
Online Appendix

Modifying Result 1 to accommodate power utility

Result 8 (Power utility version of Result 1). Let XT be some random variable of

interest whose value becomes known at time T . Then we can compute the expected

value of XT from the perspective of an investor with power utility over time-T wealth

who chooses to invest fully in the market, written ẼtXT , as follows:

(1) ẼtXT =
E∗t (XTR

γ
T )

E∗t (Rγ
T )

,

where γ is the investor’s relative risk aversion.

Proof. The investor’s portfolio choice problem is

max
{wi}i=1,...,N

Ẽt u

(
Wt

N∑
j=1

wjRj,T

)
s.t.

N∑
j=1

wj = 1,

where wi is the investor’s portfolio weight on asset i, u(x) = x1−γ/(1− γ) is the power

utility function, Wt is time-t wealth, and Rj,T is the return on asset j. The first-

order conditions for this problem, combined with the fact that the investor’s optimally

chosen portfolio return is (by assumption) the market return, imply that the SDF is

proportional to R−γT . The result follows as in the body of the paper.

Result 9. For any θ, we have

E∗t Rθ
T =Rθ

f,t +Rf,t

{∫ Ft,T

0

θ(θ − 1)

Sθt
(StRf,t − Ft,T +K)θ−2 putt,T (K) dK +

+

∫ ∞
Ft,T

θ(θ − 1)

Sθt
(StRf,t − Ft,T +K)θ−2 callt,T (K) dK

}
.(2)

Proof. By the definition of RT ,

E∗t Rθ
T = E∗t

[(
ST +DT

St

)θ]
= Rf,t ·

1

Rf,t

E∗t

[(
ST +DT

St

)θ]
.

The term after the dot equals the price of a contract with payoff [(ST + DT )/St]
θ at

time T . Breeden and Litzenberger (1978) show that given some function f(·), the
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time-0 price of the time-T payoff f(ST ) is
∫∞

0
f(K) call′′t,T (K) dK. Thus,

E∗t Rθ
T = Rf,t ·

∫ ∞
0

(
K +DT

St

)θ
call′′t,T (K) dK.

This expression can be simplified by integration by parts. Splitting the range of in-

tegration into two, and using the fact that call′′t,T (K) = put′′t,T (K) (which follows by

differentiating the put-call parity relationship twice with respect to K), we have

E∗t Rθ
T = Rf,t

{∫ Ft,T

0

(
K +DT

St

)θ
put′′t,T (K) dK +

∫ ∞
Ft,T

(
K +DT

St

)θ
call′′t,T (K) dK

}
.

The result follows by integrating by parts twice and using put-call parity to simplify

the resulting expression.

The above two results can be used to compute all moments of the return on the

market (as perceived by an investor with power utility) from option prices. For ex-

ample, Figure XV plots the equity premium perceived by investors with risk aversion

γ = 1, 2, 4, and 8 at one-, three-, and twelve-month horizons. As another example, we

can use the results to compute a measure of true (rather than risk-neutral) forward-

looking volatility, as perceived by an investor with power utility. Figure XVI plots

true forward-looking volatility (in the case γ = 1, i.e. taking the perspective of the log

investor emphasized in Section VI of the main paper) at horizons of one month and

one year. For comparison, the panels also show risk-neutral volatility, which is higher

than true volatility, as one would expect.

Pricing and hedging with ∆ > 0

The hedging strategy provided in Tables VIII and IX perfectly replicates the desired

payoff when ∆ > 0, but requires positions in options at all expiry dates ∆, . . . , T −∆.

Discretizing the continuous-time strategy provided in the statement of Result 6 (which

is exactly valid in the limit as ∆ → 0) is equivalent to ignoring all such positions in

options with intermediate expiry dates. The cashflows in these rows contribute a term

of size O(∆) at time 0, and terms of size O(∆2) at dates between 1 and T−∆. Thus the

overall replication error is of size O(∆), so the limiting strike is a good approximation

to the truth for sampling intervals ∆ > 0. The next result makes this formal.
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FIGURE XV: The annualized equity premium at different horizons (in %), assuming
risk aversion of 1 (black), 2 (green), 4 (blue) and 8 (red). The figures show 10-day

moving averages.
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FIGURE XVI: Risk-neutral volatility (vol∗) and the log investor’s perceived true
volatility (vol) over 1-month and 1-year horizons, annualized and in %. 10-day

moving averages.

Result 10. For ∆ > 0, the exact simple variance swap strike V (∆) is well approxi-

mated by V , given in equation (32):

|V (∆)− V | ≤ T

∆

(
e(r−δ)∆ − 1

)2
(1 + V ) +

∣∣e2(r−δ)∆ − 1
∣∣V .

If T = 1, r − δ = 0.02, V = 0.05, then the right-hand side is less than 0.00001 with

daily sampling (∆ = 1/252), less than 0.00005 with weekly sampling (∆ = 1/52), and

less than 0.0002 with monthly sampling (∆ = 1/12).

