-sample tests **do not reject** the quanto theory predictions

Out-of-sample forecasting (1)

- For out-of-sample forecasts, we return to the log investor case, since this gives us a formula with no free parameters and no fixed effects
- We focus on forecasting **differential returns** on currencies: eg, the relative performance of the yen and the euro vis-à-vis the dollar
- By doing so, we avoid making our results sensitive to the performance of the base currency over our short sample period
- Dollar-neutral R_{OS}^2 for quanto theory (Q) versus benchmark (B)

$$R_{OS}^2 = 1 - \frac{\sum_i \sum_j \sum_t (\varepsilon_{i,t}^Q - \varepsilon_{j,t}^Q)^2}{\sum_i \sum_j \sum_t (\varepsilon_{i,t}^B - \varepsilon_{j,t}^B)^2} \quad \text{and} \quad R_{OS,i}^2 = 1 - \frac{\sum_j \sum_t (\varepsilon_{i,t}^Q - \varepsilon_{j,t}^Q)^2}{\sum_j \sum_t (\varepsilon_{i,t}^B - \varepsilon_{j,t}^B)^2}$$

where $\varepsilon_{i,t}^Q$ and $\varepsilon_{i,t}^B$ are forecast errors for quanto theory and benchmark

- Benchmarks: UIP, random walk, and PPP

Out-of-sample forecasting (2)

Quanto theory: $\mathbb{E}_t^Q \frac{e_{i,T}}{e_{i,t}} - 1 = \text{QRP}_{i,t} + \text{IRD}_{i,t}$

UIP: $\mathbb{E}_t^U \frac{e_{i,T}}{e_{i,t}} - 1 = \text{IRD}_{i,t}$

Constant: $\mathbb{E}_t^C \frac{e_{i,T}}{e_{i,t}} - 1 = 0$

PPP: $\mathbb{E}_t^P \frac{e_{i,T}}{e_{i,t}} - 1 = \left(\frac{\pi_{t-12 \rightarrow t}^{\$}}{\pi_{t-12 \rightarrow t}^i} \right)^2 - 1$

- Natural competitor models: no free parameters

Out-of-sample forecasting (3)

Benchmark	IRD	Constant	PPP
R_{OS}^2	10.91	9.57	26.05
$R_{OS, AUD}^2$	9.71	0.93	11.42
$R_{OS, CAD}^2$	6.24	6.55	21.31
$R_{OS, CHF}^2$	1.40	16.37	11.43
$R_{OS, DKK}^2$	10.22	7.71	23.36
$R_{OS, EUR}^2$	7.65	5.36	24.56
$R_{OS, GBP}^2$	2.98	9.74	32.35
$R_{OS, JPY}^2$	19.21	9.59	33.74
$R_{OS, KRW}^2$	21.98	17.09	34.71
$R_{OS, NOK}^2$	3.43	12.86	18.97
$R_{OS, PLN}^2$	13.25	8.32	19.62
$R_{OS, SEK}^2$	7.68	5.88	28.22
DM <i>p</i> -value	0.039	0.000	0.000

A change of perspective (1)

- From the perspective of the US log investor,

$$\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} - 1 = \text{IRD}_{i,t} + \text{QRP}_{i,t}$$

- For a log investor who is fully invested in the currency- i stock market,

$$\mathbb{E}_t^i \frac{1/e_{i,t+1}}{1/e_{i,t}} - 1 = \text{IRD}_{1/i,t} + \text{QRP}_{1/i,t}$$

- If the US investor expects the euro to appreciate by 2%, does the European investor expect the dollar to depreciate by roughly 2%?
- Yes (empirically)

A change of perspective (2)

- But must take into account Siegel's "paradox":

$$\mathbb{E}_t \frac{e_{i,t+1}}{e_{i,t}} \geq \left(\mathbb{E}_t \frac{1/e_{i,t+1}}{1/e_{i,t}} \right)^{-1}$$