Proof. Result 6 implies that for j < T/∆,

erj∆P (j∆)

F 2
0,j∆

= lim
∆→0

E∗0
j∑
i=1

[
Si∆ − S(i−1)∆

F0,(i−1)∆

]2

≤ lim
∆→0

E∗0
T/∆∑
i=1

[
Si∆ − S(i−1)∆

F0,(i−1)∆

]2

=
erTP (T )

F 2
0,T

.
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Combining this observation with (37), we find that∣∣∣∣∣V (∆)− erTP (T )

F 2
0,T−∆

∣∣∣∣∣ =

T/∆−1∑
j=1

(
e(r−δ)∆ − 1

)2 erj∆P (j∆)

F 2
0,j∆

+
T

∆

(
e(r−δ)∆ − 1

)2

≤ T

∆

(
e(r−δ)∆ − 1

)2 erTP (T )

F 2
0,T

+
T

∆

(
e(r−δ)∆ − 1

)2
.

Now, by definition of V , we have |erTP (T )/F 2
0,T−∆ − V | =

∣∣e2(r−δ)∆ − 1
∣∣V . Since

|V (∆) − V | ≤ |V (∆) − erTP (T )/F 2
0,T−∆| + |erTP (T )/F 2

0,T−∆ − V |, by the triangle

inequality, the result follows.

Pricing and hedging when deep-out-of-the-money strikes are not tradable

Options that are sufficiently deep-out-of-the-money have prices so close to zero that

they are not traded. Thus the idealized replicating portfolio, which comprises options of

all strikes, is not attainable in practice. This issue affects both conventional variance

swaps and simple variance swaps. Fortunately there is a practical solution to this

problem. Suppose that, at time 0, options with strikes between A and B are tradable;

the idealized scenario in which all strikes are tradable corresponds to A = 0, B =∞.

Then we can define the modified payoff(
S∆ − S0

F0,0

)2

+

(
S2∆ − S∆

F0,∆

)2

+ · · ·+
(
ST − ST−∆

F0,T−∆

)2

− φ(ST ),

where the correction term φ(ST ) is zero unless the underlying asset’s price happens to

end up outside the original strike range (A,B):

φ(ST ) =



(
A−ST

F0,T−∆

)2

if ST < A.

0 if A ≤ ST ≤ B.(
ST−B
F0,T−∆

)2

if ST > B.

This modified payoff can be replicated without needing to trade options with strikes

outside the range (A,B), by holding

(i) a static position in 2/F 2
0,T dK puts expiring at time T with strike K, for each

A < K ≤ Ft,T ,
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FIGURE XVII: Left: Upper and lower strike boundaries, A and B (dotted lines)
and subsequent realized level of the market at expiry, ST (solid line). Right: The

distance at expiry from the edge of the strike range, expressed as a percentage of the
terminal level ST .

(ii) a static position in 2/F 2
0,T dK calls expiring at time T with strike K, for each

Ft,T ≤ K < B, and

(iii) a dynamic position of 2e−δ(T−t)(1−St/F0,t)/F0,T units of the underlying at time t,

financed by borrowing. To see this, simply note that the payoff φ(ST ) is precisely the

payoff on the “missing” options with strikes less than A and greater than B that are

not included in the above position.

In the limit as ∆→ 0, the fair strike for the modified payoff is

V̂ ≡ 2erT

F 2
0,T

{∫ F0,T

A

put0,T (K) dK +

∫ B

F0,T

call0,T (K) dK

}
.

To explore how large the adjustment term φ(ST ) is in practice in the case of the

S&P 500 index, I looked at every day in the sample on which OptionMetrics had data

for options expiring in 30 days. On each such day, I recorded the lowest tradable strike

(i.e. the strike of the most deep-out-of-the-money put option) and the highest tradable

strike (i.e. the strike of the most deep-out-of-the-money call option), together with the

subsequently realized level of the market at expiry time T .

The results are shown in Figure XVII. Over the sample period, the underlying

asset’s price never ended up outside the range of tradable strikes. In other words, the

correction term φ(ST ) was zero in every case: in Figure XVIIa, the value of ST at
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expiry is within the range of strikes that were tradable at initiation on every day in

sample. Figure XVIIb shows how far the underlying ended from the closer of the two

boundaries, expressing the result as a percentage of ST ; the graph is always positive,

reflecting the fact that the strike boundary was never crossed over the sample period.

The low point in the figure occurred at the very beginning of the sample, on January

18, 1996, when the S&P 500 closed at 608.24. On that day, the highest strike tradable

on options expiring in 30 days—on Saturday, February 17, 1996—was 650; in the event,

the S&P 500 closed just two points lower, at 647.98, on Friday, February 16.

As is apparent from Figure XVIIa, the width of the range of tradable strikes has

tended to increase over time. The mean value of the percentage distance to the edge of

the strike range, as illustrated in Figure XVIIb, is 12.9%; the median value is 11.9%.

In other words, on the median day in sample, the S&P 500 would have had to move a

further 11.9% in the appropriate direction in order to exit the range of tradable strikes.

Pricing and hedging under different assumptions on dividends

This section shows what happens to pricing and hedging of simple variance swaps under

various different assumptions about dividend payout policies.