- So if both investors have the same expectations,

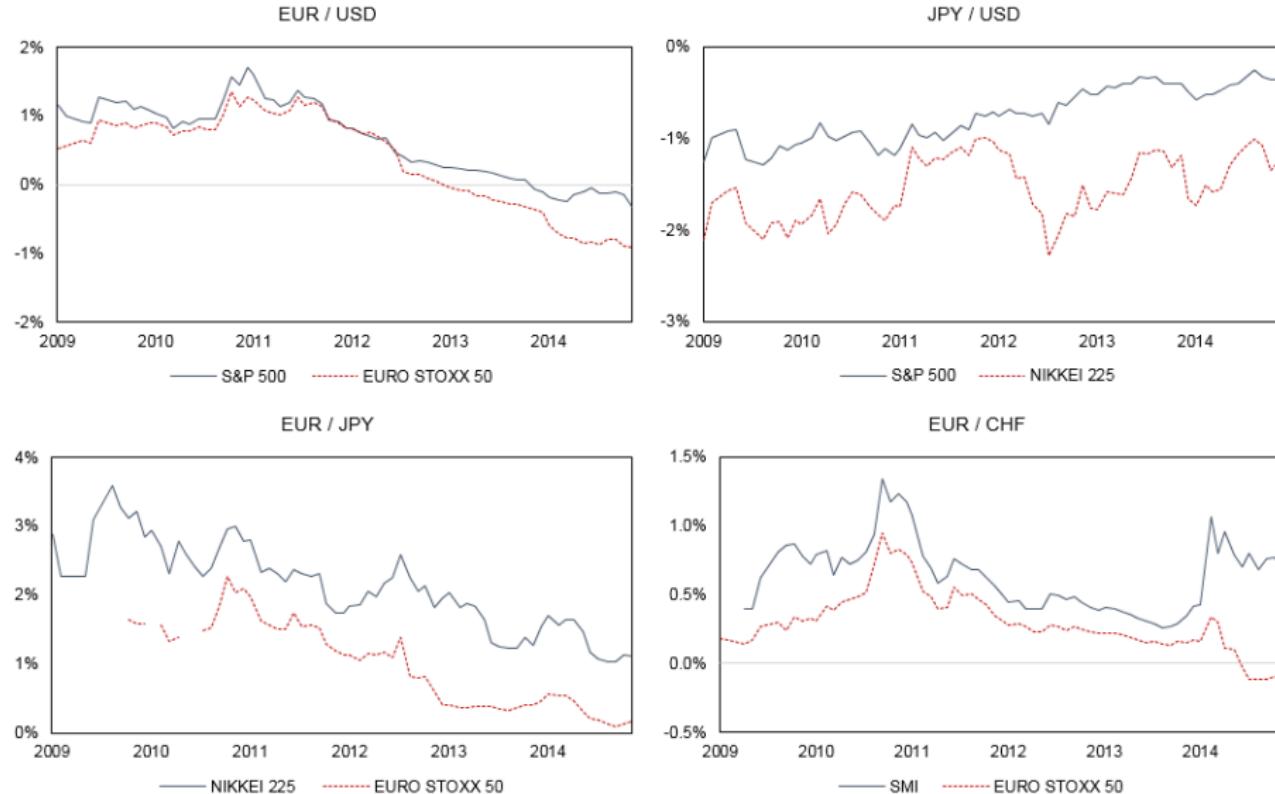
$$\log(1 + \text{ECA}_{i,t}) \geq -\log(1 + \text{ECA}_{1/i,t})$$

- Difference between the two sides depends on variability of $e_{i,t+1}$
- If $e_{i,t+1}$ is lognormal, the difference equals $\text{var}_t \log e_{i,t+1}$
- More generally,

$$\text{difference} = 2 \sum_{n \text{ even}} \frac{\kappa_{n,t}}{n!}$$

where $\kappa_{n,t}$ is the n th conditional cumulant of $\log e_{i,t+1}$

A change of perspective (3)



Risk-neutral covariance vs. true covariance (1)

- Theory says that risk-neutral covariance is the relevant measure
- The distinction matters: the carry trade is more correlated with the market in bad times (Lettau, Maggiori and Weber, 2014)
- Risk-neutral and realized covariances are strongly positively correlated in the cross-section and in the time-series
- QRP is driven out by lagged realized covariance as a forecaster of realized covariance
- But the resulting covariance forecast is driven out by QRP as a **currency** forecaster

Risk-neutral covariance vs. true covariance (2)

- We find that risk-neutral covariance exceeds (proxied) true covariance in magnitude for every currency i in our dataset
- This implies that at least one of the following three options is false
 - ① The market has a positive risk premium
 - ② Currency i has a positive risk premium
 - ③ Currency i , the market return, and the SDF are lognormal
- Most plausible that #3 is false (and consistent with the existence of a volatility smile in FX and equity markets)
- International finance models that assume lognormality cannot hope to match our empirical findings

Conclusions

- Our identity provides a new line of attack for currency forecasting
- Expected currency appreciation equals **interest-rate differential** plus **quanto risk premium** plus **residual** ← zero for log investor
- QRP is negatively correlated with UIP forecast: ‘predicts’ the existence of the carry trade
- QRP itself is highly economically & statistically significant in forecasting regressions
- Outperforms UIP, random walk, and PPP in forecasting differential currency movements out-of-sample