Completely unanticipated dividend payouts. Result 6 continues to hold if the asset

makes unanticipated dividend payouts. Consider an extreme case in which the simple

variance swap is priced and hedged, at time zero, as though δ = 0; but immediately

after inception of the trade, at time t = ∆, the underlying asset is suddenly liquidated

via an extraordinary dividend, causing its (ex-dividend) price to equal 0 from time ∆

onwards. The payout that must be made by the counterparty who is short variance

equals 1, in this example. Meanwhile, the hedge portfolio given in the above result will

generate a positive payoff due to the put options going in-the-money. (The dynamic

position will have zero payoff: it was neither long nor short at time 0, and subsequently

the asset’s price never moved from zero.) Since ST = 0, the total payoff will be

2

F 2
0,T

∫ F0,T

0

max {0, K − ST} dK =
2

F 2
0,T

∫ F0,T

0

K dK = 1.

In other words, the strategy perfectly replicates the desired payoff. This applies more

generally: once the strike V is set and the replicating portfolio is in place, it does not

matter why the price path moves around subsequently, whether due to the payment of

7



unanticipated dividends or not.

Perfectly anticipated dividend payouts. Consider the case in which the asset pays a

dividend Dk∆ at time k∆ for some k, and no dividends at any other time up to and

including the expiry date, T . The price of a portfolio whose payoff is S2
i at time i

continues to equal Π(i), given by equation (35).

In this section, it will be important to distinguish between F0,t, the forward price of

the dividend-paying asset to time t, and F̃0,t ≡ S0e
rt, the appropriate normalization for

the definition of a simple variance swap in this case. A standard no-arbitrage argument

implies that the forward price is F0,t = S0e
rt if t < k∆, and F0,t = S0e

rt −Dk∆e
r(t−k∆)

if t ≥ k∆, so F0,t and F̃0,t coincide for times t before the payment of the dividend, but

differ thereafter. It turns out that F̃0,t is the appropriate normalization so that the

intermediate option positions are negligibly small, as was the case in the main text.

The definition of the payoff on the simple variance swap must be modified to allow

for the presence of the dividend. At time T , the counterparties to the simple variance

swap now exchange V for(
S∆ − S0

F̃0,0

)2

+ · · ·+

(
S(k−1)∆ − S(k−2)∆

F̃0,(k−2)∆

)2

+

(
Sk∆ +Dk∆ − S(k−1)∆

F̃0,(k−1)∆

)2

+

+

(
S(k+1)∆ − Sk∆

F̃0,k∆

)2

+ · · ·+

(
ST − ST−∆

F̃0,T−∆

)2

.

If the stock price happens to track the forward price at all points in time, then this

payoff will be zero in the ∆ → 0 limit, as is the case with variance swaps and simple

variance swaps in the absence of dividends.

The starting point of the replicating strategy will be to carry out precisely the trades

listed in Tables VIII and IX of the main paper with δ set equal to zero (and replacing

F0,t with F̃0,t wherever it occurs in the tables). This replicating strategy generates

the above payoff minus V , plus an extra payoff of (Dk∆/F̃0,(k−1)∆)2 − 2Dk∆(Sk∆ +

Dk∆)/F̃ 2
0,(k−1)∆. To offset this extra payoff, two new positions are required: (i) a short

position of e−rT (Dk∆/F̃0,(k−1)∆)2 (measured in dollars) in bonds, and (ii) a long position

of 2Dk∆e
−r(T−k∆)/F̃ 2

0,(k−1)∆ units of the underlying held until time k∆, then rolled into

bonds.

After some algebra (and up to terms of order ∆, as usual) this implies that the
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simple variance swap strike is given by

V =
2erT

F̃ 2
0,T

{∫ F0,T

0

put0,T (K) dK +

∫ ∞
F0,T

call0,T (K) dK

}
,

and that the replicating portfolio is equivalent to holding

(i) a static position of 2/F̃ 2
0,T dK puts expiring at time T with strike K, for each

K ≤ F0,T ,

(ii) a static position of 2/F̃ 2
0,T dK calls expiring at time T with strike K, for each

K ≥ F0,T , and

(iii) a dynamic position of 2(F0,t − St)/(F̃0,tF̃0,T ) units of the underlying at time t,

financed by borrowing.

Imperfectly anticipated dividend payouts. In the general case in which dividends

are of unknown size and timing, simple variance swaps can be straightforwardly priced

and hedged if total return options can be traded: these are options on a claim to the

underlying-with-dividends-reinvested (the latter being a tradable asset that does not

pay dividends). We can price and hedge a simple variance swap on the underlying-with-

dividends-reinvested by reinterpreting the inputs to Result 6. The price St corresponds

to the value of the underlying-with-dividends-reinvested (so S0 is the spot price of the

underlying asset); the instantaneous dividend yield δ = 0; F0,t is the forward price of

the dividend-adjusted underlying, which equals S0e
rt for all t by a static no-arbitrage

argument; and put0,T (K) and call0,T (K) are the prices of total return options expiring

at time T .
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